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One-Shot Quantum State Redistribution and
Quantum Markov Chains

Anurag Anshu™, Shima Bab Hadiashar™, Rahul Jain™, Ashwin Nayak"™, and Dave Touchette

Abstract— We revisit the task of quantum state redistribution
in the one-shot setting, and design a protocol for this task with
communication cost in terms of a measure of distance from quan-
tum Markov chains. More precisely, the distance is defined in
terms of quantum max-relative entropy and quantum hypothesis
testing entropy. Our result is the first to operationally connect
quantum state redistribution and quantum Markov chains, and
can be interpreted as an operational interpretation for a possible
one-shot analogue of quantum conditional mutual information.
The communication cost of our protocol is lower than all
previously known ones and asymptotically achieves the well-
known rate of quantum conditional mutual information. Thus,
our work takes a step towards an optimal characterization of
the resources required for one-shot quantum state redistribution,
an important open problem in quantum Shannon theory.

Index Terms— One-shot protocol, quantum state redistribu-
tion, quantum Markov chain, quantum max-relative entropy,
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quantum hypothesis testing relative entropy, convex-split Lemma,
position-based decoding, embezzlement.

I. INTRODUCTION
A. Background and Result

HE connection between conditional mutual information

and Markov chains has led to a rich body of results
in classical computer science and information theory. It is
well known that for any tripartite distribution P®B¢ over
registers RBC, the conditional mutual information

I(R:C|B)p = D(PREC||QFPY)

min

QRBC € MCr-_B-c
where MCr_p_c¢ is the set of Markov distributions @, i.e.,
those that satisfy I(R : C'|B)g = 0, and D(:||) is the
relative entropy function. In fact, one can choose a distri-
bution () achieving the minimum above with Q%8 = PRB
and QB¢ = PBC. In the quantum case, the above identity
fails drastically. For an example presented in ref. [2] (see also
ref. [3, Section VI]), the right-hand side is a constant, whereas
the left-hand side approaches zero as the system size increases.
Given this, it is natural to ask if there is an extension of the
classical identity to the quantum case. This has been shown to
be true in a sense that for any tripartite quantum state 1) #5€,
it holds that

. — : RBC | .RBC
(R:C|B)y= . min  (DEe" )

— D(yP°e"9)) , @1

where QMCRr_p_( is the set of quantum states o satisfying
(R : C|B), = 0, B = BB [4]. (For completeness,
we provide a proof in Section II-B, Lemma I1.9.) The dif-
ference between the quantum and the classical expressions
can now be understood as follows. For the classical case,
the closest Markov chain () to a distribution P (in relative
entropy) satisfies the aforementioned relations Q#F = PRB
and QB¢ = PBY. Thus, the second relative entropy term in
Eq. (I.1) vanishes. In the quantum case, due to monogamy of
entanglement we cannot in general ensure that 02¢ = ¢ B¢,
Thus, the quantum relative entropy distance to quantum
Markov chains can be bounded away from the quantum
conditional mutual information.

In this work, we prove a one-shot analogue of Eq. (I.1). This
is achieved in an operational manner, by showing that a one-
shot analogue of the right-hand side in Eq. (I.1) is the achiev-
able communication cost of the quantum state redistribution
of |LZJ>RABC, a purification of ¢®*5C. In the task of quantum
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¢RABC %é |w> RABC

Fig. 1. An illustration of quantum state redistribution.

state redistribution, the pure quantum state |1/1>RABC is known

to two parties, Alice and Bob, and is shared between Alice
(who has registers AC), Bob (who has B), and a reference
party, Ref (who has R). Additionally, Alice and Bob may share
an arbitrary pure entangled state. The goal is to transmit the
content of register C' to Bob using a communication protocol
involving only Alice and Bob, in such a way that all correla-
tions, including those with Ref, are approximately preserved.
(See Figure 1 for an illustration of state redistribution.) Given
a quantum state ¢*B¢ we identify a natural subset of Markov
extensions of ¢*5, which we denote by M E;fi p_c and define
formally at the end of Section II-B, in Eq. I1.6. We establish the
following result in terms of the max-relative entropy (Dy,ax)
and e-hypothesis testing relative entropy (Djf;) functions.
Theorem L1: For any ¢ € (0,1/100) and pure quantum
state |z/)>RABC, the quantum communication cost of redis-
tributing the register C' from Alice (who initially holds AC)
to Bob (who initially holds B) with error 10+/¢ is at most

1 . . RBC|| .RBC
= min min [Dimax (¢’ ||J )
2 yeBe(y REC) oRBCeMES /40"

D () 7%)] + o<1og%>

The difference between minimizing over the set ME;; 1 4550
versus QMCr_p_( is best understood from the definitions in
Section II-A; we give K brlief explanation of the difference
and why the set ME;K 4550 is considered in Section I-B.
We believe the above result can be stated in terms of a
minimization over all of QMCgr_p_c. In the above bound,
there is an additional minimization over the set B€(y B¢,
which is an e-neighbourhood of 1) (see Section II-A for a
formal definition). Considering € perturbations of the state
in question may result in significantly lower communication,
at the cost of increasing the error in the output state by at
most e. This also allows us to achieve the optimal rate in the
asymptotic i.i.d. setting. The information-theoretic quantities
appearing in the above bound arise from two subroutines on
which the underlying protocol is based — Coherent Rejection
Sampling (building on the Convex-Split Lemma) and Position-
Based Decoding. Smooth max-relative entropy and smooth
hypothesis testing relative entropy, respectively, are precisely
the quantities which appear in the analysis of these subrou-
tines.

The protocol that achieves the bound in Theorem I.1 is
reversible. So, in order to redistribute C' from Alice to Bob,
Alice and Bob can instead run the time-reversal of the protocol
in which register C' is initially with Bob and he wants to send
it to Alice. This implies the following corollary.
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Corollary 1.2: For any pure quantum state \z/z)RABC, the

quantum communication cost of redistributing the register C'
from Alice (who initially holds AC") to Bob (who initially
holds B) with error 10+/€ is at most the minimum of

1 : B B
5 ' eRYRBC inf 2 / [Dmax (w/R CHJR C)
P’ EBE(h )JRBceME;f‘gfc

- D (w'BCHUBC)] + O(log %)
and

inf inf [Dinax (74| o 74€)

1
2 o/ eBe(pRAC) URACGMEif‘:E;

- Dg (z//ACHoAC)] + O(log %)
Connections between quantum Markov chains and special
cases of quantum state redistribution have been made, possibly
implicitly, in several previous works. An example is in the
compression of mixed states; see, e.g., [5, Section VIILE].
However, as far as we know, Theorem 1.1 is the first result that
operationally connects the cost of quantum state redistribution
in its most general form to a measure of distance from quantum
Markov chains (even in the asymptotic i.i.d. setting). The
best previously known achievable one-shot bound for the

communication cost of state redistribution, namely,
1 (Dmax (w/RBC||1/’/RB ® O.C)

— inf inf
2 5C W’ EBE(RBC)
— D (/50" @ oc)) + 1og612 )
when the state |1/J>RABC is redistributed with error O(e) was
due to Anshu, Jain, and Warsi [6]. Note that 0¢ = ¢’C is a
nearly optimal solution for Eq. (I.2) as discussed in ref. [7],
and the product state P'RB @ ¢ is a Markov state in the
set ME;2 1 %‘fc. So, the bound in Theorem 1.1 is smaller than
that in Eq. (I.2) in the sense that the minimization is over
a larger set. In the special case where *2¢ is a quantum
Markov chain, our protocol has near-zero communication. This
feature is not present in other protocols and their commu-
nication may be as large as (1/2)log|C|. Moreover, in the
case that register A, or B, or both A and B are trivial, our
bound reduces to %Ifnax(R : C'). The three cases correspond
to state splitting, state merging, and compression without side-
information, respectively, for which this bound is known to be
the optimal communication cost in the one-shot case.

B. Techniques

The protocol we design is most easily understood by
considering a folklore protocol for redistributing quantum
Markov states. In the case that B¢ is a Markov state,
its purification |¢>RABC can be transformed through local
isometry operators V; : A — ARJ'AC and V5, : B —
BT JBY into the following:

(Vi@ Vo) [) ™45 = 3 Vo) )™ @ i)

@ ) PO ws)
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Fig. 2. An illustration of the zero-cost protocol for redistributing Markov

states. Left: Registers RATBE.JJ’ A® CBC are in the state given in Eq. (.3)
and registers F and E’ contain Alice and Bob’s shares of an embezzling
state, respectively. Middle: Using embezzling registers, Alice and Bob have
jointly “embezzled out” registers A C' B via local unitary operations. Le.,
they reverse the process of generating the state in registers A CBC via
embezzlement. Right: Using embezzling registers, conditioned on J and J’,
Alice and Bob embezzle ij>ACCB ‘ such that registers C' and BC are with
Bob and register AC is with Alice. This step also only involves local unitary
operations without any communication.

The existence of isometries V; and V5 is a consequence of
the special structure of quantum Markov states proved by
Hayden et al. [8]. Note that after the above transformation,
conditioned on registers J and .J/, systems RA®B® are
decoupled from systems A®CBC. So using the embezzling
technique due to van Dam and Hayden [9], conditioned on J
and J', Alice and Bob can first embezzle-out systems A“ C B¢
and then embezzle-in the same systems but now with system C
on Bob’s side such that at the end the global state is close to
the state in Eq. (I.3). This protocol incurs no communication;
see Fig. 2 for an illustration.

The protocol we design (for redistributing an arbitrary state)
is a more sophisticated version of the above protocol. The key
technique underlying this protocol is a reduction procedure
using embezzling quantum states, that allows us to use a
protocol due to Anshuet al. [6] as a subroutine. Let 0/*5¢ be a
quantum Markov extension of ¢/, The reduction procedure
is a method which decouples C' from RB when applied
to of*BC while preserving ¥*P when applied to B¢,
Preserving ¢)f* ensures that the reduction procedure can be
implemented via local operations by Alice and Bob, without
the need for any communication. Once we have a state o/*5¢
such that o8 = BB and o8¢ = BB @ ¢, with the
max-relative entropy and smooth hypothesis-testing relative
entropy expressions as in Eq. (I.2) close to those with the
original states, state redistribution with the AJW protocol
gives us the claimed result. Note that the reduction procedure,
and in general our protocol, works for any quantum Markov
extension o8¢ of %5, However, in order to prove the
closeness of hypothesis-testing entropy, we need to addition-
ally assume that o'*2¢ is in ME;ﬁiC. (See Eq. (II1.17) in
Claim II1.2 for azforrqal statement of this closeness property.)
Essentially, ME;[ gﬁc

. . C
chains for which o*f c

restricts o/*2¢ to quantum Markov

is close to the projection of 1/)BCC

on the support of afcc in the decomposition of o#B¢ as in
Eq. (13).

To elaborate further, consider an examgle
: d AR ~B,.
is the GHZ state \/igzjzl DD 1)

Markov RBC

where B¢
c

In this

case, the closest extension o of T8
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is 3 0 G @ )17 @ 10)IC. A naive way to
decouple register C' from registers RB in o®8B¢ is to
coherently erase register C conditioned on register B.
However, the same operation applied to ¢)*5¢ changes 475,
To overcome this problem, first, we coherently “measure’(’
register B by adding a maximally entangled state |\IJ>TT
and making another “copy” of | j)B in T, The copying
is done by applying a distinct Heisenberg-Weyl operator
to the state W7, for each j € [d]. This operation measures
register B in ¢*BC¢ keeps o/*BC unchanged, and leaves U7
in tensor product with registers RB in both 1) and o. Then,
conditioned on register B, we can coherently erase register C'
in of*BY; this operation applied to ¢ does not change the
state 1)™5. Subsection III-A contains the complete details.
For a general state 1/*5C with quantum Markov exten-
sion of*BC the isometry operator V5 can be used to trans-

RBC : N\ S RBF
form o to the classical-quantum state >, p(j)o;"" ®

o c .. .
i)jl” ® oP ¢, However, we encounter an additional issue

. . o c
here: it may not be possible to unitarily transform all of o2~ ¢

J
. co . .
to a fixed state since the spectrum of O’? ¢ is not necessarily

the same for all j € [d]. So we first “flatten” O']-BCC for each j
through a unitary procedure. This task can be achieved via
the technique of coherent flattening via embezzlement due to
Anshu and Jain [10]. After flattening, the dimension of the
support of systems B¢C no longer depends on j and so the
states in registers B C' can all be rotated to a flat state over
a fixed subspace. Hence, BCC gets decoupled from RBT.J
in the state o. Finally, to keep ¢*? unchanged, we regenerate
the system B¢ via a standard embezzling technique similar to
the protocol in Fig. 2.

C. Organization of the Paper

The rest of this paper is organized as follows. In Section II,
we present the notation and background necessary for devel-
oping the main result, namely Theorem I.1. In section II-A,
we review basic concepts and results from quantum informa-
tion theory. In Section II-B, we define quantum Markov states
and present some of their properties. We also identify a natural
subset of quantum Markov states related to a given state; this
subset plays a central role in the main result.

In Section II-C, we define the task of quantum state redis-
tribution formally, and present two key primitives, namely
Coherent Rejection Sampling (implicit in the Convex-Split
Lemma) and Position-Based Decoding. We then describe how
these are used by Anshu et al. [6] to design a one-shot protocol
for quantum state redistribution.

Next we present some of the other components of the new
protocol we develop. In Section II-D, we introduce a technique
for decoupling classical-quantum states via embezzlement [9]
and a flattening technique designed in ref. [10].

We develop the new protocol for one-shot quantum state
redistribution in Section III. We first explain the intuition
behind the protocol in detail by considering the example
of the d-dimensional GHZ state in Section III-A. We then
describe the steps of the protocol for arbitrary states and
analyze it in Section III-B. We show how the one-shot protocol
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leads to the optimal communication rate for quantum state
redistribution in the asymptotic i.i.d. case in Section III-C.

We conclude with a summary of the results and an outlook
in Section IV.

Throughout Sections II-B-II-D, we provide proofs of some
lemmas and theorems which are implicit in the literature. Most
of these proofs are not essential for understanding the main
result of this paper. The reader may safely skip the proofs
if they so wish. The reader familiar with the prior work
mentioned above may also start with Section III directly, and
refer to Section II as needed.

II. PRELIMINARIES
A. Mathematical Notation and Background

For a thorough introduction to basics of quantum informa-
tion and Shannon theory, we refer the reader to the books by
Watrous [11] and Wilde [12]. In this section, we briefly review
the notation and some results that we use in this article.

For the sake of brevity, we denote the set {1,2,...,k}
by [k]. We denote physical quantum systems (“registers™) with
capital letters, like A, B and C'. The state space corresponding
to a register is a finite-dimensional Hilbert space. We denote
(finite dimensional) Hilbert spaces by capital script letters
like H and K, and the Hilbert space corresponding to a
register A by H4. We denote the dimension of the space H*
by |A|. We sometimes refer to the space corresponding to the
register A by the name of the register.

We use the Dirac notation, i.e., “ket” and “bra”, for unit
vectors and their adjoints, respectively. We denote the set
of all linear operators on Hilbert space H by L(H), the set
of all positive semi-definite operators by Pos(H), the set of
all unitary operators by U(?), and the set of all quantum
states (or “density operators”) over H by D(H). The identity
operator on space H or register A, is denoted by 17 or 14,
respectively. Similarly, we use superscripts to indicate the
registers on which an operator acts. We say a positive semi-
definite operator M € Pos(H) is a measurement operator
if M < 1™, where < denotes Lowner order for Hermitian
operators.

Let T be a register with |T'| = d > 1. For a € [d], we define
the operator P, € U(HT) as

d
Pyi=> [toa)t| ,
t=1

where the addition ‘@’ is cyclic, ie.,
t®a=t+a—d[(t+a—1)/d]. This is the a-th power
of the generalized Pauli operator (also called a Heisenberg-
Weyl operator).

We denote quantum states by lowercase Greek letters
like p,o. We use the notation p* to indicate that register A
is in quantum state p. We denote the partial trace operation
over register A by Trs. When it is clear from the context,
we also use pP to denote the partial trace of a state pAZ
over B. We say p 7 is an extension of o if Trg(pAB) = o4.
A purification of a quantum state p is an extension of p
with rank one. For the Hilbert space C*® for some set S,
we refer to the basis {|z) : € S} as the canonical basis for
the space. We say the register X is classical in a quantum
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state pX B if pXB is block-diagonal in the canonical basis
of X, ie., pXB =3 p(x)|z)z|* ® pP for some probability
distribution p on X. For a non-trivial register B, we say p~ 2
is a classical-quantum state if X is classical in pXZ. We say
a unitary operator U4B ¢ U(HA ® HPB) is read-only on
register A if it is block-diagonal in the canonical basis of A,
ie, UAB = la)a|* @ UP where each UP is a unitary
operator.

The trace norm (Schatten 1 norm) of an operator M € L(H)
is the sum of its singular values and we denote it by || M||,.
The trace distance between p and o is induced by trace norm.
The following theorem is a well-known property of trace norm
(see, e.g., [11, Theorem 3.4, page 128]).

Theorem II.1 (Holevo-Helstrom [13], [14]): For any pair
of quantum states p,o € D(H),

lp = oll, = 2 max { |Tx(Ilp) — Tr(Ilo)| :
IT1 <1, € Pos(H)} .
Lemma I1.2 (Gentle Measurement [15], [16]): Let € €
[0,1], p € D(H) and IT € Pos(H) be a measurement operator
such that Tr(IIp) > 1 — €. Then,
IIpIl
——— —p|| <2Ve.
. Tr(Ilp) 1 : .
The fidelity between two sub-normalized states p and o is
defined as

F(p,0) =Tr\/Vp o/ + (1~ T(p)) (1 - Tx(0)) -

Fidelity can be used to define a useful metric called the purified
distance [17], [18], [19], [20], [21] between quantum states:

P(p,0) =+/1—F(p,0)? .

Purified distance and trace distance are related to each other
as follows (see, e.g., [11, Theorem 3.33, page 161]):

Theorem I1.3 (Fuchs and van de Graaf Inequality [22]):
For any pair of quantum states p, o € D(H),

1
1-v1-F(p,0)* < Sllp=0ol, <Plp,0) .

For a quantum state p € D(H) and € € [0, 1], we define
B (p) i= {7 € D(H) : P(p,7) <}

as the ball of quantum states that are within purified distance ¢
of p. Note that in some works, the states in the set B*(p) are
allowed to be sub-normalized. Here, we require the states in
the ball to have trace equal to one.

Theorem I1.4 (Uhlmann [23]): Consider quantum states
pt,04 € D(HA). Let [©)*7,10)*F € D(HA ® HB) be
arbitrary purifications of p” and o4, respectively. Then, there
exists some unitary operator V2 € U(H?) such that

AB AB
P19, (1@ vE) [9)*") = P(p" %) .
Let p € D(H) be a quantum state over the Hilbert space H.
The von Neumann entropy of p is defined as

S(p) == —Tr(plogp)

This coincides with Shannon entropy for a classical state. The
relative entropy of two quantum states p, o € D(H) is defined
as

D(pllo) :=Tr (p (log p — log 7))

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 03,2024 at 00:18:08 UTC from IEEE Xplore. Restrictions apply.
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when supp(p) C supp(o), and is oo otherwise. The max-
relative entropy [24] of p with respect to o is defined as

Dimax(pllo) = min{A: p < QAU} )

when supp(p) C supp(o), and is co otherwise. The fol-
lowing proposition bounds purified distance in terms of
max-relative entropy. It is a special case of the mono-
tonicity of minimal quantum «-Rényi divergence in o (see,
e.g., [25, Corollary 4.2, page 56]) obtained by considering o =
1/2 and a — oo.

Proposition IL5 ( [26]): Let H be a Hilbert space, and
let p,o € D(H) be quantum states over H. It holds that

P(p,0) < /1 — 2~ Dmax(pllo) .
The above property also implies the Pinsker inequality. For € €

[0, 1], the e-smooth max-relative entropy [24] of p with respect
to o is defined as

Diax(pllo) = min Drax(p[|o) -

p'€B<(p)

For € € [0,1], the e-hypothesis testing relative entropy [27],
[28], [29] of p with respect to o is defined as

D (pllo) =  sup

1

OjHj]l,Tr(Hp)Zl—elog <TI'(HU)>

Smooth max-relative entropy and hypothesis testing relative
entropy both converge to relative entropy in the asymptotic
and i.i.d. setting [30], [31], [32]. The following proposition
gives upper and lower bounds for the convergence of these
quantities for finite n; these bounds are tight up to the second
order additive term.

Theorem I1.6 ([33], [34]): Let ¢ € (0,1) and n
be an integer. Consider quantum states p,o €
D(H). Define V(p|lo) = Tr(p(logp — logo)?) —

(D(pl|o))? and ®(z) =
that

Diax (07" 10%") = nD(pllo) — V/nV(pllo) 2~ (e?)

I —e"pt;:/” dz. Tt holds

+ O(logn) — O(log(1 —¢)) , (IL1)
and
Dix (5" [0°") = nD(pllo) + v/ V(pllo) ©7(6)
+O(logn) . 1L2)

Note that Eq. (IL.1) has an additional O(log(1 — €)) term
as compared to the original statement in ref. [33] because we
only allow the normalized states in B¢(p). We also need the
following property due to Anshu et al. [35, Theorem 2]. The
original statement involves a minimization over all o on both
sides of the inequality, but the proof works for any fixed op.

Theorem I1.7 ([35], Theorem 2): Let ¢, € (0,1) such
that 0 < 2¢ + ¢ < 1. Consider quantum states oZ € D(HP)

and pAZ € D(HAB). We have
inf Dyax (2804 @ 0B

pt=p"

8 + 62

62

< D (0P 10" @ 0P) +10g (IL3)
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Suppose that pAZ € D(HA @ HP) is the joint state of
registers A and B, then the mutual information of A and B
is denoted by

I(A: B), =D(p*"| p* @ p")

When the state is clear from the context, the subscript p may be
omitted. Let pf?B¢ € D(HFBC) be a tripartite quantum state.
The conditional mutual information of R and C given B is
defined as

I(R:C|B)=1(RB:C)—1(B:C) .

For the state p*B € D(HA ® HP), the max-information
register B has about register A is defined as

min

Toax(4: B)y = mip

Dunax (p2Z| p* ® oF)
For € € [0,1], the e-smooth max-information register B has
about register A in the state pA® € D(H” ® HP) is defined
as

I} x(A:B),:= min

Imax A:B), .
p'€BE(pAB) ( Jo

B. Quantum Markov States

A tripartite quantum state o8¢ € D(HEPY) is called
a quantum Markov state of the form R— B — C if there
exists a quantum operation A : L(HZ) — L(HZY) such
that (1@ A)(c%#P) = oY This is equivalent to the condition
that I(R : C|B), = 0, and is the quantum analogue of
the notion of Markov chains for classical registers. Classical
registers Y X M form a Markov chain in this order (denoted
as Y—X—M) if registers Y and M are independent given X.
Hayden, Josza, Petz, and Winter [8] showed that an analogous
property holds for quantum Markov states.

Theorem I1.8 ([8]): A state o8¢ € D(HE @ HP @ HY)
is a quantum Markov state of the form R—B—C' if and only
if there is a decomposition of the space H? into a direct sum
of tensor products as

HE = PHE onb |

J

(IL4)

such that

(IL5)

R C
RBC __ . RB; BSC
o = Prl)o) T ©ay
J

RBE R BCcC
Whereo’j I eD(HE@HE), 0.7

7 ¢ e (M e )
and p is a probability distribution over the direct summands.

For a state ¢*BC, we say that 0*BC is a Markov exten-
sion of YFB if oR”B = ¢RB and ofBC is a Markov
state. We denote the set of all Markov extensions of 7B
by QMC}ngfc. Note that QMCdP’szfC is non-empty, as it
contains the state oB¢ = N8B @ ¢, The following
lemma relates the quantum conditional mutual information
to quantum Markov extensions. The proof of this lemma is
implicit in ref. [4, Lemma 1], but we provide a proof here for
completeness.
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Lemma 11.9 (Implicit in [4], Lemma 1): For any tripartite
quantum state *P¢, and any quantum Markov exten-
sion o*BC € QMCY,_, ., it holds that

I(R - C | B)w — D(¢RBC||URBC) _ D(’(/JBCHUBC) .

Proof: For sake of clarity, in this proof, we suppress
tensor products with the identity in expressions involving sums
or products of quantum states over different sequences of
registers. For example, we write w™Y + 7Y% to represent the
sum wXY ® 17 41X ® 774, and wXY 7Y to represent the
product (wX¥ ®@17) (1¥ @7Y#). All the expressions involving
entropy and mutual information are with respect to the state ).

Consider any quantum Markov chain o%PC satisfying
BB = yRB_ From Eq. (IL5), we have

R C
log o #BC = @(log (p(j)afBj > + log O'ij C) ,

J

and similarly,

R (e}
log o B¢ = @<1og <p(j)afj > Jrlogafj C) .

J

Thus, we can evaluate
D(wRBCHO'RBC) . D(il)BC”O'BC)
_ Tr(szBC IOg Q/JRBC) . Tr(/lpRBC log O_RBC)
— Tr(@[)BC log ¢BC) + Tr(wBC log UBC)
= S(BC) — S(RBC)

Y (wRBC log (p(j)aff’f ))
J

_.E:TT<¢RBCk%UffC>
J

+ ZTr(szClog(p(j)af?))
J

+ ZTr(z/)BC logafjcc> .

J

C c
Since Tr( B¢ log af" “) = Tr(¢BClog 0;3" C), the
above equation can be simplified to obtain
D(,(/}RBC”O_RBC) _ D(’(/}BC”O'BC)
=S(BC) —S(RBC)

-ym (wRBC log (p(j)af‘BﬂR ) )
ST (wBC log (p(j)of ; ) )

J
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|
=

. RBT BY
P RBC IOgea(p(J)Uj ®o; )
J

C

. _BF BS
wBClog@<p(.7)0j T ®o;’ )
J
where the last equality above follows by noting that

RBC BY BC BY
Tr| ¢ logo;” | =Tr(¢"" logo;” | .

wRB — O'RB

D(¢RBC||URBC) . D(¢BC||UBC)
= §(BC) — S(RBC) — Tr (¢ P log o *7)
+ TI'(’I/)BCIOgO'B)
=S(BC) — S(RBC) — Tr(¢p"*F log y *P)
+ Tr(¢” logy?)
= S(BC) — S(RBC) + S(RB) — S(B)
=I(R:C|B) .

+ T

—

Since , we get that

This completes the proof. ]

For a Markov extension o € QMC}é_B_C, let II7
be the orthogonal projection operator onto the j-th subspace
of the register B given by the decomposition corresponding to
the Markov state o as described above. In other words, II7 is
the projection onto the Hilbert space HE @HBT in Eq. (I.4).
For a quantum state 1»*5¢ we define

MEE%B_C = { = QMC%_B_C ‘ for all 7,

O_jB]‘CC c Be (TrBf [(H? ® ]].)’lﬂBC(H? ® ]l)])} . (H6)

Informally, this is the subset of Markov extensions ¢ of v
such that the restrictions of ¢ and v to the j-th subspace
in the decomposition of o agree well on the registers BJ-CC’.
Again, the state 0728 = )8 © )¢ belongs to ME;foc
for every € > 0, so the set is non-empty.

C. Quantum State Redistribution

Consider a pure state [¢))**P shared between Ref (R),
Alice (AC) and Bob (B). In an e-error quantum state
redistribution é)rotocol, Alice and Bob share an entan-
gled state |0)*77, where register E4 is with Alice and
register Fp with Bob. Alice applies an encoding opera-
tion &£ :L(HACFAa) — L(HA?), and sends the register Q
to Bob. Then, Bob applies a decoding operation D
L(H@BEe) — L(HBY). The output of the protocol is the
state pT*ABC with the property that P(ypBABC @RABCY) < ¢
The communication cost of the protocol is log |Q)|.

To derive the bound in Theorem I.1, we use a protocol
due to Anshu et al. [6], which we call the AJW protocol in
the sequel. The AJW protocol is based on the Convex-Split
Lemma introduced by Anshu et al. [36], and the technique of
Position-Based Decoding introduced by Anshuet al. [37].

Let n be an integer, pA? € D(HA?) and o® € D(HP).
Consider the quantum state 7451B» derived by adding
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n — 1 independent copies of ¢ in tensor product with pA5
and swapping the (i — 1)-th copy of o with p? for uniformly
random ¢ € [n — 1]. The convex-split lemma states that the
state 74AB1Bn is almost indistinguishable from the product
state p @ (oB)®", provided that n is large enough.
Lemma I1.10 (Convex-Split Lemma [36]):

Let pA% € D(HAP) and of € D(HP) be quantum states
with Dpax (028 p? @ 0B) = k for some finite number .

Let § > 0 and n = %
on n + 1 registers A, By, Bs, ...

. Define the following states
, By :

n
rAB1B2Bn 1 E pBigePrg...@qBin
n

=1
QoBitt®...@ob |
and
FABIB2Bu _ pA g 0Bl g g gBn
where for all i € [n], we have |B;| = |B|, p*B: = pA5,

and 0B = oB. Then, we have

P (TABlmBn7 7~_AB1--~Bn) < \/(_5 )

We may think of the Convex-Split Lemma as providing
a sufficient condition under which the correlations between
registers A and B in p can be “hidden” by taking a certain
convex combination of quantum states. A dual problem is to
find conditions sufficient for identifying the location of desired
correlations in a convex combination. This task is achievable
via the position-based decoding technique, which in turn uses
quantum hypothesis testing.

Lemma I1.11 (Position-Based Decoding [37]): Let € > 0,
and pAP € D(HAP) and 0B € D(HP) be quantum states
such that supp(p?) C supp(c?). Let

n = [EQD;I@ABupA@aB)W ,

and for every j € [n],

TABL B pAPigoPr ... @ ol

J
RobPitig...Qob |

There exists a measurement (A; : j € [n + 1]) on regis-
ters AB1Bs - -- By, i.e., operators A; > 0 with

n+1

D Ai=1,
j=1
such that for all j € [n],

Tr[AjTJABl”'B”] >1—06¢ .

The above statement is slightly different from the one in
ref. [37] because of a minor difference in defining quantum
hypothesis testing relative entropy.

Let [1))™*5Y be a quantum state shared between Alice,
Bob, and Ref where registers AC are with Alice, register B is
with Bob and register R is with Ref, and ¢/ftB¢ € B¢(¢FBC),
The AJW protocol works as follows.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 9, SEPTEMBER 2023

a) The AJW protocol::
1) Alice and Bob initially [27 /€2
copies of a purification |0>LC of ¢¢ where 8 =

share m =

Djax (’(/)/RBC leRB ® O‘C) . Their  global state
iS |'(/J>RABC ® |0_>L101 ® . ® ‘0>mem’
where |L;| = |L| and |C;| = |C| for all i € [m)].

The registers ACLyLsy--- L, are with Alice and the
registers BC1Cs - - - C,,, are with Bob.
2) Let b be the smallest integer such that

1
logb > Df; (/5 [¢'F © 0¢) —log 5 .
€

By performing a suitable isometry on her registers, Alice
transforms the global state into a state close to the state

1 _
=S IG =1/ i =1 (mod b)) 0)"
m
j=1
® |w>RABCj ® ‘0_>L101 Q--® |0_>Lj710j71
® |G>L.7‘+1Cj+1 R® |U>L"’Cm

This is possible due to the Uhlmann theorem, the
Convex-Split Lemma, and the choice of m.

3) Alice sends register .J; to Bob with communication cost
at most (logm — logb)/2 using superdense coding.

4) Then, for each j, € [b], Bob swaps registers Cj,
and Cj,4p5,, conditioned on register J; being in
state |71). At this point, registers RBC} ...C} are in
a state close to

b
1
j2=1

Qo ... 0% .

5) Then, Bob uses position-based decoding to determine
the index j, for which register C;, is correlated with
registers RB. This is possible by the choice of b.

6) Since the state over registers RBC}, is close to ¢f*BC,
and it is in tensor product with the state over regis-
ters Cy - - Cj,—1Cj, 41 - - - Cy, the register purifying reg-
isters RBCY, is with Alice. She transforms the purifying
registers to the register A such that the final state over
registers RABC), is close to ¢RABC,

The following theorem states the communication cost and
the error in the final state of the above protocol.

Theorem I1.12 ([6]): Let ¢ € (0,1), and |1)™P¢ be a
pure quantum state shared by Ref (R), Alice (AC) and
Bob (B). There is a quantum state redistribution protocol
for |1)"*P which outputs a state pFABC ¢ B9<(yRABC),
Moreover, the number of qubits sent by Alice to Bob in the
protocol is bounded from above by

— inf inf

IRBC 'RB C
2 ,C W' €BE (YREC) (Dmax(d) H 1/} ® 0o )

—- DY (59| y'"E ® OC)) + log 12 . (IL7)

For a complete proof of this result, including the correctness

and error analysis of the protocol, see the proof of Theorem 1
in ref. [6].
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D. Decoupling Classical-Quantum States

Embezzlement refers to a process introduced by van Dam
and Hayden [9] in which any bipartite quantum state, possibly
entangled, can be approximately produced from a bipartite cat-
alyst using only local unitary operations. The bipartite catalyst
is called the embezzling quantum state. For an integer n and
registers D and D’ with |D| = |D’| > n, the embezzling state
is defined as

16)PP" =

, (IL8)

. Van Dam and Hayden [9] showed
that an arbitrary bipartite state can be embezzled from | >
with arbitrary accuracy when n is chosen to be correspond-
ingly large.
AB AB . .
Theorem I1.13 ([9]): Let |¢) € HA” be a bipartite
state with Schmidt rank m and |€)”"" be the state defined

in Eq. (IL8). For 6 € (0,1], there exists local isome-
tries Vi : HP — HPA and Vy : HP — HP'B such that

P(Vi®V2)[§), [§) @) <6 L9)

provided that n > m?2/%’.
For a fixed a € [n], a close variant of the above embezzling
state is defined as

|§a:n>DDl =

%I

where S(n) = >

zlz

(11.10)

mzw' ’

where S(a,n) == >_"" T . Using these states, Lemma II.14
below shows how we may embezzle the uniform distribution
with closeness guaranteed in terms of max-relative entropy.
The proof of Eq. (II.12) in this lemma is due to Anshu and
Jain [10, Claim 1], and Eq. (II.13) follows from a similar
argument. For completeness, we provide a proof for the
lemma.

Lemma II.14 (Extension of [10], Claim 1): Let § €
(0,%), and a,bn € Z be positive integers such
that @ > b > 2 and n > '/ Let D and E be
registers with |D| > n and |E| > b. Let W, be a unitary
operation that acts as

Woli)” [0)" = [1i/b))" i (mod b)) (LID)
for every i € {0,...|D|—1} and I, € Pos(HP¥) be the pro-

jection operator onto the support of Wy (€2, ® [0)0[#) WJ .
It holds that

Wy (€07, @ [0)01") W) = (1+158) &0, @y, (L12)
and
I, (68, ® pf ), 2 2 W, (€2, @ jo)ol®) W . aL13)

b—1
where pf =3 30— |eXel.
Proof: Let W}, be a unitary operator satisfying Eq. (IL.11).
We have

Wy (&l ® |0><0|E)

- anz Wb

i)il” ® [0Y0[) W,

5795
1 &K1, D
= S 2 7 LirelLivel]
’ i=1
® )i (mod b))i (mod b)|E
1 [#] min{b—1,n—i'b} 1
_ N/ 1| D
S(a,n)z Z bi/—|—(i|2><z‘
V:L%j e=0
® le)e|” (IL.14)
1 7] b—1 1
< N FAVEAVY) E
= St 2 2 K1 @leke
i'=| 2] e=0
S(l,n) p B
11.15
S’(a,n) 1n®p“b ( )
In ref. [38], it is shown that ’S(a,n)—log%] < 4.
Since n > al/%, we have
S(1,n) logn +4 1446
<1+156 . (I.16
S(a,n) ~ logn —loga—4 — 1—-56 + ( )
Now, Eq. II.15) and Eq. (II.16) together imply

Eq. (IL12). It remains to prove Eq. (II.13). Let II, €
Pos(HPE ) be the projection operator onto the support
of W, (€2, @ |0)0[7) W/. Eq. (IL.14) implies that

[#] min{b—1,n—i'b}

>

ﬁ
b

)P @ leXel®

Thus,

L ] min{b—1,n—i'b}

S(1,n) Z bi’ [ Xi ‘D
® |€>(€|E
(%] min{b—1,n—i'b}
1 2
< <IN/ D
— S(1,n) Z bi’ +e X7
i=[g] 0
® le)el®
2 S(a,n) D E t
S(l, n b ( a:n ® |0><O| ) b

(by Eq. (II.12))
<2 W, (€2, @ 0)0|P) W

where the first inequality holds since bi’ + e < 2bi’ for i’ >
land 0 < e < b — 1, and the second inequality holds
since S(a,n) < S(1,n). [ |

As a corollary of the above lemma, Anshu and Jain [10]
show that the embezzling state ¢ can be used almost
catalytically to flatten any quantum state using unitary opera-
tions. The proof of Eq. (I.17) in the corollary is provided in
ref. [10, Eq. (6)], and Eq. (IL.18) follows from Eq. (II.13). For
completeness, we provide a proof below.

Corollary 11.15 (Extension of [10], Eq. (6)):
Let p€D(HY) be a quantum state with
decomposition p =" _q(c)|vcfve|9. Let § € (0,:)
and v € (0,1) such that €l is an integer and
all eigenvalues ¢(c) are integer multiples of ch\

spectral
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Let a == % max, g(c), n = a'/%, and D and E be quantum

registers with |D| > n and |E| = a. Let W € U(HCFP) be
the unitary operator defined as

W= Z Jve)(vel© @ W)
and IT € Pos(H“FP) be the projection operator defined as

H Z|'UC Uc| ®Hb(c) s

where W) and II,.) are the operators defined in

Lemma II.14 with b(c) := 2N (but with the tensor factors
corresponding to D and F swapped). Then, we have

W (o @ [0)0]F @ £2,) W = (14150). p“P e, (L17)
and
I(p“" @ &0, 22 W (p° @ |0X0|” @ &7,) W,
(I1.18)
b(e)— .
= 2 Do lvekvel© @ TG e)el” i an
extension of p© with flat spectrum.

Proof: Let W be the unitary operator defined in the
statement of the corollary. We have

W (o @ oX0|" @ ¢8,) W
=2 4) |vc<vc|c®wb<c)<|o><0|E®san> o

= (1 +156) Y ale)|ve)ve

c

b(c)—1
g E D
N ene ® an
o 2 el s

= (1+150) p“F @&,

where pCF

where the inequality follows from Lemma II.14. So, it remains
to prove Eq. (IL.18). Let II be the projection operator defined
in the statement of the corollary. We have

I(p°F @el, )
- % Z b(c)|ve)ve|© @ My (MbE(C) ® €£,L)Hb(c)
<2 Z

:2W(

&) [ve)vel© ® Wie) (J0X0|F @ €2 )W

® 0)0]® ® &2, )W

where the inequality is a consequence of Lemma II.14. [ ]
We use the above flattening procedure to decouple the
quantum register in a classical-quantum state.
Corollary 11.16: Consider a classical-quantum state

Zp

where p is a probability distribution and p§ € D(H).
Let § € (0,7) and v € (0,1) such that a = %
integer and suppose that the eigenvalues of all the states pjc are
integer multiples of 7 . Let n := a'/?, D and E be quantum

registers with |D| > n and |E| = a. Then, there exists a

G @ e,

is an

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 9, SEPTEMBER 2023

unitary operator U € U(H/CEP), read-only on register .J,

and a projection operator Il e Pos(H’¢FP) such that
U (07 @ 0§0|F ©€2,) Ut < (1+150) o’ @ v°F @ €D,

(IL19)
(p’ ©1°F @ ¢l )T
<2U (p’“ @ |0)0|F @ P YUt | (11.20)
and
T [fiU (o€ @ )0l w2,) U] =1, @12
where vCF = 1 57297 1 |s)(s|CF,

Proof: Notice that the integers a and n and registers D
and E satisfy the properties required in Corollary II.15. For
each j, let WU) be the unitary operator given by Corol-
lary I1.15 for ﬂattenmg p§ = 3. q;(c) |vj.eNvj.c| Hence,
we can flatten all p simultaneously using the unitary operator

Uy =D liKile W
J
and we get
UL (p7C @ |o><0|E 2¢l,) Ul

(1+156) Zp

Z |vj.eX U](|C ® ZQJ(C)|C\/V| ><6|E :
an extension of ,0 w1th flat (i.e., uniform) spectrum. For
each j, the support of p] has dimension ) g;(c )l%, which
equals a independent of j. Hence, there exists a unitary
operator V() mapping p§” to v“¥. Let Uy € U(H'“¥) be
the unitary operator Uy := Y_ . [5)(j| @ V). Then, the unitary
operator U = UsU; satisfies Eq. (IL.19).

Now, for each j, let IIU) Pos(HCEP) be the projection
operator given by Corollary II.15. Define

L= LN T
J
and II := U,IT'UJ. We have

m(p’ v edl,)n
= UL,II'US (p? @ vCF @ D) UTI'U

Zp

G @ pfF @&,

where p§¥ =

= UL ) 1117 @ p§F @ €b, |rUs

) 1717 @19 (o7 @ ¢l YW | Uf

Zp
<2U2<Zp 1917
j N
W9 (p§ @ o)0|F @ €2, )W) )UJ

—2U2U1<Zp i)il” © p§ @ |0)0]F ® éan)UfUz

=2U (p”° @ |0)0” & ¢2,,) UT
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where the II.15,

Eq. (L.18).
Moreover, by the construction in Lemma II.14 and Corol-
lary II.15, for each j, the operator II\7) is the projection oper-

ator onto the support of W (p¢ @ |0)0[F @£, )W(J)
Hence, we have

Tr {ﬁU (07 & |0)0|” ® £2,) U*}

=T [0, (7 @ |0)0I” @ ¢2,) Uf ]

=" p() T [IDWO (6§ @ 0)0[ 2 £2,) W]
J

inequality follows from Corollary

=1.

This completes the proof. [ ]

Remark: In the above corollary, we assume that the eigen-
values of p7-C are rational. We can approximate an arbitrary
state with one that has only rational eigenvalues with arbitrary
accuracy, since the set of rational numbers is dense in the set of
reals. Consequently, the error with respect to the max-relative
entropy can also be made arbitrarily close to zero.

ITI. THE NEW PROTOCOL

In this section, we present and analyse the new protocol for
one-shot state redistribution. This proves the main result in
this article, as stated more Eremsely in the following theorem.

Theorem IIL1: Let |v) ABC pe a pure quantum state
shared between a referee (R), Alice (AC) and Bob (B). For
every €1,e2 € (0,1) satisfying €; + 9e2 < 1, there exists
an entanglement-assisted one-way protocol %perated by Alice
and Bob which starts in the state |¢> , and outputs a
state pFABC ¢ Beat9ez (yRABC) wwhere registers A, BC,
and R are held by Alice, Bob and Ref, respectively. The
communication cost of this protocol is bounded from above
by

1
- inf inf [Dmax (w’RBCH URBC)
2 w/ele(wRBC) eME 2/4 !

R—B—-C
~ Do (1//BCH aBC)} +log = Z+L.
We get Theorem 1.1 by choosing €3 = 61
We describe a protocol for redistributing |¢>RABC with

error 9¢5 and cost at most

[Dmax(,l!}RBCHJRBC) _ D;{% (wBCHUBC)}

I11.2)
Then, Theorem II1.1 follows since for
every |¢/) € B (jy)®*PY), Alice and Bob can assume
that the global state is |¢’ )RABC, and run the protocol
for |¢’). This protocol redistributes the state |¢)) with
additional error at most €.

Let 08¢ be a quantum Markov extension of %5,
If o BBC = pRB @4 C | Alice and Bob can redistribute ¢)ZABC
with error 9e3 > 0 and communication cost bounded by
Eq. (I11.2) using the ATW protocol. However, in general, o/t5¢
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is not necessarily a product state. In that case, we design a
reduction procedure which allows us to use the AJW proto-
col as a subroutine. This procedure decouples C' from RB
when applied to o®B¢, while preserving 1)®5 when applied
to ¢)*BC This procedure is similar to the conditional erasure
task in Refs. [39], [40] except that, here, the decoupling and
negligible disturbance properties are desired for two possibly
different quantum states.

In the rest of this section, we first explain a simplified ver-
sion of the reduction procedure and the Igrotocol for the special
case that register A is trivial and |¢) is the GHZ state.
This illustrates the key components underlying the reduction.
Then, in Section III-B, we provide the complete version of
the reduction procedure and the Cprotocol for redistributing an
arbitrary quantum state [¢)"

A. The GHZ State Example

To elaborate on the reduction procedure, we start with the
example where /B¢ is the GHZ state

1 d.R.B,C
=2 7DD
\/E;J PN

and the Markov extension o*B¢ of T8 is

1
=D liil® @ ial” @ il -
j=1
The reduction broadly follows the description we gave in
Section I-B, and is a two-step process. We expand on these
steps below.

(1) Coherent measurement of register B. By “coher-
ent measurement”’, we mean the application of the isome-
try given by a Steinspring representation of the measure-
ment. For the GHZ state, this corresponds “copying” the
content of register B into a fresh register, in superposi-
tion. The state of the fresh register is chosen so as to
facilitate the redistribution protocol. Let 7' be a register
with || =d, and [)77 = 2=, [tt) be the maximally
entangled state over registers 7' and 7. Define the unitary
operator Uy € U(HPT) as Uy =3, [5)(j|” @ P}, where P;
is the Heisenberg-Weyl operator as defined in Section II-A.
Let \/{QRBCTT( and 7{*BCT be the states obtained by apply-
ing U, to [¢) P @ |0)TT RBC & ¢T | respectively.
We have

!
and o

RBCTT’
k1)

d
dZ| o) lten)"In"
t=1

Since the set of Heisenberg-Weyl operators {P,} is closed
under multiplication, and each P, is traceless unless a = d,
the states (P, ®1) |¥) are mutually orthogonal. So the unitary
operator U; coherently measures register B in ¢/*%¢ while it
acts trivially on o. Moreover, the reduced state on 7' remains
maximally mixed. So

1 N Ny N
PP =3 il e il @ i)l . and
J
]]_T
FRBCT _ GRBO g -
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(2) Decoupling C from RB in 0. Let Us € U(HPC) be a
unitary operator that is read-only on B and maps |j )C to |0>C
if system B is in the state |j). Let |rp)"PCTT RBCT

and 7,
be the states after applying Us to |/<;1>RBCTT and r{tBCT,
respectively. We have

d
rBerT 1 AR | B |nC . /
1) FECTT = EZlJ) NP0 @ > et 1",
J =1

and
RBCT RB c 1"
BT = 8 @ 00| @ — .
In particular, since register B is classical in x5 and Uy is
read-only on B, we get kZP = 1B,

The reduction procedure uses the above two steps to (effec-
tively) add the maximally mixed state W? and apply the
unitary operator UsU;. Note that running this procedure on
both v and o does not change their max-relative entropy and
the hypothesis testing entropy. We have

D (1B [0 FEC) — D2 (7€ 0 BC)

(KQRBCT”TQRBCT) _ D& (F%BCT”TZBCT)

" (IIL.3)

= Dmax

where 7{BCT = BB ®|0)(0|¢ ® %. Hence, if Alice and Bob
locally map |¢)) to |k2), then they can run the AJW protocol to
transfer registers CT' to Bob and finally retrieve |1)) by apply-
ing Uy 'U; . A hitch here is that the reduction procedure can-
not be implemented directly (i.e., as described above) for the
local transformation of |¢)) to |«2). This is because register C
is initially with Alice and register B is with Bob. However,
since ¢ *F = /{53, there is an isometry V : HAC _, HACTT'
which maps [¢)74P¢ 10 |/€2>RABCTT,, as guaranteed by
the Uhlmann theorem. Alice can thus implement the local
transformation from [¢) to |ka).

In summary, the simplified version of the protocol for the

GHZ state works as follows:

1) Alice applies the isometry V' on her registers AC, and
transforms the global state to the state |@)RABCTT’
such that registers (ACTT"), (B), and (R) are with
Alice, Bob and Ref, respectively.

2) Choosing 07 = [0)(0| @ 1, Alice and Bob run the
AJW protocol on |k2) to transfer registers C'T" to Bob
with error at most 9ey. Let REABCTT be the joint state
of the registers RABCTT at the end of this step.

3) Bob applies U1_1U2_1 on the registers BC'T, which are
now in his possession.

4) The output of the protocol is the final state in regis-
ters RABC.

By Theorem II.12 and Eq. (IIL.3), the cost of the above
protocol is at most

e 1
Dmax (1/)RBCHO'RBC) _ DHz (7:[}30”0'30) + log 6_2 ,
2
and P(kRABCTT RRABCTT'Y < 9¢, | Let ¢"ABC be the
final state of the registers RABC. We have

P(wRABC’ ¢RABC) < P(d)RABC ® \IITT'7 ¢RABCTT')
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_ P<K§ABCTT  RRABCTT )
< 962 )

where the first inequality is obtained by considering extensions
of states in RABC to those in RABCTT' and the mono-
tonicity of purified distance under quantum operations, and
the second step follows by the invariance of purified distance
under unitary operations (in this case UxUs).

B. The Protocol for Arbitrary States

Now consider an arbitrary state and a quantum

4
Markov extension ofBC ¢ MEERQK i}lﬁc. As explained in

Section II-B, there exists a decomposition of register B
R C
as HP = @, H"" @ HP7 such that

C

. RBE B¢
OB =™ = Pp()e; T @ e, (ITL4)
J

and

. RBE BSC
P =PpG)o; * @a;’ (111.5)
J

C
where o’fj ¢ e pBan (TrBff (I ® 1)y P (10, @ ]l))>,
RBF RBF ‘

o, =1; 7 andIl; is the projection operator over the j-th
subspace in the direct sum decomposition of 7. This special
structure of o8¢ makes it possible to design the reduction
procedure. As in the case of the GHZ state, the reduction pro-
cedure consists of the two main steps of coherent measurement
and decoupling. These are preceded by two pre-processing
steps. The pre-processing steps unitarily transform v and o
to the states x and 7 which are easier to handle. In step (i),
we apply a local isometry transforming c*2¢ to a classical-
quantum state.

(i) Viewing 0*BC as a classical-quantum state. Let B7
and BY be two quantum registers with |Bf| := max; |Bf*
and |BY| := max; |BY|. As a consequence of Eq. (IIL5),
HB — HB"BY which

c

there exists an isometry U
takes o*PC to the state

- pRR 1RC . R /. c
sRBRIBCC ::ZP(J)UJRB ®|j><]\J®gf ¢ . (IIL6)
J

Let |1/11)RABRJBCC be the state obtained by applying the

same operation on |7,ZJ>RABC, ie.,

W}DRABR.]BCC — U W}>RABC

=S @ wRAETECC i)
i

for some sub-normalized, rank 1 states ;. It is
sufficient to design a protocol for redistributing regis-
. RABRJBCC s .
ter C' in |¢)y) when initially registers (AC)
are held by Alice, (BfJB®) are held by Bob and R
is held by Ref. Notice that ¢fB"JBC oRBJBC
since T8 = ¢FB So w{%BRJBC is a quantum Markov state
of the form RBf—J—BC. So, Alice and Bob can use the
folklore protocol for redistributing quantum Markov states
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explained in Fig. 2 and transfer B¢ to Alice. This is done
in step (ii) of pre-processing.

(ii) Transferring B¢ from Bob to Alice without commu-
nication. Note that wRB JBY g purified by systems (AC)
which are with Alice. So by applying a suitable 1sometry, Alice
can prepare the following purification of ¢ftB" /B

- >RBRJJ’BCGH

\wl
= Z\/ Vo) @ 15,5)" @ o)1, @)
where  registers J'GH are held by  Alice.
Let 6; € (0,1), ny == |BCH|2/6‘, and Dy, D} be registers
with |Dq| = |D}| = my. Conditioned on register J, Alice

and Bob use the embezzling state |£>DlDi (as defined in
Eq. (IL.8)) and the reverse of the van Dam-Hayden protocol [9]

to embezzle out |aj> °H in superposition. They thus obtain

a state 1/11 such that

~RBRGJJ' D, D) RBT G JJ" | ;\D1 D}
P(l LV )" ) |§>u)
<4 .

Finally, cgnditioned on register .J, Alice locally gener-
ates |0 >B " in superposition with registers BC H on her side,
and applies an Uhlmann unitary operator to her registers in
order to prepare the purification |z/11>RAB JB°C . Let Ui a
and Uj; g denote the overall unitary operators applied by
Alice and Bob, respectively, in this step. After applying Uj; 4
and Uy p, the global state is |12) satisfying

ABRJBYCD, D} R 1RpC D!
P (g 2" ET PP sy [RABTTECC g |e)g PP )
Sél 9

where registers ABC (' are with Alice, registers B*.J are with
Bob and register R is with Ref.

Thus, the problem reduces, up to a purified distance d1,
to the case where the global state is |11 ) and the register B¢ is
with Alice. Henceforth, we assume that this is indeed the case.
We account for the inaccuracy introduced by this assumption
in the error analysis of the protocol. This completes the second
step and the pre-processing stage of the protocol.

Due to the pre-processing steps, we may suppose

. RABRJBCC .
that the global state is |¢1) such that regis-
ters (ABCC), (BRJ), and R are held by Alice, Bob, and
Ref, respectively. It then remains for Alice to send BCC to
Bob. To achieve this, we follow a two-step unitary procedure
(as in the case of the GHZ state) which decouples regis-
ters RBR.J and BCC in GEB"7BC while keeping the state
of registers RB®.J unchanged. This operation transforms &
to a product state and allows us to use the AJW protocol
as a subroutine to achieve the redistribution with the desired
communication cost and accuracy.

To decouple RBEJ from BCC in &, we would like
to use embezzlement and the unitary operator given by
Corollary 11.16. This unitary operator acts on registers .J B¢ C
and is read-only on register J. However, since register J is

5799

not necessarily classical in ¥FB"/B“C  the operation may
disturb the marginal state ¢»7*%"7. So as in the example of the
GHZ state, we resolve this issue by first coherently measuring
register J using an additional max1mally entangled state. This
operation transforms ¥RB"7BC (0 a classical- |-quantum state,
classical in register .J, and keeps 7B 7B“C intact. The
following two steps contain the detailed construction of these
unitary procedures.

(1) Coherent measurement of register J. Let F
be a register with |[F| = |J|, and let d = |F|.
Let P; € U(H") be a Heisenberg-Weyl operator as defined in
Section II-A. Let U; € U(H?¥) be a unitary operator defined
as Uy =), 17){j|” ® Pf". Define

(e} ’ C ’
|K1>RABRJB CFF' . _ U, <|¢1>RABRJB le} ® |\II>FF) ’
and

1F
rRB®IBECF _ (5RBRJBC ® W) ul @)
here [U)FF .= LS4 | ff) is th imally entangled
where = 5251 is the maximally entangle
state over registers I’ and F”. For the same reasons as in the
GHZ example, the unitary operator U acts trivially on & while
it measures register .J in /78" /BC coherently. In particular,

F
~rBRjBCCc - 1
— GRBTJBOC o

TRBRJBCCF
! |F|

(II1.10)
and

R C R

(2) Decoupling registers B“C' from RB.J in T By
Eqgs. (IIL6) and (II1.10), register J is classical in rtB"/BC
and conditioned on .J, registers RB are decoupled
from BYC. Hence, we can decouple registers B¢C from
registers RB®.J in 7, using embezzling states and applying
the unitary operator given in Corollary I1.16. (See also the
remark after the proof of the corollary.)

For v € (0,1) chosen as in Corollary IL16,
let ag == |BYC|/v2, na = a;/‘sé, and Do, D) and F, be
quantum registers with |Dy| = |D}| > ng and |Es| = as.

Let
Z|r |B CEs ]

According to Corgllary II.16, there exists a unitary opera-

tor Uy € U(H7B CF2D2) read-only on register .J, and a
. . i C

projection operator IT € Pos(H/Z ¢F2Dz) such that

R C
Uz (277570 @ |0)0|P @ €22, ) U
< log(1 + 1562) 7RB" @ B¢ CR2gel
H(’TlRB @b CE2®51n2)ﬁ

<20 (5 EC 0 001 @ €02, ) U, (IL13)

BCCEZ —

(IIL12)

and
~ R C
Tr [HUQ( RBRIBCC @ |0)0|2 @ £P2 nz)UJ] —1.
(1L 14)
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Define
7_2RBRJBCCE'2D2

— U, (TlRBRJBCC © [0X0]Z2 @ 5522:”2) U;r 7
and

RABRJBCCE;DyDLFF’
|K2) :
RABRJBCCFF’ E D, D},
= U (Jr) @10)™ @ [€asins) "% )

Since Us is read-only on register J and J is classical in
R C . R
the state k18" /B"C the unitary operator Us keeps x*8" 7/
intact. So, we have
R R R
kP = R =P (IIL.15)
Moreover, by Eq. (III.12), 79 is close to a product state in
max-relative entropy and therefore, we can claim the following
statement.
Claim II1.2: For the state ko defined above, we have

F
RBRJBCCE,D,F||  RBEJ BECE D 1
Dmax <’€2 2 H Ko X vy ’® §1:T21,2 & =

|F|
< Dypax (¥7BC|| 7BC) + 56, (II.16)
and
o (s 0m 0| s 070 0 s 0 A0
4
> D (¢BC) o) —1 . IL17)

We prove the claim at the end of this section.

To redistribute registers BCC' in the state 1; with the
desired cost, Claim III.2 suggests that it would be sufficient
for parties to transform their joint state i1 to ko through
the unitary operators UsUp, then use the AJW protocol
to redistribute registers BCCE,D-F, and finally, transform
back ko to the state iy by applying U; 1U2_ ', However,
in order to apply UxU;, one needs to have access to all
the registers JBCC, but initially registers BCC are with
Alice and register J is with Bob. This problem can be
resolved using the Uhlmann theorem, as in the GHZ example.
Recall that /{?BRJ = wf%BRJ as mentioned in Eq. (IIL.15).
Therefore, by the Uhlmann Theorem, there exists an isome-
try V : HABTC _ HABECE2D2DYFF g0 that

v |w1>RABRJBCC _ |K2>RABRJBCCE2D2D;FF’ . (IIL18)
Notice that V only acts on registers AB“C which are initially
with Alice and so she can apply the isometry V' locally to
transform 11 to k.

Now we have all the ingredients for the new state redistri-
bution protocol. We describe the steps systematically below.
Let

ﬂ — Dmax(wRBC” O_RBC) +552 ,

2B
and m = [TW, where e € (0,1). Let S and T be
€3

quantum registers such that |S| = |T| = |BYCE;D,F)|.
Let |)°” be a purification of Z/QBCCE2 ® &2 ® % such

l:ing
T BCCE D 1F
that no= V2 2 ® 51:7212 ® m

The protocol. In order to redistribute |1}
Bob implement the following steps.

)

2)

3)

4)

5)

>RABC, Alice and

Initially, Alice and Bob start in the state |1/)>RABC, and

share the quantum state |¢)”17" and m copies of the
state )7 in registers (S;T; : i € [m]). Hence, the
initial joint quantum state of Ref, Alice, and Bob is

[4)%5C 0 | @ Iy T

i=1

such that register R is held by
ters (ACD;Sy...S,) are held by
registers (BD1T} ...T,,) are held by Bob.
Alice and Bob pre-process their joint state via local
transformations, without any communication. L.e., Bob
applies the isometry Uy pU; on his registers, and Alice
applies the isometry Uj; 4 on her registers. This trans-
forms their joint state on RABC D] D; into a quantum
state 1[12R ABRIBECD Dy which has purified distance
at most §; from Q/J{MBRJBCC ® £P1D1 where the
state ¢ is as given by Eq. (IIL.7).

At this point, the registers (AB“CD}) are with Alice,
registers (B®JD;) are with Bob, and register (R) is
with Ref. Registers (.5;7;) are not touched in this step,
and are shared as before. Registers D} D; are not used
after this point, and may be discarded.

Alice and Bob perform the first part of reduction
involving the coherent measurement and the decoupling
of a classical-quantum state. lL.e., Alice applies the
isometry V' to the registers ABCC. This transforms
their joint state on registers RAB®.JBCC into a quan-

tum state w which has purified distance at most d;
RABRJBCCE,D,DLFF’

Ref, regis-
Alice, and

from |k2)
The registers (ABCCE;D;DLFF') are with Alice,
registers (B?.J) are with Bob, and register (R) is with
Ref. Registers (.5;7;) are not touched in this step, and
are shared as before.

Alice and Bob run the AJW protocol to transfer the reg-
isters BCC'Es Do F to Bob, as described in Section II-C.
Le., the two parties redistribute their registers assuming
that their joint state is |/<V2>RABRJBC CE2D2DLFE iy
the registers held as above. For this, they use the m
copies of the state |n>ST that were shared in regis-
ters (5,75 : 4 € [m]).

For the reader’s convenience we include in Table I the
correspondence between the states and registers involved
in the AJW protocol as presented in Section II-C and
those involved in the use of the protocol here.

At the end of the AJW protocol, the parties end up
with a state HEABTIBCCED2DLFF guch that regis-
ter (R) is held with Ref, (AD,F’) are held with Alice
and (B"JBYCFEyD,F) are held with Bob.

Bob completes the second part of reduction involving the
coherent measurement and the decoupling of a classical-
quantum state and reverses the first pre-processing step.
Le., he applies the operator (U;U;U;)~! on regis-
ters BRJBCCEyD,F.
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TABLE 1

THE CORRESPONDENCE BETWEEN THE STATES AND REGISTERS IN THE AJW PROTOCOL AS DESCRIBED IN SECTION II-C AND THOSE
INVOLVED IN THE USE OF THE AJW PROTOCOL HERE

Section II-C Here
R ;gC
State to be redistributed (“input”) |op) RABC ko) TABTIB CE2D2 Dy FF!
Registers of input initially with Ref R R
Registers of input initially with Alice A ABCCE2DyDLFF!
Registers of input initially with Bob B BEJ
Registers to be transferred to Bob C BYCEsDyF
R ;pC
Smoothed state /BBC n?B JBTCE2 Do F
F
State used in application of Convex-Split o€ 2B CE g 51 ing ® ‘]17‘
Initial shared entangled state M, o)yki¢ R, )it
i=1 i=117
Registers of entangled state initially with Alice Ly Ly S1---Sm
Registers of entangled state initially with Bob CrL---Cm Ty Tm

6) The output of the protocol is now the state in regis-
ters RABC.

Define x as in Eq. (III.19), shown at the bottom of this
page. According to Theorem II.12, the communication cost of
this protocol is % X + log 6% which is at most

2

]. 54
5 {Dmax(wRBCH O_RBC) _ DHZ/4 (wBC’” JBC’)]

1
+5d +log—5 +1,
€2

by Claim III.2.
Correctness of the protocol. Let ¢ be the final joint state
of parties in the above protocol. We have

P (¢RABC’ 1pRABCV)

< P<¢RABCE2D2D;FF: YRABC g 00|72 fafr?f ® \I/FF)

HRABRJBCCEQMD;FF’)

~ R (e} ’ ’
<p (wRAB JBCCE:D:DLFF |

<P <@RABRJBCCE2D2D’2FF’ wRABRJBCCEgDQD;FF’)
TP (WRABRJBCCEQDZD;FF’ HRABRJBCCEzDzDéFF/>
) Ry
< 9¢y + 47 .

Here, the first and second inequalities follow from monotonic-
ity of purified distance under quantum operations. In the first,
we consider the extensions of the two states to a larger set of
registers. In the second inequality, we consider the states by
reversing the isometries in step 5 of the protocol. The third

inequality is the Triangle Inequality for purified distance. The
last inequality holds since @ € B%¢2(w) by Theorem II.12,
and w € B% (ky).

By the properties of the embezzlement protocol due to van
Dam and Hayden [9] (see Eqgs. (I1.8) and (I1.9)) and the proto-
col given by Corollary II.16, we can make d; and 2 arbitrarily
small by choosing suitable entangled states shared between
Alice and Bob. (Note that this comes at the cost of shared
entanglement with arbitrarily large local dimension.) Hence,
the statement of the theorem follows.

It only remains to prove Claim IIL.2.

Proof: Claim IIl.2 Consider the states and operators
defined in the description precedmg the protocol Since regis-
ter .J is classical in both /@RB JBYC and B RIBCC and U, is
read-only on .J, we have that kEB"7/ = rRB"J — rRB"J
Therefore, we get

]lF
|F I>
RE"IBCCE:D: g HF)
" ||

R
+ Dmax TQRB J Qv B CE ® 51 n2>

< Dinax (VP90 B) + log(1 + 1563)

RBTJBCCEy,D-F||  RBRJ CCE
Dmax<ﬁ2 e H ® 2 2®€1 nz

R C
SDmaX(mf‘B JB CEQDQFH

( RBRJBCCE,D,

where the last inequality is a consequence of Eq. (III.12)

R C R C
and the fact that P 7B CE2D2F" gnq pRBTJBZCED2E

are obtained by the applying the same unitary transformation

D62< BRJIBC CEngFH

Authorized licensed use limited to:

RBEJBCCE;DyF RBTJ B CE
Dmax(’fg 272 H Ro (22 2®§1n2

]]_F

IFI>
1F>
||

KB @uB R gl @ (IIL.19)
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o ¢RBC RBC

and o , respectively. The above equation implies
Eq. (IIL.16) since log,(1 + 1522) < 5z for all = > 0.
1F
“TF |>

In the rest of the proof, we show that
¥ )
—1.
|F|

(II1.20)

Then, Eq. (III.17) follows since ﬁ?BRJBCCEZDJ and
RBEJBCCE;DyF
T2

R C
D 2 B JBYCE>;DyF g CCE,
< H 2 & 51 ng

BRJBC CE3D,

474 R le]
ZDE/ KQB JBCYCEyDyF 7} ®

are obtained by the applying the same

unitary transformation to 1/#8¢ and o8 respectively. Let

H 2

4 R e} R c
N o= D62/4(HB JB C’EQDQFH 7_23 JB CEQDQF) 7
and IT' be the POVM operator achieving A, i.e.,

4

Tr [H/KBR!]BCCEZDQF} > 1 _ 6_2
2 Z

4

Tr|:H/< BEJ BCCE2D2 ® f;|>:| — 27}\ .

Recall that k8”7 = B"7 = +B"J 8o, Eq. (II.13) implies
that

H(QB

and

J ® V2 CCE, ®£1 n2) ﬁ <9 TQBRJBCCEQDQ )
(IIL.21)

4
. 1
Since 0B ¢ ME%/;ﬁc’ the state /{]B OB2D2 g (e /4)-

JBCCE»D»

close to 7 in purified distance. This implies that

4
T BRIBCCEyDyF 7 _BRJBCCE>DyF €2
Tr |11 K5 > Tr(Il7, - =

4
@ (I11.22)
4 '

using Theorem II.1, Theorem II.3, and Eq. (III.14). So, the
Gentle Measurement lemma, Lemma I1.2, implies that
ﬁHBRJBCCEgDQFﬁ
2

R C
_K/QB JB~YCE>;Ds F SG% .

~ R C
Tr {HRQB JB CEQDQF}

L (1I1.23)
Define the POVM operator II := IIII'II. By Eq. (I11.23),
Eq. (II1.22), and Theorem II.1 we have

BT JBCCEyDyF
Tr {H KL

1 PO

> ( _ %) (Tr {H/KéBRJBCCEZDgF} _ %)

>1 —eg .
]]_F
)]

By Eq. (IIL.21), we get
Tr{ﬂ <m§ Teup P gl @
R 17
< 2Tr[H’< BT IBCCE: Dy o T )]

||
— 27)\4»1

which implies Eq. (I11.20), as desired. [ ]
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C. Asymptotic and i.i.d. Analysis

We can obtain the asymptotic cost of redistributing copies
of a state using the one-shot bound from the previous section.

- o
Suppose that the state [¢)" 4 2" jp) RABC -

shared between Alice (A"C™), Bob (B™) and Ref (R")
where R™, A", B", and C™ denote n-fold tensor products
of registers R, A, B and C, respectively. Let € .= ¢; = 6‘21 /4.
By Theorem IIL1, choosing o' B"C" = y/B"B" @ ¢
there exists an entanglement-assisted one-way protocol which
outputs a state ¢F"A"B"C" ¢ Bl (yRTATBTCN) iy
communication cost Q)(n, €) bounded as

Q(n,¢)

1 R’VlB’VlC’Vl n n n
<= ¢ |:Dmx( / /R"B c )
2 ¢/EBe(l}}111?”B"C") a d) 1/} ® w

n n n 1
_ D¢ ( /B"C /B C ):| log ——
1 n pnon "o n
<= inf |:Dmax (TZJ/R pre H lpR B ®¢)C )
2 w/EBs(wR BnC'")

— D¢ ( ) B"C™ B™ cn )} 1
1 n pn on L DT n
<5 o imf D (9 M ey
2w/€Be(,¢)R B"C )
'GZ’/R"B" :d)Ran
n n n n 1
_D2€< B"C H B C )] 1 -
S 2 [DSI{?X (¢Rancn d)Ran ®1/}Cn)
nem n n 1
_Dze( B"C B c )] ]
t (07| v @ u)] +1os
72—|—e
+ log )

where the ﬁrst inequality follows from Eq.(IIl.1), the third
inequality follows from the definition of Hypothesis testing
entropy, and the last inequality follows from Theorem II.7 for
the choice of €,0 « ¢/3, pAB «— HR"B"C" PR B"
and 0B «— ¢". Therefore, using Theorem IL.6, the asymp-
totic communication rate of redistributing n copies of a pure
state |1p) 4P s

, p

lim l Q(n,e) <

n—oo N

I(R:C[B)y

wIH

IV. CONCLUSION AND OUTLOOK

In this article, we revisited the task of one-shot quantum
state redistribution, and introduced a new protocol achieving
this task with communication cost

1 min min [Dmax (wlRBO ||URBC)

2 wzeBe(wRBC) o RBC cMES 2/1}311,/0

- D§ (2/J'BC||JBC)] + O<log %) ,

with error parameter e. This is the first result connecting
the communication cost of state redistribution with Markov
chains. It provides an operational interpretation for a one-
shot representation of quantum conditional mutual information

av.1)
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as explained in Sec I. In the special case where 175 is a
quantum Markov chain, our protocol leads to near-zero com-
munication which was not known for the previous protocols
designed for arbitrary states. Moreover, the communication
cost of our protocol is lower than that of all previously known
one-shot protocols and we show that it achieves the optimal
cost of 3 I(R : C|B) in the asymptotic i.id. setting. Our
protocol also achieves the near-optimal result of ref. [41] in
the case when ¢ is classical.

A question of interest is whether the communication cost of
our one-shot protocol can be bounded with I(R : C'| B). In the
quantum communication complexity setting, such a bound
would imply the possibility of compressing the communication
of bounded-round quantum protocols to their information
content. This would lead to a direct-sum theorem for bounded-
round quantum communication complexity [42].

Another question that we have not addressed in this article
is whether our bound is near-optimal. There are several known
lower bounds in the literature for the communication cost of
entanglement-assisted quantum state redistribution, such as in
ref. [43, Proposition 6] and ref. [44, Theorem 3.2, Eq. (3.17)].
However, it is not clear if our bound matches any of them.
Obtaining a near-optimal bound for one-shot quantum state
redistribution remains a major open question.
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