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—— Abstract

We prove that for any n-qubit unitary transformation U and for any r = 2°("/1°8™) there exists a
quantum circuit to implement U®” with at most O(4") gates. This asymptotically equals the number
of gates needed to implement just a single copy of a worst-case U. We also establish analogous
results for quantum states and diagonal unitary transformations. Our techniques are based on the
work of Uhlig [Math. Notes 1974], who proved a similar mass production theorem for Boolean
functions.
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1 Introduction

If a computational task requires ¢ resources, then common sense dictates that repeating
the same task r times should require roughly ¢ - r resources. In many settings, including
query complexity [11] and communication complexity [12, 4], this intuition can be made
rigorous: such results are known as direct sum theorems. Closely related are direct product
theorems, which show that, with a fixed computational budget, the probability of successfully
performing r independent tasks decays in r. We recommend [7, Chapter 1] for a good
overview of the topic.

Nevertheless, direct sum and direct product theorems are not universal. Some computa-
tional settings exhibit a “mass production” phenomenon, in which the cost of performing the
same task many times in parallel does not scale linearly with the number of repetitions. A
well-known example [13, 7] is based on the circuit complexity of matrix-vector multiplication.
For a matrix M € {0,1}"*", define fas : {0,1}" — {0,1}" by far(v) = Mv, where addition
and multiplication are taken mod 2. Then a simple counting argument implies that for most
M, the complexity of implementing fy; via a Boolean circuit is at least Q(n?/logn), as
measured by the number of 2-bit AND, OR, and NOT gates. Yet, by observing that f;
(i.e. far repeated n times) is simply a matrix-matrix multiplication, we find that the cost of
implementing f}; is only O(n“), where w < 2.38 is the exponent of matrix multiplication
[3, 8] — substantially less than the naive bound of O(n?).

One might be left with the impression that such mass production phenomena can only
occur for extremely special functions, like matrix multiplication, that have a particular
algebraic or combinatorial structure. Remarkably, this intuition fails dramatically in the
setting of Boolean circuit complexity. A theorem of Uhlig [17, 18, 19] shows that for any
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Boolean function f : {0,1}" — {0,1} and for any r = 2°("/1987) " there exists a Boolean
circuit implementing f” with at most O (%) gates. Asymptotically, this equals the number
of gates needed to evaluate a worst-case f on a single input, by the well-known counting
argument of Shannon [15]. In fact, Uhlig even showed that the leading constant in the big-O
does not increase with r, and hence arbitrary Boolean functions can be mass produced with
essentially no overhead.

1.1 This Work

In this work, we consider the natural question of whether a similar mass production phe-
nomenon holds for quantum circuit complexity. Our question is well-motivated by recent
works demonstrating that for certain learning tasks, algorithms with access to many copies of
a quantum state on a quantum memory can be exponentially more powerful than algorithms
that have access only to single copies of the state at a time [6, 10, 5]. Indeed, these results
suggest that optimizing the complexity of mass producing quantum states and processes
could have valuable applications. We also view our question as interesting from a purely
theoretical perspective, especially considering that Uhlig’s theorem for classical functions has
recently found complexity-theoretic applications in characterizing the minimum circuit size
problem [14, 9].

For simplicity, we consider quantum circuit complexity in the setting of qubit quantum
circuits, using the universal gate set of arbitrary single-qubit gates plus CNOT gates with
all-to-all connectivity. We also allow ancilla qubits initialized to |0), so long as they are reset
to |0) at the end of the computation. We measure circuit complexity in terms of the CNOT
count. This measure is justified by the fact that multiple-qubit gates are more error-prone
and expensive to implement than single-qubit gates, and also by the observation that the
number of single-qubit gates is related to the CNOT count by at most a factor of 4 in any
irredundant circuit.

In analogy with Uhlig’s theorem [17, 18, 19], our main result establishes mass production
theorems for both quantum states and unitary transformations.

» Theorem 1. Let 1)) be an n-qubit quantum state, and let r = g0(n/logn) - Then there exists
a quantum circuit with at most (14 0(1))2" CNOT gates to prepare |1)" .

» Theorem 2. Let U be an n-qubit unitary transformation, and let r = 2°(/108m)  Thenp
there exists a quantum circuit with at most (5/2 + 0(1))4™ CNOT gates to implement U®".

Note that the factor 2™ (respectively, 4™), in Theorem 1 (respectively, Theorem 2) is
optimal, because it asymptotically equals the number of CNOT gates needed to prepare a
single copy of an arbitrary n-qubit state (respectively, to implement an arbitrary n-qubit
unitary once), up to a small multiplicative constant [16]. Above, we made the leading
constants explicit only to illustrate that they are not too large, and thus to demonstrate that
these theorems have some hope of becoming practical. We leave a full optimization of these
constants and the factors hidden in the o(1) to future work.

1.2 Proof Overview

Our results build heavily on the simple proof of Uhlig’s theorem given in [19], which
we now briefly summarize. The proof proceeds by first showing that for an arbitrary
f:{0,1}" — {0,1}, one can compute 2 copies of f using roughly 27 gates — the same cost



W. Kretschmer

as is needed to compute a single copy of a worst-case f. Then, Uhlig shows that we can
generalize to a larger number of repetitions r by a straightforward recursive argument. So,
we focus on the r = 2 case.

Fix a parameter k do be chosen later, and define for each 0 < i < 2¥ — 1 the function
fi :{0,1}"7% — {0, 1} to be the restriction of f obtained by fixing the first k bits to be the
binary representation of i. So, for example,

F00,0,...,0, 2511,y 2n) = folTrat, -\ Tn).
—_———

k times

Next, we define a set of functions g : {0,1}" 7% — {0, 1} for each 0 < £ < 2F by:
90 = fo-
ge=fro1® frif 1 <e<2k—1.
gok = fgk_l.

Observe that

i 2"
fi=Pa= P g (1)
=0

l=i+1

Now, suppose that we have a pair of inputs z,y € {0,1}" to f, and our goal is to evaluate f(x)
and f(y) simultaneously. Let ¢ and j denote the integers whose binary representations are the
first k bits of = and y, respectively. Assume without loss of generality that ¢ < j. Uhlig’s idea
is to evaluate f(z) using the decomposition f; = @220 ge and f(y) using f; = @?;H ge.
The key observation is that in doing so, we only need to evaluate each g, at most once. The
cost of computing f(z) and f(y) this way is dominated by computing the gss. So, the total
size of the circuit is roughly

(28 +1) (Z__I;) ,

because there are 2% + 1 different gss, and each gy is a function on n — k bits. For reasonable
choices of k, this is asymptotically (1 + o(1))2-, as desired.

n

Our main insight is that the same general approach generalizes straightforwardly from
mass producing Boolean functions to mass producing diagonal unitary matrices, which we
establish in Theorem 4. In one sense, the only conceptual change between our proof and
Uhlig’s is that we work with the group of complex units under multiplication, rather than the
group {0, 1} under XOR. Nevertheless, our proof requires some care, as we do not deal with
diagonal matrices directly. Rather, we mass produce the direct sum of a diagonal unitary
with its inverse. In other words, for an n-qubit diagonal unitary U, we find it more convenient
to work with the diagonal unitary on n + 1 qubits that applies U when the last qubit is |0},
and UT when the last qubit is |1). The intuitive reason why we require this change is that the
XOR function is its own inverse, whereas multiplication by a complex unit is generally not.

Finally, once we have established Theorem 4 for diagonal unitary transformations, we
obtain the mass production theorems for quantum states and general unitary transformations
by using well-known decompositions of states and unitaries into diagonal gates [16].
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2 Preliminaries

2.1 Basic Notation

We denote by 1{p} the function that evaluates to 1 if proposition p is true, and 0 otherwise.
If « is a complex number, we let a* denote its complex conjugate. We denote by T =
{a+bi:|a]? +|b|* = 1} the set of complex units. For a function f : {0,1}" — T, denote by
f:{0,1}**! — T the function defined by f(x,c) = f(z)' 2, so that f evaluates to f when
¢ = 0 and evaluates to f* when ¢ = 1. We freely identify a function f : {0,1}" — T with
the corresponding diagonal unitary transformation U that acts as U |z) = f(x) |z) on basis
states x € {0,1}".

We use standard notation for quantum circuits, including CNOT, Toffoli, and Fredkin
gates. We also borrow a large amount of notation and terminology from [16], as we detail
further below. We define the z-, y-, and z-axis rotations by:

_ [ cos(8/2) isin(6/2)
R, (6) = <isin(6‘/2) cos(9/2))’

_ [ cos(0/2)  sin(0/2)
r@= (o o)

efiG/Q 0
Rz(e) = < 0 62‘9/2) :

2.2 Multiplexors

A multiplezor with s select qubits and d data qubits is a block-diagonal (s + d)-qubit unitary
transformation that preserves every computational basis state |z) on the select qubits. For
brevity, we call such a unitary an (s, d)-multiplexor. An (s, 1)-multiplexor in which all of
the diagonal blocks are R, on the data qubit may alternatively be called a multiplexed R,
(analogously for R, and R,). Collectively, multiplexed R,, R, and R, are called multiplezed
rotations. Observe that an (s, 1)-multiplexed R, is equivalent to a unitary implementing f
for some f:{0,1}* — T.

We require the following basic fact about implementing multiplexed rotations:

» Proposition 3 ([16, Theorem 8]). Let U be an (n, 1)-multiplezed rotation. Then there exists
a quantum circuit with at most 2" CNOT gates to implement U.

2.3 Generic Gates

As in [16], we use circuit diagrams containing generic gates. An equivalence of two circuit
diagrams containing generic gates means that for any assignment of parameters to the generic
gates on one side, there exists an assignment of parameters to the gates on the other side
that makes the two circuits compute the same operator. We use the following notation for
generic gates:
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A generic unitary gate.

A generic diagonal unitary gate.

A generic multiplexor, with select qubits on the upper register and data qubits
on the lower register

An R. gate for some unspecified §. Conventions for R, and R, are analogous.

A multiplexed R.. Conventions for R, and R, are analogous.

3 Diagonal Unitaries and Multiplexors

We begin by generalizing the proof of Uhlig’s theorem [19] to diagonal unitary matrices (or,
more precisely, multiplexed R, gates).

» Theorem 4. Let f:{0,1}" — T and let r = 2°("/1°8™) Then there exists a quantum
circuit with at most (1 + 0(1))2™ CNOT gates to implement f&.

Proof. Without loss of generality, let r = 2¢ for some ¢t = o(n/logn). Our proof proceeds
by induction on ¢: for fixed & (chosen later) and for every n > k - ¢, we construct for each
f:{0,1}™ = T a circuit Cy, y,, computing fg’gt‘ We proceed in order: first we construct
Csnk for every n and f, then Cs, 1,2 for every n and f, then Cy,, 1 3 for every n and f,
and so on. Ultimately, we show that there exists a universal constant d such that the number
of CNOT gates in C¢p i+, denoted sy, .+, satisfies the bound:

Sme < (28 41)" (2771 4 24dn) . (2)

We begin by describing the construction of Cf, 1. For each 0 < 7 < 2k — 1, let
fi :{0,13"=% — T denote the restriction of f obtained by fixing the first k& bits to the binary
representation of 4. For each 0 < i < 2% define g; : {0,1}"% — T by:

go = fo-
ge=fr feif 1 <0<2F—1.

gor = f;k_l'

Observe that

i 2k
fz':Hé}z: H gi - (3)
=0

l=i+1

The key idea in the remainder of the proof is to evaluate f on a pair of inputs (z,y) using the
two decompositions in (3), one each for z and y. Indeed, the following algorithm accomplishes
this.
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Algorithm 1 Evaluate 2.
Input: 2,y € {0,1}", ¢;,¢, € {0,1}

Output: f(z,c,.)- f(y,c,)
1a=1

2 if x <y then /* viewing x,y as integers w/ highest order bits zq,y; */

3 M =T Cy = Cy /* set m =min{x,y}, M =max{z,y} */
4 M :=y; cp =y

5 else

6 M= 1Y; Cm = Cy

7 M =x; cpr =y

8 for 0 < ¢ < 2% do

9 if £ <mp) then /* x[;.;5 denotes bits i through j of z */
10 ‘ Multiply a by ge(m{k41:n]s Cm)

11 else if £ > M. then

12 ‘ Multiply o by ge(Mgt1:m), 1 — car) /* note negation on cy; */
13 else

14 ‘ Multiply « by 1

15 return o

Here, the £ < myy.;) clause corresponds to the multiplication HZB“ ge, while the ¢ >

M.y clause corresponds to Hj: M g;. An equivalent reformulation of Algorithm 1 is
given below.

Algorithm 2 Evaluate f©?
Input: z,y € {0,1}", ¢;,¢, € {0,1}
Output: f(z,cz) - f(y,cy)

1 a:=1

2 if x <y then

3 M= T} Cpy = Cy

4 M =y, cpi=cy

5 else

6 M= Y; Cm = Cy

7 M =z; cpr = cy

8 for 0 < ¢ < 2¥ do

9 a=1{{ < mp.y} /* at most one of a,b is nonzero */
10 b= ]l{é > M[l:k]}
11 2= M1 © b Migpq1im)
12 c=a-Cp®b-(1—cpy)
13 Multiply a by ge(z, )
14 Multiply a by g;(0"*)(1=@)-(1=t) /% undo added phase in case a=0b=0

L =/

15 return o

Algorithm 2 readily extends to a quantum circuit implementation. Define a pair of
classical reversible circuits A, and B, ;¢ whose input and output behavior are given in
Figure 1. Using A,, and B, ¢, via the same strategy as Algorithm 2, we obtain the quantum
circuit Cy .1 defined in Figure 2 that implements f®2.
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0 — — 1{¢ < mp.g}
x € {0,1}" — — 0 — Bors | 1{€ > M.}
yE{0.1})" — An — v me{0,1}" —— T = m
0—1 +—1{z>y} M e {0,1}" — — M
(a) The circuit Ap. (b) The circuit By ke

Figure 1 Inputs and outputs of reversible circuits A,, and By, k,e.

|0n~F) —

Vany
AV
Vany
AN
a
3
A
AV

|0)

N>

o
o

Bl

3
Y
3

[0)

|0) ;

| Bkt By |
z — - - —
Y — An Al

>y

0) — =

Cm

Cy

em
Cy

Repeat for each 0 < £ < 2F

Figure 2 Circuit diagram of Cy n k1. The Toffoli gates with controls acting on the = and y
registers are understood to be arrays of n — k Toffoli gates between the corresponding qubits of the
control and target registers. The gate marked * adds a phase of g; (0"~¥) if both qubits are |0) and
otherwise does nothing. For convenience, several of the wires are labeled with the values they take
on corresponding to variables in Algorithm 2.

By Proposition 3, for every ¢, g, can be implemented using at most 2% CNOT gates,
because gy is equivalent to an (n — k,1)-multiplexed R,. Moreover, it is easy to see that A,
and B, ;¢ can be implemented using at most O(n) CNOT gates each, because comparison
of two n-bit integers can be performed by a classical circuit of at most O(n) gates. As a
consequence, we conclude that there exists a constant d such that:

snka < (28 +1) (2"7F + dn). (4)

This is certainly less than the bound in (2), so this establishes the base case of the induction
proof.

Now we proceed to the induction step on ¢t. Suppose that for every n > k- (t — 1), we
have a circuit Cyp, x,;—1 computing f®2hl with CNOT count bounded by

st < (28 +1)"7 (20 EDR 91 (5)

To construct Cy, 11, we start by first taking 2t=1 copies of Cfm,k,1- Then, for each 0 < £ < 9k,
we replace each of the 2¢~1 sub-circuits that compute g, with Cgy.n—k k,t—1- Then, the number
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of gates in Cy 1+ is bounded by:
St < (28 4+ 1) (Sn—pke—1 + 2" dn)
< (2k +1) ((2k n 1)t—1 (2n—k—(t—1)k 20 1d(n — k;)) + 2t—1dn)
< (28 +1)" (27 420 Ndn) + (28 +1) 28 Ldn
< (28 +1)" (27 4 2%dn) ,
where the first line substitutes (5) for the cost of the g,’s and otherwise uses the same bound
as (4) for the non-g, gates, and the second line applies the induction hypothesis (5). This

establishes the induction step, and thus (2) holds for every n > k - ¢.
Choose k = [logn]. Then:

sk < (28 +1)" (2771 4 2tdn)
1\
_ okt —tk t g
=2 <1+ﬁ> (2"~ + 2%dn)
< 2kt6t/2k (2n—tlc + 2tdn)
< 2F(1 4 0(1)) (2" + 28dn)
S 2]625(1 +O(1)) (2n—tk: +o0 (2n—tk))
< (140(1))2",
where we applied the exponential inequality in the third line, and used the assumption
t < o(n/logn) in the fourth and fifth lines. This proves the theorem. <
Theorem 4 straightforwardly generalizes to arbitrary multiplexed rotations and multi-
plexors with a single data qubit, as below.

» Corollary 5. Let U be an (n, 1)-multiplexed rotation, and let r = 2°0*/1°87™)  Then, there
exists a quantum circuit with at most (1 + 0(1))2" CNOT gates to implement U®".

Proof. The R, case follows by observing that f is exactly an (n,1)-multiplexed R, in
Theorem 4. This also extends to multiplexed R, and R,, because multiplexed R, R,, and
R, are equivalent up to conjugation by single-qubit unitaries on the data qubit. That is,
there exist single-qubit unitaries U and V such that:

Hence, the CNOT count is identical for multiplexed R, and R, as well. <

2

» Corollary 6. Let U be an (n, 1)-multiplexor, and let r = 2°0"/1°8™) " Then there exists a
quantum circuit with at most (4 + 0(1))2" CNOT gates to implement U®T.

Proof. By [16, Theorem 6], an arbitrary (n, 1)-multiplexor may be implemented via a product
of 4 (n,1)-multiplexed rotations, as below.

|0)

Applying Corollary 5 to each of the multiplexed rotations on the right side above completes
the proof. <
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4 States and General Unitaries

We now prove the main results of this work that generalize the mass production theorems
above to state preparation and unitary compilation. The proofs proceed via the techniques
of [16], by decomposing operators into multiplexors.

» Theorem 1. Let |¢)) be an n-qubit quantum state, and let r = g0(n/logn)  Then there exists
a quantum circuit with at most (14 0(1))2" CNOT gates to prepare |1)*"

Proof. By [16, Theorem 9], for any n-qubit quantum state |1), there exists an (n — 1)-qubit
state |p) such that |¢)) has the following decomposition.

o——— [p)

l¥) { Z' 10)
Applying this decomposition recursively, we conclude that |1)) can be prepared by a circuit
consisting of a pair of (¢,1)-multiplexed rotations for each 1 < ¢ < n — 1, and a pair of
single-qubit gates.

Apply Corollary 5 to the (¢, 1)-multiplexed rotations for each [n/2] < ¢ <n — 1, and
otherwise apply Proposition 3 r times for each 1 < ¢ < [n/2] — 1. Then the total number of
CNOT gates to prepare |1/1>®T is upper bounded by

[n/2]-1
Sy 2ty Z 1))2¢ < r2m/21 4 (1 4 o(1))2"
(=1 0=[n/2]

< 2[n/2}+o(n/logn) + (1 + 0(1))2
<1+

o(1))2" <

» Theorem 2. Let U be an n-qubit unitary transformation, and let r = 2°("/1°87) = Then
there exists a quantum circuit with at most (5/2 + o(1))4™ CNOT gates to implement U®".

Proof. By [16, Theorem 11], an arbitrary multiplexor can be expressed as below.

—F

This decomposition is also valid when the multiplexor on the left side of the equivalence
has 0 select bits. A recursive application of this decomposition implies that an arbitrary
n-qubit unitary may be expressed as a product of 2" — 1 different (n — 1, 1)-multiplexors, of
which 2"~! — 1 are multiplexed R, gates, and the remaining 27~1 are arbitrary multiplexors.
Applying Corollary 5 and Corollary 6 to these multiplexors gives the desired bound. <

5 Conclusion and Outlook

We have demonstrated that mass production phenomena are not unique to classical compu-
tation, and that they extend to quantum circuit complexity as well. As the message of this
work is primarily conceptual in nature, we have not attempted to optimize every aspect of
our results. Indeed, our mass production theorems could be extended further in a variety of
ways; we outline a few such possibilities below.
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If our results have any hope of being used in practice, then still more work needs to be
done to optimize various constants. We suspect that the leading constant in Theorem 2
could be brought down from 5/2 to 1 with a more clever decomposition into multiplexors.
The factors hidden in the o(1) could probably be optimized further as well, especially those
related to the constant factor d that appears in Theorem 4. Indeed, we believe that much of
the redundancy in computing and uncomputing B,, 1, for each 0 < ¢ < 2*¥ could be reduced
by more careful accounting.

It is also worth attempting to optimize other parameters of practical relevance, such as
constraints on the gate set, locality, depth, and ancilla qubit count. In principle, our proof
should allow for some tradeoff between depth and ancilla count, because the ggs in Figure 2
can either be evaluated sequentially or in parallel. Another particularly interesting question
is whether ancilla qubits are necessary at all to achieve quantum mass production.

We leave open the circuit complexity of quantum mass production in other parameter
regimes. As Theorem 1 and Theorem 2 only apply when r = 2°(?/1087) it is natural to ask
what happens when r is much larger. For Boolean functions, it is known that for any n-bit f,

the “asymptotic complexity” of mass production lim,_, C(f 2 is bounded by poly(n) [13, 2],
where C(f") denotes the Boolean circuit complexity of implementing r copies of f. However,
it is unclear whether the same approach would generalize to quantum circuits.

Lastly, we ask: are there any restricted examples of quantum circuits that exhibit a
mass production phenomenon? What about Clifford circuits? We observe if one allows
implementation by non-Clifford gates, then n copies of an arbitrary Clifford operation can
be implemented by a circuit with at most O(n*) gates, where w is the exponent of matrix
multiplication. By the “canonical form theorem” of Aaronson and Gottesman [1], every
Clifford circuit can be expressed in the form H-C-P-C-P-C-H-P-C-P-C, where each letter
corresponds to a layer of Hadamard, CNOT, or phase gates. The Hadamard and phase layers
contain at most O(n) gates total, so it suffices to show how to implement n copies of a CNOT
circuit using O(n®) gates. For any M € F3*", define Uy as the unitary transformation that
acts as Uy |z) |y) = |z) |y ©@ Mz) on computational basis states. As every CNOT circuit
implements an invertible linear transformation |x) — |Mz) for some M € F3*" a CNOT
circuit can be implemented using Uy and Up,-1 and O(n) additional gates via:

) [0m) 2205 |2y (M) 2 jomy (M) SVAR, (Mg jomy

Then, as in Section 1, we can mass produce Up; and Uj,;—1 using fast matrix multiplication.
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