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Abstract. We consider the asymptotic limits where certain parameters in the definitions of the
Laguerre and Jacobi ensembles diverge. In these limits, Dette, Imhof, and Nagel proved that, up to
a linear transformation, the joint probability distributions of the ensembles become more and more
concentrated around the zeros of the Laguerre and Jacobi polynomials, respectively. In this paper,
we improve the concentration bounds. Our proofs are similar to those in the original references, but
the error analysis is improved and arguably simpler. For the first and second moments of the Jacobi
ensemble, we further improve the concentration bounds implied by our aforementioned results.
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1. Introduction. The Gaussian, Wishart, and Jacobi ensembles are three clas-
sical ensembles in random matrix theory. They find numerous applications in physics,
statistics, and other branches of applied science. The Gaussian (Wishart) ensemble
is also known as the Hermite (Laguerre) ensemble due to its relationship with the
Hermite (Laguerre) polynomial.

Of particular interest are the asymptotic limits where certain parameters in the
definitions of the ensembles diverge. In these limits, Dette, Imhof, and Nagel [2, 3]
proved that up to a linear transformation, the joint probability distributions of the
Hermite, Laguerre, and Jacobi ensembles become more and more concentrated around
the zeros of the Hermite, Laguerre, and Jacobi polynomials, respectively. These
results allow us to transfer knowledge on the zeros of orthogonal polynomials to the
corresponding ensembles.

In this paper, we improve the concentration bounds for the Laguerre and Jacobi
probability distributions around the zeros of the Laguerre and Jacobi polynomials,
respectively. Our proofs are similar to those in the original references [2, 3], but the
error analysis is improved and arguably simpler. We also prove the concentration
of the first and second moments of the Jacobi ensemble. The last result has found
applications in quantum statistical mechanics [5].

The rest of this paper is organized as follows. Section 2 presents our main re-
sults, which are compared with previous results in the literature. Proofs are given in
section 3.
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2. Results. In the literature, there is more than one definition of the Laguerre
probability distribution. These definitions differ only by a linear transformation and
are thus essentially equivalent. In this paper, we stick to one definition. When citing
a result from the literature, we perform a linear transformation such that the result
is presented for the definition we stick to. The same applies to the Jacobi case.

Let n be the number of random variables in an ensemble. Let 8 be the Dyson
index, which can be an arbitrary positive number.

2.1. Laguerre ensemble. We draw A\ < Ay < --- < A, from the Laguerre
ensemble.

DEFINITION 2.1 (Laguerre ensemble). The probability density function of the
B-Laguerre ensemble with parameters

(2.1) a>(n-1)

o™

(n-1)8
2

(22)  frasOM e d) o [T = NIPTTAT TetN2 N >0
i=1

1<i<j<n

For certain values of 8, the Laguerre ensemble arises as the probability density
function of the eigenvalues of a Wishart matrix VV*, where V is an n x %" matrix
with real (8 =1), complex (8 =2), or quaternionic (8 = 4) entries. In each case, the
entries of V' are independent standard Gaussian random variables, and V* denotes
the conjugate transpose of V.

Let
+p\ (—2)'
2.3 L (@)= (") =L ~1
2:3) P@=3 (TSR e
=0
be the Laguerre polynomial, whose zeros are all in the interval with endpoints [7]
P
2.4 2n+p—24+4/1+4(n-1 -1 2
(2.4) wtp =2 1 4= D p - 1) eos?

Let 21 < 22 < --- < T, be the zeros of the Laguerre polynomial LZ*/#~™ (z/3).
We are interested in the limit o« — 0o but do not assume that n — co. Note that,
if 8 is a constant, then n — oo implies that a — oo; see (2.1).

THEOREM 2.2 (Theorem 2.1 in [2]). For any 0 <e<1,

1 2
) o < 2 a, —ae /25.
(2.5) Pr (_2a 11%1%)&L|/\1 x| > e) <4n(14€%/25)%

This theorem can be restated as the following corollary.

COROLLARY 2.3. There exist positive constants C1,Cs such that, for any
O<e<l,

1
(2.6) Pr (— max |A; — x| > e) < Cyne=0,

200 1<i<n

© 2024 Yichen Huang and Aram W. Harrow



Downloaded 05/02/24 to 136.152.20.142 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

556 YICHEN HUANG AND ARAM W. HARROW

THEOREM 2.4 (Theorem 2.4 in [2]). Let k > 1 be a parameter. If
(2.7) n—1+1/8<2a/B<n—-1+4+k and 2rB/a<e<l,

then there exist positive constants Cy,Co,C3 such that

1
(2.8) Pr <% max (A — x| > 6) < Cln(e—czaé/ﬁ + 603526—020452).
<i<n

The original upper bound on Pr(% maxi<;<n |Ai — ;| > €) in Theorem 2.4 of [2]
is a complicated expression without implicit constants. The right-hand side of (2.8)
is its simplification using implicit constants.

If condition (2.7) is satisfied, (2.8) may be an improvement of (2.6). In particular,
for a constant 3, the right-hand side of (2.8) becomes Cne~C2%¢* (C}, C} are positive
constants) if and only if & is upper bounded by a constant.

As the main result of this subsection, Theorem 2.5 is an improvement of Corollary
2.3 and Theorem 2.4.

THEOREM 2.5. There exist positive constants Cy,Cy such that, for any € >0,

200 1<i<n

1 )
(2.9) Pr (— max |\; — ;| > 6) < Cyne~Craemin{e1}

Let n < s be two positive integers, and let V' be an n x s matrix whose elements are
independent standard real Gaussian random variables. Then, VV7T is a real Wishart
matrix, whose joint eigenvalue distribution is given by (2.2) with 8 =1 and o = s/2.
Theorem 2.5 implies the following.

COROLLARY 2.6. Let Ay < Ay < --- <\, be the eigenvalues of VVT and x1 <
To < -+ < x, be the zeros of the Laguerre polynomial LSf‘"> (x). There exist positive
constants C1,Cy such that, for any e >0,

1 ‘
(210) Pr (— max |)\Z — :in| > 6) < Clne—czsémm{e,l}.
5 1<i<n

Analogues of Corollary 2.6 for complex (8 =2) and quaternionic (5 =4) Wishart

matrices also follow directly from Theorem 2.5.
Let

1
2.11 ME=2)N ")\
(211) Peoy

be the first moment of the Laguerre ensemble. The distribution of M} has a partic-
ularly simple form.

FACT 1. MY is distributed as %Xgan, where X3 denotes the chi-square distribution
with k degrees of freedom.

Thus, the concentration of ML follows directly from the tail bound [9, 6] for the
chi-square distribution.

The distribution of the second moment of the Laguerre ensemble does not have
a simple form. Furthermore, it is complicated to obtain concentration bounds for the
distribution, so we omit this analysis here.

2.2. Jacobi ensemble. We draw p; < o <--+ <, from the Jacobi ensemble.

© 2024 Yichen Huang and Aram W. Harrow
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DEFINITION 2.7 (Jacobi ensemble). The probability density function of the (-
Jacobi ensemble with parameters a,b> 0 is

(2.12)

Frac(pspaseopn) o ]| uglﬁH )T+ w) T 1< <1
1§i<j§n

The Jacobi ensemble can be interpreted as the probability density function of
the eigenvalues of a random matrix ensemble. In the complex (8 = 2) case, let @y
and @, be uniformly random projectors in C2"T%*5=2 with ranks n and n +b — 1,
respectively. Then, H““ 1*'2”2, .. 1+2“" are the nonzero eigenvalues of Q1Q2Q1 [1].
Equivalently, they are the squared Slngular values of an n x (n+b—1) rectangular block
within a Haar-random unitary matrix of dimension 2n +a+ b — 2. A random matrix
interpretation for general § is given in [8], but it has less of a natural connection to
applications.

The Jacobi polynomial is defined as

n

T(n+p+1) C(n4+p+q+i+1) [y—1\"
% ()

2.13 PPA(y) =
(2.13) W) Fint+p+q+1) Zilln—)T(p+i+1) 2

where I' is the gamma function. It is well known that all zeros of the Jacobi polynomial

are in the interval (—1,1). Let y1 < y2 <--- <y, be the zeros of the Jacobi polynomial
Pga/ﬁq,zb/ﬁq(y).

2.2.1. Pointwise approximation. In this subsubsection, we are interested in
the limit @ + b — 0o but do not assume that min{a,b} — co.

THEOREM 2.8 (Theorem 2.1 in [3]). For any 0 <e<1/2,

€2 a+b (atb)e
. - < - S “lozra?
(2.14) Pr (11232( lpi — il > e) <4(2n-—1) (1 + T 2€2> e Teat2

This theorem can be restated as follows.
COROLLARY 2.9. There exist positive constants Cy,Co such that, for any 0 <e <
1/2,
(2.15) Pr (11£1a<x lps — il > e) < CyneC2(ath)e
1

As the main result of this subsubsection, Theorem 2.10 is an improvement of
Corollary 2.9.

THEOREM 2.10. There exist positive constants Cy,Cy such that, for any € >0,

(2.16) Pr <11£1a<x | — yi| > e) < CyneC2(atd)e,

Section 3 of [3] presents several applications of Theorem 2.8. Most of them can
be improved by using Theorem 2.10. We discuss one of them in detail.
Let 8 be a positive constant. Consider the limit n — oo with

(2.17) a=w(n), a=0().

Let 6(-) be the Dirac delta. The semicircle law with radius r is a probability distri-
bution on the interval [—r,r] with density function

(2.18) fso(p) ocv/r? — 2.

© 2024 Yichen Huang and Aram W. Harrow
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COROLLARY 2.11. The empirical distribution

(2.19) f(#):%z(s(N—\/%((a‘Fb)mﬁ-a—b))

of linearly transformed p; converges weakly to the semicircle law with radius 2 almost
surely.

For w(n) =a=o(n?/Inn), Corollary 2.11 was proved in Example 3.4 of [3] using
Theorem 2.8. Using Theorem 2.10 instead, the same proof becomes valid for any
a=w(n).

Corollary 2.11 is very similar to Theorem 2.1 in [11].

2.2.2. Moments. Theorem 2.10 implies the concentration of any smooth mul-
tivariate function of pi,pe,. .., y. The main result of this subsubsection is tighter
concentration bounds (than those implied by Theorem 2.10) for the first and second
moments of the Jacobi ensemble.

Let

(2.20) N:=a+b+p(n-1).

Suppose that §=©(1) is a positive constant and that a + b= Q(1). In this subsub-
section, we are interested in the limit N — oo. This means that a +b — oo or n — 0o
or both.

Let

n

1 1
J._ , J._ = L Iy2
(2.21) M =~ ;u“ M = — ;(m EM;)
be the first and shifted second moments of the Jacobi ensemble. Equation (B.7) of
[10] implies that
b—a Bn(2a + Bn)(2b+ fn)

J_ J_
(2.22) EM} = ——, EMj= N
Indeed, EMj can be calculated exactly in closed form. The expression is lengthy and
simplifies to the above using the Big-O notation.

+O(1/N).

THEOREM 2.12 (concentration of moments). For any € >0,

(2.23) Pr(|M{ —EM]|>¢) = O(efn(zvng))’
(2.24) Pr(|My —EM|>¢) = O(e*Q(Ns) min{Ns,n})'
Let

2.2 =— i =— —Y1)?
(2:25) Viim o3 i Yoim o3y V)
1=1 =1
be the mean and variance of the zeros of the Jacobi polynomial. From direct calcula-

tion (Appendix A), we find that

_b—a _B(n—l)(2a+,3(n—1))(2b+,3(n—1))
(2.26) Yi=—F, Y= NN B) :
Hence,
(2.27) EM] =Y, EMj=Y;+O(1/N).

© 2024 Yichen Huang and Aram W. Harrow
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COROLLARY 2.13. For any € >0,

(2.28) Pr(|M;{ — V1| > €) = O(e20ne?)y,
(2.29) Pr(| My —Ys|>¢) = O((i_Q(NE) min{Ne,n}).

3. Proofs. The proofs of Theorems 2.5 and 2.10 are similar to those of Theorems
2.2 and 2.8 in [2, 3], respectively, but the error analysis is improved and arguably
simpler.

The following lemma will be used multiple times.

LEMMA 3.1. Let m be an integer, and let p;,q; be numbers such that |p; — q;| <6
fori=1,2,... m. Then,

m m m—1m—k—1 m
(3.1) ri-1Ta<6>. I Il I lal
i=1 i=1 k=0 i=1 j=m+1—k
Proof.
m m m—1|m—k m m—k—1 m
Hpi—HqL < sz H q5 — i H qj
i=1 i=1 k=0 | =1 j=m+1-k i=1 j=m—k
m—1m—k—1 m
(3.2) <9 I
k=0 i=1 j=m+1—k O

Let C be a positive constant. For notational simplicity, we will reuse C' in that
its value may be different in different expressions or equations.

3.1. Laguerre ensemble: Proofs of Theorem 2.5 and Fact 1. For Theorem
2.5, it suffices to prove the following.

THEOREM 3.2. For any € >0,

1
(3.3) Pr (— max |\; — x;| > 46) < dpe—o(VIFe-1?
200 1<i<n

Proof of Theorem 3.2. Let Xon,Xoa—g, X2a—28, ) X2a—(n—1)8> Y5, Y28, - +;
Y(n—1)g be independent nonnegative random variables with X,f ~ Xi and Y12 ~ Xl2-
Note that

(3.4) E(X?) =k, Var(X}?)=2k.

Lemma A.1 in [2] gives the tail bound (§ here and in all probability bounds below is
positive)

(3.5) Pr(| X, — V| > 6) <2(1 + 6 /VE)re 5VE0"/2 < 96=0°/2,

Let L; ; be the element in the ith row and jth column of a real symmetric n x n
tridiagonal random matrix L. “Tridiagonal” means that L, ; =0 if |¢ — j| > 1. The
diagonal and subdiagonal matrix elements are, respectively,

(30 Lis= X3,
(3.7) Li,i:Xzza—(i—nﬁ"’Y(2n+1—i),37 1=2,3,...,m,
(3.8) Lit1i=Xoa i-1)sYn-i)p» 1=1,2,...,n—1L

© 2024 Yichen Huang and Aram W. Harrow



Downloaded 05/02/24 to 136.152.20.142 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

560 YICHEN HUANG AND ARAM W. HARROW

The joint eigenvalue distribution of L is given by [4] the Laguerre ensemble (Definition
2.1).

Let L’ be a real symmetric n X n tridiagonal deterministic matrix, whose matrix
elements are obtained by replacing X7,Y;? in (3.6) and (3.7) by their expectation

values and replacing X;Y; in (3.8) by \/E(XZ)E(Y}%); i.e.,

(3.9) L), =20,

(3.10) L), =20+ (n+2-2i)8, i=23,...,n,

(3.11) L, ;= \/(Qa —(—-1)B)(n—19)B, i=1,2,...,n—1.

The eigenvalues of L’ are the zeros of the Laguerre polynomial LZ*/#~™) (z/8) 2]
Let || - || denote the operator norm. Let Ly g =L'10=Ly41,, =L'p41,,:=0. Let

d=+v2a(y/1+¢e—1). Since

(3.12)

max |A; — i < ||L - L[| < max {|Lii—1 — Lj, |+ Lis = Li | + L1 — Ligq 40}

1<i<n

it suffices to show that

(313) |le — L;zl S 4&6, |Li+1,i — L;+1,i| S 20 Vi
under the assumptions that

(3.14) X, —VE| <6, |[Yi—=VI<§ Yk,

Indeed, (3.14) and Lemma 3.1 with m =2 imply that, for any k,l < 2q,

(3.15) X2 — k| <86(2VE +68) <6(2V2a 4 6),
(3.16) | XY — VEI| <6(VE+VI+68) <5(2V2a + 6) = 2ae. 0

Proof of Fact 1. Using the matrix model from [4] with entries given by (3.6), (3.7)
and (3.8), we find that

1 < 1 < 1 < 1
L
(3.17) MY~ = Lii =~ 3 Xga i+ D Yiari—p ™ X 0
=1 =1 =2

3.2. Jacobi ensemble. For k,l > 0, let Z ~ B(k,l) denote a beta-distributed
random variable on the interval [—1,1] with probability density function

(3.18) oeta(z) o< (1= 2)* 1 (14 2)"
so that
Ik
1 EZ—="—",
(3.19) K

Assume, without loss of generality, that k& >[. Theorem 8 in [12] gives the tail bound

R 252
7Cm1n{ k l‘s %252

(3.20) Pr(Z>EZ+8) <2 s Pr(Z <EZ —§)<2e”

© 2024 Yichen Huang and Aram W. Harrow
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Note that Pr(Z >EZ +§) =0 for § > 1 —EZ. In this case, the first inequality above
holds trivially. The tail bound (3.20) implies that

(3.21) Pr(|Z —EZ| > 6) < de~ Ok
(3.22) Pr(Z>EZ+25V1+EZ +62) <2e %" v5>o0.

Furthermore, for 0 <0 <1+ EZ,

(3.23) Pr(Z <EZ — 26V1+ EZ + §2) < 2¢~Ck°,
Equations (3.22) and (3.23) imply that

(3.24) Pr(VI+Z — VI+ BZ|>0) <4e Ok’
Similarly,

(3.25) Pr(|VI—Z — VI—EZ| > 6) < e~ %",

3.2.1. Pointwise approximation: Proof of Theorem 2.10. Let 75,73,
Zy, ..., %9, be independent random variables with distribution

{B(a—i—(2n—i)ﬂ/4,b+(2n—i)ﬁ/4), even 4,
(3.26) Zi~ , , .
Bla+b+(2n—1-14)8/4,(2n+1—14)B/4), odd i,
so that

1 b—a, eveni,
(3.27) EZi:a—l—b—i—(n—i/Z)Bx{5/2—a—b, odd 1.
Let Zl =—1.

Let J;; be the element in the ith row and jth column of a real symmetric n x n
tridiagonal random matrix J. The diagonal and subdiagonal matrix elements are,
respectively,

(3.28) Jii= (1= Zsi_1)Zoi — (1 + Z2i—1)Z2i—2,

(3.29) Ji+1,i=\/(1—Z2i—1)(1—222i)(1+z2i+1)~

The joint eigenvalue distribution of J/2 is given by [8] the Jacobi ensemble (Definition
2.7).

Let J’ be a real symmetric n x n tridiagonal deterministic matrix, whose matrix
elements are obtained by replacing every random variable Z; in (3.28) and (3.29) by
EZ;; ie.,

(3.30) J;Z =(1—-EZyi_1)EZy; — (1 +EZy;_1)EZg;_o,

(3.31) L1 =\ (1= EZoi 1) (1~ (BZ20)?) (L + EZip1).

The eigenvalues of J'/2 are the zeros of the Jacobi polynomial pae/p=12b/8 () [3).

Let Jio=J1 g =Jnt1n =351, :=0. Using (3.21), (3.24), and (3.25) and since

(3.32)

max [ —y;| <[ T=I'(/2 < max {|J; i1 =T, 1|+ [Tii = Tl + Tivra — Tia01/2,
1<i<n 1<i<n ’ ’ )

© 2024 Yichen Huang and Aram W. Harrow
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it suffices to show that

(334) ‘Ji+1,i_J2+1,i| §C€ Vi

under the assumptions that

(3.35) |Z —BZ;| <e Vi,
(3.36) W14+ Zi—V1+EZj|<e, |\W1—Zi—\/1-EZ]|<e Vi.

Equation (3.33) follows from (3.35) and Lemma 3.1 with m = 2. Equation (3.34)
follows from (3.36) and Lemma 3.1 with m =4.

3.2.2. Moments: Proof of Theorem 2.12. Since N = O(max{a + b,n}), it
suffices to prove that

(3.37) Pr(|M{ — EM{| > ) = O(e~ a0,
(3.38) Pr(|M;] — EM]|> ¢) = O(e" X)),
(3.39) Pr(|Mj — EMJ| > €) = O(e~?atblemin{Ne, n})’
(3.40) Pr(|MJ — EMJ| > ¢) = O(e "))

We follow the proof of Theorem 2.10 and use the same notation. We have proved
that

(3.41) Pr(|J;; — 35 > 6) = O(e= 2@ty .
(342) PI‘(|J¢+1,1‘ - J/i+1,i| > 5) = O(E_Q(a+b)62) Vi.

Let I, be the identity matrix of order n. A straightforward calculation using (3.28)
and (3.29) yields

1 J 1 n 1 2n
J _ _ L _ . .
(343) Ml = Etrg = % 2 Jzﬂ, = 2’[7, <Z2n ZZ’L—1Z1,> 9
1 1<
(3.44) M = ~tr((J/2~ Yi1,)?) = - =N 3ii/2-11)? +5- ZJm ;
=1
1 279, 1(1—22 )+ Z2 Z2
(3.45) =Y - 2ViM} + 5 + zn-1(1 42;:” 2% % 4 6
where
1 2n
(3.46) M= > (2Zia(2] ., - 1)Zi+ 27, Z7).
1=3

We will use the Chernoff bound multiple times.

LEmMA 3.3. Let Wy, W, ..., W, be independent real-valued random variables
such that

(3.47) EW; =0, Pr(Wi|>x):O<e_mln{T”2}> Vi

© 2024 Yichen Huang and Aram W. Harrow
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>6> -0 (eQ(n)min{i,rz‘fSQ}) '

Each W; is a subexponential random variable in that its probability distribution
satisfies (3.47). Thus, Lemma 3.3 is the Chernoff bound for subexponential random
variables. For r = 0%, W; becomes a sub-Gaussian random variable, and Lemma 3.3
reduces to the Chernoff bound for sub-Gaussian random variables.

Proof of Lemma 3.3. The tail bound (3.47) implies that, for any j >0,

for some r,s>0. Then,

1 n
4 P —
(3.48) r < w2

S

oo

B = [P >a)de = [ g Pe(W > 0)da

(3.49) z/ j.rj_lO(e_z/”—l—e_z /s° )dz =O0(r'T(j + 1)+ s’T'(j /2 + 1)).
0

Let t be such that 0 <t <1/(2 ) Since EW,; =0,

(3.50) EetWi:lJth]EE _1+ZO( w>

|
j=2 J:

Using (st)? < (st)7=1 + (st)?*! for odd 7,

Wi 12 (G+1/2) g0 T(+3/2)
Ec™ = 1—rt+z O( R (2j+1)!)

523

(3.51) =1+ 0(rt)? +0(1)Z < eolr )t

Jj=1

i

where ¢ > 0 is a constant. Recall the standard Chernoff argument:

n

(3.52) Pr ( Z Wi > 5) Pr(e! i1 Wi s ent?) < e el 2ia Wi < TTEe! i1,

i=1
If 6 < e(r? + s%)/r, we choose t = m so that

2
(3.53) EetWimth < ¢~ mertro?y,

If § > c(r? + s?)/r, we choose t =1/(2r) so that
c(r24s2
(354) EetWi—to <e : 4:2 & < 674%.
We complete the proof by combining these two cases. 1]

LEMMA 3.4. Let W1, Ws, ..., W, be independent random variables on the interval
[—1,1] such that

— minq (r+is 1,7(““9)3 2
(3.55) EW; =0, Pr(|Wi>z)O<e {irrion 22y }> Vi
for some r,s =Q(1). Then,

Iy A —0(n262)
(3.56) Pr (‘ngw >5> =0(e ).
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Proof. For i > (2t —r)/s, by replacing (3.47) with (3.55), (3.51) implies that

o(t2) | 0(r3t?)
(3.57) EetWi — ¢ Grim2 T (rtie)® |
Since |W;| <1, we trivially have
(3.58) Ee!Vi < el

The Chernoff argument (3.52) implies that

1 n n
(3.59)  Pr (- > Wi 5) <e " [ EeM
n
1=1 =1
o(t2) o(r2t2)

< o nito H et x H e (r+is)? + i3

1§i<¥ max{ th’”,l}gign

s

2 1242
—ntd+O(t*)+372, (TOJSS))Q"'(()T(J’M-:):;) _ eO(tz)—nt(;

<e

We complete the proof by choosing t = ¢'nd for a sufficiently small constant ¢’ >0. O

Proof of (3.37). Using (3.41) and Lemma 3.3 with r =07,

1
-~ Z (Jii—=Ti4)

even 1

1
) DICIVES (%)

odd i

(3.60) Pr (

> e) = O(e_Q(a+b)n€2)a

(3.61) Pr <

> e) = O(e*Q(‘”b)"eQ).

Then, (3.37) follows from (3.43) and the union bound. d
Proof of (3.38). The tail bound (3.21) implies that

(3.62) Pr(|Z; — EZ;| > §) = O(e~Hatbt(n=i/2)8)8%)

so that
(3.63)

—Q(atbt(n—i/2)B)d mind Letbtn=—i/2)8)25 4
Pr(|Z;-1Z; —EZ;_1-EZ;| > 8§) =0 (e (at+bt(n=i/2)8) { (atb)2 }) )

Using Lemma 3.4,

1
=Y (Zi1Zi —EBZ;_, -EZ;)
n

even ¢

(3.64) Pr (

> 6) = O(e_ﬂ("ZSQ)),

1 5
(365) Pr ( - Z (Zi—lzi - ]EZi_l . ]EZZ) > 6) = 0(6737("252))'
odd ¢
Then, (3.38) follows from (3.43) and the union bound. 0
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Proof of (3.39). Equations (3.27), (3.28), (3.29), (3.30), and (3.31) imply that

(3.66) [953/2 = Ya| = O(n/N), 3114l =O0(V/n/N) Vi,
(3.67) [E((Ji:/2 =¥1)%) = (V'ii/2=V1)*| = O <+1 z)) v,

9 Ty o O(n) ,
(3.68) i) —Jod =gy

Equations (3.41), (3.42), and (3.66) imply that
(3.69) Pr(|(Jis/2—Y1)2— (3s:/2— Y1) >48) =0 (e—9<a+b>5min{N25/nzvl}) Vi,

(3.70) Pr(|J22+l,i - J;%rlz| >6)=0 (e_ﬂ(“"’b)‘smin{N‘S/”’l}) Vi.

Using (3.67) and (3.68),

(3.71)
Pr (|(J1,L/2 _ Y1)2 _ E((J7L/2 _ }/1)2)| > 5) =0 (effl(aqtb)émin{N2§/n2)1}) Vi,

(3.72) Pr (|32, ~E(J2.,,)|>6) =0 (e—9<a+b>5min{”/”vl}) Vi,

Using Lemma 3.3,

(3.73)
Pr < % o (Fii/2=Y)? —E((Ji:/2 - V1)) | > 6) =0 (e_Q(aer)emin{Ne’n}) ;
even 1
(3.74)
Pr ( % > ((Fi/2=Y1)? —E((J5:/2-Y1)?)) | > e> =0 (e—9<a+b>6min{N6’n}) :
“odd i
(3.75) Pr < % Z (J12+1,i - E(‘]?+1,i)) > 6) =0 (679(a+b)6min{Ne’n}> )
(376) Pr ( % Z (J?+17i — ]E(']lz+1,z‘)) > 6> =0 (679(a+b)émin{N5,n}) )
odd i

Then, (3.39) follows from (3.44) and the union bound.
Proof of (3.40). The tail bound (3.62) implies that

Pr(|2Z;_2(Z \ —1)Z; + Z} 1 Z} —E(2Z;_5(Z7 | — 1) Z; + Z7 1 Z})| > 0)

(577 0 (eQ(a+b+(ni/2),@)6 min{ letbtnoiziapo 4 })

Recall the definition (3.46) of M’. It can be proved in the same way as (3.38) that
(3.78) Pr(|M' —EM'| > €) = O(e~ ")),
Equation (3.40) follows from (3.38), (3.45), and (3.78) and the union bound.

© 2024 Yichen Huang and Aram W. Harrow



Downloaded 05/02/24 to 136.152.20.142 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

566 YICHEN HUANG AND ARAM W. HARROW

Appendix A. Proof of (2.26). We write the Jacobi polynomial (2.13) as

T(p+q+2n+1)
Al PP
(A1) (v) = 2"plT(p+q+n+1) +chy

Let p=2a/8—1 and ¢=2b/5 — 1. From direct calculation, we find that

_2n(p+n) i n(a —b)
(AQ) Cp—1= » T q T m — N )
oo (1 20p+n) 2p+n)(p+n—1)
(A-3) e =nn 1)(2 pta+2n (p+q+2n)(p+q+2n—1)>
~ n(n—1)(2(a—b)*— N)
B 2N (2N — B) ’
Hence,
(A4) Yi=—cy-1/n=(b—a)/N,
(A5) =24 zyj = DS IRRGED Syt
j=1 J#k

(0= )YP 261 ajn~ Bln - 1)1~ YA)/(2N — B)

Appendix B. Moments of the Hermite ensemble. Fact 1 and Theorem
2.12 concern the moments of the Laguerre and Jacobi ensembles, respectively. For the
Hermite ensemble, it is simple to calculate the distributions of the first and second
moments exactly. The results are presented here for completeness.

DEFINITION B.1 (Hermite ensemble). The probability density function of the (-
Hermite ensemble is

n
2
(B.1) Srerm (V1,V2, ..., V) X H |Z/Z‘—Vj|BH€_V'5/2.
i=1

1<i<j<n

For 8 = 1,2,4, the Hermite ensemble gives the probability density function of
the eigenvalues of an n x n self-adjoint matrix whose entries are real, complex, or
quaternionic Gaussian random variables.

Let

n

(B.2) Zuz, M= Z( i—EMP)"’:%ZV?

i=1 i=1

be the first and second moments of the Hermite ensemble, where we used the fact
that EM{ =0.

Fact 2. M{ is distributed as N(O 1/n) where N(0,02) denotes the normal
distribution with mean 0 and variance o®. M is distributed as 7LX72L+ﬂn(n—1)/2‘

Proof. Let g1,92,---,9n,Xp, X28,..-, X(n—1)s be independent random variables
with
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The eigenvalues of the real symmetric n x n tridiagonal random matrix

(B4) H=

V291 8
X5 V292 Xog
Xop V293 Xup

AXr(n—2)[j7 \/§gn—1 X(n—l)ﬁ
Xn-1s  V29n

are distributed according to fuerm [4] so that

g 1 1<
(B.5) M~ —trH = Zgl N(0,1/n),
i=1
1
(BG) M ~ —tr H2 Z 2 + — Z X Xn_,'_ﬁn(n 1)/2: .
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