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ABSTRACT

Zeroth-order optimization (ZO) typically relies on two-point feedback to estimate
the unknown gradient of the objective function. Nevertheless, two-point feedback
can not be used for online optimization of time-varying objective functions, where
only a single query of the function value is possible at each time step. In this work,
we propose a new one-point feedback method for online optimization that estimates
the objective function gradient using the residual between two feedback points
at consecutive time instants. Moreover, we develop regret bounds for ZO with
residual feedback for both convex and nonconvex online optimization problems.
Specifically, for both deterministic and stochastic problems and for both Lipschitz
and smooth objective functions, we show that using residual feedback can produce
gradient estimates with much smaller variance compared to conventional one-point
feedback methods. As a result, our regret bounds are much tighter compared to ex-
isting regret bounds for ZO with conventional one-point feedback, which suggests
that ZO with residual feedback can better track the optimizer of online optimiza-
tion problems. Additionally, our regret bounds rely on weaker assumptions than
those used in conventional one-point feedback methods. Numerical experiments
show that ZO with residual feedback significantly outperforms existing one-point
feedback methods also in practice.

1 INTRODUCTION

Zeroth-order optimization (ZO) algorithms have been widely used to solve online optimization
problems where first or second order information (i.e., gradient or Hessian information) is unavailable
at each time instant. Such problems arise, e.g., in online learning and involve adversarial training
Chen et al. (2017) and reinforcement learning Fazel et al. (2018); Malik et al. (2018) among others.
The goal is to minimize a sequence of time-varying objective functions {ft(x)}t=1:T , where the
value ft(xt) is revealed to the agent after an action xt is selected and is used to adapt the agent’s
future strategy. Since the objective functions are not known a priori, the quality of an online decision
can be measured using notions of regret, that generally compare the total cost incurred by an online
decision to the cost of the fixed or varying optimal decision that a clairvoyant agent could select.

Perhaps the most popular zeroth-order gradient estimator is the two-point estimator that has been
extensively studied in Agarwal et al. (2010); Ghadimi & Lan (2013); Duchi et al. (2015); Bach &
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Perchet (2016); Nesterov & Spokoiny (2017); Gao et al. (2018); Roy et al. (2019). This estimator
queries the function value ft(x) twice at each time step, and uses the difference in the two function
values to estimate the desired gradient, i.e.,

(Two-point feedback): g̃(2)
t (x) =

u

δ

(
ft(x+ δu)− ft(x)

)
, (1)

where δ > 0 is a parameter and u ∼ N (0, I). Although this two-point estimator produces gradient
estimates with low variance that improve the convergence speed of ZO, it can not be used for
non-stationary online optimization problems that arise frequently in online learning. The reason is
that in these non-stationary online optimization problems, the objective function being queried is
time-varying, and hence only a single function value can be sampled at a given time instant. In this
case, one-point estimators can be used instead that query the objective function ft(x) only once at
each time instant, i.e.,

(One-point feedback): g̃(1)
t (x) =

u

δ
ft(x+ δu). (2)

One-point feedback was first proposed and analyzed in Flaxman et al. (2005) for convex online
optimization problems. Saha & Tewari (2011); Dekel et al. (2015) showed that the regret of convex
online optimization methods using one-point gradient estimation can be improved if the objective
functions are assumed to be smooth and self-concordant regularization is used. More recently,
Gasnikov et al. (2017) developed regret bounds for ZO with one-point feedback also for stochastic
convex problems. On the other hand, Hazan et al. (2016) characterized the convergence of one-point
zeroth-order methods for static stochastic non-convex optimization problems. However, as shown in
these studies, one-point feedback produces gradient estimates with large variance which results in
increased regret. In addition, the regret analysis for ZO with one-point feedback usually requires the
strong assumption that the function value is uniformly upper bounded over time, so this method can
not be used for practical non-stationary optimization problems.

Contributions: In this paper, we propose a novel one-point gradient estimator for zeroth-order
online optimization and develop new regret bounds to study its performance. Our proposed estimator
uses the residual between two consecutive feedback points to estimate the gradient and, therefore,
we refer to it as residual feedback. We show that, for both deterministic and stochastic problems,
using residual feedback produces gradient estimates with lower variance compared to those produced
using the conventional one-point feedback proposed in Flaxman et al. (2005); Gasnikov et al. (2017).
As a result, we obtain tighter regret bounds both for convex and non-convex problems, especially
when the value of the objective function is large. Moreover, our regret analysis relies on weaker
assumptions compared to those for ZO with conventional one-point feedback. Finally, we present
numerical experiments that demonstrate that ZO with residual feedback significantly outperforms the
conventional one-point method in its ability to track the time-varying optimizers of online learning
problems. To the best of our knowledge, this is the first time a one-point zeroth-order method is
theoretically studied for non-convex online optimization problems. It is also the first time that a
one-point gradient estimator demonstrates comparable empirical performance to that of the two-point
method. We note that two-point estimators can only be used to solve non-stationary online learning
problems in simulation, where the system can be reset to the same fixed state during two different
queries of the objective function values at a given time instant.

Related work: Online optimization problems are only one instance of optimization problems that
ZO methods have been used to solve. For example, Balasubramanian & Ghadimi (2018) apply ZO to
solve a set-constrained optimization problem where the projection onto the constraint set is non-trivial.
Gorbunov et al. (2018); Ji et al. (2019) apply a variance-reduced technique and acceleration schemes
to achieve better convergence speed in ZO. Wang et al. (2018) improve the dependence of the
iteration complexity on the dimension of the problem under an additional sparsity assumption on the
gradient of the objective function. Finally, Hajinezhad & Zavlanos (2018); Tang & Li (2019) apply
zeroth-order oracles to distributed optimization problems when only bandit feedbacks are available
at each local agents. Our proposed residual feedback oracle can be used to solve such optimization
problems as well. Also related is work by Zhang et al. (2015) that considers non-convex online bandit
optimization problems with a single query at each time step. However, this method employs the
exploration and exploitation bandit learning framework and the proposed analysis is restricted to a
special class of non-convex objective functions. Finally, Agarwal et al. (2011); Hazan & Li (2016);
Bubeck et al. (2017) study online bandit algorithms using ellipsoid methods. In particular, these
methods induce heavy computation per step and achieve regret bounds that have bad dependence on
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the problem dimension. As a comparison, our one-point method is computation light and achieves
regret bounds that have better dependence on the problem dimension.

2 PRELIMINARIES AND RESIDUAL FEEDBACK

In this section we provide basic definitions and results on ZO that will be needed in the subsequent
analysis. We also define the residual feedback gradient estimator that we propose to solve online
optimization problems with unknown gradient information. First, we define the class of Lipschitz
and smooth objective functions we are concerned with.
Definition 2.1 (Lipschitz functions). The class of Lipschtiz-continuous functions C0,0 satisfies: for
any f ∈ C0,0, |f(x)−f(y)| ≤ L0‖x−y‖, ∀x, y ∈ Rd, whereL0 > 0 is the Lipschitz parameter. The
class of smooth functions C1,1 satisfies: for any f ∈ C1,1, ‖∇f(x)−∇f(y)‖ ≤ L1‖x−y‖, ∀x, y ∈
Rd, where L1 > 0 is the smoothness parameter.

The key idea in ZO is to estimate the unknown first-order gradient of the objective function f using
zeroth-order oracles that perturb the objective function around the current point along all directions
uniformly. The ability of these oracles to correctly estimate the gradient is typically analyzed using
the Gaussian-smoothed version of the function f defined as fδ(x) := Eu∼N (0,1)[f(x+ δu)], where
the coordinates of the vector u are i.i.d standard Gaussian random variables; see Nesterov & Spokoiny
(2017). The following result bounds the approximation error of the function fδ(x) and can be found
in Nesterov & Spokoiny (2017).
Lemma 2.2. Consider a function f and its smoothed version fδ . It holds that

|fδ(x)− f(x)| ≤
{
δL0

√
d, if f ∈ C0,0,

δ2L1d, if f ∈ C1,1,
and ‖∇fδ(x)−∇f(x)‖ ≤ δL1(d+ 3)3/2, if f ∈ C1,1.

The smoothed function fδ(x) also satisfies the following amenable property; see Nesterov & Spokoiny
(2017).
Lemma 2.3. If f ∈ C0,0 is L0-Lipschitz, then fδ ∈ C1,1 with Lipschitz constant L1 =

√
dδ−1L0.

In this paper we consider the following online bandit optimization problem

min
x∈X

T−1∑
t=0

ft(x), (P)

where X ⊂ Rd is a convex set and {ft}t is a random sequence of objective functions. We assume
that at time t, a new objective function ft is randomly generated independent of an agent’s decisions,
the objective functions {ft}t are unknown a priori and their derivatives are unavailable but can be
estimated using a zeroth-order oracle that queries the objective function value at different perturbed
points x, as discussed above. The goal is to determine an online decision x with cost that is as close
as possible to the cost of a fixed or varying optimal decision that a clairvoyant agent could select,
which is measured using notions of regret.

Such online optimization problems often arise in non-stationary learning, where the system is time-
varying or a single query of the function ft changes the system state (i.e., ft changes to ft+1). In
these problems, two-point feedback can not be used to estimate the unknown gradient as it requires to
evaluate ft at two different points at the same time t. Instead, a more practical approach is to use the
one-point feedback scheme (2) in Gasnikov et al. (2017). However, the gradient estimates produced
by the one-point feedback method in (2) have large variance that leads to large regret and, therefore,
poor ability to track the optimizer of the online problem. To address this limitation, in this paper we
propose a novel one-point gradient estimator, which we call a one-point residual feedback estimator,
that has reduced variance and is defined as

(Residual feedback): g̃t(xt) :=
ut
δ

(
ft(xt + δut)− ft−1(xt−1 + δut−1)

)
, (3)

where ut−1, ut ∼ N (0, I) are independent random vectors. To elaborate, the proposed residual
feedback estimator in (3) queries ft at a single perturbed point xt + δut, and then subtracts the value
ft−1(xt−1 + δut−1) obtained from the previous iteration. Next, we discuss some basic properties of
this new estimator. We first show that this estimator provides an unbiased gradient estimate of the
smoothed function fδ,t.

3



Lemma 2.4. The residual feedback estimator satisfies E
[
g̃t(xt)

]
= ∇fδ,t(xt) for all xt ∈ X and t.

Proof. The proof follows from the fact that ut has zero mean and is independent from ut−1 and
xt−1.

Remark 2.5. We note that existing two-point estimators can not be easily modified to be used
for non-stationary optimization. The difficulty is in ensuring that the returned gradient estimates
are unbiased as in the case of residual feedback in Lemma 2.4. To see this, consider the simple
modification of the online two-point gradient estimator (7) proposed in Bach & Perchet (2016)

g̃t(xt) =
ut
2δ

(
ft(xt + δut)− ft−1(xt − δut)

)
.

Then, it is easy to see that this modified two-point gradient estimator is biased since E
[
g̃t(xt)

]
6=

∇fδ,t(xt). Specifically, let g̃t(xt) = ut

2δ

(
ft(xt+δut)−ft−1(xt−δut)

)
= ut

2δ

(
ft(xt+δut)−ft(xt−

δut)+εt
)
, where εt = ft(xt−δut)−ft−1(xt−δut). Although E

[
ut

2δ

(
ft(xt+δut)−ft(xt−δut)

)]
=

∇fδ,t(xt), we have that E
[
ut

2δ εt
]
6= 0 since εt is correlated with ut. Therefore, for this modified

estimator we have that E
[
g̃t(xt)

]
= E

[
ut

2δ

(
ft(xt + δut)− ft(xt − δut)

)]
+ E

[
ut

2δ εt
]
6= ∇fδ,t(xt).

Note that the original two-point estimator proposed in Bach & Perchet (2016) is unbiased, because
the function ft is queried at two points, xt + δut and xt − δut, and the noise εt in this case is simply
the evaluation noise that is zero mean for any ut.

In this paper, we consider the following ZO projected gradient update with residual feedback to solve
the online problem (P):

(ZO with residual feedback): xt+1 = ΠX
(
xt − ηg̃t(xt)

)
, (4)

where η is the learning rate and ΠX is the projection operator onto the set X . The update (4) can
be implemented assuming that the objective function can be queried at points outside the feasible
set X , similar to the methods considered in Duchi et al. (2015); Bach & Perchet (2016); Gasnikov
et al. (2017). Note that it is possible to modify the update (4) so that the iterates are guaranteed to be
within the feasible set X . This modification and related analysis can be found in Section H in the
supplementary material. The requirement that the objective function is evaluated at feasible points in
derivative-free optimization algorithms has also been considered in Bubeck et al. (2017); Bilenne
et al. (2020). Specifically, Bubeck et al. (2017) develop the so called ellipsoid method, which requires
computation of an ellipsoid containing the optimizer at each time step. On the other hand, almost
concurrently with this work, Bilenne et al. (2020) proposed a similar oracle as in (3) for a static
convex optimization problem with specific objective and constraint functions. The following result
bounds the second moment of the gradient estimate generated by using residual feedback.
Lemma 2.6 (Second moment). Assume that ft ∈ C0,0 with Lipschitz constant L0 for all time t.
Then, under the ZO update rule in (4), the second moment of the residual feedback satisfies:

E[‖g̃t(xt)‖2] ≤ 4dL2
0η

2

δ2
E[‖g̃t−1(xt−1)‖2] +Dt, (5)

where Dt := 16L2
0(d+ 4)2 + 2d

δ2 E
[(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2]
.

The proof of above lemma can be found in Appendix B. The above lemma shows that the second mo-
ment of the gradient estimates obtained using residual feedback forms a contraction with perturbation
termDt, provided that we choose η and δ such that the contracting rate satisfies α = 4dL2

0η
2δ−2 < 1.

As we show later in the analysis, this contraction property leads to gradient estimates with low variance
that allow to reduce the regret of the online ZO algorithm (4).

3 ZO WITH RESIDUAL FEEDBACK FOR CONVEX ONLINE OPTIMIZATION

In this section, we consider the online bandit problem (P) where the sequence of functions {ft}t=0:T−1

are all convex. In particular, we are interested in analyzing the static regret of algorithm (4) defined as

RT := E
[ T−1∑
t=0

ft(xt)−min
x∈X

T−1∑
t=0

ft(x)
]
. (6)

First, we make the following assumption on the non-stationarity of the online learning problem.
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Assumption 3.1 (Bounded variation). There exists Vf > 0 such that for all t,

E
[
|ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)|2

]
≤ V 2

f , (7)

where the expectation is taken over xt−1, the random vector ut−1 and the random functions ft−1,ft.

Assumption 3.1 states that the squared variation of the objective function between two consecutive
time instants is uniformly bounded over time. We note that this assumption is weaker than the
assumption that the objective function is uniformly bounded, i.e., |ft(x)| ≤ B, ∀t, x, which is used
in the analysis of ZO with conventional one-point feedback in Flaxman et al. (2005); Gasnikov et al.
(2017). In particular, under Assumption 3.1, the perturbation term in Lemma 2.6 can be bounded
as Dt ≤ 16L2

0(d+ 4)2 + 2dV 2
f δ
−2. Then, by telescoping the contraction inequality, we obtain the

following bound for the second moment of the residual-feedback gradient estimate

E[‖g̃t(xt)‖2] ≤ max
{
E[‖g̃0(x0)‖2],

1

1− α

(
16L2

0(d+ 4)2 +
2d

δ2
V 2
f

)}
. (8)

The detailed proof can be found in Appendix J. In practice, δ needs to be sufficiently small so that
the smoothed function fδ,t is close to the original function ft according to Lemma 2.2. In this case,
the above bound on the second moment of the residual-feedback gradient estimates is dominated
by O(dδ−2V 2

f ), which is much smaller than the bound on the second moment of the conventional
one-point gradient estimates O(dδ−2B2), where B is the uniform bound on |ft| over time. For
example, consider the time-varying objective functions, f0(x) = 1/2x2 and ft(x) = ft−1(x) + nt,
where nt is Gaussian noise with zero mean at time t. Then, it can be verified that Assumption 3.1
holds with a finite Vf whereas the second moment of ft(x) is unbounded over time. As a result,
the variance of the residual feedback gradient estimates can be significantly smaller than that of the
conventional one-point feedback gradient estimates.

The following result characterizes the regret of ZO with residual feedback when the objective function
ft is convex and Lipschitz.
Theorem 3.2 (Regret for Convex Lipschitz ft). Let Assumption 3.1 hold. Assume that ft ∈ C0,0 is
convex with Lipschitz constant L0 for all t and ‖x0 − x∗‖ ≤ R. Run ZO with residual feedback for
T > R2 iterations with η = R

3
2 (2
√

2L0

√
dT

3
4 )−1 and δ =

√
RT−

1
4 . Then, we have that

RT ≤
√

2L0

√
dRT

3
4 +

E
[
‖g̃0(x0)‖2

]
R

3
2

2
√

2dL0T
3
4

+ 8
√

2
(d+ 4)2

√
d

L0R
3
2T

1
4

+ 2L0

√
dRT

3
4 +
√

2dRV 2
f L0

−1T
3
4 . (9)

Asymptotically, we have RT = O((L0 + L0
−1V 2

f )
√
dRT

3
4 ).

The proof can be found in Appendix C. To the best of our knowledge, the best known regret for
ZO with conventional one-point feedback is of the order O(

√
dL0RBT

3
4 ) Gasnikov et al. (2017).

Therefore, our regret bound is tighter if the function variation satisfies V 2
f ≤ O(B

1
2L

3
2
0 ). Essentially,

using the proposed residual feedback gradient estimator, the regret of ZO no longer depends on the
uniform bound of the function value, which can be very large in practice. Instead, our regret only relies
on how fast the function varies over time. Note that knowledge of the neighborhoodR in Theorem 3.2
allows to select the stepsize η and the parameter δ so that a better regret rate can be achieved that
depends on R. However, knowledge of R is not required and ZO with residual feedback converges
from any initial point x0. When the parameter R is unknown, we can choose η = (2

√
2L0

√
dT

3
4 )−1

and δ = T−
1
4 and obtain the regret bound RT ≤ O(L0R

2
√
dT

3
4 + L0

−1
√
dV 2

f T
3
4 ). The proof can

be found in Appendix C.
Remark 3.3. We note that the complexity bound in Theorem 3.2 generally depends on the values of
the Lipschitz parameters L0, L1 and the constant V 2

f . Specifically, choose η = R
3
2 (2
√

2L0

√
dT

3
4 )−1

and δ =
√
RL−q0 T−

1
4 with q > 0 as a tuning parameter, and we obtain thatRT = O((L0 +L0

1−q+

L2q−1
0 V 2

f )
√
dRT

3
4 ) when T ≥ L2q

0 R
2. If L0 < 1, we can choose q = 1 to achieve the bound

RT = O((L0 + L0V
2
f )
√
dRT

3
4 ). On the other hand, if L0 ≥ 1, we can choose q = 0 to achieve

the bound RT = O((L0 + L0
−1V 2

f )
√
dRT

3
4 ). We note that the dependence of the bounds in

Theorems 3.4, 4.2 and 4.3 on L0, L1 can also be optimized in a similar way by properly choosing δ.
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Next, we present the regret of ZO with residual feedback when the objective function ft is convex
and smooth.

Theorem 3.4 (Regret for Convex Smooth ft). Let Assumption 3.1 hold. Assume that ft(x) ∈
C0,0∩C1,1 is convex with Lipschitz constantL0 and smoothness constantL1 for all t, and assume that
‖x0−x∗‖ ≤ R. Run ZO with residual feedback for T > R2 iterations with η = R

4
3 (2
√

2L0d
2
3T

2
3 )−1

and δ = R
1
3 d−

1
6T−

1
6 . Then, we have that

RT ≤
√

2L0d
2
3R

2
3T

2
3 +

E
[
‖g̃0(x0)‖2

]
R

4
3

2
√

2L0d
2
3T

2
3

+ 8
√

2L0
(d+ 4)2

d
2
3

R
4
3T

1
3

+ 2L1d
2
3R

2
3T

2
3 +
√

2L0
−1d

2
3R

2
3V 2

f T
2
3 . (10)

Asymptotically, we have that RT = O((L0 + L1 + L0
−1V 2

f )(dRT )
2
3 ).

The proof can be found in Appendix D. To the best of our knowledge, the best known regret
for ZO with conventional one-point feedback for convex and smooth problems is of the order
O(L

1
3
1 (dRBT )

2
3 ) Gasnikov et al. (2017). Therefore, our regret bound is tighter if the function

variation satisfies V 2
f ≤ O(B

2
3L

1
3
1 L0). Our numerical experiments in Section 6 show that ZO with

residual feedback always outperforms ZO with conventional one-point feedback in practice.

4 ZO WITH RESIDUAL FEEDBACK FOR NON-CONVEX ONLINE OPTIMIZATION

In this section, we analyze the regret of ZO with residual feedback for the unconstrained online
bandit problem (P) where the objective functions {ft}t=0,...,T−1 are non-convex. To the best of our
knowledge, this is the first time that a one-point zeroth-order method is studied for non-convex online
optimization. Throughout this section, we make the following assumption on the objective functions.

Assumption 4.1. There exist WT , W̃T > 0 such that the following conditions hold for all t.

1.
∑T
t=1 E[fδ,t(xt)− fδ,t−1(xt)] ≤WT , where the expectation is taken with respect to xt and the

random smoothed objective functions fδ,t−1, fδ,t.
2.
∑T
t=1 E[|ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)|2] ≤ W̃T , where the expectation is taken with

respect to xt−1, the random vector ut−1 and the random objective functions ft−1, ft.

The above two conditions in Assumption 4.1 measure the accumulated first-order and second-order
function variations. A similar assumption is made in Roy et al. (2019).

First, we consider the case where {ft}t are nonconvex and Lipschitz continuous functions. Since the
objective function ft is not necessarily differentiable, i.e., ∇f(t) is not well defined, we define the
regret as the accumulated gradient of the smoothed function, i.e., RTg,δ :=

∑T−1
t=0 E[‖∇fδ,t(xt)‖2].

In addition, similar to Nesterov & Spokoiny (2017), we require that the smoothed function fδ,t is
close to the original function ft such that |fδ,t(x)− ft(x)| ≤ εf for all t. To satisfy this condition,
we need to choose δ ≤ (

√
dL0)−1εf according to Lemma 2.2. Then, we can show the following

regret bound for ZO with residual feedback.

Theorem 4.2 (Nonconvex Lipschitz ft). Let Assumptions 4.1 hold. Assume that ft ∈ C0,0 with
Lipschitz constant L0 and that ft is bounded below by f∗t for all t. Run ZO with residual feedback for

T > (dεf )−1 iterations with η = ε
3
2

f (2
√

2L2
0d

3
2T

1
2 )−1 and δ = εf (d

1
2L0)−1. Then, we have that

RTg,δ ≤ 2
√

2L2
0

(
E[fδ,0(x0)]− f∗δ,T +WT

)
d

3
2 ε
− 3

2

f T
1
2 +

ε
1
2

f E
[
‖g̃0(x0)‖2

]
2
√

2dT

+ 4
√

2L0ε
1
2

f

(d+ 4)2

d
1
2

T
1
2 +

L2
0√
2

d
3
2 W̃T

ε
3
2

f T
1
2

. (11)

Asymptotically, we have RTg,δ = O(d
3
2L2

0ε
− 3

2

f (WT + W̃TT
−1)T

1
2 + d

3
2L0ε

1
2

f T
1
2 ).
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The proof can be found in Appendix E. Theorem 4.2 implies that the regret bound satisfies
RTg,δ/T → 0 whenever WT = o(T

1
2 ε

3
2

f ) and W̃T = o(T
3
2 ε

3
2

f ). In particular, if the bounded

variation Assumption 4.1 holds, then we have W̃T ≤ O(TV 2
f ), and it suffices to let T−

1
2 ε
− 3

2

f = o(1).

Next, we assume that the objective functions ft in (P) are non-convex and smooth and study the
regret RTg :=

∑T−1
t=0 E[‖∇ft(xt)‖2]. Specifically, we provide the following regret bound for ZO

with residual-feedback.

Theorem 4.3 (Nonconvex smooth ft). Let Assumptions 4.1 hold. Assume that ft ∈ C0,0 ∩C1,1 with
Lipschitz constant L0 and smoothness constant L1 and that ft is bounded below by f∗t for all t. Run
ZO with residual feedback for T iterations with η = (2

√
2L0d

4
3T

1
2 )−1 and δ = (d

5
6T

1
4 )−1. Then,

RTg ≤ 4
√

2L0

(
E[fδ,0(x0)]− f∗δ,T +WT

)
d

4
3T

1
2 +

L1E
[
‖g̃0(x0)‖2

]
√

2L0d
4
3T

1
2

+ 8
√

2L1L0
(d+ 4)2

d
4
3

T
1
2 +

√
2L1

L0
d

4
3 W̃T + 2L2

1

(d+ 3)3

d
5
3

T
1
2 . (12)

Asymptotically, we have that RTg = O(d
4
3L0WTT

1
2 + d

4
3L1L0

−1W̃T ).

The proof can be found in Appendix F. Theorem 4.3 implies that the regret bound satisfiesRTg /T → 0

whenever WT = o(T
1
2 ) and W̃T = o(T ). We note that these requirements on WT , W̃T are weaker

than those in the case of nonsmooth problems, as they do not rely on the small parameter εf .

5 ZO WITH RESIDUAL FEEDBACK FOR STOCHASTIC ONLINE OPTIMIZATION

Our proposed residual feedback gradient estimator can be also extended to solve stochastic online
bandit problems. Since the regret analysis is similar to that for deterministic online problems presented
before, we only introduce the key technical lemmas and comment on the differences in the proof.
Specifically, we consider the following stochastic online bandit problems

min
x∈X

T−1∑
t=0

E[Ft(x; ξt)], where E[Ft(x; ξt)] = ft(x), ∀t, (R)

where ξt denotes a certain noise that is independent of x. Different from the deterministic online
problems discussed before, the agent here can only query noisy evaluations of the objective function.
This covers scenarios where the agent does not have access to the underlying data distribution. To
solve the above stochastic online problem, we propose the following stochastic residual feedback

g̃t(xt) :=
ut
δ

(
Ft(xt + δut; ξt)− Ft−1(xt−1 + δut−1; ξt−1)

)
, (13)

where ξt−1 and ξt are independent random samples that are sampled at consecutive iterations t− 1
and t, respectively. Since the noisy function value F (x; ξt) is an unbiased estimate of the objective
function ft(x), it is straightforward to show that (13) is an unbiased gradient estimate of the function
fδ,t(x). To analyze the regret of ZO with stochastic residual feedback, we first consider the convex
case and make the following assumption on the variation of the stochastic objective functions.

Assumption 5.1. (Bounded stochastic variation) There exists Vf,ξ > 0 such that for all t,

E
[(
Ft(xt−1 + δut−1, ξt)− Ft−1(xt−1 + δut−1, ξt−1)

)2] ≤ V 2
f,ξ,

where the expectation is taken with respect to xt−1, the random vector ut−1 and the random objective
functions Ft−1(·, ξt−1), Ft(·, ξt).

The above assumption generalizes Assumption 3.1 to stochastic problems. The bound V 2
f,ξ controls

both the variation of function over time and the variation due to stochastic sampling.

The following lemma characterizes the second moment of the stochastic residual feedback gradient
estimates. Its proof can be found in Appendix G.

7



Lemma 5.2. Assume F (x, ξ) ∈ C0,0 with Lipschitz constant L0 for all ξ. Then, under the ZO update
rule, we have that

E[‖g̃t(xt)‖2] ≤ 4dL2
0η

2

δ2
E[‖g̃t(xt−1)‖2] +Dt,ξ,

where Dt,ξ := 16L2
0(d+ 4)2 + 2d

δ2 E[
(
Ft(xt−1 + δut−1, ξt)− Ft−1(xt−1 + δut−1, ξt−1)

)2
].

Observe that the above second moment bound is very similar to that in Lemma 2.6, and the only
difference is the perturbation term. Since the perturbation term Dt,ξ can be further bounded by
leveraging Assumption 5.1, the resulting second moment bound can become almost the same as that
in eq. (8) for deterministic problems (simply replace Vf in eq. (8) by Vf,ξ). Therefore, the regret
analysis of ZO with stochastic residual feedback is the same as that of ZO with residual feedback for
deterministic online problems. Consequently, ZO with stochastic residual feedback achieves almost
the same regret bounds as those in Theorems 3.2 and 3.4, and one simply needs to replace Vf by Vf,ξ .

In the case of non-convex stochastic online problems, we adopt the following assumption that
generalizes Assumption 4.1.

Assumption 5.3. There exists WT , W̃T,ξ > 0 such that the following two conditions hold for all t.

1.
∑T
t=1 E[fδ,t(xt)− fδ,t−1(xt)] ≤WT , where the expectation is taken with respect to xt and the

random smoothed objective functions fδ,t−1, fδ,t.
2.
∑T
t=1 E[|Ft(xt−1 + δut−1; ξt) − Ft−1(xt−1 + δut−1; ξt−1)|2] ≤ W̃T,ξ, where the expectation

is taken with respect to xt−1, the random vector ut−1 and the random objective functions
Ft−1(·, ξt−1), Ft(·, ξt).

Then, following similar steps as those in the proofs of Theorems 4.2 and 4.3, we can obtain similar
regret bounds for ZO with stochastic residual feedback (simply replace WT , W̃T in Theorems 4.2
and 4.3 by WT,ξ, W̃T,ξ , respectively).

6 NUMERICAL EXPERIMENTS

In this section, we compare the performance of ZO with one-point, two-point and residual feedback
in solving two non-stationary reinforcement learning problems, i.e., LQR control and resource
allocation, in which either the reward or transition functions are varying over episodes.

6.1 NONSTATINOARY LQR CONTROL

We consider an LQR problem with noisy system dynamics. The static version of this problem
is considered in Fazel et al. (2018); Malik et al. (2018). Specifically, consider a system whose
state xk ∈ Rnx at step k is subject to a transition function xk+1 = Atxk + Btuk + wk, where
uk ∈ Rnu is the action at step k, and At ∈ Rnx×nx and Bt ∈ Rnx×nu are dynamical matrices in
episode t. These matrices are unknown and changing over episodes. The vector wk is the noise
on the state transition. Specifically, the entries of the dynamical matrices A0 and B0 at episode
0 are randomly generated from a Gaussian distribution N (0, 0.12). Then, we generate the time-
varying dynamical matrices as At+1 = At + 0.01Mt and Bt+1 = Bt + 0.01Nt, where Mt and Nt
are random matrices whose entries are uniformly sampled from [0,1]. Moreover, consider a state
feedback policy uk = Ktxk, where Kt ∈ Rnu×nx is the policy parameter that is fixed during episode
t. We assume that there exists an optimal policy K∗t so that the discounted accumulated cost function
Vt(K) := E

[∑H−1
k=0 γk(xTkQxk + uTkRuk)

]
at episode t is minimized, where γ ≤ 1 is the discount

factor and H is the horizon. The goal is to track the time-varying optimal policy parameter K∗t so
that Vt(Kt)− Vt(K∗t ) is small in every episode.

We apply the conventional one-point method in Gasnikov et al. (2017) and the proposed residual-
feedback method (13) to solve the above non-stationary LQR problem. The performance of the
two-point method in Bach & Perchet (2016) is also presented to serve as a benchmark, although it
is not possible to implement in practice for non-stationary problems. This is because the two-point
method in Bach & Perchet (2016) requires to evaluate value function Vt for two different policy
functions at two consecutive episodes. However, evaluating the value function Vt for a given policy
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Figure 1: Comparative results of ZO with the proposed one-point residual feedback (3) (blue), the two-point
oracle in Bach & Perchet (2016) (orange) and the conventional one-point oracle in Gasnikov et al. (2017) (green)
for online policy optimization in nonstationary LQR. Figure 1(a) presents the regrets

∑T
t=0 |V (Kt)− V (K∗)|

achieved using the three diffident oracles and Figure 1(b) presents the variance of the gradient estimates returned
by the three methods. The two point method (orange) is infeasible to use in practice and is presented here to
serve as a simulation benchmark.

during episode t requires to collect samples by executing this policy. Then, during the subsequent
episode t+ 1, since the problem is non-stationary, the dynamic matrices change to At+1, Bt+1 and
so does the value function Vt+1. Therefore, it is not possible to evaluate the same value function
Vt at two different episodes and, as a result, the two-point method in Bach & Perchet (2016) is not
applicable here. Each algorithm is run for 10 trials, and the stepsizes are optimized for each algorithm
separately. The accumulated regrets

∑T−1
t=0 |V (Kt)− V (K∗)| of the three algorithms are presented

in Figure 1(a). We observe that ZO with residual feedback achieves a much lower regret than the
conventional one-point method and has a comparable performance to that of the two-point method.
Moreover, we present in Figure 1(b) the estimated variance of the gradient estimates returned by
these three oracles at the policy iterates over episodes. It can be seen that the variance of the gradient
estimates returned by our proposed residual-feedback is close to that of the gradient estimates returned
by the two-point feedback and is much smaller than that of the gradient estimates returned by the
conventional one-point feedback. This observation validates our theoretical characterization of the
second moment of the residual feedback gradient estimates.

6.2 NONSTATIONARY RESOURCE ALLOCATION

We consider a multi-stage resource allocation problem with time-varying sensitivity to the lack
of resource supply. Specifically, 16 agents are located on a 4 × 4 grid. During episode t, at
step k, agent i stores mi(k) amount of resources and has a demand for resources in the amount
of di(k). Also, agent i decides to send a fraction of resources aij(k) ∈ [0, 1] to its neighbors
j ∈ Ni on the grid. The local amount of resources and demands of agent i evolve as mi(k + 1) =
mi(k)−

∑
j∈Ni

aij(k)mi(k) +
∑
j∈Ni

aji(k)mj(k)− di(k) and di(k) = ψi sin(ωik+φi) +wi,k,
where wi,k is the noise in the demand. At each step k, agent i receives a local cost ri,t(k), such
that ri,t(k) = 0 when mi(k) ≥ 0 and ri,t(k) = ζtmi(k)2 when mi(k) < 0, where ζt represents
the varying sensitivity of the agents to the lack of supply during episode t. Let agent i makes its
decisions according to a parameterized policy function πi,t(oi; θi,t) : Oi → [0, 1]|Ni|, where θi,t is
the parameter of the policy function πi,t at episode t, oi ∈ Oi denotes agent i’s local observation.
Specifically, we let oi(k) = [mi(k), di(k)]T . Our goal is to track the time-varying optimal policy
so that the accumulated cost over the grid Jt(θt) =

∑16
i=1

∑H
k=0 γ

kri,t(k) during each episode is
maintained at a low level, where θt = [. . . , θi,t, . . . ] is the policy parameter,H is the problem horizon
at each episode, and γ is the discount factor.

In Figure 2(a), we present the cost Jt(θt) achieved during each episode after 10 trials of ZO with
residual-feedback, one-point, and two-point feedback which, as before, is impossible to use in
practice for this non-stationary problem either. It can be seen that ZO with our proposed residual-
feedback achieves a cost Jt(θt) that is as low as the cost achieved by the two-point feedback in this
non-stationary environment. In particular, ZO with both residual and two-point feedback performs
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Figure 2: Comparative results of ZO with the proposed one-point residual feedback (3) (blue), the two-point
oracle in Bach & Perchet (2016) (orange) and the conventional one-point oracle in Gasnikov et al. (2017) (green)
for the non-stationary resource allocation problem. Figure 2(a) presents the varying cost Jt(θt) achieved using
the three diffident oracles and Figure 2(b) presents the variance of the gradient estimates at agent 1 returned by
the three methods. The two point method (orange) is infeasible to use in practice and is presented here to serve
as a simulation benchmark.

much better than ZO with conventional one-point feedback. Figure 2(b) also compares the estimated
variance of the gradient estimates returned by these feedback schemes. It can be seen that the variance
of the gradient estimates returned by the residual feedback oracle is comparable to that of the gradient
estimates returned by the two-point oracle and is much smaller than that of the gradient estimates
returned by the conventional one-point oracle.

7 CONCLUSION

In this paper, we proposed a novel one-point residual feedback oracle for zeroth-order online
optimization, which estimates the gradient of the time-varying objective function using a single query
of the function value at each time instant. For both deterministic and stochastic problems, we showed
that ZO with the proposed residual feedback estimator achieves much lower regret than that of ZO
with conventional one-point feedback for convex online optimization problems. In addition, we
provided regret bounds for ZO with residual feedback for non-convex online optimization problems.
To the best of our knowledge, this is the first time that a one-point zeroth-order method is theoretically
studied for non-convex online problems. Numerical experiments on two non-stationary reinforcement
learning problems were conducted and the proposed residual-feedback estimator was shown to
significantly outperform the conventional one-point method.
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A IMPLEMENTATION DETAILS OF THE NUMERICAL EXPERIMENTS

All experiments are conducted using Matlab R2019a on Ubuntu 18.04 with the AMD Ryzen 2700X
8-core processor and 16GB 2133MHz memory.

For the non-stationary LQR experiments, we select nx = 6, nu = 6 and γ = 0.5. The dynamical
matrices A0 and B0 at episode 0 are randomly generated from a Gaussian distribution N (0, 0.12).
Then, we generate the time-varying dynamical matrices according to At+1 = At + 0.01Mt and
Bt+1 = Bt + 0.01Nt, where Mt and Nt are random matrices whose entries are uniformly sampled
from [0,1]. To evaluate the cost function Vt(Kt) given the policy parameter Kt at episode t, we roll
out a trajectory of length H = 50 using the policy parameter Kt and sum up the collected rewards.

For the non-stationary resource allocation experiments, the policy function πi,t(oi; θi,t) is parame-
terized as: aij = exp(zij)/

∑
j exp(zij), where zij =

∑9
p=1 ψp(oi)θij(p) and θi = [. . . , θij , . . . ]

T

and the episode index t is omitted for notational simplicity. Specifically, the feature function ψp(oi)
is selected as ψp(oi) = ‖oi− cp‖2, where cp is the parameter of the p-th feature function. Effectively,
the agents need to make decisions on 64 actions, and each action is decided by 9 parameters. There-
fore, the problem dimension is d = 576. The discount factor is selected as γ = 0.75 and the length
of the horizon is H = 30. The time-varying sensitivity parameter ζi,t is generated as follows: let
ζi,0 = 1 and ζi,t+1 = ζi,t + 0.1Pt, where Pt is a random number uniformly sampled from [−1, 1].

B PROOF OF LEMMA 2.6

By definition of the residual feedback, we have

E[‖g̃t(xt)‖2] = E[
1

δ2

(
ft(xt + δut)− ft−1(xt−1 + δut−1)

)2‖ut‖2]

≤ 2

δ2
E[
(
ft(xt + δut)− ft(xt−1 + δut−1)

)2‖ut‖2]

+
2

δ2
E[
(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2‖ut‖2].

(14)
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Since ut is independent of xt−1, ut−1 and the generation of functions ft−1 and ft, we have that
2
δ2E[

(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2‖ut‖2] ≤ 2d
δ2 E[

(
ft(xt−1 + δut−1)− ft−1(xt−1 +

δut−1)
)2

]. Moreover, adding and subtracting ft(xt−1 + δut) in the term
(
ft(xt + δut)− ft(xt−1 +

δut−1)
)2

of the above inequality, we obtain that

E[‖g̃(xt)‖2] ≤ 4

δ2
E[
(
ft(xt + δut)− ft(xt−1 + δut)

)2‖ut‖2]

+
4

δ2
E[
(
ft(xt−1 + δut)− ft(xt−1 + δut−1)

)2‖ut‖2]

+
2d

δ2
E[
(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2
].

(15)

Since ft ∈ C0,0 is Lipschitz with constant L0, we further obtain that

E[‖g̃(xt)‖2] ≤4L2
0

δ2
E[‖xt − xt−1‖2‖ut‖2] + 4L2

0E[‖ut − ut−1‖2‖ut‖2]

+
2d

δ2
E[
(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2
]. (16)

Note that ut is a Gaussian vector independent from xt − xt−1, we then obtain that E[‖xt −
xt−1‖2‖ut‖2] = dE[‖xt − xt−1‖2]. Furthermore, using Lemma 1 in Nesterov & Spokoiny
(2017), we know that E[‖ut − ut−1‖2‖ut‖2] ≤ 2E[(‖ut‖2 + ‖ut−1‖2)‖ut‖2] = 2E[(‖ut‖4] +
2E[‖ut−1‖2‖ut‖2] ≤ 4(d+ 4)2. Substituting these bounds into inequality (16), we obtain that

E[‖g̃(xt)‖2] ≤4dL2
0

δ2
E[‖xt − xt−1‖2] + 16L2

0(d+ 4)2

+
2d

δ2
E[
(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2
].

Since xt = ΠX
[
xt−1 − ηg̃(xt−1)

]
, we get that ‖xt − xt−1‖ = ‖ΠX

[
xt−1 − ηg̃(xt−1)

]
−

ΠX
[
xt−1

]
‖ ≤ η‖g̃(xt−1)‖ due to the nonexpansiveness of the projection operator onto a convex set.

Therefore, we have that

E[‖g̃t(xt)‖2] ≤4dL2
0η

2

δ2
E[‖g̃t−1(xt−1)‖2] + 16L2

0(d+ 4)2

+
2d

δ2
E[
(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2
].

The proof is complete.

C PROOF OF THEOREM 3.2

Note that fδ,t(x) is convex for all t, we then conclude that

fδ,t(xt)− fδ,t(x) ≤ 〈∇fδ,t(xt), xt − x〉, for all x ∈ X , (17)

Adding and subtracting g̃t(xt) after ∇fδ,t(xt) in above inequality, and taking expectation over ut on
both sides, we obtain that

E
[
fδ,t(xt)− fδ,t(x)

]
≤ E

[
〈g̃t(xt), xt − x〉

]
. (18)

Since xt+1 = ΠX
[
xt − ηg̃(xt)

]
, for any x ∈ X we have that

‖xt+1 − x‖2 = ‖ΠX
[
xt − ηg̃(xt)

]
−ΠX

[
x
]
‖2

≤ ‖xt − ηg̃(xt)− x‖2

= ‖xt − x‖2 − 2η〈g̃t(xt), xt − x〉+ η2‖g̃t(xt)‖2. (19)

Rearranging the above inequality yields that

〈g̃t(xt), xt − x〉 =
1

2η

(
‖xt − x‖2 − ‖xt+1 − x‖2

)
+
η

2
‖g̃t(xt)‖2. (20)
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Taking expectation on both sides of the above inequality over ut and substituting the resulting bound
into (18), we obtain that

E
[ T∑
t=0

fδ,t(xt)−
T∑
t=0

fδ,t(x)
]
≤ 1

2η
‖x0 − x‖2 +

η

2
E
[ T∑
t=0

‖g̃t(xt)‖2
]
. (21)

Since ft(x) ∈ C0,0, we know that |fδ,t(x)− ft(x)| ≤ δL0

√
d. Therefore, we obtain from the above

inequality that

E
[ T∑
t=0

ft(xt)−
T∑
t=0

ft(x)
]

= E
[ T∑
t=0

fδ,t(xt)−
T∑
t=0

fδ,t(x)
]

+ E
[ T∑
t=0

(
ft(xt)− fδ,t(xt)

)
−

T∑
t=0

(
ft(x)− fδ,t(x)

)]
≤ 1

2η
‖x0 − x‖2 +

η

2
E
[ T∑
t=0

‖g̃t(xt)‖2
]

+ 2
√
dL0δT. (22)

Telescoping the bound in (5) over t = 1, 2, ..., T , adding E
[
‖g̃0(x0)‖2

]
on both sides, adding

4dL2
0η

2

δ2 E[‖g̃T (xT )‖2] to the right hand side and using Assumption 3.1, we obtain that

E
[ T∑
t=0

‖g̃t(xt)‖2
]
≤ 1

1− α
E
[
‖g̃0(x0)‖2

]
+

16

1− α
L2

0(d+ 4)2T +
2dV 2

f

1− α
1

δ2
T, (23)

where α =
4dL2

0η
2

δ2 . Substituting the above bound into (22) yields that

E
[ T∑
t=0

ft(xt)−
T∑
t=0

ft(x)
]
≤ 1

2η
‖x0 − x‖2 +

η

2(1− α)
E
[
‖g̃0(x0)‖2

]
+

16

1− α
L2

0(d+ 4)2ηT

+ 2
√
dL0δT +

2dV 2
f

1− α
η

δ2
T. (24)

Since above inequality holds for all x ∈ X , we can replace x with x∗. When the upper bound on

‖x0 − x∗‖ ≤ R is known, let η = R
3
2

2
√

2L0

√
dT

3
4

and δ =
√
R

T
1
4

, so that α =
4dL2

0η
2

δ2 = R2

2T ≤
1
2 , when

T ≥ R2. Then, we obtain that

E
[ T∑
t=0

ft(xt)−
T∑
t=0

ft(x
∗)
]
≤
√

2L0

√
dRT

3
4 +

E
[
‖g̃0(x0)‖2

]
R

3
2

2
√

2dL0T
3
4

+ 8
√

2
(d+ 4)2

√
d

L0R
3
2T

1
4 + 2L0

√
dRT

3
4 +

√
2dRV 2

f

L0
T

3
4 . (25)

When R is unknown, let η = 1

2
√

2L0

√
dT

3
4

and δ = 1

T
1
4

, so that α =
4dL2

0η
2

δ2 = 1
2T ≤

1
2 . Then, we

obtain that

E
[ T∑
t=0

ft(xt)−
T∑
t=0

ft(x
∗)
]
≤
√

2L0

√
dR2T

3
4 +

E
[
‖g̃0(x0)‖2

]
2
√

2dL0T
3
4

+ 8
√

2
(d+ 4)2

√
d

L0T
1
4

+ 2
√
dL0T

3
4 +

√
2dV 2

f

L0
T

3
4 . (26)

On the other hand, we can let η = R
3
2

2
√

2L0

√
dT

3
4

and δ =
√
R

Lq
0T

1
4

, where q ∈ R is a user-specific

parameter. With this choice of parameters, we get α =
4dL2

0η
2

δ2 =
L2q

0 R2

2T ≤ 1
2 when T ≥ L2q

0 R
2 and,

as a result, we obtain that

E
[ T∑
t=0

ft(xt)−
T∑
t=0

ft(x
∗)
]
≤
√

2L0

√
dRT

3
4 +

E
[
‖g̃0(x0)‖2

]
R

3
2

2
√

2dL0T
3
4

+ 8
√

2
(d+ 4)2

√
d

L0R
3
2T

1
4

+ 2L1−q
0

√
dRT

3
4 +
√

2dRL2q−1
0 V 2

f T
3
4 . (27)
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D PROOF OF THEOREM 3.4

Since ft(x) ∈ C1,1, we know that |fδ,t(x)− ft(x)| ≤ δ2L1d. Following the same proof logic as that
for proving (22), we obtain that

E
[ T∑
t=0

ft(xt)−
T∑
t=0

ft(x)
]
≤ 1

2η
‖x0 − x‖2 +

η

2
E
[ T∑
t=0

‖g̃t(xt)‖2
]

+ 2dL1δ
2T. (28)

Substituting the bound in (23) into the above inequality, we obtain that

E
[ T∑
t=0

ft(xt)−
T∑
t=0

ft(x)
]
≤ 1

2η
‖x0 − x‖2 +

η

2(1− α)
E
[
‖g̃0(x0)‖2

]
+

16

1− α
L2

0(d+ 4)2ηT

+ 2dL1δ
2T +

2dV 2
f

1− α
η

δ2
T. (29)

Since above inequality holds for all x ∈ X , we can replace x with x∗. Assuming the bound

‖x0 − x∗‖ ≤ R is known, let η = R
4
3

2
√

2L0d
2
3 T

2
3

and δ = R
1
3

d
1
6 T

1
6

so that α =
4dL2

0η
2

δ2 = R2

2T ≤
1
2 when

T ≥ R2. Plugging these parameters into above inequality, we finally obtain that

E
[ T∑
t=0

ft(xt)−
T∑
t=0

ft(x)
]
≤
√

2L0d
2
3R

2
3T

2
3 +

E
[
‖g̃0(x0)‖2

]
R

4
3

2
√

2L0d
2
3T

2
3

+ 8
√

2L0
(d+ 4)2

d
2
3

R
4
3T

1
3

+ 2L1d
2
3R

2
3T

2
3 +

√
2

L0
d

2
3R

2
3V 2

f T
2
3 . (30)

When the bound ‖x0 − x∗‖ ≤ R is unknown. Choose η = 1

2
√

2L0d
2
3 T

2
3

and δ = 1

d
1
6 T

1
6

so that

α =
4dL2

0η
2

δ2 = 1
2T ≤

1
2 . Plugging these parameters into above inequality, we finally obtain that

E
[ T∑
t=0

ft(xt)−
T∑
t=0

ft(x)
]
≤
√

2L0d
2
3 ‖x0 − x‖2T

2
3 +

E
[
‖g̃0(x0)‖2

]
2
√

2L0d
2
3T

2
3

+ 8
√

2L0
(d+ 4)2

d
2
3

T
1
3

+ 2d
2
3L1T

2
3 +

√
2

L0
d

2
3V 2

f T
2
3 . (31)

The proof is complete.

E PROOF OF THEOREM 4.2

We first consider the case where Assumption 4.1.1 holds. Note that ft(x) ∈ C0,0. According
to Lemma 2.2, fδ,t(x) has L1,δ-Lipschitz continuous gradient with L1,δ =

√
d
δ L0. Furthermore,

according to Lemma 1.2.3 in Nesterov (2013), we have the following inequality

fδ,t(xt+1) ≤ fδ,t(xt) + 〈∇fδ,t(xt), xt+1 − xt〉+
L1,δ

2
‖xt+1 − xt‖2

= fδ,t(xt)− η〈∇fδ,t(xt), g̃t(xt)〉+
L1,δη

2

2
‖g̃t(xt)‖2

= fδ,t(xt)− η〈∇fδ,t(xt),∆t〉 − η‖∇fδ,t(xt)‖2 +
L1,δη

2

2
‖g̃t(xt)‖2,

(32)

where ∆t = g̃t(xt)−∇fδ,t(xt). According to Lemma 2.4, we know that Eut
[g̃t(xt)] = ∇fδ,t(xt).

Therefore, taking expectation over ut conditional on xt on both sides of inequality (32) and rearrang-
ing terms, we obtain that

ηE[‖∇fδ,t(xt)‖2] ≤ E[fδ,t(xt)]− E[fδ,t(xt+1)] +
L1,δη

2

2
E[‖g̃t(xt)‖2]

≤ E[fδ,t(xt)]− E[fδ,t+1(xt+1)] +
L1,δη

2

2
E[‖g̃t(xt)‖2] + E[fδ,t+1(xt+1)]− E[fδ,t(xt+1)],

(33)
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where the expectation is conditional on xt. Then, we can further condition both sides of (33) on x0

without changing the sign of inequality, and then apply the tower rule of conditional expectation
to make the expectation in (33) become full expectation. Telescoping the above inequality over
t = 0, ..., T − 1 and dividing both sides by η, we obtain that

T−1∑
t=0

E[‖∇fδ,t(xt)‖2] ≤ E[fδ,0(x0)]− E[fδ,T (xT )]

η
+
L1,δη

2

T−1∑
t=0

E[‖g̃t(xt)‖2] +
WT

η

≤
E[fδ,0(x0)]− f∗δ,T

η
+
L1,δη

2

T−1∑
t=0

E[‖g̃t(xt)‖2] +
WT

η
,

(34)

where f∗δ,T is the lower bound of the smoothed function fδ,T (x). f∗δ,T must exist because we assume
the orignal function ft(x) is lower bounded and the smoothed function has a bounded distance from
ft(x) due to Lemma 2.2 for all t.

Next, we consider the case where Assumption 4.1.2 holds. Summing the bound in (5) from t =

1, ..., T , adding E
[
‖g̃0(x0)‖2

]
on both sides, and adding 4dL2

0η
2

δ2 E[‖g̃T (xT )‖2] to the right hand side,
we obtain that

E
[ T∑
t=0

‖g̃t(xt)‖2
]
≤ 1

1− α
E
[
‖g̃0(x0)‖2

]
+

16

1− α
L2

0(d+ 4)2T +
2d

1− α
W̃T

δ2
, (35)

Substituting this bound into the inequality (34), we obtain that
T−1∑
t=0

E[‖∇fδ,t(xt)‖2] ≤
E[fδ,0(x0)]− f∗δ,T

η
+
WT

η
+

√
dL0η

2δ

1

1− α
E
[
‖g̃0(x0)‖2

]
+

√
dL0η

2δ

16

1− α
L2

0(d+ 4)2T +

√
dL0η

2δ

2d

1− α
W̃T

δ2
.

(36)

To fullfill the requirement that |ft(x)− fδ,t(x)| ≤ εf , we set the exporation parameter δ =
εf

d
1
2 L0

. In

addition, let the stepsize be η =
ε1.5f

2
√

2L2
0d

1.5T
1
2

. Then, we have that α =
4dL2

0η
2

δ2 =
εf

2dT ≤
1
2 when

T ≥ 1
dεf

. Therefore, we have that 1
1−α ≤ 2. Substituting this bound and the choices of η and δ into

the bound (??), we finally obtain that
T−1∑
t=0

E[‖∇fδ,t(xt)‖2] ≤ 2
√

2L2
0

(
E[fδ,0(x0)]− f∗δ,T +WT

)d1.5

ε1.5f
T

1
2 +

ε
1
2

f E
[
‖g̃0(x0)‖2

]
2
√

2dT

+ 4
√

2L0ε
1
2

f

(d+ 4)2

d
1
2

T
1
2 +

L2
0√
2

d1.5W̃T

ε1.5f T
1
2

. (37)

The proof is complete.

F PROOF OF THEOREM 4.3

We first consider the case where Assumption 4.1.1 holds. Note that when ft ∈ C1,1 with Lipschitz
constant L1, the smoothed function fδ,t ∈ C1,1 with Lipschitz constant L1. Therefore, following the
proof of Theorem 4.2 but replacing L1,δ with L1, we obtain that

T−1∑
t=0

E[‖∇fδ,t(xt)‖2] ≤
E[fδ,0(x0)]− f∗δ,T

η
+
L1η

2

T−1∑
t=0

E[‖g̃t(xt)‖2] +
WT

η
. (38)

Since ft ∈ C1,1, according to Lemma 2.2, we have that ‖∇fδ,t(x)−∇ft(x)‖ ≤ δL1(d+ 3)3/2.

Furthermore, we have that
T−1∑
t=0

E[‖∇f(xt)‖2] =

T−1∑
t=0

E[‖∇f(xt)−∇fδ,t(xt) +∇fδ,t(xt)‖2]

≤ 2E[‖∇f(xt)−∇fδ,t(xt)‖2] + 2E[‖∇fδ,t(xt)‖2]. (39)
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Next, we consider the case where Assumption 4.1.2 holds. Substituting the bound in (35) into (38)
and using the bound in (39), we obtain that
T−1∑
t=0

E[‖∇f(xt)‖2] ≤ 2
E[fδ,0(x0)]− f∗δ,T

η
+ 2

WT

η
+

L1

1− α
E
[
‖g̃0(x0)‖2

]
η +

16L1

1− α
L2

0(d+ 4)2ηT

+
2dL1W̃T

1− α
η

δ2
+ 2L2

1(d+ 3)3δ2T, (40)

Choose η = 1

2
√

2L0d
4
3 T

1
2

and δ = 1

d
5
6 T

1
4

. Then, α =
4dL2

0η
2

δ2 = 1
2
√
T
≤ 1

2 and 1
1−α ≤ 2. Substituting

these results into the above inequality, we finally obtain that
T−1∑
t=0

E[‖∇f(xt)‖2] ≤ 4
√

2L0

(
E[fδ,0(x0)]− f∗δ,T +WT

)
d

4
3T

1
2 +

L1E
[
‖g̃0(x0)‖2

]
√

2L0d
4
3T

1
2

+ 8
√

2L1L0
(d+ 4)2

d
4
3

T
1
2 +

√
2L1

L0
d

4
3 W̃T + 2L2

1

(d+ 3)3

d
5
3

T
1
2 . (41)

The proof is complete.

G PROOF OF LEMMA 5.2

Consider the case when Ft(x, ξ) ∈ C0,0 with L0(ξ). According to (13), we have that

E[‖g̃t(xt)‖2] = E[
1

δ2

(
Ft(xt + δut, ξt)− Ft−1(xt−1 + δut−1, ξt−1)

)2‖ut‖2]

≤ 2

δ2
E[
(
Ft(xt + δut, ξt)− Ft(xt−1 + δut−1, ξt)

)2‖ut‖2]

+
2

δ2
E[
(
Ft(xt−1 + δut−1, ξt)− Ft−1(xt−1 + δut−1, ξt−1)

)2‖ut‖2].

(42)

Using the bound in Assumption 5.1 and the fact that the generation of random objective func-
tions Ft−1(·, ξt−1) and Ft(·, ξt) are independent of ut, we get that 2

δ2E[
(
Ft(xt−1 + δut−1, ξt) −

Ft−1(xt−1 +δut−1, ξt−1)
)2‖ut‖2] ≤ 2d

δ2 V
2
f,ξ . In addition, adding and subtracting Ft(xt−1 +δut, ξt)

in
(
Ft(xt + δut, ξt)− Ft(xt−1 + δut−1, ξt)

)2
in above inequality, we obtain that

E[‖g̃t(xt)‖2] ≤ 4

δ2
E[
(
Ft(xt + δut, ξt)− Ft(xt−1 + δut, ξt)

)2‖ut‖2]

+
4

δ2
E[
(
Ft(xt−1 + δut, ξt)− Ft(xt−1 + δut−1, ξt)

)2‖ut‖2]

+
2d

δ2
E[
(
Ft(xt−1 + δut−1, ξt)− Ft−1(xt−1 + δut−1, ξt−1)

)2
].

(43)

By Lipschitz continuity of Ft(·; ξt), we can bound the first two items on the right hand side of above
inequality following the same procedure after inequality (16) and get that

E[‖g̃t(xt)‖2] ≤ 4dL2
0η

2

δ2
E[‖g̃t(xt−1)‖2] + 16L2

0(d+ 4)2

+
2d

δ2
E[
(
Ft(xt−1 + δut−1, ξt)− Ft−1(xt−1 + δut−1, ξt−1)

)2
].

The proof is complete.

H RESIDUAL-FEEDBACK CONVEX OPTIMIZATION WITH UNIT SPHERE
SAMPLING

Consider the online bandit optimization problem (P) with convex objective functions and a compact
constraint set X . In this section, we assume that the objective function f(x) cannot be queried outside
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the constraint set X . To satisfy this requirement, we estimate the gradient as

g̃t(xt) :=
d

δ

(
ft(xt + δut)− ft−1(xt−1 + δut−1)

)
ut, (44)

where ut−1 and ut are independently and uniformly sampled from the unit sphere S := {x ∈ Rd :
‖x‖ = 1}. Consider the smoothed function fδ(x) = Ev∈B

[
f(x+ δv)

]
, where the random vector v is

uniformly sampled from the unit ball B = {x ∈ Rd : ‖x‖ ≤ 1} . Then, we have the following lemma

Lemma H.1. The function g̃t(xt) is an unbiased estimate of the gradient∇fδ(xt), i.e., E
[
g̃t(xt)

]
=

∇fδ(xt).

Proof. Since ut is sampled independently from xt−1 and ut−1, and ut has zero mean, it is straight-
forward to complete the proof by applying Lemma 2.1 in Flaxman et al. (2005).

To ensure that the iterates are confined within the constraint set X , we consider the update

xt+1 = Π(1−ξ)X
(
xt − ηg̃t(xt)

)
, (45)

where the set (1− ξ)X := {(1− ξ)x : ∀x ∈ X} is a shrinked version of the original constraint set
X . The goal is to select a parameter ξ so that for every xξ ∈ (1− ξ)X , xξ + δu ∈ X for every u ∈ S.
To achieve this, we first make the following assumption that is inspired by Flaxman et al. (2005);
Bubeck et al. (2012).
Assumption H.2. There exist contants r and r̄ such that rB ⊂ X ⊂ r̄B.

Then, we have the following lemma.
Lemma H.3. If the parameter ξ satisfies 1 ≥ ξ ≥ δ

r , then for every iterate xt obtained using (45),
we have that xt + δut ∈ X for all ut ∈ S.

Proof. When 1 ≥ ξ ≥ δ
r , we get that ‖δu‖ ≤ ξr. Therefore, there exists x′ ∈ rB ⊂ X such that

the vector δu = ξx′. Since xt ∈ (1 − ξ)X , there exists x ∈ X such that xt = (1 − ξ)x, and there
exists x′ ∈ X such that δu = ξx′. As a result, we have that xt + δu = (1− ξ)x+ ξx′ ∈ X . This is
because set X is convex.

Next, we study the regret RT := E
[∑T−1

t=0 ft(xt)−minx∈X
∑T−1
t=0 ft(x)

]
achieved by executing

the online update (45) We do so in the following two steps. First, in Lemma H.4, we provide
an upper bound on the difference between the optimal solution that lies in the set (1 − ξ)X and
the one that lies in the set X , i.e., minx∈(1−ξ)X

∑T−1
t=0 ft(x) − minx∈X

∑T−1
t=0 ft(x); Then, in

Theorem H.7, we bound the regret defined by the expected difference between the function values
achieved by running the update (45) and the term minx∈(1−ξ)X

∑T−1
t=0 ft(x), i.e., E

[∑T−1
t=0 ft(xt)−

minx∈(1−ξ)X
∑T−1
t=0 ft(x)

]
. Adding the two bounds above, we can complete the proof.

In the following lemma we provide a bound on minx∈(1−ξ)X
∑T−1
t=0 ft(x)−minx∈X

∑T−1
t=0 ft(x).

Lemma H.4. If the function ft is convex and ft ∈ C0,0 with Lipschitz constant L0 for all time t, we
have that

T−1∑
t=0

ft(x
∗
ξ)−

T−1∑
t=0

ft(x
∗) ≤ r̄L0ξT, (46)

where x∗ξ = arg minx∈(1−ξ)X
∑T−1
t=0 ft(x) and x∗ = arg minx∈X

∑T−1
t=0 ft(x).

Proof. Since x∗ ∈ X , we have that (1− ξ)x∗ ∈ (1− ξ)X . Moreover, since x∗ξ is the minimizer in
the set (1− ξ)X , we get that

T−1∑
t=0

ft(x
∗
ξ) ≤

T−1∑
t=0

ft((1− ξ)x∗). (47)
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Also, since ft is convex and (1− ξ)x∗ = (1− ξ)x∗ + ξ0, we have that

ft((1− ξ)x∗) ≤ (1− ξ)f(x∗) + ξft(0)

≤ (1− ξ)ft(x∗) + ξft(x
∗)− ξft(x∗) + ξft(0)

≤ ft(x∗) + ξL0‖x∗‖ ≤ ft(x∗) + r̄L0ξ, (48)

where the last inequality is due to the fact that x∗ ∈ X ⊂ r̄B. Summing the inequality (48) over time,
we obtain that

T−1∑
t=0

ft((1− ξ)x∗)−
T−1∑
t=0

ft(x
∗) ≤ r̄L0ξT. (49)

Adding up the inequalities (47) and (49) and rearranging terms completes the proof.

Next, we study the regret E
[∑T−1

t=0 ft(xt)−minx∈(1−ξ)X
∑T−1
t=0 ft(x)

]
following similar steps as

in Section 3. First, we can bound the difference between the smoothed objective function fδ,t and ft
for every time step t as follows.

Lemma H.5. Consider a function f and its smoothed version fδ . It holds that

|fδ(x)− f(x)| ≤
{
δL0, if f ∈ C0,0,

δ2L1, if f ∈ C1,1.

Proof. Recall that fδ(x) = Ev∈B
[
f(x+ δv)

]
. Then, we have that

|fδ(x)− f(x)| = |Ev∈B
[
f(x+ δv)− f(x)

]
|

≤ Ev∈B
[
|f(x+ δv)− f(x)|

]
≤ Ev∈B

[
L0‖δv‖

]
. (50)

Furthermore, since v ∈ B, we have that ‖δv‖ ≤ δ. Combining this inequality with (50), we have that
|fδ(x)− f(x)| ≤ Ev∈B

[
δL0

]
= L0δ. When the function f ∈ C1,1 with Lipschitz constant L1, we

have that

〈∇f(x), δv〉 − L1

2
‖δv‖2 ≤ f(x+ δv)− f(x) ≤ 〈∇f(x), δv〉+

L1

2
‖δv‖2, (51)

for all v ∈ B. Taking the expectation of (51) over v sampled uniformly from the unit ball B and
recalling that v is sampled independently from x and has zero mean, we get that

−L1δ
2 ≤ −L1

2
Ev∈B

[
‖δv‖2

]
≤ Ev∈B

[
f(x+ δv)− f(x)

]
≤ L1

2
Ev∈B

[
‖δv‖2

]
≤ L1δ

2. (52)

In addition, because |fδ(x)− f(x)| = |Ev∈B
[
f(x+ δv)− f(x)

]
|, we obtain that |fδ(x)− f(x)| ≤

L1δ
2. The proof is complete.

The next lemma provides a bound on the second moment of the gradient estimate (44) under
update (45).

Lemma H.6 (Second moment). Assume that ft ∈ C0,0 with Lipschitz constant L0 for all time t.
Then, under the ZO update rule in (45), the second moment of the residual feedback (44) satisfies:

E[‖g̃t(xt)‖2] ≤ 4d2L2
0η

2

δ2
E[‖g̃t−1(xt−1)‖2] +Dt, (53)

where Dt := 16d2L2
0 + 2d2

δ2 E
[(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2]
.
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Proof. By definition of the residual feedback (44), we have that

E[‖g̃t(xt)‖2] = E[
d2

δ2

(
ft(xt + δut)− ft−1(xt−1 + δut−1)

)2‖ut‖2]

≤ 2d2

δ2
E[
(
ft(xt + δut)− ft(xt−1 + δut−1)

)2‖ut‖2]

+
2d2

δ2
E[
(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2‖ut‖2]

≤ 2d2

δ2
E[
(
ft(xt + δut)− ft(xt−1 + δut−1)

)2
]

+
2d2

δ2
E[
(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2
],

(54)

where the last inequality is because ut ∈ S. Moreover, adding and subtracting ft(xt−1 + δut) to the
term

(
ft(xt + δut)− ft(xt−1 + δut−1)

)2
in the inequality (54), we obtain

E[‖g̃(xt)‖2] ≤4d2

δ2
E[
(
ft(xt + δut)− ft(xt−1 + δut)

)2
]

+
4d2

δ2
E[
(
ft(xt−1 + δut)− ft(xt−1 + δut−1)

)2
]

+
2d2

δ2
E[
(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2
].

(55)

Since ft ∈ C0,0 is Lipschitz with constant L0, we further obtain that

E[‖g̃(xt)‖2] ≤4d2L2
0

δ2
E[‖xt − xt−1‖2] + 4d2L2

0E[‖ut − ut−1‖2]

+
2d2

δ2
E[
(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2
]. (56)

Since ut ∈ S, we get that E[‖ut − ut−1‖2] ≤ 4. Substituting this bound into inequality (56), we
obtain that

E[‖g̃(xt)‖2] ≤4d2L2
0

δ2
E[‖xt − xt−1‖2] + 16d2L2

0

+
2d2

δ2
E[
(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2
]. (57)

Since xt = Π(1−ξ)X
[
xt−1− ηg̃(xt−1)

]
, we get that ‖xt−xt−1‖ = ‖Π(1−ξ)X

[
xt−1− ηg̃(xt−1)

]
−

Π(1−ξ)X
[
xt−1

]
‖ ≤ η‖g̃(xt−1)‖ due to the nonexpansiveness of the projection operator onto a convex

set. Therefore, we have that

E[‖g̃t(xt)‖2] ≤4d2L2
0η

2

δ2
E[‖g̃t−1(xt−1)‖2] + 16d2L2

0

+
2d2

δ2
E[
(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2
]. (58)

The proof is complete.

Using Lemmas H.1-H.6, we can obtain the main theorem for online convex optimization using (45).
Theorem H.7 (Regret for Convex Lipschitz ft). Let Assumption 3.1 hold. Assume that ft ∈ C0,0 is
convex with Lipschitz constant L0 for all t. Run ZO with residual feedback for T > r̄2L2q

0 iterations

with η = r̄
3
2

2
√

2L0

√
dT

3
4

and δ =
√
r̄d

Lq
0T

1
4

, where q ∈ R is a user-specified parameter. Then, we have that

RT ≤ 4
√

2r̄dL0T
3
4 +

E
[
‖g̃0(x0)‖2

]
r̄

3
2

2
√

2dL0T
3
4

+ 8
√

2d
3
2L0r̄

3
2T

1
4

+ (2 +
r̄

r
)L1−q

0

√
dr̄T

3
4 +

√
2dr̄V 2

f

L1−2q
0

T
3
4 . (59)

Asymptotically, we have RT = O
(
(L0 + L1−q

0 + L0
2q−1V 2

f )
√
dr̄T

3
4

)
.
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Proof. First, we provide a bound on the regret that compares the sum of the function values ob-
tained using (45) to that obtained for the optimizer x∗ξ in the shrinked constraint set (1− ξ)X , i.e.,

E
[∑T−1

t=0 ft(xt)−minx∈(1−ξ)X
∑T−1
t=0 ft(x)

]
. Since fδ,t(x) is convex for all t, we conclude that

fδ,t(xt)− fδ,t(x) ≤ 〈∇fδ,t(xt), xt − x〉, for all x ∈ (1− ξ)X . (60)

Adding and subtracting g̃t(xt) to ∇fδ,t(xt) in inequality (60), and taking the expectation of both
sides with respect to ut, we obtain that

E
[
fδ,t(xt)− fδ,t(x)

]
≤ E

[
〈g̃t(xt), xt − x〉

]
. (61)

Since xt+1 = Π(1−ξ)X
[
xt − ηg̃(xt)

]
, for any x ∈ (1− ξ)X we have that

‖xt+1 − x‖2 = ‖Π(1−ξ)X
[
xt − ηg̃(xt)

]
−Π(1−ξ)X

[
x
]
‖2

≤ ‖xt − ηg̃(xt)− x‖2

= ‖xt − x‖2 − 2η〈g̃t(xt), xt − x〉+ η2‖g̃t(xt)‖2. (62)

Rearranging the terms in inequality (62) yields

〈g̃t(xt), xt − x〉 ≤
1

2η

(
‖xt − x‖2 − ‖xt+1 − x‖2

)
+
η

2
‖g̃t(xt)‖2. (63)

Taking the expectation of both sides of inequality (63) with respect to ut and substituting the resulting
bound into (61), we obtain that

E
[ T−1∑
t=0

fδ,t(xt)−
T−1∑
t=0

fδ,t(x)
]
≤ 1

2η
‖x0 − x‖2 +

η

2
E
[ T−1∑
t=0

‖g̃t(xt)‖2
]
. (64)

Since ft(x) ∈ C0,0, we know that |fδ,t(x)− ft(x)| ≤ δL0. Therefore, we obtain

E
[ T−1∑
t=0

ft(xt)−
T−1∑
t=0

ft(x)
]

= E
[ T−1∑
t=0

fδ,t(xt)−
T−1∑
t=0

fδ,t(x)
]

+ E
[ T−1∑
t=0

(
ft(xt)− fδ,t(xt)

)
−
T−1∑
t=0

(
ft(x)− fδ,t(x)

)]
≤ 1

2η
‖x0 − x‖2 +

η

2
E
[ T−1∑
t=0

‖g̃t(xt)‖2
]

+ 2L0δT, (65)

where we have made use of the bound in (64). Telescoping the bound in (53) over t = 1, 2, ..., T − 1,
adding E

[
‖g̃0(x0)‖2

]
to both sides, and adding 4d2L2

0η
2

δ2 E[‖g̃T−1(xT−1)‖2] to the right hand side,
we obtain that

E
[ T−1∑
t=0

‖g̃t(xt)‖2
]
≤ 1

1− α
E
[
‖g̃0(x0)‖2

]
+

16

1− α
d2L2

0T +
2d2V 2

f

1− α
1

δ2
T, (66)

where α =
4d2L2

0η
2

δ2 . Substituting the bound in (66) into (65) yields

E
[ T−1∑
t=0

ft(xt)−
T−1∑
t=0

ft(x)
]
≤ 1

2η
‖x0 − x‖2 +

η

2(1− α)
E
[
‖g̃0(x0)‖2

]
+

16

1− α
d2L2

0ηT

+ 2L0δT +
2d2V 2

f

1− α
η

δ2
T. (67)

Since inequality (67) holds for all x ∈ (1 − ξ)X , we can replace x in (67) with x∗ξ . Furthermore,
using Lemma H.4, we have that

T−1∑
t=0

ft(x
∗
ξ)−

T−1∑
t=0

ft(x
∗) ≤ r̄L0ξT. (68)
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Summing inequalities (67) and (68), we obtain

E
[ T−1∑
t=0

ft(xt)−
T−1∑
t=0

ft(x
∗)
]
≤ 1

2η
‖x0 − x∗ξ‖2 +

η

2(1− α)
E
[
‖g̃0(x0)‖2

]
+

16

1− α
d2L2

0ηT

+ 2L0δT +
2d2V 2

f

1− α
η

δ2
T + r̄L0ξT, (69)

where ‖x0−x∗ξ‖2 ≤ 4r̄2. According to Lemma H.3, we can select ξ = δ
r to guarantee that all iterates

xt + δut ∈ X for all ut ∈ S. Furthermore, let η = r̄
3
2

2
√

2L0

√
dT

3
4

and δ =
√
r̄d

Lq
0T

1
4

, where q ∈ R is a

user-specified parameter. Then, α =
4d2L2

0η
2

δ2 = 1
2T r̄

2L2q
0 ≤ 1

2 when T ≥ r̄2L2q
0 . Substituting these

parameter values into (69), we obtain that

E
[ T−1∑
t=0

ft(xt)−
T−1∑
t=0

ft(x
∗)
]
≤ 4
√

2r̄dL0T
3
4 +

E
[
‖g̃0(x0)‖2

]
r̄

3
2

2
√

2dL0T
3
4

+ 8
√

2d
3
2L0r̄

3
2T

1
4

+ (2 +
r̄

r
)L1−q

0

√
dr̄T

3
4 + L2q−1

0

√
2dr̄V 2

f T
3
4 . (70)

The proof is complete.

I DISCUSSION ON ONLINE OPTIMIZATION WITH ADVERSARIES

In Section 2, we consider online optimization problems where the sequence of the objective functions
{ft}t is randomly generated and is independent of the agent’s decisions. This assumption is satisfied
when the non-stationarity of the environment is caused by the nature. In this section, we consider
a different scenario where the objective function is selected by an opponent. Specifically, at time t,
the agent selects a decision xt + δut, then the opponent selects a objective function ft according to
the history information Ht = {x0 + δu0, f0, . . . , xt−1 + δut−1, ft−1, xt + δut} to maximize the
agent’s regret.

When the gradient estimator (3) is applied, where the searching direction ut is sampled from Gaussian
distribution N (0, I), we have the following Lemma in adversarial scenario.
Lemma I.1 (Second moment). Assume that ft ∈ C0,0 with Lipschitz constant L0 for all time t. Then,
under the ZO update rule in (4), the second moment of the residual feedback satisfies: for all t,

E[‖g̃t(xt)‖2] ≤ 4dL2
0η

2

δ2
E[‖g̃t−1(xt−1)‖2] +Dt, (71)

where Dt := 16L2
0(d+ 4)2 +

2

δ2
E
[(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2‖ut‖2].
Proof. The proof is essentially the same as the proof of Lemma 2.6, except that the bound
2
δ2E
[(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2‖ut‖2] ≤ 2d
δ2 E

[(
ft(xt−1 + δut−1)− ft−1(xt−1 +

δut−1)
)2]

used under (14) does not apply in the adversary case, because the selection of the function
ft depends on ut. Since the other derivations in the proof of Lemma 2.6 does not rely on the
independence between ut and ft, they still hold. It is straightforward to obtain the bound in (71).

Next, we present the assumptions on the adversary agent for online convex optimization problems.
Assumption I.2 (Bounded Adversary). Given the history Ht, the adversary agent selects a function
ft such that for all time t there exists a constant V 2

f that satisfies

|ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)|2 ≤ V 2
f . (72)

Then, within the expectation term in Dt in the bound (71), for any realization of the random vector
ut, the bound

(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2 ≤ V 2
f holds according to Assumption I.2.

Therefore, we have that
2

δ2
E
[(
ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)

)2‖ut‖2] ≤ 2

δ2
E
[
V 2
f ‖ut‖2

]
≤ 2d

δ2
V 2
f . (73)
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Therefore, after combining Lemma I.1 and Assumption I.2, we can achieve the bound on the second
moment E

[
‖g̃t(xt)‖2

]
E
[
‖g̃t(xt)‖2

]
≤ 4dL2

0η
2

δ2
E[‖g̃t−1(xt−1)‖2] + 16L2

0(d+ 4)2 +
2d

δ2
V 2
f . (74)

This is the same bound we obtained by combining Lemma 2.6 and Assumption 3.1. And it can be
used to obtain (23) in the proofs of Theorems 3.2, which is also used in 3.4. Then, it is straightforward
to follow the same proofs of Theorems 3.2 and 3.4 to get the same regret bounds in online convex
optimization problems under adversarial environment.

Finally, we present the assumptions on the adversary agent for non-stationary non-convex optimization
problems.
Assumption I.3. From time t = 0 to T , the adversary agent selects a sequence of objective functions
{ft} such that

1. There exists a constant WT that satisfies
∑T
t=1 E[fδ,t(xt) − fδ,t−1(xt)] ≤ WT , where the

expectation is taken with respect to xt.
2. At time t ≥ 1, given the history Ht, the adversary agent selects a function ft such that there exists

a constant V 2
f,t that satisfies

|ft(xt−1 + δut−1)− ft−1(xt−1 + δut−1)|2 ≤ V 2
f,t. (75)

Furthermore, we have that
T∑
t=1

V 2
f,t ≤ W̃T . (76)

Different from Assumption I.2, where at each time t, the adversary should select a function ft
according to a uniform function variation bound V 2

f , Assumption I.3.2 allows the adversary to select

ft according to a varying function variation bound V 2
f,t. However, there also exists a budget W̃T for

the adversary, which represents the total variation on the functions that the adversary is allowed to
make from time t = 0 to T .

Then, similar to the discussion under Assumption I.2, within the expectation term in Dt in the
bound (71), for any realization of the random vector ut, the bound

(
ft(xt−1 + δut−1)− ft−1(xt−1 +

δut−1)
)2 ≤ V 2

f,t holds at time t according to Assumption I.3. Therefore, we can combine Lemma I.1
and Assumption I.3 and use similar derivation in (73) to achieve the same bounds in (34), (35) and
(38), which are used in the proof of Theorems 4.2 and 4.3. The other part of the proofs remains the
same. Therefore, by combining Lemma I.1 and Assumption I.3, we achieve the same regret bounds in
Theorems 4.2 and 4.3 in online non-stationary non-convex optimization problems under adversarial
environment.

J PROOF OF THE SECOND MOMENT BOUND (8)

Let α =
4dL2

0η
2

δ2 , using (5), we have that

E[‖g̃t(xt)‖2] ≤ αtE[‖g̃0(x0)‖2] +
t∑

j=1

αt−jDj , for all t ≥ 1. (77)

According to Assumption 3.1, we obtain that

E[‖g̃t(xt)‖2] ≤ αtE[‖g̃0(x0)‖2] +
t∑

j=1

αt−j
(
16L2

0(d+ 4)2 +
2d

δ2
V 2
f

)
, for all t ≥ 1. (78)

Therefore, we get that

E[‖g̃t(xt)‖2] ≤ max
{
E[‖g̃0(x0)‖2], . . . , αtE[‖g̃0(x0)‖2] +

t∑
j=1

αt−j
(
16L2

0(d+ 4)2 +
2d

δ2
V 2
f

)
, . . .

}
.
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Next, we show that this inequality is equivalent to

E[‖g̃t(xt)‖2] ≤ max
{
E[‖g̃0(x0)‖2],

1

1− α

(
16L2

0(d+ 4)2 +
2d

δ2
V 2
f

)}
. (79)

To see this, observe that the sequence
{
E[‖g̃0(x0)‖2], . . . , αtE[‖g̃0(x0)‖2] +

∑t
j=1 α

t−j(16L2
0(d+

4)2+ 2d
δ2 V

2
f

)
, . . .

}
is monotonic. This is because if E[‖g̃0(x0)‖2] ≥ αE[‖g̃0(x0)‖2]+16L2

0(d+4)2+
2d
δ2 V

2
f , then we can multiply both sides by α and add 16L2

0(d+ 4)2 + 2d
δ2 V

2
f to both sides and get that

αE[‖g̃0(x0)‖2]+16L2
0(d+4)2 + 2d

δ2 V
2
f ≥ α2E[‖g̃0(x0)‖2]+α

(
16L2

0(d+4)2 + 2d
δ2 V

2
f

)
+
(
16L2

0(d+

4)2 + 2d
δ2 V

2
f

)
. Using mathematical induction we can show that the sequence is monotonically non-

increasing. Similarly, if E[‖g̃0(x0)‖2] ≤ αE[‖g̃0(x0)‖2] + 16L2
0(d+ 4)2 + 2d

δ2 V
2
f , then we can show

that the sequence is monotonically non-decreasing and converges to 1
1−α

(
16L2

0(d+ 4)2 + 2d
δ2 V

2
f

)
.

Therefore, the proof is complete.
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