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Quantum many-body systems with fracton constraints are widely conjectured to exhibit unconventional low-
energy phases of matter. In this paper, we demonstrate the existence of a variety of such exotic quantum phases
in the ground states of a dipole-moment conserving Bose-Hubbard model in one dimension. For integer boson
fillings, we perform a mapping of the system to a model of microscopic local dipoles, which are composites
of fractons. We apply a combination of low-energy field theory and large-scale tensor network simulations to
demonstrate the emergence of a dipole Luttinger liquid phase. At noninteger fillings our numerical approach
shows an intriguing compressible state described by a quantum Lifshitz model in which charge density-wave
order coexists with dipole long-range order and superfluidity—a “dipole supersolid”. While this supersolid
state may eventually be unstable against lattice effects in the thermodynamic limit, its numerical robustness
is remarkable. We discuss potential experimental implications of our results.
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I. INTRODUCTION

The current advent of quantum simulation technology
is marked by rapid progress in controlling strongly in-
teracting many-body systems. In particular, the ability to
engineer highly specific quantum Hamiltonians has raised
immense interest in the physics of quantum systems sub-
jected to dynamical constraints. A particularly exciting class
of systems that has caught much attention in this regard
are so-called fracton models [1-11]. These are character-
ized by elementary excitations with restricted mobility (the
fractons), whereas nontrivial dynamics can be carried by
multifracton composites. Recently, fractonic systems con-
serving both a global U (1) charge as well as its associated
dipole moment have successfully been implemented in cold
atomic quantum simulation platforms via the application
of strong linear potentials [12-15]. In this context, much
effort—both in theory and experiment—has been devoted
to uncovering the highly exotic nonequilibrium proper-
ties of fractonic systems with dipole conservation. These
range from dynamical localization [13,14,16-20] over novel
hydrodynamic universality classes [12,21-31] and glassy dy-
namics [3,32] to unconventionally slow spreading of quantum
information [33,34].

Less attention has been devoted to understand the ground
states of fractonic systems. Nonetheless, a gapless Lut-
tinger liquid has been identified as ground state in certain
strongly fragmented dipole-conserving spin chains [18]. Fur-
thermore, a recent duality mapping between fracton gauge
theories and elasticity theory [35-40] suggests the possi-
ble existence of new phases with highly unconventional
properties, such as dipole superfluids or fracton conden-
sates [35,41-45]. Similar phases have recently also been
predicted in a mean-field study of a Bose-Hubbard lat-

2469-9950/2023/107(19)/195131(16)

195131-1

tice model subject to dipole conservation [46]. However,
in one spatial dimension, where generically quantum fluc-
tuations are expected to be strong, an understanding of
the phases and phase transitions has been lacking so
far.

In this paper, we address this challenge by studying
the Bose-Hubbard model with dipole conservation in one
spatial dimension. The one-dimensional character of the
system enables us to employ an established toolbox of
efficient theoretical techniques. On the one hand, we re-
solve the question of a consistently-defined local dipole
density, which subsequently allows us to use bosoniza-
tion [47] for constructing effective low-energy field theories
of the fracton model. On the other hand, we apply ten-
sor network techniques as efficient numerical tools for the
computation of ground-state properties of one-dimensional
systems [48,49].

The microscopic model we focus on throughout this paper
consists of interacting lattice bosons on a chain subject to the
conservation of both charge (i.e., the boson particle number)
and dipole moment (i.e., the boson center of mass). In such a
constrained Bose-Hubbard model the single particle hopping
term is absent and is instead replaced by symmetric correlated
hopping processes of two bosons. Our microscopic model is
described by the Hamiltonian

— i 7
=1 Z(blbj+lbj+l

+52j:ﬁj(ﬁj—1)—u;ﬁj. M

Here, ¢ denotes the dipole hopping amplitude, U the strength
of on-site interactions, u the chemical potential, and 7; =
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b;b ; the local boson number operator. Both the total charge

O (or particle number N) and its associated dipole moment P
are conserved quantities, which we define as

L
0=> ¢ =) (aj—n) =0,
T @
P=3L-j)d; =Y (L~ j)h;—n) = const.,
j

j=1

where g; denotes the local deviation from the average boson
density n = (71). Selecting the reference position of the dipole
moment as in Eq. (2) will turn out convenient in the following.
We introduce the notation of a dipole operator dji = b;b [nE
such that the kinetic term d;dj 41 may be viewed as regular
nearest-neighbor hopping for a particle-hole dipole-like de-
gree of freedom. We emphasize, however, that the c?]("') do
not satisfy the commutation relations of creation/annihilation
operators. Accordingly, ﬁjﬁ ; 1s in general not the local dipole
density. However, under certain circumstances it can be, such
as in the low-energy subspace considered in Ref. [50]. Longer
range correlated kinetic terms may in principle be included
and should not qualitatively affect the low-energy physics.
In our numerical computations we restrict ourselves to the
simplest case of Eq. (1).

Our analysis of the zero-temperature phases of Eq. (1)
yields several key results, which we present as follows. In
Sec. II, we first establish the presence of area-law cumulative
charge fluctuations as a general criterion for the existence of a
consistently defined local dipole density; see Fig. 1(a) for an
illustration. Using an explicit mapping to microscopic dipole
degrees of freedom, we determine the ground-state phases
of the model Eq. (1) at integer boson filling as a function
of correlated hopping strength ¢#/U in Sec. III. We predict
that the system undergoes a BKT (Berezinskii-Kosterlitz-
Thouless) transition between a dipole Mott insulator (d-Mott)
and a dipole Luttinger liquid (d-Luttinger). In the dipole Mott
insulator both charges and dipoles are gapped, whereas in
the dipole Luttinger liquid dipoles are gapless but charge
excitations retain a finite-energy gap. The dipole Luttinger
liquid persists when increasing ¢#/U up until an instability
towards boson bunching occurs. We confirm these analyti-
cal predictions numerically using large scale density matrix
renormalization group (DMRG) calculations. As a next step,
we consider the model away from integer filling in Sec. IV.
Our numerical analysis in this regime is consistent with an
exotic ground state with vanishing charge gap and thus fi-
nite compressibility, described by a quantum Lifshitz model
(see e.g., [51]). This state spontaneously breaks the contin-
uous dipole symmetry, which, as has recently been shown,
is allowed in principle even in one dimension, due to a
modified Mermin-Wagner theorem in systems with multipole
conservation laws [52,53]. In Ref. [46], the quantum Lifshitz
model was proposed as low-energy effective theory for the
constrained Bose-Hubbard model in a phase termed “Bose
Einstein insulator”. In our one-dimensional scenario, we
demonstrate that this state is characterized by a coexistence of
density-wave order and dipole superfluidity. We thus refer to
this situation as a “dipole supersolid” (d-Supersolid). Generic
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FIG. 1. Fractonic phases of matter in one dimension. (a) At low
energies, area-law fluctuations of the charge ¢(x) permit the defini-
tion of a local dipole density g,(x) as 9,g.(x) = g(x). This allows
us to apply bosonization to construct a low-energy effective field
theory for microscopic dipoles, which are composites of fractons.
(b) The grand-canonical phase diagram of the dipole-conserving
Bose-Hubbard model features three distinct phases: an incompress-
ible dipole Mott insulator (d-Mott), shown in blue, within lobes of
integer filling; an incompressible dipole condensate in form of a Lut-
tinger liquid of dipoles (d-Luttinger), located in the red region at the
tips of lobes, which extends to the bunching instability (grey region);
and a compressible supersolid of dipoles (d-Supersolid) at noninteger
filling in the green region. Solid black lines correspond to estimated
phase boundaries from grand-canonical iDMRG computations. The
dashed black lines indicate the energies for adding or removing a
single particle (see text below). The regions between the Mott lobes
at small dipole hopping # /U (hatched region) additionally host a Mott
insulating phase at noninteger filling, which for instance at n = 3/2
is stable up to t /U =~ 0.14.

theoretical arguments suggest that the dipole supersolid will
eventually become unstable in the thermodynamic limit due
to lattice effects. Nonetheless, the full consistency of our
results with a dipole supersolid phase within all numerically
accessible system sizes demonstrates that the phenomenology
of the dipole supersolid is remarkably robust. Our results
can be summarized in the phase diagram of Fig. 1(b). We
conclude in Sec. V with a discussion of the implications of
our results for potential future experimental and theoretical
investigations.
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II. CONSTRUCTING A LOCAL DIPOLE DENSITY

The ground-state phases studied in this paper require the
existence of a bounded local density of microscopic dipoles.
This property will be instrumental for us in devising an ap-
propriate low-energy description for the model Eq. (1). Such
a local dipole density can be seen as an emergent property
whose definition is consistent only at low energies and does
not extend to high-energy states of such dipole-conserving
systems. In the following, we express the conserved global
dipole moment in terms of a local density that will remain
bounded if charge fluctuations can be shown to be bounded.
The most natural way to satisfy this criterion is the presence of
a finite charge gap, corresponding to an incompressible state.
In such a scenario, the low-energy theory of the system is
naturally given in terms of effective dipole degrees of freedom
as described in [52]. Here, we show how this applies even to
a microscopic description of the system.

A. In the continuum

Let us first consider the scenario of a continuum charge
density ¢(x) in a closed system of length L. We require both
the total charge and the associated dipole moment to be con-
served,

L L
0= / dxgx)=0, P= / dx (L — x) ¢(x) = const.
0 0
3

Here, g(x) = n(x) — n denotes again the deviation of the local
particle density n(x) from the average density n. Our goal is to
express the dipole moment as P = fOL dx ¢qy(x) in terms of a
local and bounded dipole charge density ¢, (x). We emphasize
that the naive choice ¢4(x) = xq(x) suggested by Eq. (3) is
not suitable since x¢(x) is manifestly unbounded. Instead, we
can use Cauchy’s formula for repeated integration to rewrite
the dipole moment as

L v x
P= / dx (L —x)q(x) = / dx/ dx' qix", @
0 0 0

Based on Eq. (4) we define the local dipole charge density as

Ga(x) = / dx’ (), 5)
0
or alternatively, in differential form,

0xqa(x) = ¢g(x). (6)

The field ¢ (x) is thus related to a “height field” representation
of the dipole constraint [54]. We now see that while xg(x) is
unbounded, ¢4(x) defined in Eq. (5) remains bounded if the
charge fluctuations within a region of size x remain of order
O(1) as x — oo. As the fluctuations do not scale with the
“volume” x of the region but originate solely from its bound-
aries, we will refer to these fluctuations as “area law” in the
following. Such area-law-type charge fluctuations are guar-
anteed for the ground state in the presence of a finite charge
gap, which induces a finite correlation length for charged
degrees of freedom. We therefore obtain a consistently defined
local dipole density upon which we can construct an effective
model of the low-energy behavior.
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FIG. 2. Microscopic dipole density. Mapping between product
states in the boson occupation number basis (upper panel) and mi-
croscopic dipole occupation numbers on the bonds of the lattice
(lower panel). Here, n, and ny.41/> are non-negative, whereas g,
and g4 1/ are defined with respect to the average densities (dashed
line). For a state at integer boson filling within the same dipole
moment sector as the uniform state |n), the resulting dipole model
exhibits integer filling as well. See main text for a detailed descrip-
tion of the mapping.

B. On the lattice

The description of the system in terms of a finite den-
sity of microscopic dipole charges introduced in Eq. (6) can
also be realized on a lattice. For this purpose, we substitute
the continuum derivative with a discrete lattice derivative,
Ayqd = qd x+1/2 — a.x—1,2. We have thus defined the local
dipole charge as a local bond degree of freedom.

For simplicity, we focus on integer filling n € IN, where any
occupation number basis state |n) = |ny, ..., ny) gives rise to a
charge density |q) = |n; — n, ..., n, — n) in terms of the local
deviation from average filling. The corresponding local dipole
charge density state |gq) = |¢4a.3/25 ---» a,.—1/2) can thus be
obtained by sweeping through the system from left to right
and applying the relation

qd x+172 = qd x—172 + x» @)

where we for now set ¢g4,1/2 = 0. The so-defined local dipole
charge can assume both positive and negative values. Much
like the conventional charge density, we would like to rewrite
the local dipole charge in terms of a non-negative local oc-
cupation number ng 41,2 of microscopic dipoles. This can be
achieved simply by adding a suitable integer constant m € IN
to the local dipole charge

N x4172 = qd x+172 + M =g x_172 + (x, (8)

where now 7y 1, = m. Note that the addition of such a con-
stant leaves the differential relation Eq. (6) invariant. The
constant m can be chosen arbitrarily, and we obtain non-
negative local dipole occupation numbers 714 1,2 > 0 for all
x when

m 2 Mpyin = — min{0, min{gq y1,2}}. )

An illustration of the mapping between n, and n, . i provided
in Fig. 2. We emphasize that in the presence of a finite charge

195131-3



ZECHMANN, ALTMAN, KNAP, AND FELDMEIER

PHYSICAL REVIEW B 107, 195131 (2023)

gap the local dipole charge is always of order O(1), and thus
the required mp;, in Eq. (9) remains bounded as well.

The mapping between boson occupation numbers and
bounded dipole occupation numbers can in principle also be
performed for states at noninteger boson fillings, provided the
charge fluctuations are bounded. In such a case, however, the
dipole density Eq. (5) is defined with respect to a nontrans-
lationally invariant reference state ng(x), such that g(x) =
n(x) — no(x). The resulting model for microscopic dipoles
is then not translationally invariant. It is an interesting open
question how an analysis of such a model can prove useful.
Formally, the mapping could even be performed for arbitrary
states |n) in the Hilbert space. However, for most states this
will lead to an unbounded local dipole density that diverges
with system size. The presence of a finite charge gap then
ensures that only such occupation number basis states that
yield a bounded local dipole density contribute significantly
to the ground-state wave function. The contribution of states
requiring high local dipole density decays exponentially with
Mmin and can thus be safely discarded. Furthermore, while the
presence of a finite charge gap is a sufficient condition to en-
sure area-law charge fluctuations, it is not a necessary one. We
will encounter such a situation in Sec. IV in which the charge
gap vanishes but cumulative charge fluctuations obey an area
law. We further emphasize that the resulting description in
terms of microscopic dipole bond degrees of freedom remains
valid for dipole-conserving systems with longer-range terms
than in the present microscopic model Eq. (1).

III. INTEGER FILLING: LOW-ENERGY DIPOLE THEORY

We start our analysis of the constrained Bose-Hubbard
model of Eq. (1) by considering the system at a fixed integer
filling » € IN as a function of the relative strength /U of
the correlated hopping. For 7/U being sufficiently small, we
expect a Mott insulating state with gapped charge (i.e., single
particle) excitations. We then perform the mapping to a system
of microscopic dipoles and construct a low-energy effective
theory by bosonization of these lattice dipoles.

A. Effective action of dipoles

In order to determine the proper low-energy model in the
dipole language, we extract the resulting average dipole den-
sity n, that results at integer boson filling n € IN. In particular,
in the following we fix the sector of the total dipole moment
P = 0 that is associated with the homogeneous boson state
n = |n, ..., n). For this state, the local deviation from the av-
erage boson filling is ¢, = 0 for all x, and therefore the local
deviation from the average dipole filling iS gy 4172 = 0 for
all x as well according to Eq. (7). As a result of Eq. (8), the
average dipole density is thus given by

ng=meN, (10)

i.e., microscopic dipoles are at integer filling as well. This
feature will become relevant upon constructing an appropriate
low-energy theory. We emphasize that the states in the sector
connected to the homogeneous root state |n) = |n, ..., n) are
obtained by simple hopping processes of the microscopic
dipoles, and thus feature the same integer dipole filling.

The presence of a charge gap allows us to rewrite the
constrained Bose-Hubbard model at integer boson filling in
terms of microscopic bond dipoles at integer filling n; € IN.
The Hamiltonian may then be expressed in this basis, leading
to a hopping of bond dipoles as well as dipole density interac-
tions. In order to understand the low-energy properties of this
system we may then proceed by standard bosonization [47] of
the newly found dipole objects. In particular, we introduce a
counting field ¢4 for the bond dipoles, in terms of which the
local dipole density reads

ng(x) = [nd - :de(x)] D rmnahu), an
p

We further introduce a conjugate dipole phase field 6,;, which
satisfies the relation

1
I:nvd’d(x)» Qd(x/)i| = —i8(x —x'). (12)

The low-energy effective Hamiltonian for the system is
generically given by the kinetic energy (V6,)* as well as
the dipole density interactions (V). Crucially, since the
dipole filling n, is integer with respect to the original lattice
spacing, a cosine term cos(2¢,(x)) induced by the underly-
ing lattice needs to be included. Accordingly, the effective
Hamiltonian is

o ZL / dx {W(qud(x))z + ugKy(VOy ()
bid K4

+ gCOSQ(/M(X))}, 13)

with the dipole Luttinger parameter K; as well as the velocity

uy. The corresponding Lagrangian for the ¢, field then reads
1 1 ) )

—(0:Pa)” + ua(:pa)” p +gcos(2¢q). (14)

- ZﬂKd Ug

L

B. Dipole Mott insulator to dipole Luttinger liquid transition

The model Eq. (14) constitutes the standard low-energy
theory for interacting lattice bosons at integer filling, and can
thus be treated in complete analogy to the usual Bose-Hubbard
model. In particular, the ground state of the model Eq. (14)
undergoes a BKT transition between a gapped Mott insulating
phase and a gapless Luttinger liquid at a critical value

Ki=2 (15)

of the dipole Luttinger parameter. Above this value the cosine
term becomes irrelevant and the system enters a Luttinger
liquid of dipoles. Accordingly, only correlations of the dipole
variables ¢;, 0; decay algebraically at long distances in the
dipole Luttinger liquid. In particular, the vortex operators
¢"%(") that create a dipole at position r decay asymptotically
for large distances as

<ei¢9d(r)efi¢9d(0)> ~ |r|71/2Kd. (16)

We will use the characteristic algebraic decay of these cor-
relations in the following to numerically verify the above
prediction of a K = 2 transition between a dipole Mott insu-
lator (d-Mott) state and a dipole Luttinger liquid (d-Luttinger).
We emphasize that while dipole excitations become gapless,
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FIG. 3. Decay of spatial correlation functions at integer filling. We probe dipole and dipole-current correlations at fixed integer filling
n = 2. [(a), (b)] In the Mott insulating phase (¢ < tgkr), dipole correlations and dipole-current correlations decay exponentially. (c) Dipole
correlations in the Luttinger liquid phase (f > fgxr) show a power-law decay with the nonuniversal exponent 1/2K;, where K, is the dipole
Luttinger parameter. (d) Dipole-current correlations decay universally with the square of the distance o< 2. The data are obtained with
iDMRG, and the insets in (c) and (d) depict the convergence of the correlation functions with bond dimension for /U = 0.115 towards the

power-law decay.

charged particle excitations retain a finite-energy gap in the
dipole Luttinger liquid.

We use tensor network techniques to numerically study
the ground-state phase diagram of our microscopic model (1)
at integer boson filling. Matrix product states (MPS) allow
us to obtain an unbiased variational approximation to the
many-body ground-state wave function, utilizing the well-
established density matrix renormalization group (DMRG)
algorithm [48,49,55]. Formally, the local Hilbert space of
bosons is infinite. In our numerical simulations we impose a
cutoff of ny,x = 8 particles. While MPS are an efficient repre-
sentation for one-dimensional gapped system, gapless phases
such as the expected dipole Luttinger liquid pose a significant
numerical challenge. To best utilize the numerical technique,
we implemented both U(1) particle number conservation and
dipole conservation [56] in our DMRG algorithm, enabling us
to perform simulations with high bond dimensions. Resolving
dipole conservation in our DMRG approach further allows
us to numerically determine the energy gap of dipole-like
particle-hole excitations. In addition, in order to eliminate the
boundary effects of finite systems we will work directly in the
thermodynamic limit using infinitt DMRG (iDMRG) when-
ever suitable [57]. A detailed description of our numerical
approach is provided in the Appendix.

a. Dipole and dipole-current correlations. A direct signature
of the transition between a Mott state and a dipole Luttinger

liquid is provided by the dipole correlations of Eq. (16). These
decay exponentially in the Mott phase and algebraically, as in
Eq. (16), in the Luttinger liquid. We probe these correlations
numerically in iDMRG by computing

(didy) ~ (e Oy (17)

which is proportional to the correlation of vortex operators
%) that locally create dipoles. Figures 3(a) and 3(c) demon-
strate that such dipole correlations indeed change from an
exponential decay in the Mott insulating phase for r < fgkr
to power law decay for ¢ > tggr. We determine the numerical
value of the transition point fggt below. As can be inferred
from Fig. 3(c), the exponent of the power law changes with
hopping ¢ and is thus nonuniversal as expected for a Luttinger
liquid.

Besides the dipole correlations, a clear signature of the
Luttinger liquid can be obtained by probing the correlations
of the dipole current iV8,(r), which in the dipole Luttinger
liquid decay at long distances as

(iVO,(r)iVo,(0)) (18)

- 2Kdr2'

Thus, their power law is independent of the Luttinger param-
eter K;. Within our microscopic model, the dipole current can
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be defined and evaluated numerically via the operators
Ji=—idd,,, —Hc.). (19)
Our numerical results in Figs. 3(b) and 3(d) show that cor-
relations (fff{)’) of this dipole current decay exponentially in
the Mott state for t < tgxt and indeed fall off as the inverse
square of the distance r for r > rgxr. The slight vertical shift
of the corresponding curves in Fig. 3(d) is nonuniversal and
depends on the Luttinger parameter K;.
b. Energy gaps. In the Mott insulating phase, both particle
excitations and dipole excitations feature a finite-energy gap.
The transition to the dipole Luttinger liquid should be accom-
panied by a closing of the dipole gap while the gap for charged
particle excitations remains finite. Our numerical approach
allows us to explicitly verify these expectations.

Let us consider the system at some integer boson filling
N = nL and a dipole moment P = 0 that corresponds to the
one of the homogeneous state |n, ..., n) see Eq. (3). The filling
n can be thermodynamically stable when the chemical poten-
tial p in Eq. (1) is located between the two potentials

pe (L) = Eo(L, N + 1, P) — Eo(L, N, P),

(20)

where Ey(L, N, P) denotes the ground-state energy of the
system of size L at fixed particle number N, dipole moment
P, and vanishing chemical potential. Accordingly, as for the
conventional Bose-Hubbard model [58], the gap to charged
single particle excitations in such a system is defined as

Ac(L) = pud (L) = pg (D). 2D

Analogously, the dipole gap can now be obtained via the two
potentials

pg (L) =Eo(L,N,P +1) — Eo(L, N, P), (22)
py (L) = Eo(L,N, P) — Eo(L,N,P — 1),
which yields
Ag(L) = pg (L) — pg (L). (23)

We notice that /Lj (L) = —u (L) holds, since by spatial re-
flection symmetry the ground-state energy cannot depend on
whether a particle-hole excitation is created by displacing a
single particle to the right or left. In the thermodynamic limit,
the gaps A.jq = limy y— o0 Ac/q(L) are obtained by keeping
n = N/L and P = 0 fixed. In our numerical simulations based
on iDMRG, we approach this limit by adding/removing a
single particle to the unit cell, whose size L is increased until
convergence of the gaps is reached. This has the advantage
that the system is formally infinite and does not suffer from
effects of boundary conditions. In Figs. 4(a) and 4(b), we
show the finite size flow of the charge and dipole gaps both in
the Mott insulator and the Luttinger liquid. Both gaps remain
finite in the dipole Mott insulator. In the dipole Luttinger
liquid the charge gap remains finite, whereas the dipole gap
closes as 1/L.

Figure 4(c) shows the numerically determined charge and
dipole gaps as functions of correlated hopping ¢/U that we
extrapolate to the thermodynamic limit. We observe a rapid
closing of the dipole gap at fggr/U ~ 0.113, while at the
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FIG. 4. Energy gaps. Finite size flow of the excitation gaps at in-
teger filling n = 2 (a) in the Mott insulator (/U = 0.050) and (b) the
Luttinger liquid (¢/U = 0.115). Both in the Mott and Luttinger lig-
uid phase the charge gap converges to a finite value A, — const.
as L — oo. By contrast the dipole gap remains finite only in the
Mott insulator, but vanishes in the Luttinger liquid as A, oc 1/L.
(c) Charge and dipole excitation gap across the BKT transition. The
dipole gap closes at the critical hopping tgxr/U = 0.113.

same time the particle gap remains finite. Our results are thus
consistent with a transition from a dipole Mott insulator to a
dipole Luttinger liquid at a critical strength of the correlated
hopping.

c. Luttinger parameter and dipole velocity. In the dipole Lut-
tinger liquid phase, the system is characterized entirely by
the value K; of the Luttinger parameter as well as the dipole
velocity u,;. For example, we can verify the BKT transition
between the Mott state and the dipole Luttinger liquid, which
is driven by the cosine term in Eq. (14). The BKT theory of
this transition predicts a critical dipole Luttinger parameter
K7 = 2, which we can verify by extracting K,(¢) as a function
of the correlated hopping ¢/U from the numerically deter-
mined dipole correlations Eq. (17). Figure 5(a) shows that
the Luttinger parameter continuously increases as a function
of t/U. The lowest value of the Luttinger parameter K, is
indeed K = 2, which marks the onset of power-law dipole
correlations. The value of the critical hopping is consistent
with the value of 7gkr obtained from the closing of the dipole
gap in Fig. 4(c).

Due to the finite charge gap, the dipole Luttinger liquid is
incompressible (see also the discussion below). Nonetheless,
it features gapless low-energy dipole excitations w = uy|k|,
with which we associate a finite dipole compressibility k,.
The dipole velocity u, that we want to extract in order to
fully characterize the Luttinger liquid is directly related to this
dipole compressibility via k; = K;/usm. We use this relation
to obtain the dipole velocity by numerically extracting the
dipole compressibility from the finite size flow of the dipole
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FIG. 5. Characterization of the dipole Luttinger liquid at com-
mensurate filling n = 2. (a) Luttinger parameter extracted from the
asymptotics of the dipole correlations (dfd,) oc r~'/k¢. The inset
demonstrates the transition from exponential to power-law decay
of the dipole correlations around the critical point #gx, which oc-
curs precisely at the predicted value of the Luttinger parameter
K; =2. (b) Velocity u, obtained from the dipole compressibility
Kg = Kd / Ugm.

gap Ay (L) = Kd_l /L. The resulting dipole velocity is shown
in Fig. 5(b). In addition, we have numerically confirmed the
existence of linear low-energy modes consistent with the es-
timated velocities of Fig. 5(b) by computing the full dipole
spectral function. We will address such dynamical properties
in detail in future work.

d. Charge compressibility. The presence of a finite charge
gap guarantees the incompressibility of the dipole Luttinger
liquid. Alternatively, the charge compressibility « can be de-
termined via the zero-frequency density correlations

K= ]lin(l)C,m(w =0,k), (24)

with the structure factor
Cun(@, k) = (n(w, b)n(—w, —k)) . (25)

For the dipole Luttinger liquid, the dipole density is given
by ny ~ 9:¢, according to Eq. (11) and the corresponding
charge density is n ~ 32¢, upon using Eq. (6). Therefore, the
compressibility is

ﬁk{

1
K (k) = ;k“ (a(@ = 0, k)pa(w = 0, —k)) = v

(26)
which vanishes as k* for small momenta. In our DMRG
simulations, the frequency-resolved density correlations are
challenging to obtain. However, we can efficiently compute
the equal-time density correlations C,,(t = 0, k). For the
Luttinger liquid model of Eq. (14), the relevant time and
frequency correlations are related by

ug Ki 5
Cun(t =0,k) = —|k|G(w = 0, k) = —|k|". 27
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FIG. 6. Static charge structure factor. Static structure factor in
the Mott insulator and the Luttinger liquid. The inset illustrates the
power-law decay of (fixfi_y) for k — 0, which is k* in the Mott
phase and o |k|? in the Luttinger liquid, respectively.

We show the equal-time correlations C,,,(t = 0, k) in Fig. 6,
which we numerically obtain from the real space density-
density correlations

1 Sy
(nhi) = 73 > e R (i) (28)
JJ

Indeed, we find a ~|k|* behavior at small k for the Luttinger
liquid in Fig. 6, which in turn is consistent with a com-
pressibility vanishing as « (k) ~ k2. By contrast, in the Mott
insulating state with finite dipole excitation gap, the density
correlations instead vanish as C,,,(t = 0, k) ~ k*, see Fig. 6.

C. Stability of dipole Luttinger liquid at large
correlated hopping

In the previous section we analyzed the transition out of a
gapped Mott state into a gapless dipole Luttinger liquid at in-
teger filling upon increasing the strength ¢ /U of the correlated
hopping. It is natural to ask whether a second transition into a
state with gapless charge excitations appears as the hopping ¢
is increased even further. A natural candidate for such a phase
is the (1 + 1)D quantum Lifshitz model [see Eq. (29) below],
that has been proposed as a potential theory of gapless phases
with dipole-moment conservation.

As we discuss in the following, in the present situation the
charge gap remains finite upon increasing 7. A transition to a
phase described by a Lifshitz model does not occur since such
a phase is destroyed by lattice effects. This instability of the
Lifshitz model can be used to estimate the value of the charge
gap at large values of the dipole Luttinger parameter. The
dipole Luttinger liquid is therefore stable against a transition
into a gapless Lifshitz model.

Nonetheless, for the Hamiltonian of Eq. (1) the Luttinger
liquid will eventually become unstable for ¢ greater than some
t* towards a state in which all bosons bunch together in space.
The corresponding ground-state features a superextensive en-
ergy Ey ~ —N? and does not correspond to a stable phase
of matter unless a (unphysical) cutoff on the local boson
occupation is introduced.
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a. Bunching instability. The bunching instability can be un-
derstood by the fact that both the correlated hopping term
and the on-site interaction term scale quadratically with the
local occupation number n. For a thermodynamically stable
phase of matter, the asymptotic scaling of the ground-state
energy for n>> 1 demands —2tn* +Un?/2 > 0, hence in
a grand-canonical setting the transition occurs precisely at
t*/U = 0.25, as for t > t* the ground state is unstable toward
a diverging particle number. In case of a fixed particle number,
however, the situation is somewhat richer. At low filling, the
reduced local density fluctuations increase the critical value
t*. For n = 1, we numerically obtain ¢t*/U =~ 0.32, and for
n = 2 we obtain t*/U =~ 0.26.

b. Stability of the dipole Luttinger liquid and instability of
the Lifshitz model. For hopping strengths below the bunching
instability and at integer filling, the system remains in the
dipole Luttinger liquid and does not enter a phase of gapless
charge excitations. Here, we argue why this is the case before
determining the asymptotic behavior of the charge gap A, for
large values of the dipole Luttinger parameter.

Introducing conjugate bosonized variables ¢(x) and 6(x)
for the charge degrees of freedom [analogous to Egs. (11)
and (12)], the dipole-conserving yet charge-gapless quantum
Lifshitz model reads

K (1
—— (afe)2+v(a§9)2}. (29)
2 v
The associated Hamiltonian is given by
v M1 2
H=— [dx|—-(@0:¢)+K(20
2n/ x_K( ¢)° + K(0; )}
v

_ v -l 2 2 4 2
= | dk _Kk lp(k)[* + Kk*|6 (k)| ] (30)

In this model the usual kinetic term (8,0)? is quenched and
instead a dipole-conserving kinetic term (920)* invariant un-
der linear shifts 6(x) — 6(x) + a + bx is the most relevant
allowed contribution. The constrained kinetic term induces a
relative scaling z = 2 of space and time coordinates.

Within an effective field theory approach [46], the quantum
Lifshitz model can be obtained upon considering the charge
and dipole degrees of freedom as independent, coupling them
in the total Lagrangian

Ky

1
L=-= [(arw + ud<axed>2] + r(0s + 8,6)°
2 Uq

K. 2
(0:0)7, €1V}

+ 2mu

and subsequently integrating out the variables 6,. This theory
was first analyzed in the context of a fracton gauge dual
formulation of classical smectics in two dimensions [40]. We
emphasize the difference to the microscopic derivation of
Sec. II. There, charge and dipole degrees of freedom were not
independent but related by a change of variables. In Sec. II,
the low-energy theory of the dipole Luttinger liquid could be
postulated upon assuming a finite gap for the charge degree
of freedom. As we will see in the following, the benefit of
the effective field theory approach of Eq. (31) is to determine
whether/when this assumption can be valid.

In Eq. (31), r > 0 and K./u, quantify the density inter-
action between charge degrees of freedom. Notice that the
term (6; + 9,0)? is also invariant under 8, — 6; — b, 6 —
0 + a + bx. Physically, one expects this term to introduce a
constraint that induces a finite stiffness for the dipole phase
field and pins it to the charge field, 6; — —d,6. Formally,
after integrating out 6, we obtain a Lifshitz model of the form

Eq. (29) with
ucttgKy
= . 32
v=_]| X, (32)

We note that K./u. and K;/u,; quantify the density inter-
actions between charges and dipoles, respectively, both of
which derive from the underlying density interaction of the
microscopic dipole Bose-Hubbard model. We thus naturally
expect the ratio uy K. /u.K; ~ O(1) in Eq. (32) to be of order
unity, and thus K ~ Kj.

We further note that expressed in terms of the ¢ field (and
in frequency and momentum space), the Lifshitz model takes
the form

T K| v k2

This follows from Eq. (29) and the invariance of the Hamil-
tonian Eq. (30) under K — 1/K, 6(k) — ¢(k)/k, ¢p(k) —
kO (k). Now if the charge degrees of freedom ¢ were to acquire
a finite gap, adding a mass term r(¢ — d,¢p;)* and taking into
account dipole density interactions Zf;;d(axqsdf in Eq. (33)
returns us to the dipole Luttinger liquid upon integrating out
¢. Thus, the two effective constraints ¢ — d.¢; and 6, + 0,0
on density and phase variables, driving the system either into
the dipole Luttinger liquid or the Lifshitz model, respectively,
are in fact conjugate to each other,

[B(x) = xpa(x), Oa(x') + 3,0 (x)] = 2im8(x — x').  (34)

We now show that a finite charge gap is always present in
the Lifshitz model due to lattice effects. At integer filling a
cosine term

2
b [m + vkz] (k)| (33)

gcos (2¢(x)) (35)

for the charge field ¢ should be included in our description.
The operators ¢ have long-range correlations in the model
of Eq. (33) independent of v and K. Therefore, the cosine term
is always relevant and creates a gap for charged excitations,
thus driving the system back into the dipole Luttinger liquid.
c. Charge gap at large K;. In the following, we estimate the
size of the charge gap at large values of K; by means of a
scaling analysis for local fluctuations of the ¢ field. Extracting
the charge gap allows us to verify not only that the dipole
Luttinger liquid remains stable as the hopping is increased, but
importantly also that the mechanism behind the generation of
a gap is indeed the presence of a relevant cosine term in the
Lifshitz model in Eq. (33).

In the presence of a nonzero coupling g # 0, the cosine is
the most relevant term appearing in the action S = [ drdxL
that results from Eq. (33) and Eq. (35). It is thus safe to expand
the cosine to quadratic order and consider the model

1 [1w? 5 ,
=5k |y @ TUK tarKelle(ln.  (6)
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We emphasize that the two terms cos(2¢) and ¢? indeed have
the same scaling dimension in the Lifshitz model. We now
evaluate local correlations of the ¢ field within this model
yielding

4nKg
vk?

2 “ K
([¢p(r =0,x=0)]") = / dk —, (37)
0 1 +

where we have included a high-momentum cutoff that is set by
the microscopic lattice spacing a. We see that for g = 0, the
term inside the integral in Eq. (37) is proportional to K. Fluc-
tuations of ¢ thus become large as K increases. For nonzero
g # 0 on the other hand, the term inside the integral will
eventually become suppressed for sufficiently small momenta
k, thus reducing fluctuations of ¢ on the corresponding length
scale. The relevant length scale at which the presence of the
cosine becomes noticeable is determined by the momentum at
which the term inside the integral in Eq. (37) is reduced from
order K down to order O(1). Setting k = 1/A, this leads to the
condition

(38)

IL K NK v
N arkg A\ 4nKg’
1+ A2

where we have used A’Kg/v >> 1 on the relevant length scale
A for large values of K. The length scale A is thus

vK
A~ [ —. 39)
8

Due to the dynamical exponent z = 2 between space and time
in the Lifshitz model, this length scale is associated with a
corresponding energy scale

& _ 8
vK ude '

A~ 22~ (40)
In the last step we have inserted the values of Eq. (32) for
K and v that we have derived from the underlying dipole
Luttinger liquid.

We have already extracted the dipole Luttinger parameter
K, (1), the dipole velocity u,(t), and the charge gap A.(t) as
functions of the correlated hopping ¢ /U in our numerics. We
can now determine the value g(¢) of the cosine term in order
to verify the prediction Eq. (40). Even though, we cannot infer
g(t) directly from our numerics, we know that the correlations
of the operators ¢") scale in the Lifshitz model as

(ei¢(r)e—i¢(())>g:0 :’i’i e—C’K — e—CKd’ (41)
with nonuniversal O(1) constants ¢/, c. It is the constant value
of this correlation function that turns the cosine term into a
relevant operator of the same scaling dimension as a conven-
tional mass term ¢>. As the value Eq. (41) of this constant
becomes small at large K, the prefactor of the mass term in
Eq. (36) should be small as well, and we thus infer that g(K;)
decays exponentially with K,

8(Ky) = co exp(—cKy). (42)

With Eq. (42) at hand, we can verify our prediction Eq. (40)
for the charge gap by inverting the relation K;(t/U) —
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FIG. 7. Charge gap in the dipole Luttinger liquid. Numerically
obtained charge gap A, in the dipole Luttinger liquid, scaled with
ug Ky, as a function of the Luttinger parameter K;. We compare the

scaling of the charge gap to the theoretical prediction oc e~K¢ with
some nonuniversal constant c.

t/U(K,) and verifying that
Ac(Kq)uq(Ka)Kq ~ exp(—cKq) (43)

for large values of K;. In Fig. 7 we display the quantity on
the left-hand side of Eq. (43) calculated from our numerically
obtained values for K, uy, and A.. We indeed find a decay
of A.uyK, consistent with an exponential at increasing values
of K;, thus confirming Eq. (40). We note that the range of
available values for K; in Fig. 7 is limited mostly by the nu-
merical evaluation of the dipole velocity u,[59], and a larger
parameter range would be desirable in order to verify Eq. (40)
more accurately. Interestingly, although the exponential decay
of g(K;) dominates at very large K;, at the available inter-
mediate values of K, it is essential to take into account the
prefactor 1/uyK, of the gap in Eq. (40) in order to be able to
see the exponential form.

We have thus directly verified that the charge gap—
produced by the instability of the Lifshitz model—remains
finite as the hopping strength is increased towards the bunch-
ing transition. The dipole Luttinger liquid thus persists as a
stable phase at integer filling.

IV. NON INTEGER FILLING

In the previous section we have seen that at integer bo-
son filling, the dipole Luttinger liquid remains stable and the
corresponding charge gap of single-particle excitations stays
finite, up to a point at r* /U where a bunching instability arises.
Naturally, we can ask whether there exists a different parame-
ter regime of the lattice system in which a charge-gapless and
thus compressible state described by a Lifshitz model may be
realized? In this section, we will explore this question in the
regime of noninteger boson fillings.

In particular, let us consider the bosonic lattice model at
some rational filling n = p/q ¢ IN, with p, g coprime integers.
In the putative Lifshitz model of Eq. (33) and (35) at suffi-
ciently large hopping ¢ (but below bunching) the cos(2¢(x))
term—which we have previously determined to destabilize the
phase at integer filling—is no longer present. Nonetheless,
higher order (i.e., multiple) vortex terms in the expansion
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Eq. (11) of the density operator may generically still con-
tribute. In particular, for the given filling fraction p/q one may
generally expect a contribution

84 €0s(2qp(x)) (44)

to the Lagrangian. Such terms are always relevant and open
a charge gap, analogously to the analysis of the previous
section. It follows that it should generically be expected that
the Lifshitz model is unstable also at any rational filling.
Nonetheless, it is possible in principle that the prefactors g, in
Eq. (44) become either (1) extremely small, such that the phe-
nomenology of the Lifshitz model survives even in very large
systems, or (2) exactly zero for some specific microscopic
lattice models, such that the Lifshitz phase survives even in the
thermodynamic limit. We have no immediate reason to think
that the prefactors of such higher order cosine terms should
vanish identically for our model. We note, however, that since
all cosine terms in Eq. (44) are equally relevant, possible can-
cellations between different harmonics may occur, potentially
generating a situation with effectively very small prefactors.

In the following, we analyze the ground state of the system
at noninteger filling numerically using iDMRG. Remarkably,
we find that the variational ground state obtained numeri-
cally is consistent with a compressible phase described by
the Lifshitz model in the absence of any cosine-terms for the
accessible system sizes and bond dimensions. We first present
evidence for the compressible nature of this variational state,
before characterizing the physical properties of this phase.
Whether the Lifshitz model will eventually become unstable
in regimes beyond our current numerical capacities is an in-
triguing open question. However, we emphasize that already
the observed stability of this phase on our currently accessible
scales is quite remarkable and surprising.
a. Fixed chemical potential. We explore noninteger fillings
by relaxing both charge and dipole quantum numbers in
our numerics and by performing a grand-canonical ground-
state search as a function of hopping ¢#/U along a line of
fixed chemical potential ©/U = 0.95. From the previously
computed charge and dipole gaps displayed in the phase di-
agram of Fig. 1, we expect such a line cut to go through
the two integer-density phases of the Mott insulator and the
dipole Luttinger liquid before reaching a regime of noninteger
ground-state density. We show the average density expectation
value (71) along this cut in Fig. 8. Crucially, upon reaching
a critical hopping strength, the density appears to exhibit a
first-order jump before increasing again continuously. While
narrow density-plateaus in the regime of noninteger filling are
still visible for smaller unit-cell sizes, these plateaus appear to
smoothen out as the unit-cell size is increased, an indication
of a compressible state.
b. Charge compressibility. To further substantiate the evi-
dence for a compressible state on the numerically accessible
scales, in the following we consider the compressibility as
determined by static density correlations. To this end, we
again return to resolving charge- and dipole-conservation laws
within our iDMRG approach.

Our goal is to first understand what to expect of a state
described by the Lifshitz model. In particular, the compress-
ibility of the Lifshitz model in the absence of cosine terms is

25+ d-SupersoIidﬁﬂ' i
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P
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FIG. 8. Transition to incommensurable densities. Average charge
density () for a cut through the grand-canonical phase diagram
along the line of fixed chemical potential ©/U = 0.95. Different
unit-cell sizes L used in the iDMRG simulations are compared. We
observe an apparent first-order transition into a compressible state

with continuously varying charge density.

finite,

Kk (k) = Cun(w = 0, k) = %kz (p(@ =0, k)p(w =0, —k))
K

TV

(45)

As previously done for the dipole Luttinger liquid, we can
further compute the associated equal-time density correla-
tions. For the Lifshitz model, these are related to their static
zero-frequency counterpart via

K
Cou(t =0,k) = %kzc,m(w =0,k) = Ekz. (46)

The equal-time correlations of Eq. (46) can be determined ef-
ficiently in DMRG, and we should expect a ~k> onset at small
momenta when the state is described by a Lifshitz model. In
Fig. 9 we present C,,,(t = 0, k) as obtained numerically at
the half-integer fillings n = 3/2 and n = 5/2. At sufficiently
large hopping ¢, we indeed observe the quadratic onset ~k>
for small momenta. This in turn is consistent with a constant
limy_.0 Cyu(w = 0, k) and thus a finite compressibility, as ex-
pected in the quantum Lifshitz model. We emphasize that
independently of specific model assumptions, the observed
~k? onset is markedly different from the ~|k|> onset, that
we have previously observed in the dipole Luttinger liquid
at integer filling (cf. Fig. 3). Hence the density correlations
indicate a different ground state.

At the filling n = 3/2 we additionally find an apparent
Mott state with onset ~k* of C,,(t = 0, k) and exponentially
decaying dipole correlations provided the hopping ¢ is suf-
ficiently small. For the n = 5/2 state, we also find such a
Mott state, but it is located at very small 7. We estimate the
critical point of this transition for n = 3/2 at /U =~ 0.14 and
for n =5/2 at t/U =~ 0.02. It would be interesting in the
future to map out the transition between these two phases
and determine whether an intermediate dipole Luttinger liquid
exists at this filling.
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FIG. 9. Compressibility at noninteger filling. The scaling of the
static structure factor indicates finite compressibility at noninteger
filling. (a) Static structure factors at filling n = 5/2. At sufficiently
large t/U the structure factor scales o k? for small momenta,
compatible with the predictions from the quantum Lifshitz theory
describing a compressible state. (b) Static structure factors at filling
for n = 3/2. For small ¢t/U a transition to a Mott insulating state
occurs, where we find a o< k* scaling.

c. Charge gap. Both the grand-canonical ground-state search
and the static density correlations provide compelling evi-
dence of the existence of a compressible state at noninteger
filling at sufficiently large hopping ¢. As a final check, we
investigate the energy gap A, of charged single particle ex-
citations as defined in Eq. (21). If and only if the ground
state is compressible, the charge gap vanishes in the limit

of large systems: A, i)} Specifically, for any system of
length L, we find a finite-size charge gap whose scaling upon
L — oo we wish to determine. Figure 10 shows the scaling
of A, for increasing system sizes L at half-integer filling n =
5/2 and dipole hopping ¢t /U = 0.125. Within our accessible
computational resources, the associated finite size charge gap
appears to close as A.(L) ~ 1/L for large systems. Again, this
apparently vanishing charge gap provides an indication for the
compressibility of the ground state. We note that in contrast to
the charge gap A, ~ 1/L, the dipole excitation gap A, in the
Lifshitz model with dynamical exponent z = 2 is expected to
close as Ay ~ 1/L?, see Ref. [51]. Numerically, we verified
that it becomes very small. For all probed system sizes we
find A;/U < 1073, making it unfeasible to capture the exact
finite size flow within the numerical accuracy for accessible
bond dimensions.
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FIG. 10. Charge gap at noninteger filling. Finite size flow of the
charge excitation gap at filling n» = 5/2 and dipole hopping /U =
0.125, in good agreement with oc 1/L up to the accessible unit-cell
sizes. A vanishing charge gap in the thermodynamic limit indicates a
finite compressibility.

d. Characterizing the compressible state: A dipole supersolid.
The central property of the Lifshitz model Eq. (29) is the
presence of off-diagonal long range order in the dipole-dipole
correlations functions. We recall that the dipole phase field
04(x) of the Luttinger liquid gets pinned to the gradient
—0d,0(x) of the charge phase field in the Lifshitz model, see
Eq. (31). The off-diagonal dipole correlations are long-ranged
and are given by

<ei8)(9(x)e—i3x9(0)> X— 9 e—%‘“' . (47)

We verify this prediction numerically by computing (c?’;'tfo)
within iDMRG; Fig. 11(a). As the bond dimension is in-
creased, the dipole correlations indeed approach a constant
value on the accessible length scales of several hundred sites.
This indicates a spontaneous breaking of the dipole U(1)
symmetry, which is allowed even in one dimension due to a
modified Mermin-Wagner theorem for systems with multipole
conservation laws. Our numerical results show that the phe-
nomenology of long-range dipole order is remarkably robust
in the microscopic model Eq. (1). In addition, we verified
numerically on finite-system sizes that the dipole superfluid
stiffness is finite (as is the case in the dipole Luttinger liquid).
This can be probed by computing the sensitivity of the ground-
state energy to a twist in the boundary conditions [60].

The presence of off-diagonal long-range order is not the
only remarkable feature of our ground state at noninteger fill-
ing. Quite generally, for a translation invariant system subject
to both charge and dipole conservation, the ground state at
filling n = p/q ¢ IN and p, g coprime is necessarily at least
g-fold degenerate due to the noncommutativity of translations
and dipole symmetry [61]. The degenerate ground states are
connected via translations. As a direct consequence, these
states exhibit charge density wave (CDW) order with wave
number 2r /g. This feature is in agreement with the predic-
tions of the quantum Lifshitz model of Eq. (33) in the absence
of cosine terms. Since the correlator

(e ) %% (onst. (48)
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FIG. 11. Breaking of translation invariance and dipole long-
range order at noninteger filling. (a) Upper panel: Dipole cor-
relations (c?j 30) at several noninteger rational fillings n = p/q =
5/2, 49/20, 9/4, fort /U = 0.125. The correlations remain constant
even at large distances. Lower panel: Convergence in bond dimen-
sion for n =5/2. (b) Charge density-density correlations (7,7)
exhibit a g periodicity for the same fillings n = p/q as in (a).

exhibits long-range order, the density correlations feature
long range g periodicity, cf. the expression Eq. (11) of the
density in terms of the ¢ field in bosonization. We thus
expect to find density wave order for our system at any ra-
tional filling. Figure 11(b) demonstrates the presence of a
CDW in the density-density correlations for different fillings
n=15/2,49/20, 9/4, confirming the expected associated pe-
riodicities ¢ = 2, 20, 4. Interestingly, although the Lifshitz
model describes a compressible state with vanishing charge
gap, our mapping between boson and dipole occupation num-
bers introduced in Sec. II remains valid. This is because the
central criterion for its applicability, the bounded nature of
charge fluctuations [see Eq. (5)] holds in the Lifshitz model of
Eq. (33). Formally, since n(x) —n ~ V¢(x),

. 2
<( /0 dx/(n(x)—n)) >= () — SO

2% const. x K. 49)

Hence, cumulative charge fluctuations retain an area law.
Since the dipole density remains well defined, by virtue of
0xqq(x) = q(x) it inherits the DW order of the charge density.
In quantum simulation platforms, both the bounded nature
of charge fluctuations as well as the presence of DW order

could be verified by sampling particle occupation number
snapshots from the ground-state wave function and using them
to evaluate (n,(x)ny(0)). In line with this picture, we numer-
ically observed small oscillations with period g on top of the
long-ranged dipole correlations (3}'30) at noninteger rational
fillings.

We conclude that a remarkable feature of this ground state
at noninteger filling is the coexistence of a finite dipole su-
perfluid stiffness and a charge density wave order along with
off-diagonal long range order of the vortex operators that cre-
ate local dipoles. As such, the state described by the Lifshitz
model may be viewed as a dipole supersolid.

V. CONCLUSION AND OUTLOOK

In this paper, we have investigated the ground-state quan-
tum phases in the one-dimensional Bose-Hubbard model with
dipole conservation. Utilizing the area-law nature of cumu-
lative charge fluctuations in the ground states of the model,
we were able to construct a local dipole density. This in turn
allowed us to develop an effective low-energy descriptions of
the system. At fixed integer boson densities, we found that
the system undergoes a BKT transition between a gapped
Mott state and a dipole Luttinger liquid that exhibits gap-
less particle-hole-type excitations, in agreement with iDMRG
computations. The charge gap remains finite at integer filling
with increasing hopping until an instability towards boson
bunching is reached. At noninteger filling, however, our
numerical results showed a ground state described by the one-
dimensional quantum Lifshitz model, dubbed “Bose-Einstein
insulator” in Ref. [46]. This phase corresponds to a com-
pressible state in which density wave order coexists with
off-diagonal long-range order and finite superfluid stiffness
for the dipole degrees of freedom. We therefore refer to this
regime as a “dipole supersolid”. General arguments suggest
that this phase will eventually be unstable towards lattice
effects. Nonetheless, the robustness of this compressible state
within the unit-cell sizes accessible in our iDMRG approach is
remarkable and suggests that the phenomenology of the dipole
supersolid may be accessible in current quantum simulation
platforms.

Collecting our results on the ground-state properties and
charge/dipole energy gaps of the model Eq. (1) leads us to
conclude with the /U — u/U—phase diagram presented in
Fig. 1(b): The system features Mott lobes with finite charge
gap and integer boson filling, within which a transition be-
tween a fully gapped state and a dipole Luttinger liquid
occurs. The lobes do not close until the bunching instability is
reached. A special case is the n = 1 Mott lobe, which remains
in a fully gapped state up until bunching, which is why we
focused mostly on n = 2 in this paper. The phase diagram
shown in Fig. 1 is inferred from a parameter scan of /U and
w at for systems of 100 sites in the grand-canonical ensemble.

Open questions concerning the phase diagram of Fig. 1—
beyond the eventual stability of the supersolid state—exist
in the regime of noninteger boson densities at small corre-
lated hopping. There, we observed signatures of a transition
between fractional filling Mott states and the compressible
dipole supersolid (hatched areas). Mapping out the details of
this potential transition is an interesting task for future work.
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In addition, our results pave the way—both analytically
and numerically—for tackling a number of related systems
such as fermions or spin chains with dipole conservation.
Specifically, our mapping to a model of microscopic dipoles
may provide a good conceptual starting point for addressing
questions about the nonequilibrium dynamics of excitations
on top of the ground states obtained here. In future work, we
plan to address such dynamical questions, including the eval-
uation of dynamic spectral functions. An additional question
for future study is the fate of the microscopic dipole mapping
at nonzero temperatures, where thermal fluctuations lead to a
violation of the area-law condition for charge fluctuations.

Our results furthermore provide useful indications for po-
tential experimental realizations of dipole phases beyond the
simplest gapped Mott state. In particular, cold atoms in optical
lattices in the presence of a strong linear tilt give rise to
effective dipole-conserving dynamics and have been realized
in Fermi-Hubbard systems both in one and two dimensions
[12-15]. However, the associated correlated hopping strength
t/U = (tsp/V)2 is generally suppressed by the ratio of the
bare single-particle hopping strength #,, and the strength V
of the linear tilt [14,24]. Nonetheless, our analysis suggests
that dipole Luttinger liquids or supersolids may already be ac-
cessible at moderate values of the correlated hopping. A more
detailed investigation of the ground states and their transitions
particularly at small ¢ is needed in order to substantiate this
picture.

We emphasize further that through the mapping to mi-
croscopic dipoles, our paper suggests potentially useful
observables that can be used to analyze constrained models
in experiments. In particular, quantum simulation platforms
such as quantum gas microscopes have access to snapshots of
the full system. This allows one to (i) verify the conservation
of the global dipole moment, (ii) verify the area-law nature
of cumulative charge fluctuations that guarantees a consistent
local dipole density, and (iii) perform the mapping to dipole
degrees of freedom on the snapshots in order to study the
dynamics of dipoles directly.

Beyond many-body systems in the presence of a linear tilt,
dipole-conserving Hamiltonians similar to Eq. (1) are relevant
to fractional quantum Hall systems placed on a thin cylinder
[61-65]. It would be very interesting to investigate whether
the physics studied in our paper can be of direct relevance to
such setups.

Note added. Reference [66] also provides an investigation
of the phase diagram in the constrained Bose-Hubbard model.

Data analysis and simulation codes are available on Zen-
odo upon reasonable request [67].
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APPENDIX: COMPUTATIONAL METHODS

Throughout this paper, we employ tensor network methods
to numerically access properties of the many-body ground
state. We use the DMRG algorithm based on an MPS repre-
sentation of the wave function, which allows for a controlled
expansion in terms of the entanglement encoded in this ansatz
[48,49]. Starting from an initial product state, DMRG vari-
ationally optimizes the energy by local updates, where only
Xmax Most important Schmidt states are kept. After reaching
convergence, we compute expectation values and correlation
functions on the ground-state MPS by contracting the relevant
tensor networks. For finite MPS we find that, in particular
for large ¢/U, boundary effects become relevant to a point
where they cannot be neglected. Therefore, all our simulations
utilize the infinite version of DMRG, directly working in the
thermodynamic limit [57].

1. Grand-canonical simulations

In iDMRG, by fixing the size of the unit cell, one always
implicitly imposes translation invariance. Hence, it is typi-
cally very important that the periodicity of the ground state
is commensurate with the unit cell. For our dipole conserving
model Eq. (1), we are in a special situation when we work in
the grand-canonical ensemble where the total particle number
can fluctuate. For any given unit-cell size L, the ansatz states
are automatically at least L periodic; however, because of the
g-fold ground-state degeneracy, the ground state has a 2 /g
periodicity at filling p/gq. Therefore the lowest-energy state
is forced to have rational filling p/L, where p and L do not
have to be coprime. As a results, this leads to locking of the
average density to rational fillings fractions, which appear as
a staircase structure in grand-canonical cuts. We verified that
upon increasing L the size and height of these plateaus reduce,
signaling a tendency toward an incompressible state.

2. Conservation laws

In order to reach high bond dimensions, and to be able to
resolve dipole and charge sectors, we exploit the conservation
of total charge N and dipole moment P. The construction
of tensor networks symmetric under global transformations
has been thoroughly discussed in the literature [69,70]. Here,
we briefly sketch the idea of how conservation laws are im-
plemented, to then discuss how dipole conservation can be
applied to infinite MPS algorithms. In the context of frac-
tional quantum Hall physics on thin cylinders, the momentum
around the cylinder maps to the dipole moment of the particle
density, and momentum conservation has been successfully
exploited in this case [56].
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U(1) symmetries can be directly implemented on the level
of the tensors Ag’é”” of the MPS representation

) = Z[ . Al Al ...
{Jn}

s jrh jn+l’ .. > s (Al)

where for a unit cell of size L we have A" = A"*L] This
is achieved by assigning quantum numbers, or charges, to
the legs of the tensors. Charges of contracted legs, i.e., the
bonds in the MPS, are required to match, and tensors can carry
charge themselves. Then, MPS tensors AL"};”” are constrained
by the charge rule

[n] [n]

gt — gy — g = o™, (A2)

where ¢! (qg’]) are the charges on the left (right) virtual leg,

‘15':[] the charges of the physical leg, and Q" the total charge.
Only entries of the tensor for which the legs fulfill the charge
rule can be nonzero. The charge rule directly generalizes to
tensors with any number of legs, such as the matrix product
operators used to represent the Hamiltonian. Generally, some
convention for in- and out-going legs must be defined, speci-
fying which legs connect to bra or ket states, which fixes the
signs in Eq. (A2). All tensor operations (e.g., permutation,
reshaping, contractions, and decompositions) can be imple-
mented to conserve the block structure imposed by the charge
rules. This can dramatically reduce the computational cost
of tensor network algorithms, which in turn allows one to
consider higher bond dimensions.

For our case of particle number and dipole conservation,
we assign two sets of charges (ql[&’], qgf]) to the tensor’s legs,
and nonzero elements of any tensor are only allowed for
indices satisfying a charge rule for each set. However, due
to the fact that translations do not commute with the dipole
operator, translating the MPS by r sites does act nontrivially

on the charges

(%", gB") — (g% b +r x g{"). (A3)

For operations within one unit cell this is not an issue, and all
operations on tensors can be carried out as usual. However,
for operations on different unit cells, e.g., when optimizing
the first or last tensor in iDMRG or for computing correla-
tion functions, we have to make sure to apply the shift rule
Eq. (A3) accordingly, and adjust the charges at every leg of
the tensor.

With this modification iDMRG can immediately be applied
to exploit dipole conservation. Additionally, we can with that
fix the dipole moment sector. One important caveat to take
into consideration is the ergodicity of iDMRG updates. Due
to the additional constraint arising from imposing dipole con-
servation, the variational space for optimizing the MPS ansatz
is severely restricted, and fragments into sectors disconnected
under standard two-site iDMRG updates [56]. Hence, depend-
ing on the initial state the optimization may get stuck in a
local minimum. We mitigate this problem by using a subspace
expansion method [71] in combination with two-site iDMRG
updates. This introduces perturbations in the state and adds
fluctuations to the quantum numbers, which significantly im-
proves the ergodicity of iDMRG.
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