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A balanced description of both static and dynamic correlations in electronic systems with nearly degen-
erate low-lying states presents a challenge for multiconfigurational methods on classical computers. We
present here a quantum algorithm utilizing the action of correlating cluster operators to provide high-
quality wave-function ansédtze employing a nonorthogonal multireference basis that captures a significant
portion of the exact wave function in a highly compact manner and that allows computation of the result-
ing energies and wave functions at polynomial cost with a quantum computer. This enables a significant
improvement over the corresponding classical nonorthogonal solver, which incurs an exponential cost
when evaluating off-diagonal matrix elements between the ansatz states and is therefore intractable. We
implement the nonorthogonal quantum eigensolver (NOQE) here with an efficient ansatz parametrization
inspired by classical quantum chemistry methods that succeed in capturing significant amounts of elec-
tronic correlation accurately. Crucially, we avoid the need to perform any optimization of the ansatz on the
quantum device. By taking advantage of such classical approaches, NOQE provides a flexible, compact,
and rigorous description of both static and dynamic electronic correlation, making it an attractive method

for the calculation of electronic states of a wide range of molecular systems.
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I. INTRODUCTION

The computation of electronic states and energies for
molecular and extended systems, known as “the electronic
structure problem,” has emerged as one of the most promi-
nent practical problems for which quantum computers
might show an advantage over their classical counterparts.
The worst-case quantum complexity of the electronic
structure problem is known to be quantum Merlin-Arthur
(QMA) complete [1], i.e., the quantum analog of NP hard.
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Although this implies that solving the general electronic
structure problem to arbitrary accuracy may be intractable
for quantum computers, a significant advantage over exist-
ing classical methods for systems of interest may still be
achievable.

Focusing on molecular electronic systems, often
referred to as “quantum chemistry,” there are several facts
that make the search for quantum algorithms in this area
both interesting and suggestive of promise for demon-
strating a quantum advantage. First, the level of accuracy
required to make quantitative chemical predictions is 1
kcal/mol (approximately 1.6 mHa = 43 meV) or less
(which corresponds to the reported uncertainties of typical
experimental measurements for thermochemistry). This
quantity is referred to as “chemical accuracy” [2]. There-
fore, achieving arbitrary accuracy is not necessary for
this high-impact domain-specific application of quantum
algorithms. Second, energy splittings and relative order-
ings, which involve low-lying excited states in addition to
the ground state, are of paramount importance in many
problems of interest. This is especially true in so-called
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“strongly correlated” electronic systems [3,4], wherein
multiple spin states or phases are separated by small energy
gaps. Such states can only be described by multiconfigu-
rational wave functions composed of many Slater determi-
nants, and chemically accurate ab initio predictions remain
a challenge for existing classical computational methods.
A proper description of strong electronic correlation is
required to describe a wide range of interesting physi-
cal phenomena, ranging from materials such as cuprates,
which can exhibit long-range order and high-temperature
superconductivity [5], to bond-breaking chemical reac-
tions and the intricate electronic processes found in many
biological and synthetic catalysts that contain magneti-
cally coupled transition metals [6] or f-block atoms [7].
One very well-known system with multiple spin states is
the oxygen-evolving complex (OEC) of photosystem II in
green plants, which plays a critical role in the oxidation
or “splitting” of water molecules to generate protons and
free molecular oxygen [8]. This complex has four man-
ganese atoms in different oxidation states [9], which are
involved in a complex series of electron-transfer reactions
that catalyze the oxidation of water [10]. Understanding
the mechanism of this critical step in photosynthesis of
green plants requires that the spin states involving the
transition-metal atoms and the electronic states of coor-
dinated reactants be well characterized, which presents
a major challenge for quantum chemistry today. Efforts
to perform electronic structure calculations with quan-
tum computers started with an application of the quantum
phase estimation (QPE) algorithm [11] that requires fault-
tolerant quantum hardware and later shifted to approaches
amenable to noisy intermediate-scale quantum (NISQ)
hardware. These include a recently developed algorithm
to solve a contracted Schrédinger equation for the two-
particle reduced density matrix, from which associated
energies can be obtained [12—14]. A more widely used
hybrid quantum-classical algorithm is the variational quan-
tum eigensolver (VQE) [15,16], in which the quantum
computer is used to generate a wave-function ansatz with
a parametrized quantum circuit, the expected value of the
Hamiltonian terms are measured with this circuit, and the
variational parameters are then optimized by a classical
solver in an iterative manner [16]. By avoiding the large
circuit depth necessary for QPE, approaches such as the
VQE are more suitable for running on NISQ hardware.
Considerable efforts have gone into developing a broad
range of different quantum circuit ansédtze that approx-
imate the ground states of Hamiltonians. The unitary
coupled-cluster (UCC) ansatz, a unitary generalization of
the coupled-cluster ansatz used in quantum chemistry, has
been popular due to its variational and size-consistent
nature [15—17]. However, the generic UCC ansatz requires
a circuit depth that increases as higher-order terms in the
coupled-cluster expansion are included, rendering hybrid
calculations on near-term machines very sensitive to noise

and limited by current constraints on qubit coherence. Fur-
thermore, the classical optimization loop often requires
many circuit evaluations even in the simplest cases [18,
19]. The optimization problem is highly nonlinear and
finding the global minimum can be challenging in prac-
tice [20]. This is complicated by the emergence of the
“barren-plateau” phenomenon in many cases of interest,
where randomness in the initial parameters, entanglement,
or noise in the circuit leads to gradients that vanish expo-
nentially with one or more problem parameters [21-25].
Hence there are two generic limitations of the VQE: (i) the
qubits must have coherence times long enough to generate
ansatz states with complex structures and (ii) the required
number of measurements should not exceed the wall-clock
time available for the near-term devices with consistent
calibration.

An extension of the VQE has recently been proposed
by some of the authors to allow greater expressivity
of the final wave function without increasing the cir-
cuit depth [26]. This is the nonorthogonal VQE (termed
NOVQE) that uses the quantum computer to generate a
set of nonorthogonal ansatz states, on which the Hamilto-
nian and overlap matrices are measured using a modified
Hadamard test. The resulting generalized eigenvalue prob-
lem is solved classically to provide an estimate of the
ground-state energy, which is then optimized with respect
to the circuit parameters for the set of nonorthogonal ansatz
states. Results from the NOVQE in Ref. [26] have demon-
strated a systematic increase in wave-function complexity
and a greater fidelity with the true ground state, relative to
that obtained with the VQE using a single-reference-state
ansatz. But this comes at the cost of a greater number of
measurements. Therefore, the NOVQE presents a trade-
off between decreased requirements on qubit coherence
time for an increased number of circuit repetitions and,
consequently, also an increase in the measurement cost.

To break out of this inevitable trade-off for variational
hybrid quantum algorithms, we present here a novel quan-
tum algorithmic approach to electronic structure calcu-
lations that does not use variational optimization. The
nonorthogonal quantum eigensolver proposed in the cur-
rent work, which we refer to as NOQE, takes advantage
of domain-specific knowledge available in classical quan-
tum chemistry to construct high-quality wave functions at
a low cost. Specifically, our protocol uses spin-unrestricted
methods that optimize spin-symmetry-broken Slater deter-
minants (i.e., with different spatial distributions for the up
and down spins) to yield more accurate energies and elec-
tronic densities in the strongly correlated limit. Explicit
diagonalization within the subspace spanned by all qualita-
tively relevant unrestricted single determinants, known in
the classical quantum chemical literature as nonorthogonal
configuration interaction or NOCI, offers a straightfor-
ward way to approximate spin purification of unrestricted
solutions [27-29]. However, while strong correlations are
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reasonably well addressed by the classical NOCI approach
[29,30], taken alone this protocol cannot recover the weak
(dynamical) correlation present in the system. In the cur-
rent work, we show that the effects of dynamical corre-
lation can be introduced via the application of UCC-like
operators to the subspace states with perturbative parame-
ters. This “perturb and then diagonalize” approach confers
the advantage of computing at once both the ground and
low-lying excited states of the system through subspace
diagonalization, with approximately correct spin quan-
tum numbers. Consequently, the energy gaps between the
different low-lying spin states of a strongly correlated
electronic system can be easily computed. The applica-
tion of UCC-like operators can be efficiently implemented
on quantum computers. Furthermore, by making a sub-
space diagonalization on the resulting states, NOQE also
avoids the long-time evolution (and consequent deep cir-
cuits) required by other optimization-free hybrid quantum
algorithms [31-35].

The quantum computational advantage of the NOQE
approach comes from the efficient calculation of off-
diagonal matrix elements on a quantum computer. Clas-
sical evaluation of a single NOCI matrix off-diagonal
element has only O(N?) asymptotic cost with the basis
size N. However, the inclusion of dynamic correlation
with CC operators (perturbative or otherwise) results in
each off-diagonal element having a classical cost that
scales O(exp(N)). On the other hand, evaluation of these
matrix elements via the modified Hadamard test of Ref.
[26] scales with O(poly(N)). In principle, this allows
for an exponential separation between quantum and clas-
sical nonorthogonal quantum chemistry calculations. In
this work, we explore the quality of the NOQE approach
using both a UCC-derived ansatz and a cluster-Jastrow
(CJ) modification thereof. We make a resource estimate
for NOQE with these ansdtze and give a prognosis for the
extent to which classically intractable NOCI calculations
including dynamic correlation may be efficiently realized
by our quantum NOQE approach.

The remainder of the paper is structured as follows. In
Sec. II, we discuss the background of current classical
quantum chemistry methods available for electronic struc-
ture calculations for systems with strong correlation. In
Sec. 1II, we introduce the NOQE protocol after present-
ing an essential preliminary analysis of the modified UCC
wave-function ansitze used in this work. In Sec. IV, we
present numerical results for two simple model systems
accessible on near-term devices—the potential-energy sur-
faces of molecular hydrogen H, and square Hs—which
nevertheless exhibit regimes of strong static correlation
that are challenging for traditional single-reference meth-
ods (see below). For this reason, stretched H, and square
Hy are frequently used to assess new electronic structure
methods for strongly correlated systems [20,26]. In Sec. V,
we analyze the scaling of quantum circuit resources needed

to run the NOQE routine on a quantum computer for
molecular systems. Finally, in Sec. VII, we summarize and
provide an outlook for both theoretical and experimental
developments suggested by this work.

II. BACKGROUND

Quantum chemistry aims to develop computationally
affordable approximations for modeling the quantum
many-body problem. The simplest quantum chemistry
method is the Hartree-Fock (HF) approximation [36],
which provides a mean-field description of the many-
electron ground-state wave function by variationally opti-
mizing a single Slater determinant (an antisymmetrized
product of single-particle orbitals [36]). The computa-
tional cost of Hartree-Fock calculations scales as O(N%).
While global minimization of the Hartree-Fock procedure
is formally an NP-complete problem [37], in most cases
the physically motivated heuristics involved in Hartree-
Fock calculations nevertheless allow for efficient conver-
gence to local minima. The energy not captured by this
independent-particle approximation is typically referred to
as the electron correlation energy, which is often broadly
categorized into “weak (dynamic)” and “strong (static)”
(although no rigorous boundary exists between the two
limits).

Nevertheless, a distinction between weak and strong
correlations can be made in terms of limiting behavior.
The Hartree-Fock approximation works best when the true
wave function is well approximated by a single Slater
determinant, wherein the orbitals are filled in ascend-
ing order of energy and are doubly occupied (with one
spin-up electron and one spin-down electron) when pos-
sible. However, the strong correlation between electrons
makes it energetically unfavorable to maintain electron
pairs, leading to a (partial) separation of paired electrons
into distinct orbitals occupying different spatial regions.
Strong correlation, therefore, entails a significant level of
electron-pair breaking, which requires several Slater deter-
minants to have significant weights in the wave function.
On the other hand, weak electron correlation does not
require electron unpairing and largely stems from small
but significant contributions of many electronic configu-
rations with individually small amplitudes in the overall
wave function. Traditional quantum chemistry has been
quite successful at modeling weak correlation for systems
where the Hartree-Fock approximation is qualitatively
valid (“single-reference”), through perturbative [38] and
projected coupled-cluster [39] approaches that have only
polynomial scaling with V. Systems with strong correla-
tion are more challenging and generally require solving the
exact diagonalization or full CI (FCI) problem within some
subspace of orbitals [40]. This has an exponential cost and
exact treatment is only feasible for small subspaces up
to 24 spatial orbitals [41] at present (selected CI solvers
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permit substantially larger orbital spaces with soft expo-
nential scaling [42—45]). In addition, weak correlation out-
side the subspace is essential for chemical accuracy [46—
48] and can add considerably to the computational cost.

One possible route to describing strong correlations
starting from mean-field theory is via spin-symmetry
breaking. It is possible to converge Slater determinants
where the up and down spin orbitals have different spatial
components and can thus accommodate a level of elec-
tron unpairing. The down side of such spin-unrestricted
Hartree-Fock calculations is that the resulting determinant
is no longer a pure spin eigenstate and therefore cannot
be used to estimate the spin spectrum. Restoration of spin
symmetry is also quite challenging for single-reference
wave-function methods, often leading to suboptimal per-
formance of such approaches utilizing an unrestricted
reference [49]. However, unrestricted determinants have
much better energies and total electron densities [36],
making them attractive candidates for modeling strongly
correlated systems if spin purity can be realized.

Classically, the NOCI approach offers a reasonably
straightforward route to an approximate spin purification
of such unrestricted solutions [29]. Explicit diagonaliza-
tion within the subspace spanned by all unrestricted con-
figurations corresponding to different permutations of all
(partially or completely) unpaired spins should therefore
lead to pure spin states, via indirectly coupling the angular
momenta. In practice, the resulting states are not always
quite pure in spin, due to differences in orbitals correspond-
ing to stationary states for each permuted configuration.
However, they are much better approximations to spin
eigenstates than are the untreated unrestricted single deter-
minants and, furthermore, they also permit computation of
spin-gap energies.

Compared with multideterminant expansions that use a
single shared set of orbitals, NOCI can describe multiref-
erence states with a more compact linear combination of
determinants. The physical intuition behind this can be
illustrated by the dissociation of NaCl (a similar argu-
ment holds for Hy). In the region of the avoided crossing,
there is a competition or mixing between the covalent and
ionic diabatic states. If forced to use only a single set of
orbitals, both the covalent and ionic configurations will
be suboptimally described. In contrast, NOCI allows each
configuration to have optimized orbitals, such that, for
example, the large electron-density rearrangement going
from covalent to ionic configurations can be efficiently rep-
resented (orbital expansion on Cl~ relative to Cl; orbital
contraction on Na™ relative to Na). The ability of NOCI
to efficiently describe such configuration-specific orbital-
relaxation effects provides similar advantages for many
polynuclear transition-metal compounds, where the elec-
tron and hole densities of bridging or ligand moieties
have the flexibility to optimally rearrange for each electron
configuration involving the metal centers.

In practice, however, NOCI with single determinants
is not very accurate, because the CI protocol only recov-
ers the strong correlation between the unpaired electrons
[29,30,50]. Weak correlation can be included via a “per-
turb and then diagonalize” approach, in which NOCI is
performed within a subspace of unrestricted wave func-
tions that already include a measure of dynamic corre-
lation. NOCI using unitary coupled-cluster (UCC) wave
functions, where the UCC states are constructed from
unrestricted Hartree-Fock solutions, falls into the latter
category and this is the route that we explore in this
work. However, for classical computers, the computational
demands of UCC amplitude optimization are considerable,
particularly for nonorthogonal problems. It is important
to note that the classical cost of computing the UCC
operator for a single-reference determinant scales expo-
nentially with the number of spin orbitals. For this reason,
the projected coupled-cluster approaches [39] widely used
in classical quantum chemistry do not evaluate energies
as the expectation value of the Hamiltonian over the full
coupled-cluster wave function, since that task also has
an exponential classical cost. Instead, a formally nonva-
riational single-reference energy is defined via projection
equations that can be solved at an increasing high-scaling
polynomial cost as more correlations are included in the
CC operator [51]. For example, the commonly used CCSD
approach (single and double excitations from a Hartree-
Fock reference state) scales as O(N®) and the CCSDT
approach (single, double, and triple excitations) scales as
O(N?®), and so on (so-called local correlation approxi-
mations can reduce this scaling at the expense of some
numerical error [52—54]). However, this classical approach
does not readily generalize to off-diagonal matrix ele-
ments between multiple coupled-cluster states. Indeed, any
use of coupled-cluster wave functions for direct evalua-
tion of off-diagonal elements would incur an exponential
cost for even orthogonal reference states. The situation is
even more challenging for the nonorthogonal case because
the Slater-Condon rules [36] cannot be applied to sim-
plify many terms to zero, incurring an even higher cost.
Therefore, the advantage of using a quantum processor in
NOQE is not only due to the simple implementation of the
UCC operator within a quantum algorithm for generating
the reference states of a NOCI problem but also because
the standard projected coupled-cluster theory is compu-
tationally intractable for the NOCI problem on classical
computers. This provides strong motivation for the intro-
duction of NOQE in this work as a quantum algorithm
yielding a substantial quantum advantage relative to
NOCIL

In this work, we therefore explore the use of amplitudes
derived from the perturbative analysis in NOQE calcu-
lations without further optimization. This is expected to
be a reasonable assumption because the amplitudes from
second-order many-body perturbation theory (known as
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MP2) are first-order approximations to actual UCC ampli-
tudes, as is shown explicitly in Sec. III B 1. We denote
this version of NOQE using UCC ansitze, together with
MP2 amplitudes, as NOUCC(2). We note that NOUCC(2)
ground-state energies are variational in the sense that they
are bounded from below by the exact FCI energy, which
provides a lower bound on diagonalization of the Hamil-
tonian within a NO subspace of wave functions. As an
alternative, we also examine the benefits of adding a CJ
correlator to a UCC ansatz, i.e., using the UCJ ansatz
of Ref. [55]. We denote the version of NOQE using this
ansatz as the NOUCI.

III. THEORY

We first define the notation employed in this work and
then provide, in Sec. III B, some preliminary analysis for
the construction of the NOUCC(2) ansatz reference states,
as well as the alternative NOUCJ ansatz based on a CJ
decomposition. The general NOQE approach is then pre-
sented in Sec. III C, together with details of the quantum
circuit implementation.

A. Notation

We define N as the number of spin orbitals and make
use of the Jordan-Wigner transformation to map electronic
states (determinantal wave functions) constructed from
these to a qubit representation [56]. Then, N is the num-
ber of qubits required to represent the quantum state. We
use 7 to represent the number of electrons and r to denote
the number of radical sites (the number of active frac-
tionally occupied orbitals relevant to the static correlation)
involved in a specific molecular calculation (Sec. V). All
references to orbitals in this work are to molecular orbitals
(MOs) unless specified otherwise; the MOs are assumed to
be real. The MOs are generally expressed as linear combi-
nations of Gaussian basis functions in quantum chemistry,
for ease of computation. Indices {i,j} refer to occupied
spin orbitals, indices {a, b} to virtual spin orbitals, and
indices {p,q,r,s...} are employed to represent general
spin orbitals. Capitalized indices {/,J} are used to index
the reference states for the generalized eigenvalue equation
of NOQE, with a total number of M reference states (deter-
minants). We follow the chemistry convention that spin-up
electrons are referred to as « electrons and spin-down
electrons as B electrons.

The two-electron repulsion integrals (ERIs) between
MOs are abbreviated according to standard chemical nota-
tion as

(i |ab) = /f/f,¢z(r)¢/ ) ¢a (F) @5 (F ) )

7F =7

(ij|lab) = (ij|ab) — (ij |ba). )

The unitary coupled-cluster doubles (UCCD) ansatz is
defined, in this work, relative to a Hartree-Fock reference
state |Pyr) as e’ | Oyr), with

t=7-11, (3)
N
T= Z Lps, q,a al a,as 4)
N
= > tpogl)a,a}ay, ©)
pars=1

where the N2 x N? supermatrix T is defined by its grouped
two-index matrix elements

p < q;s <F;r,s €0CC;p,q € Virt,

(6)

f — tpqrsa
s,qr — .
P 0, otherwise.

In the above, the four-index 2,4, refer to the standard
UCCD amplitudes. The primary focus of the present work
is the use of MP2 amplitudes for #,,, (generating the
NOUCC(2) ansatz), which we denote as 7y°2. However,
we also consider the use of Jastrow- correlated amplitudes
(generating the NOUCJ ansatz), which we denote as t’fqrs
We refer to the cluster operator with MP2 amplitudes
as UCC-MP2 and to the cluster operator with Jastrow-
correlated amplitudes as UCC-J.

B. Preliminaries

1. MP2 amplitudes as first-order approximation to
UCCD amplitudes

Here, we derive a first-order approximation to the
UCCD amplitudes #,,; in terms of MP2 amplitudes
obtained from perturbation theory. Suppose that we have
a UCC wave function given by

¥ ({tais D)) = € | Pur) (7)

with T given by Egs. (5) and (6). We approximate the
amplitudes {#,;} via gradient descent in the space of ¢
amplitudes. For example, starting from the case where all
tapij = 0, the gradient of the energy with respect to #.; is

JIF N
<8 ) = (Pur| [H, 4] abaja 1®ur)  (8)
tdbl’j {z hl]} 0

= (ijlab), (€]
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and the diagonal elements of the Hessian are readily
evaluated as

82E AT,\T,\ A~ LA A-i-ATA A~
= (Pyg| (aaabajai> Hala,a;a; | Pur)
atibz

i {tapij }=0

— (Dyp| H |y (10)
Ro€g+€p— € — €, (11)

where ¢; denotes the single-particle energy of orbital i. A
first-order Newton-Raphson approximation to f4; is then

given by
(5ir)
Wavij ) 1,1=0 (ij |lab)

tapii = — ~ =
- (82E> €T € —€ —€
8t2"bij {tapij }=0

which is seen to be identical to the ¢ amplitudes that
would be obtained from second-order perturbation theory,
i.e., from MP2. In fact, the energy of the wave function
|\I/({%I;2})) is correct not only to the second order in MP
perturbation theory but to the third. We also note that this
protocol predicts zero single-excitation amplitudes from
unrestricted Hartree-Fock reference determinants, consis-
tent with Brillouin’s theorem [36]. MP2 amplitudes have
consequently been used to initialize VQE optimizations for
UCCSD [57].

We note that using the exact form of Eq. (10) would
lead to Epstein-Nesbet perturbation theory [58,59] instead,
which is known to be inferior to MP2 for single Slater
determinants [60] and is therefore not explored here. We
do, however, note that there are some other routes to
improve upon using bare MP2 {f,,;}. Perhaps the sim-
plest route is via scaling #,y; , in the spirit of a line search.
The scaling MP2 of parameters has precedence in classical
quantum chemistry, with Ref. [61] proposing that empir-
ically scaling the same-spin amplitudes (i.e., all of a, b,
i, and j have the same spin) by 0.33 and opposite-spin
amplitudes (i.e., i and j have different spin, and so do a
and b) by 1.2 would lead to better results. Reference [62]
has gone even further and has neglected same-spin ampli-
tudes entirely, scaling opposite-spin amplitudes by 1.3.
These spin-component-scaled (SCS) and scaled-opposite-
spin (SOS) MP2 methods yield superior quantitative per-
formance to normal MP2 [61,62], indicating that unscaled
MP2 appears to underestimate opposite-spin correlation.
Furthermore, the very slow convergence of MP theory
for spin-contaminated systems [49] indicates the possibil-
ity of unscaled MP2 amplitudes being too small in the
spin-polarized limit. Scaling up the amplitudes thus has
the potential to be more effective. We therefore explore
whether SCS- or SOS-style scalings affect the NOUCC(2)

» (12)

results and we also investigate whether uniform scaling of
the amplitudes is effective.

2. Single-reference-state generation: Quantum circuit
ansatz based on the low-rank decomposition

To simulate the action of the unitary cluster operator, we
employ the technique of low-rank tensor decomposition
[63,64], which has been previously introduced and utilized
in classical contexts [65—67]. In this approach we decom-
pose the rank-4 doubles cluster tensor ¢ = 7 — 7T [Eqgs.
(3)+5)] into a sum-of-squares of one-electron normal
operators. This can be done using either a singular-value
decomposition (SVD) or a Takagi factorization [63,64], to
yield

L
e' =exp —iZiifiu , (13)

=1 p=1

where the number of nonzero singular values (or Takagi
diagonals) L < N? and m = 4 if the decomposition is by
SVD or m = 2 if the Takagi factorization has been used
(this may increase L by up to a factor of 2; see Sec. S2
of the Supplemental Material [68], which includes Refs.
[69—79]). The (normal) operators f/l,“ are then further diag-
onalized and the resulting unitary is Trotterized to obtain
the final low-rank form of the state-preparation ansatz as

& ~ UMV l_[exp< lzwww ; )u“").

=1 p=1
(14)

Here, )»,(,l’”) are eigenvalues of the ffw operators and the
total number of nonzero eigenvalues is p; < N. The unitary
operators LA{,;U)T are single basis rotations and Z;{él’“ ) are
sequences of neighboring basis rotations (see Sec. S2 of
the Supplemental Material [68]). The approximation in the
above decomposition is entirely due to Trotter error. The
effect of this error on the energy-expectation values can be
made arbitrarily small by increasing the order of the Trotter
expansion (see Sec. S4 of the Supplemental Material [68]).
The double decomposition of Eq. (14) results in a
circuit structure of blocks of alternating unitary basis
rotations (L") requiring up to 2(™/?) nearest-neighbor
Givens rotations [63,80] and sets of exponentiated
number-operator pairs that require at most ( ) two-qubit
controlled-Z (Cz) gates on a fully connected architecture,
which may be applied in NV layers of parallel gates [63] (for
further details of the resource estimation, see Sec. V). We
note that one-body excitation terms can easily be included
in the ansatz, requiring only an additional single basis rota-
tion in front of the product in Eq. (14) and resulting in an

additional cost of up to 2(N 2/ 2) Givens rotations.
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The representation in Eq. (14) is advantageous for two
reasons. First, the low-rank decomposition allows us to
systematically truncate the rank of the MP2 7-tensor by
thresholding the singular values, reducing the number of
circuit blocks and hence the overall circuit depth, while
preserving the desired level of accuracy in the ansatz. Sec-
ond, the Jordan-Wigner mapping from orbitals to qubits
requires lengthy strings of Z gates to encode fermionic
anticommutation relations in excitations (&;Ezq) between
geometrically distant qubits p and ¢, which results in mul-
tiple additional layers of controlled-NOT (CNOT) gates per
excitation term [81,82]. By rotating into bases where the
fermionic excitations are represented by number opera-
tors (i1, = &; ap), these Jordan-Wigner strings are entirely
avoided, significantly reducing the circuit depth.

3. Single-reference-state generation: adding
Cluster-Jastrow correlators

In this work, we also explore the addition of Jastrow cor-
relations to the MP2 approximation to the UCCD ansatz
wave functions, leading to the NOUCJ modification of
NOQE. We show below that incorporating Jastrow corre-
lations allows for a more expressive but equally compact
representation, suggesting that this approach is compati-
ble with a lower truncation of the tensor decomposition
and showing potential for implementation with shorter
quantum circuits than the NOUCC(2) reference ansatz.

The idea of applying a two-or-more-electron Jastrow
correlator to a Slater determinant, i.e., €’|¢), has first
been introduced to efficiently satisfy the well-known cusp
condition [83] and forms the basis of classical quantum
chemistry methods such as variational and diffusion Monte
Carlo [84,85]. In such methods, the Jastrow term is typi-
cally represented in real space, although Neuscamman and
others have recently developed promising approaches in
which a CJ correlator in orbital space appears in front of
the antisymmetrized geminal power (pairing) ansatz [86—
88]. A unitary variant of the CJ operator, denoted UCJ,
has recently been proposed in Ref. [55], where the cluster
operator takes the form

L
e’ = l_[e’c’ej’e’c’,
1=0

15)

with K; = ¥, Kh,dpay and J = 3, Tl phy. The K
matrices are complex and anti-Hermitian, while the J
matrices are symmetric and purely imaginary. As a result,
the (generally complex) amplitudes of the UCCD operator

can then be represented as

D 3 S Y /TN ST
I jk

where the unitaries U are the basis-rotation operators. As
noted in Ref. [55], this form is identical to the double-SVD
decomposition shown in Eq. (14) when A;A; — Jj;. As
such, the UCJ ansatz has the potential to be slightly more
expressive. We note also that while the unitaries and A
eigenvalues that result from double factorization are deter-
mined by the cluster amplitudes (which for NOUCC(2)
are taken from a classical MP2 calculation), in the UCJ
ansatz [cf. Eq. (15)] the matrix elements of /C and J
are classically optimized variationally. Furthermore, it has
been demonstrated that significantly fewer [/ terms are
required to recover high accuracy comparable to exact
results [55], thereby providing a promising avenue toward
reduced-depth quantum circuits.

In this work, we illustrate the use of the UCJ ansatz with
L =1 in a NOQE calculation, denoted NOUCIJ(L = 1),
for the H, system in the STO-3G basis. Accuracy com-
parable to that of untruncated (i.e., L = N?) NOUCC(2)
is achieved, suggesting that variational optimization of the
Jastrow ansatz parameters can effectively compensate for
the relatively small number of these imposed by truncation.
We note that by construction, the L = 1 UCJ ansatz does
not require further Trotterization, which is not the case
for doubly factorized reference ansitze in the NOUCC(2)
procedure.

C. Nonorthogonal quantum eigensolver (NOQE)

We now come to the main theoretical exposition of this
work, which is the construction of a NOQE that does not
require variational optimization. We construct multirefer-
ence ansatz state as a linear combination of M UHF base
reference states:

M M
|Wnouccw) = ZCJ ) = chefj [P . (A7)
J=1 J=1

Here, |®,) and 7, are, respectively, the Jth UHF base
reference state and the corresponding Jth two-body excita-
tion MP2 tensor, which is constructed in the single-particle
basis of |®,). Key features of this expansion, which also
distinguish this work from the previous NOVQE work
[26], are first that more than one base reference state
is employed and, second, that the base reference states
are unrestricted Hartree-Fock states rather than restricted
Hartree-Fock state, i.e., UHF rather than RHF. Since all
base reference states are described by their expansion
in the underlying common atomic orbital basis, the first
feature introduces the need to track the unitary transfor-
mations between these expansions (see Sec. SIC of the
Supplemental Material [68]). The second feature intro-
duces significantly greater flexibility for the description of
strongly correlated systems.

The NOQE coefficients ¢; are determined by classically
diagonalizing the Hamiltonian matrix in the subspace of
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The NOQE circuit for the evaluation of off-diagonal matrix elements of the Hamiltonian (H};) and overlap matrix (Sy;)

between NOUCC(2) ansatz states |¢;) and |¢,). For the phase gate Py, we set & = 0 (Py = I) when measuring Re(H;y) and 0 = 7/2
when measuring Im(H}y) (see Sec. S3 of the Supplemental Material [68]).

these nonorthogonal reference states. This requires solving
the generalized eigenvalue problem

HC = ESC, (18)

with Hamiltonian and overlap matrix elements given by

Hy = g1 H |bs), S = (d1lds). (19)
Provided that the S matrix is far from singular and there-
fore the solutions to Eq. (18) are numerically stable, this
small eigenvalue problem is trivial for a classical com-
puter. We note that even in the near-singular case, it can
be solved reliably using the standard procedure of thresh-
olding the singular values of S and the numerical analysis
of this procedure has been carefully analyzed recently [89].

We evaluate the off-diagonal elements of the Hamil-
tonian and overlap matrices [Eq. (19)] using a quantum
circuit that is closely related to the modified Hadamard test
protocol of Ref. [26]. Figure 1 shows the general circuit
for NOQE calculations using different NOUCC(2) ansatz
states. The input to the circuit is an N-qubit reference state
|®ynr), an ancilla register of size N, and a single control
qubit, resulting in a total of 2N + 1 qubits. The n-electron
UHF state in the first single-particle basis is prepared as
[Punr) = |1)%7 ® [0)®¥ 7. For the example of H, in the
STO-3G basis with four spin orbitals (see Table 1), we
would have |®yyr) = |1100). The operation of the circuit
in Fig. 1 and its implementation of a modified Hadamard
test for the evaluation of the off-diagonal Hamiltonian and
overlap-matrix elements of Eq. (19) is described in detail
in Sec. S3 of the Supplemental Material [68].

Note that in contrast to the circuit employed in the
NOVQE of Ref. [26], which employs nonorthogonal ref-
erence states constructed with respect to a single (spin-
restricted) Hartree-Fock state, the circuit of Fig. 1 con-
tains additional unitaries that rotate the atomic orbital
bases on each register from that of UHF reference / or J
into the (arbitrarily chosen) first single-particle basis, i.e.,

U ;1. This accounts for the fact that the NOQE reference
states are constructed here over different UHF basis sets,
while the computation of the matrix elements and overlaps
requires a consistent mapping of the orbital space onto the
qubit register for all of the reference states, as well as the
system Hamiltonian. We apply the unitary basis rotation
following the preparation of the ansatz state in the default
basis of the quantum register, which is equivalent under
cancelation of unitaries to the transformation

1®,) > Uy |Pune) » (20)
efJ = Z/?jaleszjljﬁl. (21)

Thus, on the right-hand side of Egs. (20) and (21), |®unr)
and e are implemented in the default basis but are implic-
itly understood to be representations in the Jth UHF basis,

prior to the application of u /1, after which everything
is correctly expressed in the same (first) UHF basis. The
basis rotation is constructed in terms of the N x N coef-
ficient matrices C, transforming the atomic orbital basis
to the Jth molecular orbital basis and the atomic orbital

TABLE I. The size resources required for evaluation of matrix
elements of the Hamiltonian and overlap for H, and Hy with
different basis sets (for definition of these, see Sec. S1 of the Sup-
plemental Material [68]). The last column shows the number of
qubits required to construct the NOQE circuit of Fig. 1.

System Basis set Basis functions Spin orbitals, Qubits,
per H atom N 2N+1
STO-3G 1 4 9
H, 6-31G 2 8 17
6-311G 3 12 25
Hy STO-3G 1 8 17
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overlap matrix Sy:

N
Uj_1 = exp Z[IH(CJTSACI)]M(&;&‘I - &Z;Zzp)
rq=1

(22)

This can be efficiently implemented with Givens rotations
and single-qubit rotation gates, even over a device with lin-
ear connectivity [80] (see Sec. V). We note that the circuit
can be modified to reduce the gate cost by transforming
one of the two reference ansatz states to the basis of the
other one, rather than transforming both to the common
basis / = 1. This modification is employed in obtaining the
resource estimate counts in Sec. V.

While the current work focuses on ground and low-
lying electronic energy states, we point out that one may
also replace the UHF reference state in the circuit diagram
of Fig. 1 with a UHF state representing an excited elec-
tronic configuration to find other higher-lying states. For
example, the excited determinant |<I>f), where i < n and
a > n, would be prepared by X; |1)®" ® X, |0)®¥ ", where
X, denotes a bit-flip gate acting on the pth qubit.

One additional benefit of performing the measurements
using the modified Hadamard test is that we can thereby
directly incorporate the reduced overhead measurement
techniques of Ref. [90] without increasing the circuit
depth. The basic idea is to apply a tensor factorization to
the two-body part of the Hamiltonian, similar to the one
described for the cluster tensor in Eq. (14):

L
Hmz ;(wa ) L. (23)

One can then measure all of the 7,7, terms correspond-
ing to a particular value of / simultaneously by explicitly
applying the change of basis Z/A{lé on the quantum device
before performing a standard measurement in the computa-
tional basis. In our case, this can be accomplished without
any additional quantum resources, because the product

UBU ;-1 amounts to a single change of basis and can be

implemented using the same number of gates as Z/{J_)]
alone. Empirically, it has been found that taking L = O(N)
is sufficient to obtain a fixed relative error in the energy due
to the decay of the singular values in the first tensor factor-
ization of the Hamiltonian [66]. Reference [90] has found
that taking advantage of the decomposition in Eq. (23)
reduces the variance of the energy estimator by orders
of magnitude, even for small VQE calculations. More
study in the context of the off-diagonal matrix-element
measurements considered here will be useful.

There are also variants of the NOQE circuit that can
reduce the number of qubits required from 2N + 1 to
N —+ 1. In this case, however, the circuit depth will need to

be approximately doubled to accommodate application of
all four unitaries e?, Z/A{I_,l, LA{;_)I, and e~V to the N sys-
tem qubits. Suppose that the Hamiltonian (expressed in the
first UHF basis) is decomposed as a linear combination of
Pauli operators, H = >k cxPy. One strategy for reducing
the number of qubits would then be to use a single-ancilla
qubit to perform a Hadamard test on each of the unitary
operators e LA{JT%IIB;J/Al]_)wf’, estimating their expecta-
tion values with respect to |Pypr). Naively, this requires
us to condition the application of the state-preparation
unitaries on the state of the ancilla qubit.

However, as with the generic case of Fig. 1 in which
2N + 1 qubits are used, we can take advantage of the
fact that the state-preparation unitaries conserve particle
number. Rather than explicitly conditioning them on the
state of the ancilla qubit, we can instead use the ancilla
to control the preparation and uncomputation of |®yyg)
from the vacuum state, together with the operator ;. Note
that, as above, |®yyr) is simply a computational basis
state (although we implicitly work in two different bases).
We can therefore make a controlled preparation of |®yyr)
from the vacuum state using a single CNOT gate for each
occupied orbital, as shown in Fig. 2. Let C-Uygr denote the
set of CNOT gates that prepares |®yyr) conditional on the
state of an ancilla qubit and let C- Pk denote the controlled-
P;. gate. Due to the fact that 7, L{1_>1, U ,Ll, and e ¥ all
conserve particle number, we have the following equality:

(C‘UUHF)TeifJL?;_A(C'Pk)al—ﬂef[(c‘UUHF) [+) [vac)
1 . A A .
= E(lo) [vac) + U[';Hpe_UUJT_)lPkUmleq 1) [Punr)).
(24)

A quick computation verifies that measuring the ancilla
qubit in the X basis yields the quantity

Re((Duprl e Uy, Pily—1e™ 1) |upr) ), (25)
as desired. The imaginary part can be estimated in the
usual way, by beginning with the ancilla state in the —1
eigenstate of the Pauli Y operator (see Sec. S3 of the
Supplemental Material [68]).

On real quantum hardware, the matrix elements of
the Hamiltonian and overlap matrix would be evaluated
by repeatedly running the NOQE circuit of Fig. 1 or
Fig. 2, as in Ref. [26]. However, for this first accuracy-
benchmarking study of the NOQE approach on small
molecules, we evaluate the matrix elements by use of
a quantum simulator to generate representations of the
ansatz states |¢;) = U, e |®,) in the 2" -dimensional
vector space of FCI determinants. We then simulate
the idealized (i.e., noiseless) circuit result classically, by
directly evaluating the bitwise inner product (¢ | H |ds).

030307-9



UNPIL BAEK et al.

PRX QUANTUM 4, 030307 (2023)

|vac) {r CF T

A

Ui

(2)

il

o fiHr}-

P

FIG. 2. The NOQE circuit for evaluation of the off-diagonal matrix elements with fewer qubits. Here, Py arises from a decomposition
of the Hamiltonian (expressed in the /th UHF basis) in terms of Pauli operators. For the phase gate Py, we set & = 0 (Py = I) when
measuring Re(H}y) and & = 7 /2 when measuring Im(H};) (see Sec. S3 of the Supplemental Material [68]).

D. Technical details

We use OpenFermion [91], PySCF [92], and QChem
[93] to generate the reference states used in the NOQE
protocol. Both OpenFermion and OpenFermion-PySCF
are augmented to allow unrestricted Hartree-Fock (UHF)
states to be prepared. The UHF solutions themselves are
obtained via the Q-Chem 5 software package [93]. These
solutions to the Hartree-Fock equations are obtained with
the following procedure:

(1) Optimize the restricted open-shell Hartree-Fock
solution with all radical sites having unpaired elec-
trons and all unpaired spins pointing in the same
direction. For H,, this is the triplet state; for Hy, it is
the quintet state.

Spatially localize this first set of orbitals [94,95].
Hartree-Fock equations can at times yield spurious
results with spins in delocalized orbitals, especially
for species such as Hy [96], so this step removes
that possibility. Ensure that the orbitals are local-
ized such that physically identifiable determinants
are obtained as basis states. We note that for H;
there is no scope for standard localization proce-
dures [94,95], since only one orbital of each spin
is occupied. For Hy in the STO-3G basis, we obtain
local solutions by using an initial guess that consists
of one spin-up electron in each of the four 1s orbitals
and then optimized with square-gradient minimiza-
tion (SGM) [97], an algorithm that largely preserves
the local nature of the orbitals.

Generate all possible permutations of up and down
spins (on these radical sites) that have the desired
total m, value (equal to zero in this work, unless
specified otherwise). For Hy with my; = 0, there are
only two radical sites possible for one up and one
down spin, leading to two determinants. For m, = 0
Hy, there are four radical sites, on which two up and
two down spins have to be placed, resulting in six
possible spin configurations and hence six determi-
nants. These spin arrangements for H, and Hy are
shown in Fig. 3.

Optimize unrestricted Hartree-Fock states corre-
sponding to these permuted electronic configura-
tions, by using the determinants from the previous

)

)

4)

step (that utilize restricted open-shell orbitals) as
the initial guess. The SGM algorithm is used for
this optimization to ensure that the closest station-
ary state to the initial starting point is reached.
The resulting unrestricted Hartree-Fock solutions
are used for NOQE applications. We note that
other physically reasonable localization procedures
or choices of initial orbitals other than ROHF could
be used, although there will be no difference because
each optimized UHF determinant is a well-defined
stationary point in the orbital Hilbert space. The
key is to be already in the quadratic basin of each
stationary point with the initial guess.

The above procedure is similar to the manner in which ref-
erence determinants for the classical spin-flip (SF) NOCI
method are generated [50]. To briefly summarize the SF-
NOCI procedure, an active space is selected and then an
automated code performs spin flips within this active space
starting from a high-spin reference, in order to generate
all possible configurations with, e.g., m; = 0. Next, the
active orbitals are frozen and the rest of the occupied
orbitals in each configuration are allowed to relax. This
yields a set of nonorthogonal Slater determinants where
the core electrons have been allowed to polarize in order
to accommodate, e.g., an ionic configuration that might
have significant weight in the multireference wave func-
tion. In contrast to this SF-NOCI procedure, in NOQE no
orbitals have to be held frozen and full orbital relaxation
can be carried out on account of advancements in classical
algorithms for optimizing orbitals [98].

In this work, we consider systems with d radical sites
and 1 = d electrons within the total m; = 0 subspace. As
is shown, using only the m; = 0 subspace to describe
eigenvectors with different (3’2) (i.e., singlet, triplet, quin-
tuplet, ...) leads to advantageous cancelation of errors in
the energy gaps between these states. Therefore, we have
exactly d/2 up and d/2 down spin electrons. The total
number of NOQE reference states M is then equal to

(26)
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determinants. For the general case with d radical sites, 7,
up spins and ng down spins (where n, +ng < d, my; =
N« — 1g), the number of NOQE reference states is given
by

d!
© Nemp!(d — e —np)!

27

The low-rank circuits that prepare the NOUCC(2) ref-
erence states for NOQE are compiled using CIRQ [99].
The full circuit for calculating the off-diagonal elements
between NOQE reference states is shown in Sec. IIIC.
However, as noted there, for the benchmark calculations
presented in this work, we evaluate the matrix elements
directly in the computational basis and do not take into
effect the quantum measurement noise or circuit noise,
which would be present in experimental evaluation of the
off-diagonal matrix elements. This is consistent with our
goal in this work of establishing the ideal values possible
under a NOQE calculation.

IV. RESULTS
A. Hydrogen molecule

At its minimum-energy geometry, the H, molecule has
an internuclear separation (“bond length”) of 0.74 A. The
wave function at this geometry is well approximated by
a single RHF Slater determinant in which both electrons
occupy the same bonding spatial orbital. This RHF deter-
minant is, however, incapable of describing the dissocia-
tion limit of two independent H atoms (see Sec. S1D of
the Supplemental Material [68]). Indeed, the optimal sin-
gle determinant description for the dissociation limit of H,
consists of two independent atoms with one electron local-
ized around each. There are thus two UHF states possible,
corresponding to the two possible ways to arrange an up
and a down spin on the two atoms without spin pairing (as
shown in Fig. 3).

The behavior at internuclear distances between these
two limits is intermediate between them. The RHF deter-
minant continues to be the minimal-energy Hartree-Fock
solution for internuclear separations smaller than a cutoff
distance that is commonly referred to as the Coulson-
Fischer (CF) point [100]. Beyond the CF point, however,
it is energetically favorable to (partially) unpair the two
electrons. The minimum-energy Hartree Fock solutions are
then spin-symmetry-broken UHF determinants wherein
the individual atoms have nonzero net spin. There are two
such energetically degenerate UHF states because the net
spin on a particular atom can point either up or down (with
the net spin on the other atom being in the opposite direc-
tion to preserve total m; = 0). The spin-symmetry breaking
in these UHF states prevents them from being eigenstates

of the S? operator and instead causes them to be a mixture
of singlet and triplet states. The minimum-energy Hartree

Fock solution thus branches from a single RHF determi-
nant to two (overlapping) UHF determinants at the CF
point. This branching is continuous in both the energy and
its first derivatives, with discontinuities arising only in the
second derivatives of the energy, at the CF point [101]. The
two spin-symmetry-broken UHF states, therefore, have an
overlap that is close to 1 just beyond the CF point (hav-
ing barely branched from the same parent RHF state) but
is equal to O at an infinite internuclear distance.

These branching UHF states constitute our NOUCC(2)
reference states at distances beyond the CF point. They
recouple to yield the lowest-energy singlet (Sp) and lowest-
energy triplet (77) states in an approximately spin-pure
manner. Potential singularities in the S matrix are removed
by discarding singular values less than 10~#. At distances
shorter than the CF point, the RHF state is the only pos-
sible reference state. This has the consequence that the 7
state appears only beyond the CF point where there are
two reference states, while the Sy state can be described by
the RHF state and is thus also found at shorter distances.
We note that the inability of this chosen set of reference
states to model the 7 state at small internuclear distances
is not particularly limiting, because the 7 state is very
high in energy relative to the Sy ground state in this regime
and the ordering of the spin states is not in doubt here.
Indeed, the electronic structure in this “single-reference”
regime is well described by classical methods [102]. The
description of the ground and excited states beyond the CF
point is more challenging due to spin-symmetry breaking
[36,101,103]. We note that the precise location of the CF
point has a slight dependence on the basis set utilized but
has a finite limiting value as the basis-set size is increased
to the complete basis-set limit. Further discussion about
the CF point is provided in Sec. S1D of the Supplemental
Material [68].

Since there are (at most) two reference states in this
description of Hj, only a single off-diagonal matrix-
element energy evaluation is needed. Given a single-
particle basis size of N spin orbitals, we note that 2N + 1
qubits are needed to construct the NOQE circuit in Fig. 1 or
N + 1 qubits for the circuit shown in Fig. 2. We carry out
calculations with three basis sets, namely, STO-3G [104],
6-31G [105], and 6-311G [106]. The following discussion
is based on results obtained with the 6-311G basis. Results
obtained with the other two basis sets show comparable
results and are presented in Sec. S5 of the Supplemental
Material [68]. The number of basis functions per hydrogen
atom, the number of spin orbitals (), and the total number
of qubits required to construct the NOQE circuit of Fig. 1
are listed in Table I. The resulting circuit depths (number
of layers of parallel gate operations) for these calculations
employing the low-rank factorization of the doubles tensor
operator 7 are listed in Table II.

Figure 4 presents the computed NOQE absolute ener-
gies for the Sy [Fig. 4(a)] and the T [Fig. 4(b)] eigenstates
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individual H atoms.

as a function of the internuclear separation, for calcula-
tions using the NOUCC(2) ansatz with the 6-311G basis
set. Classical NOCI results without dynamic correlation,
i.e., without MP2 amplitudes, and the exact FCI results are
also provided for comparison. We observe that NOQE with
NOUCC(2) provides a significant improvement on classi-
cal NOCI at all distances for both the S and T} eigenstates,
yielding a much closer approximation to FCI. In particular,
the NOQE S result smoothly traverses the CF point and is
successful in removing the spurious second local minimum
just beyond the CF point that is evident in the classi-
cal NOCI S, state. Indeed, the results from NOQE with
the NOUCC(2) ansatz are qualitatively in good agreement
with FCI at all internuclear distances.

We now consider quantitative accuracy, showing first
the energy error relative to the FCI results in Fig. 5(a). We
see that the NOQE S, and T state energies differ from FCI

TABLE II. The circuit depth of the (full-rank) ansatz-
preparation unitary operator u ;_1e¥ with MP2 amplitudes, i.e.,
NOUCC(2), for H, with increasing basis-set size. These ansatz
preparations may be performed in parallel, as in Fig. 1, or in
sequence, as in Fig. 2.

Basis set Circuit depth Circuit depth
(SVD) (Takagi)
STO-3G 53 38
6-31G 386 255
6-311G 1061 864

+ &
+

UHF reference configurations for H, and square Hy at the dissociation limit, showing the spatial distribution of spins on

by more than chemical accuracy at most distances and that
the error is below chemical accuracy only at larger internu-
clear separations, where the system becomes increasingly
well approximated by two independent atoms. The maxi-
mum error for the Sy state is about 8 mHa, right around the
CF point.

In practice, however, quantum chemists are seldom
interested in absolute energies and instead prefer to look at
energy differences between states (commonly referred to as
“relative energies”). The most chemically relevant quantity
for Hj is therefore the energy difference between the Sy and
T, states (i.e., the “singlet-triplet gap,” which we define
here as Er, — Eg,). Since NOQE with the NOUCC(2)
ansatz overestimates the absolute energies of both the Sy
and T states (see Fig. 4), this can lead to some cancela-
tion of systematic error for the singlet-triplet gap. This is
shown in Fig. 5(b), which shows that for the 6-311G—basis
calculation, the magnitude of the singlet-triplet gap error
is lower than the absolute energy errors at all internuclear
distances. Around the CF point, it is less than 4 mHa, about
half of the absolute error in Sy. Furthermore, the maxi-
mum singlet-triplet gap error decreases as the basis-set size
of the calculation is increased from STO-3G to 6-31G to
6-311G, suggesting that larger more physically accurate
basis sets such as cc-pVDZ (with five basis functions per H
atom, resulting in 20 spin orbitals) could yield even lower
errors. This is discussed in more detail in Sec. S5C of the
Supplemental Material [68].

We now consider the impact of scaling the MP2 parame-
ters on these results, which has been found to be beneficial
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FIG. 4. A comparison of the NOUCC(2) and FCI eigenener-
gies for H,, with the 6-311G basis set. Classical NOCI results
(without dynamic correlation) are also provided for comparison.
The location of the Coulson-Fischer (CF) point (1.19 A for the
HF state in the 6-311G basis) is marked as a dotted gray line.
Note that the T state only appears beyond the CF point for NOCI
and NOUCC(2) calculations. (a) The lowest-energy singlet (Sy)
state. (b) The lowest-energy triplet (7}) state.

in classical quantum chemistry [61,62]. Therefore, we
investigate the effect of uniformly scaling MP2 amplitudes
by scaling parameters s = 1.2 and 1.3, as suggested clas-
sically by SCS- and SOS-MP2 (Sec. 111 B 1). We note that
for H, with UHF states derived from the reference con-
figurations of Fig. 3, there are no same-spin amplitudes,
so only the opposite-spin amplitudes are relevant. Figure 6
shows that the use of scaled MP2 amplitudes can signif-
icantly lower the errors in both absolute energies and the
singlet-triplet gap. Indeed, the scaled MP2 amplitudes for
scalings s = 1.2 and s = 1.3 now yield singlet-triplet gaps
within chemical accuracy from FCI at all internuclear dis-
tances [Fig. 6(b)]. Improvement of the Sy absolute energies
is less dramatic but still quite significant, with calculations
for s = 1.3 almost halving the maximum error.

(a) 0.008
—o— Sy error
0.0071 —o— T error
0.006 1 === Chemical accuracy
©
L 0.005
5
5 0.004 1
3
5 0.0031
[
w

0.002 1
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Internuclear distance (A)
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FIG. 5. Errors in energies relative to FCI for H, from NOQE
with the NOUCC(2) ansatz states. The location of the CF point
is marked with a dotted gray line in Fig. 5(a) but not in Fig. 5(b),
since the precise location of this point depends slightly on the
basis used. (a) The error in the Sy and 7 eigenenergies with the
6-311G basis. (b) The magnitude of the error in the singlet-triplet
gap with different basis sets.

We are also interested in ascertaining the quality of
approximation of the NOQE states to the true FCI states.
To this end, we define the state infidelity

Ieci = 1 — [{¥noge | Wrcr) %, (28)

which is the fraction of the FCI state not captured by
NOQE. Figure 7 shows the infidelities /pcy of the singlet
and triplet NOQE states as a function of the internuclear
distance. The maximum infidelity over all distances is
approximately 1% (at the CF point) without any amplitude
scaling and is further reduced on scaling the amplitudes
with s > 1. This indicates that both the Sy and 7; states
are reproduced to approximately 99% or better fidelity by
NOQE with the NOUCC(2) ansatz. We also note that the
NOQE states also show a high degree of spin purity, with
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FIG. 6. Energy errors relative to FCI for singlet and triplet
states of H, from NOQE with NOUCC(2) ansatz states in which
the MP2 amplitudes are scaled by s (calculations made with the
6-311G basis). The location of the CF point is marked with a
dotted gray line. (a) The S; energy error relative to FCI. (b) The
magnitude of the error in the singlet-triplet gap, relative to FCI.

a maximum error of 3 x 107 in (3‘2) against FCI over the
same range of internuclear distances.

B. Square H, system

We now consider a system that is considerably more
challenging for classical methods, namely, the square
geometry Hy species, in which all four H atoms are
equivalent. While the formation of Hy from separate H,
molecules is energetically unfavorable, the square Hy
molecule represents a benchmark system for quantum
chemical studies of strong electron correlation. In partic-
ular, for short side lengths, square Hy is a model for more
complex antiaromatic molecules such as cyclobutadiene,
which possesses a triplet ground state. However, longer
side lengths lead to singlet ground states with four strongly
correlated electrons. The switch from a triplet ground state

(a)

—o— s=1.0
—o— s=1.2
—o— s=13

0.010+

0.0081

o
o
S
>

Infidelity

0.004

0.002+

0.000

06 08 10 12 14 16 18 20
Internuclear distance (A)

(b)
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E 0.004{
0.003 1
0.002
0.0011

0.000+

12 14 16 18 2.0
Internuclear distance (A)

FIG. 7. The infidelity Igc; relative to the FCI states of the
amplitude scaled NOQE states derived from the NOUCC(2)
ansatz, for H, with the 6-311G basis [see Eq. (28)]. The loca-
tion of the CF point is marked with a dotted gray line. (a) The
infidelity of the NOQE S state. (b) The infidelity of the NOQE
T, state.

to a singlet ground state occurs at 0.82 A in the STO-
3G basis, although the two states remain fairly close in
energy in the neighborhood of the crossover point (with
the singlet-triplet gap changing from —5 mHa at 0.76 A
side length to 5 mHa at 0.88 A).

At the dissociation limit for total spin m; = 0, there are
four independent H atoms, two of which have up spins
and two down spins, leading to six possible arrangements,
each of which corresponds to a separate UHF state. These
six UHF states are depicted in Fig. 3 and correspond to
all possible spin arrangements without pairing. At shorter
side lengths, an analogous set of UHF solutions is targeted
and constructed using the protocol of Sec. III D. Unlike
the situation for H,, where the two possible UHF states
are always degenerate for all internuclear distances, for Hy
the six possible UHF states for Hy, which are shown in
Fig. 3, are not degenerate for all values of the side length.
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The J =3 and J = 6 states form a doubly degenerate
set corresponding to the UHF global minimum, while the
J =1,2,4,5 states form another degenerate set of higher
energy. Detailed analysis shows that in the STO-3G basis,
for side length less than 1.105 A, the J = 1,2,4,5 UHF
states collapse to two closed-shell RHF states, reflecting a
spin-pairing symmetry analogous to that found at the CF
point for H,, while for larger distances all six UHF states
are linearly independent. The side length of 1.105 A is not
strictly speaking a CF point, because not all determinants
show the transition in this case. However, it is a close ana-
log to this and we refer to it as the CF point for Hy in the
STO-3G basis.

In contrast to the situation for H,, the minimum-energy
point for Hy now lies well within the six-determinant spin-
symmetry-broken regime, rather than in the spin-paired
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FIG. 8. A comparison of the NOUCC(2) and FCI eigenener-
gies for Hy, with the STO-3G basis set. Classical NOCI results
(without dynamic correlation) are also provided for comparison.
The location of the CF point (1.105 A for the HF state in the
STO-3G basis) is marked as a dotted gray line. Note that the
T, state only appears beyond the CF point for the NOCI and
NOUCC(2) calculations. (a) The lowest-energy singlet (Sp) state.
(b) The lowest-energy triplet (77) state.

TABLE III. The circuit depth of the (full-rank) ansatz-
preparation unitary operator u ;1% with MP2 amplitudes, i.e.,
UCC-MP2, for the six reference states of Hy shown in Fig. 3, in
the STO-3G basis. The J = 3 and J = 6 states require lower cir-
cuit depths, as the MP2 amplitudes corresponding to correlation
between spins of the same sign are zero from symmetry. These
ansatz preparations may be performed in parallel, as in Fig. 1, or
in sequence, as in Fig. 2.

Reference state Circuit depth Circuit depth,
J (SVD) (Takagi)

1 555 371

2 594 386

3 283 183

4 593 399

5 583 390

6 281 183

regime (see Fig. 8).There are at most six UHF states to con-
sider and thus no more than 15 off-diagonal sets of matrix
elements need to be made for all values of the side length.
Since the NOQE calculations remove linear dependencies
around the CF point by discarding the overlap-matrix sin-
gular values of 10~ or less, in practice this number can be
smaller for some distances. The number of basis functions
per hydrogen atom, the number of spin orbitals (), and
the total number of qubits required to construct the NOQE
circuit of Fig. 1 for Hy with the STO-3G basis are listed
in Table 1. The corresponding circuit depths employing
the low-rank factorization the two-body excitation tensor
operator 7 are listed in Table III.

Figure 8 shows the NOQE potential-energy surface for
the Sy and 7| states of square Hs using the NOUCC(2)
ansatz with the STO-3G basis and Fig. 9(a) shows the
corresponding energy errors for both states. We see that
NOQE and FCI agree very well for these states, while clas-
sical NOCI proves to be quite inadequate at shorter side
lengths for the Sy state. Figure 9(a) reveals that the energy
difference between NOQE and FCI for the S state is sim-
ilar to that observed for H,, with a maximum deviation
around 7 mHa near the CF-point analog for Hy. However,
we note that the 7 state has a very low deviation from FCI,
being within chemical accuracy at all side lengths.

The lowest-energy quintet (Q;) state shows very inter-
esting behavior. Figure 9(a) shows that the error against
FCI is quite low at longer bond lengths but in contrast
to the behavior of the Sy and 7} errors, the quintet Q-
state energy error rises dramatically as the CF point is
approached. This behavior has a physical interpretation,
namely, the consequence of increasing spin contamina-
tion as the side length shortens. At side lengths shorter
than the CF point H, in the STO-3G basis at 1.105 A
side length, the NOUCC(2) subspace of reference states
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FIG. 9. Errors in energies relative to FCI for square Hy from
NOQE with the NOUCC(2) ansatz states. The location of the
CF point is marked with a dotted gray line. (a) Errors in the Sy,
T}, and Q; NOQE energies with the NOUCC(2) ansatz. (b) The
NOQE Sy energy errors for the NOUCC(2) ansatz with scaled
MP2 {45 }.

provides an inadequate description of the Q; state, because
the former is targeting the low-energy states, while the O,
state is very high in energy relative to the 77 and Sy states.
Indeed, the state with the greatest quintet character deriv-
ing from the NOQE calculation with the NOUCC(2) ansatz
in this regime is a heavily spin-contaminated state with
(§2) ~ 4 — 5, whichis a poor approximation to the true Q;
state, for which ($2) = 6. This heavily spin-contaminated
state is best viewed not as a proper eigenstate but, rather,
as the residue left in the NOQE subspace after the lower
energy So and 7; states have been solved for, with the
high degree of spin contamination being a mark of its
poor quality. However, when the side length is stretched,
the O; energy is lowered and the state is then better cap-
tured by the NOUCC(2) ansatz. Thus, for a side length
greater than 1.25 A, the absolute spin contamination in
the highest-energy NOQE state is reduced to 0.05 or less,

ie., <S~2) > 5.95. The state can be reasonably labeled as
0O, from that point on but not at shorter distances due to
greater spin contamination and therefore we do not plot
0O at the shorter bond lengths in Fig. 9(a) or elsewhere.
This example indicates that the extent of spin contamina-
tion provides a useful internal check on the accuracy of the
NOQE energies.

The energy errors in the Sy state can be further reduced
by scaling the MP2 amplitudes, as shown in Fig. 9(b).
Since both same-spin and opposite-spin MP2 amplitudes
are present for Hy with m, = 0, we investigate the behav-
ior of both the SCS- and SOS-MP2 models, as well as
their uniform-scaled analog. Figure 9(b) shows that uni-
form scaling of the MP2 amplitudes yields the lowest error,
with a value of s = 1.3 bringing the NOQE ground-state
singlet Sy energy error below chemical accuracy for all
internuclear distances. We do not separately examine the
behavior of the singlet-triplet gap, as the much lower error
in the 7 energy for this basis set [as shown in Fig. 9(a)]
indicates that it would look very similar to the Sy energy
error plot.

We also evaluate the extent of spin contamination in
the Sy state, shown in Fig. 10(a). (3’2) is below 0.01 even
with the unscaled approach, indicating quite low error ver-
sus the exact value of (3”2) = 0. Scaling reduces the error
further. The error in (S’Z) for the 7) state (not shown)
is considerably lower (maximum deviation of 5 x 107°),
showing that the low-energy Sy and 7 states are mod-
eled in a nearly spin-pure fashion by NOQE with the
NOUCC(2) ansatz. On the other hand, the higher-energy
Q) state shows greater levels of spin contamination, hav-
ing (3’2) < 5.94 (in the unscaled case) at distances shorter
than 1.25 A against the exact value of (:8’2) = 6. Indeed,
(82) for the closest analog to the Q; state reaches 45 at
side lengths shorter than the CF point, as previously noted.
Interestingly, the SCS- and SOS-MP2 amplitudes worsen
spin contamination for the Q) state at shorter side lengths
(having error > 0.01 at 1.45 A), as compared to unscaled
or uniformly scaled results (which have approximately
0.006 error at by 1.45 A).

We note that while spin purity is a necessary measure of
the quality of the final NOQE states, it is not a sufficient
one. Figure 10(b) shows the infidelity of the S, state for
Hy, which reveals that NOQE with unscaled MP2 ampli-
tudes in the NOUCC(2) reference states attains over 99%
fidelity at all values of the side length of the molecule, with
the scaled amplitude ansatz states showing even greater
overlaps with the FCI eigenstate. Lower infidelity values
are obtained for the 7 state, being 0.08% or less in all
cases. Even the Q, state shows infidelities approximately
1% or less for side lengths longer than 1.45 A with the
unscaled and uniformly scaled ansétze, although SCS- and
SOS-MP2 amplitudes lead to greater infidelity (reaching
approximately 2%) at 1.45 A.
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FIG. 10. The spin contamination error and state infidelity [/gc,
Eq. (28)] relative to the FCI states of the amplitude-scaled NOQE
states derived from the NOUCC(2) ansatz, for Hy with the STO-
3G basis. The location of the CF point is marked with a dotted

gray line. (a) The error in (82) for the S, state. (b) The infidelity
in the Sy state.

C. NOUCI for H; in the STO-3G basis

We also undertake a preliminary investigation of NOQE
with the NOUCJ (L = 1) ansatz (for the remainder of
this section, the L = 1 label is suppressed) by examining
its performance for H, in the STO-3G basis. A compar-
ison of the errors in the S, state (versus FCI) for the
NOUCIJ and NOUCC(2) ansétze is shown in Fig. 11. The
T, state in this basis has zero correlation and is thus not
considered. It appears that the maximum-energy error is
lower for NOQE with the NOUC] ansatz than the unscaled
NOUCC(2) ansatz, although scaling NOUCC(2) ampli-
tudes by 1.3 leads to even better performance. However,
the error in the Sy NOUCJ energy decays rather slowly
with distance and remains above chemical accuracy until
around 2 A. In contrast, NOQE with NOUCC(2) shows a
rapid decrease in error with increasing side length, going
below the chemical accuracy threshold at around 1.5 A.

—— NOUCC(2)s =1.0 —— NOUCJ
—— NOUCC(2)s =1.3

0.010; ——- Chemical accuracy

o
=3
S
o

0.0061

0.004 1

S, energy error (Ha)

0.0021_

0.000-

06 08 10 12 14 16 18 20
Internuclear distance (A)

FIG. 11. A comparison of the Sy energy errors with
NOUCC(2) and NOUCIJ (L = 1) against FCI for H, in the STO-
3G basis. The location of the CF point (1.155 A for H, in the
STO-3G basis) is marked with a dotted gray line.

That said, increasing L beyond 1 (up to N?) in the NOUCJ
ansatz offers a route toward systematic improvement. As
discussed further in Sec. V, the lower resource cost asso-
ciated with the NOUC] ansatz (particularly for the choice
of L = 1) makes it very appealing for use in the NOQE
framework, meriting further investigation.

D. Low-rank truncation for H, and Hy

The low-rank tensor decomposition of the cluster ten-
sor Egs. (3)~(5) that is given by Eq. (13) (for details,
see Sec. S2 of the Supplemental Material [68]) allows for
a systematic reduction of the NOQE circuit. For single-
reference states, this can be done straightforwardly by
truncation of the number of singular values L of the cluster
tensor T to reduce its effective rank (the analogous trun-
cation of p; has been found to be less effective for the
UCC operator [63]). We note that the error bounds pre-
sented in Sec. S4 of the Supplemental Material [68] may
be used to guarantee a maximum NOQE energy error for
a given choice of truncation. However, this is in practice a
loose bound that overestimates the observed energy devi-
ation when many singular values are discarded. While the
L truncation strategy is not directly applicable to general
multireference states, because each state may have a dif-
ferent truncation value, for H, the cluster operators for the
two nonorthogonal reference states are equivalent by spin
symmetry. In this situation, a single value of L can then
be used for both reference states to analyze the effect of
truncation on the NOQE energy.

Figure 12 shows, for H, with NOUCC(2), the depen-
dence of the NOQE ground-state energy on the choice of
truncation parameter L, using the Takagi decomposition of
the cluster supermatrix T, at the equilibrium internuclear
distance [Fig. 12(a)] and at the CF point [Fig. 12(b)]. The

030307-17



UNPIL BAEK et al.

PRX QUANTUM 4, 030307 (2023)

full-rank value is defined as Loy < NoeeNvik = NN — 1)
and is the residual number of singular values of T retained
when all zero and near-zero singular values up to a cer-
tain fixed precision threshold (taken here as 107'?) are
discarded, i.e., the effective full rank of T. Figure 12(a)
demonstrates that, at the equilibrium bond length of 0.75
A, we can truncate the circuit by setting L = Lyyne =
11 instead of L = L.y = 16 and thus reduce the circuit
depth, while remaining within chemical accuracy of the
FCI result. Figure 12(b) shows the relatively more advan-
tageous behavior of rank truncation when the bond is
stretched to 1.2 A (the CF point in the 6-311G basis).
Although the full-rank NOQE energy lies slightly outside
chemical accuracy, we find that the energy at truncated val-
ues of L converges more quickly to the full-rank result.
This is because the longer bond distance enables the occu-
pied and virtual orbitals to be more localized and reduces
their mutual overlap, effectively lowering the rank of the T
matrix.

For other multireference states, such as those of Hy, we
must use an alternative truncation strategy to ensure con-
sistency across the cluster tensor decompositions derived
within UHF single-particle bases of different symmetry,
which may have different L.g. Since we are interested in
the efficacy of the truncation procedure, we aim to find
the minimum value of L, defined as Ly, for each single-
reference state, such that truncating all cluster operators to
their individual Ly, values will yield an energy estimate
within 1.6-mHa precision of the energy obtained using the
full-rank cluster operators. Possible approaches include the
use of a fixed tolerance threshold for the singular values of
the cluster operator or, alternatively, a norm-based crite-
rion as in Ref. [67]. Here, we employ a truncation strategy
based on the vector ¢”-norms.

We compute the vector of ordered singular values 6 =
diag(X), where X is the diagonal matrix of singular values
that results from SVD or Takagi decomposition of T (see
Sec. S2 of the Supplemental Material [68]), and discard the
largest subset of L.y — L singular values oy satisfying

Leg 1/p
( > IUzlp) < e,

I=L+1

(29)

where ¢, is a variable threshold. Here, ¢, is the inde-
pendent variable and L is the dependent variable to be
determined. In this work, we use p = 2 and define ¢ = ¢;.
We first establish the values of L. for each of the refer-
ence states in the multireference ansatz and then perform
a sweep over &, truncating the vectors of singular values
of each reference state according to Eq. (29), until we find
the largest value of & = ey that retains a desired level
of accuracy in the multireference energy relative to the
full-rank result. This sets the value of Ly, for each of
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FIG. 12. The NOQE ground-state (Sp) energy dependence on
the truncation level L of the cluster tensor, representing the cir-
cuit truncation level, for H, with s = 1.3 in the 6-311G basis set
at the equilibrium bond distance [panel (a)] and at the CF point
[panel (b)]. The blue point labeled “full-rank” shows the value
L. The green shaded region corresponds to the range of energy
that is within chemical accuracy of the FCI result. (a) The NOQE
energy versus L at 0.75 A, the equilibrium bond distance of H,.
(b) The NOQE energy versus L at 1.2 A (the CF point of H; in
the 6-311G basis).

the reference states, from which the fractional reduction in
circuit depth can then be estimated (see Sec. V).

The left-hand panels of Fig. 13 show the NOQE ground-
state energy dependence on the £?-norm threshold & for
H,—6-311G at the equilibrium bond distance [Fig. 13(a)]
and the CF point [Fig. 13(b)]. The right-hand panels of
Fig. 13 show the corresponding plots for square Hy in the
STO-3G basis at the equilibrium geometry [side length
1.3 A, Fig. 13(c)] and the CF point [side length 1.1 A,
Fig. 13(d)]. Because the rank truncation is not a varia-
tional procedure, it is possible that truncation can yield
NOQE energies slightly below the true NOQE values
in the full-rank regime. However, the energies are still
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The NOQE ground-state (Sy) energy dependence on the £2-norm threshold level &, for H, in the 6-311G basis [panels (a)

and (b)] and Hy in the STO-3G basis [panels (c) and (d)], with s = 1.3 in their equilibrium geometries at their respective CF points.
The blue points labeled “full-rank” and the solid blue lines show the values with untruncated circuits. The singular values o; of the
cluster tensor that are removed by the £2-norm truncation are set to zero and the corresponding circuit blocks are then omitted, leading
to savings in the circuit depth. (a) The NOQE energy versus ¢ at 0.75 A (the equilibrium bond distance of H,). (b) The NOQE energy
versus ¢ at 1.2 A (the CF point of H, in the 6-311G basis). The effects of truncation of the two smallest singular values (o; < 10~%)
give rise to energy changes of less than 1 x 10~® Ha and are not shown in the plot. (c) The NOQE energy versus ¢ at 1.3 A side length
(the equilibrium bond length for square Hy). (d) The NOQE energy versus ¢ at 1.1 A side length (the CF point for square Hy in the

STO-3G basis).

variational with respect to the FCI solution. For H4 we can
divide the reference states into two groups depending on
the spatial distributions of the spins, as shown in Fig. 3.
There are four configurations (J = 1,2,4,5) in which the
two spins of the same sign are on the same edge of the
square and two (J = 3,6) where the spins of the same
sign are diagonally opposite each other on the square.
For each group, we calculate the fractional circuit-depth
reductions after truncation, Liunc/Ler, Which we report
in Table V. We also compute the total fractional reduc-
tion in the number of singular values over all references,
(Zﬁl LY )/ (Zf}il Lgf)), which we refer to here as the
total cost reduction. We place emphasis on the single-
reference circuit-depth reductions since they are directly

related to the requisite coherence times of qubits on the
quantum processor. However, it should be noted that the
total cost reduction estimates are not directly related to the
coherence time, because the circuits for different matrix
elements can be run independently or in parallel on dif-
ferent sets of qubits. These estimates can instead be related
to the total gate count (Sec. V). The total cost-reduction
estimates are thus complementary to the single-reference
circuit depths in discussing the overall effectiveness of
rank truncation for a given NOQE system.

We observe a total cost reduction relative to the full-rank
calculation of 18.8% and 15.6% at the equilibrium and the
CF point, respectively (Tables IV and V). We note that dif-
ferent truncation methods (e.g., using a different £7 -norm)
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TABLE IV. Calculations of total circuit cost reduction for H,
in the 6-311G basis (with s = 1.3) at the equilibrium distance
(0.75A) and at the CF point (1.2 A). For each calculation, the
£2-norm threshold ey is selected so that any & < ey will yield
truncated energies lying within 1.6-mHa precision of the full-
rank result. J = 1,2 refer to the spin configurations for H, in
Fig. 3.

Internuclear £%-norm Lirunc / Lefr Total cost
distance (A) threshold v =12 reduction (%)
0.75 2.4 x 1072 9/16 43.8

1.2 2.8 x 1072 7/18 61.1

result in different estimates of Lyunc/Ler and thus different
percentages of total circuit cost reduction.

Comparing the overall circuit-reduction estimates for H,
in the 6-311G basis (N = 12 spin-orbitals) and Hy in the
STO-3G basis (N = 8 spin-orbitals), we see that the effec-
tiveness of the low-rank truncation is larger for the greater
basis-set size, in agreement with the conclusions of norm-
based truncation in Ref. [63]. These results for H, and Hy
also suggest that the circuit reduction is more significant at
larger distances, regardless of the relative location of the
equilibrium and CF points. In general, the utility of low-
rank decompositions is most apparent in cases where there
are a large number of very small singular values. Thus,
we could expect much greater reductions in circuit depth
than those found here, when decomposing MP2 amplitudes
corresponding to spatially localized occupied and virtual
orbitals that are well-separated (or more generally, nearly
orthogonal), as is the case in long saturated hydrocarbons.

V. CIRCUIT RESOURCE ESTIMATION

In this section, we evaluate quantum resource estimates
for the low-rank factorized NOUCC(2) algorithm as a
function of (i) the system size (taken as the number of spin
orbitals N) and (ii) the number of radical sites d that are
directly involved in the strong static electron correlation.
Specifically, we are analyzing the circuit in Fig. 1, with the

TABLE V. Calculations of total circuit cost reduction for Hs in
the STO-3G basis (with s = 1.3) at the equilibrium side length
(square with side length 1.3 10\) and at the CF point (square
with side length 1.1 A). The ¢%>-norm threshold &, is selected
for each calculation, so that any & < e Wwill yield truncated
energies lying within 1.6-mHa precision of the full-rank result.
J =1,2,4,5 correspond to the “edge-parallel” spin configura-
tions and J = 3, 6 to the “diagonal-parallel” spin configurations
for Hy in Fig. 3.

Side norm  Lgune/Ler  Luwunc/Les  Total cost
length (A) threshold (J =1,2,4,5) (J = 3,6) reduction (%)
1.3 1.8 x 1072 10/12 6/8 18.8

1.1 2.4 %1072 11/12 5/8 15.6

small modification that the basis rotation is relative, i.e.,
NO reference J is always rotated into /, U ;. 1, instead of
a common global basis. The two approaches are equiva-
lent but the relative rotation reduces the gate complexity
by a constant factor for each off-diagonal matrix element
evaluated.

A. Circuit cost of multireference ansatz preparation

The number of NO reference states in this work is
denoted as M. This scales binomially with the number of
radical sites, or “active space orbitals,” d, and the number
of electrons 1 within the total m; = 0 subspace, accord-
ing to Eqgs. (26) and (27). For example, for H, we have

M= (f) = 2 reference states, while for Hy we have M =

(3) = 6. Recall that it is found to be advantageous (in
terms of maximizing error cancelation in spin-gap quan-
tities) when, for example, in the case of Hq, singlet, triplet,
and quintet NOQE eigenstates are taken to be linear com-
binations of determinants in the mg = 0 spin sector. The
computation cost associated with classical diagonalization
of an M x M matrix is therefore exponential with d (as
also for classical NOCI) but for many difficult molecu-
lar applications of interest, we can expect the number of
radical sites d to be less than ten. There will be M diag-
onal matrix elements of the NOQE Hamiltonian, H, and
M (M — 1)/2 upper triangular matrix elements (not includ-
ing the diagonals). One matrix element, H;;, requires two
controlled N x N SWAP gates, two unitaries ¢ and % to
prepare the two NO reference states, and one additional
unitary basis rotation U, (we ignore the two Hadamard
gates on the ancilla qubit).

When running quantum algorithms on NISQ devices,
one critical quantity of interest is the number of two-qubit
gates required, typically the CNOT gate count. We use the
fact that a two-qubit Givens rotation, a paired number-
operator rotation (""" with p # ¢), and a controlled-
SWAP (CSWAP) gate require four, two, and eight CNOT
gates, respectively. We note that the number-operator pair
rotations would incur additional CNOT gates on a linear
architecture in the form of a SWAP network to connect
the non-neighboring qubit pairs [80,107]. However, in the
current analysis, for simplicity, we assume full connectiv-
ity on the device.

Each U basis rotation can be implemented with 2("?)
Givens rotations, accounting for unrestricted orbitals. For
the /th UCCMP2 reference state, the number of basis-
rotation operators is 1 + mL (where L < rank(T) and the
number of Y2 terms per singular value is m = 4 for SVD
or m = 2 for Takagi, for a total of mL circuit blocks).
Alternatively, with the UCJ approach in Eq. (15), only
two basis rotations are needed (equivalent to L = 1). In
each circuit block, there are (3) = N(W — 1)/2 distinct
number-operator pair products (excluding diagonal terms).
The controlled (N x N)-qubit SWAP will require N pairs
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of CSWAP gates (eight CNOTs each). Therefore, the total
number of CNOT gates can be decomposed into the follow-
ing CSWAP, Givens, and number-operator terms:

NEWAR = 8 x 2 x 2N = 32N, (30)

NS =4 xk(2 X 2<N2/2> x (1 +mL)+2<N2/2)>,
GD

fiph N N
Né’N"OT:ZXk(Z) xmLx2=4kmL<2>. (32)

Note that the 2(N2/2) in Eq. (31) corresponds to the u (/1
term and that k is the kth-order Trotter-Suzuki decomposi-
tion.

The number of CNOT gates for one off-diagonal NOQE
matrix element is then equal to

Hy  _ a7 SWAP Givens fipiq
Nenor =Nenor +Nenor + Newors 33
while the number of CNOT gates required for a diagonal
term, Hy, is

N 2 npA,
N or =4 x 2( 2/ ) x (1+mL) + Nodp/2. (34)

Overall, the total number of CNOT gates, NCTI?%'T, is then
equal to

MM —1)

Total Hiy
N CNOT — 2 N CNO

e OM?*kN?L).

H,
1+ MN cxor

(35)

A second important resource count is the number of
single-qubit non-Clifford 7-gates, which is relevant to
both NISQ and fault-tolerant quantum devices, since these
rotations enable universal quantum computation. Alterna-
tively, a more general analogous quantity is the number
of arbitrary single-qubit-rotation gates (e.g., R;) which
can be decomposed into a number of 7 gates scaling as
1.151og,(1/€syn) + 9.2 with arbitrary synthesis error €y,
using the result from Ref. [108]. A single Givens rota-
tion, a single number-operator product, and the controlled
(N x N)-qubit SWAP require 2N, 3N, and 7N R, gates,
respectively.

We now consider all N(NV + 1)/2 relevant number-
operator products, including the diagonals, because the
diagonal 7,71, terms contribute single-qubit rotations. In
general, the number of R, gates, N, for generating each

Takagi-factorized UCCMP?2 reference ansatz is

NSWAP — 7 %2 x 2N = 28N, (36)

NRGivens =2x%xk (2 X 2(N2/2> x (1+mL) +2<N2/2>) ’
(37)

Aiph NV +1
Nqu=3xk%

x mL x 2 = 3kmLN(N + 1).
(38)

The total number of R, gates for evaluation of an off-
diagonal matrix element of H is given by

NII:IJ — NRSWAP _i_ngyivcns +N£’p;’q (39)
and the number of R, gates for evaluation of diagonal
Hamiltonian matrix elements is

N/2 Aiph
N£111=2X2< ; ) X (1+mL)+NRP q/z (40)

Overall, including the dependence on the number of NO
basis states, M, the total number of R, gates can then be
expressed as

MM —1
%Nf” + MNJ" € OMPkN>L), (41)

N;{Otal —
which scales the same as the CNOT gate complexity.

We can use these resource counts to provide an empiri-
cal estimate for the overall gate counts required to achieve
chemical accuracy for a given molecular system. In the
case of UCC, the asymptotic scalings of the two rele-
vant truncation indices of Eq. (14) are O(N?) for L and
O(N) for py. Using the truncation thresholds that have
been shown in Ref. [63] to preserve chemically accu-
rate energies for alkane chains of increasing length (up
to eight carbon atoms), we estimate that the implied scal-
ing prefactors for L and p; are 0.04 and 1, respectively.
In other words, L = 0.04N? and p; = N. In NOUCC(2),
UCC amplitudes are replaced with amplitudes obtained
from MP2, decomposed in an analogous way, and we
assume that similar levels of compression will be achieved.
The overall CNOT counts are plotted in Fig. 14 for two (H»),
four (square Hy), and six radical sites. Sizable reductions
in gate count result due to the eigenvalue truncation pro-
cedure described above and we find that the addition of
a single radical site increases the two-qubit gate count by
approximately one order of magnitude. We note that the
overall scaling of the R, gate counts is very similar.

The use of the UCJ ansatz in our NOQE frame-
work is likely to be relatively advantageous, especially
from a resource-cost perspective. Recall that for Hj,
NOUCIJ(L = 1) is sufficient to produce comparable accu-
racy to NOUCC(2) with an untruncated factorization of

030307-21



UNPIL BAEK et al. PRX QUANTUM 4, 030307 (2023)
“ : N , : s TABLE VI. The asymptotic scaling of the number of CNOT and
10" = 2 sites L= 0'04N2 2 sites L _Nz R. gates as a function of the spin orbitals (N), the NO refer-
— 4sites L=0.0aN , 4 sites L=N , ence states (M), the Trotter-Suzuki decomposition order (k), and
10'?] — ©sitesL =0.04N -—- BsitesL=N the Takagi-decomposition threshold (L) for a single shot of the
€ NOQE circuit.
o
é CNOT and R, gate complexity
g’ CSWAP OWN)
z e O(kN?L)
Uy OW?)
Al Hy (I #J) O(M?*kN?L)

6x10' 10

3x10'4x10'
N

10 2x10"

FIG. 14. The scaling of the number of two-qubit gates with
the number of spin orbitals in the NOUCC(2) algorithm. Data
for two, four, and six radical sites are shown. Without eigen-
value truncation, the L index is equal to N? (dotted lines). With a
truncation threshold that preserves chemical accuracy for alkane
chains up to eight C atoms, L can be as low as 0.04N? (solid
lines) [63].

the MP2 amplitudes. For a relatively more complicated
system, it has been demonstrated in Ref. [55] that the
exact dissociation curve of the N, molecule, using an
active space of six electrons in 12 spin orbitals, is repro-
duced with satisfactory accuracy with the UCJ(L = 2)
ansatz when variationally optimized (classically). While it
remains to be verified, we are optimistic that, for general
molecular systems, the N2 scaling of L can be reduced and
in certain cases even excised. For illustrative purposes, the
CNOT count for a given system size N with NOUCJ(L = 1)
is multiple orders of magnitude smaller than that from the
Takagi-SVD decomposed NOUCC approach. For exam-
ple, using two radical sites, 100 spin orbitals, and the
NOUCC(2) routine assuming the 0.04 prefactor for L, it
requires 6.3 x 107 CNOT gates, while the L = 1 NOUCJ
approach requires only 1.3 x 10° gates. Clearly, this ansatz
is a promising avenue forward and it will be investigated
in future work.

In summary, our novel NOQE algorithm efficiently uti-
lizes a quantum device to compute matrix elements of the
Hamiltonian and the overlap involving nonorthogonal ref-
erence states (where we consider ansitze of the UCC and
UC]J form). For a fixed number of reference states involved
in the Hamiltonian diagonalization, the total number of
CNOT and R, gates required scales as O(N2L) (assum-
ing a first-order Trotter-Suzuki decomposition). The total
gate cost per shot is summarized in Table VI. In order
to resolve each element within some €qem, Where we
assume that the minimum matrix-element error threshold
min(€éeen) is used for all IJ pairs, we need to run the
algorithm O(1/€2,,,) times for each IJ element. With the
UCJ(L = 1) ansatz, the number of these gates will scale

quadratically with the number of spin orbitals, while for
Takagi- or SVD-decomposed UCC amplitudes, the counts
will scale quartically.

B. Effects of noise and mitigation costs

While the primary purpose of the current work is to
introduce the NOQE method and provide benchmark cal-
culations demonstrating its potential with full unitary cal-
culations, it is important to recognize that in near-term
non-fault-tolerant implementations, the ansatz preparation
circuits may be affected by stochastic device noise and by
coherent noise from imperfect control of quantum gates.
Noise mitigation techniques such as zero-noise extrapo-
lation [109,110], virtual distillation [111,112], and ran-
domized compilation [113,114] can mitigate the impact
of noise, at the cost of requiring more circuit repetitions
[115]. Readout errors may be addressable with classi-
cal postprocessing methods and thus have less impact on
the quantum resources [116]. In addition, the underly-
ing sampling noise associated with measurement of the
Hamiltonian and overlap matrix elements, which will be
present even in the fault-tolerant regime, will affect the
precision of the resulting energies. The number of cir-
cuit repetitions required to reduce this sampling noise to
achieve a specific precision will affect the overall scaling
of the algorithm. Specifically, since the matrix elements
are evaluated by a modified Hadamard test, where the
output is measured by the result of a single-qubit measure-
ment, each matrix element requires O(1/ eglem) repetitions
of the circuit to resolve the value of the element within
€clem- HOWever, there is a nontrivial relationship between
€cem and the desired error in the resulting eigenvalues
€ for the generalized eigenvalue problem. Under specific
assumptions, the bound on the number of circuit repeti-
tions needed to resolve an eigenvalue can be computed
and the resulting bound for these cases is discussed in
Sec. S4C of the Supplemental Material [68]. We note fur-
thermore that in a fault-tolerant implementation, the use of
amplitude-amplification techniques [117] could reduce the
dependence on €, from 1/ eglem to 1/€clem-
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VI. DISCUSSION

In this work, we present a nonorthogonal quantum
eigensolver (NOQE) that provides a novel electronic
structure method for computing low-lying eigenstates of
strongly correlated molecular systems. The NOQE method
produces multireference wave functions in which clas-
sically determined unitary coupled-cluster operators add
dynamic correlation to each reference state. The set of
correlated reference states, in which the Hamiltonian is
diagonalized, is not constrained to be orthogonal. Our anal-
ysis shows that correlating nonorthogonal reference states
with a cluster operator captures a significant portion of
the exact wave function in a highly compact manner and,
furthermore, that evaluation of the resulting energies is
possible to compute at polynomial cost with a quantum
computer. This is in stark contrast to the exponentially
scaling number of resources required to implement such
an algorithm on a classical computer. Thus a nonorthog-
onal multireference eigensolver is possible to implement
in a scalable manner only on a quantum computer. NOQE
provides a flexible, compact, and rigorous description of
both strong and dynamic electronic correlations, making it
an attractive method for the calculation of electronic states
of'a wide range of molecular systems.

The design principle behind NOQE is that the dynam-
ically correlated UHF basis states are still each “single-
reference” states, and that the subsequent CI part of the cal-
culation (i.e., solving the generalized eigenvalue equation)
recovers the correlation energy due to the multireference
character. If the correlated reference states, before the
CI, were to incorporate static correlations (i.e., were not
strictly single-reference states), there would be diminish-
ing returns, if any, from doing the CI part. Consider H; as
a limiting example. CCSD with a UHF reference yields
the exact wave function even beyond the CF point. In
the context of NOQE, if the two UHF states (see top
panel of Fig. 3) were correlated using ¢ amplitudes from
CCSD, the resulting correlated basis states would be iden-
tical and equal to the exact FCI wave function. Evaluating
the Hamiltonian and overlap matrices in this basis would
then be redundant and no excited-state information would
result upon solving the generalized eigenvalue problem.
Thus, for NOQE, the optimal correlators for each UHF
state are those that provide an adequate but not neces-
sarily exact description of electron correlation, i.e., those
that accurately describe weak (dynamic) correlations while
remaining single reference in nature. Hence, in this work
we choose to use (scaled) MP2 amplitudes.

Concerning the amplitude scaling, it is well known that
no universally optimal scaling factor exists. Practical ways
forward, within the context of NOQE, include the empir-
ical determination of optimal scaling factors on a wide
variety of test sets. As mentioned above, forthcoming work
in our group involves examining other nonempirical ways

to dynamically correlate the NO single-reference states.
Finally, leveraging the variationality of NOQE, it is pos-
sible to scan the scaling factor value for a given system
to find an optimal value that leads to the lowest NOQE
energy.

As has also been the case for classical NOCI calcula-
tions, the number of NO reference states in the NOQE
approach still grows exponentially with the number of rad-
ical sites involved in the strong static correlation. However,
this is a formal scaling that in practice is neither problem-
atic nor relevant to most systems of chemical interest, since
the number of radical sites typically does not reach large
values for molecular systems (especially naturally occur-
ring ones). In fact, there is a myriad of molecular systems
of great chemical interest that only require a relatively
small number of strongly correlated sites (d < 8), which
NOQE is well suited to tackle, given appropriate quantum
hardware. Such systems include dicopper subunits in met-
alloenzymes [118,119], n-carbenes or long polyacenes that
possess di- and polyradical character [120], reduced states
of metal complexes involving redox noninnocent ligands
[4,121,122], and systems ranging from small transition-
metal compounds to the OEC (four transition-metal sites),
as mentioned in Sec. I, and iron-sulfur clusters (2—8 Fe
atoms) [123—125].

A. Comparison with other quantum methods

In the context of previous quantum algorithms, NOQE
possesses significant advantages over conventional varia-
tional quantum eigensolvers, for which a quantum device
measures the energy while a classical device computes
gradients and updates variational parameters for a given
unitary ansatz. This results in a high measurement over-
head from the input to the gradient and variational steps,
both of which are absent in NOQE, while the need to
compute gradients can result in getting trapped in the
so-called “barren-plateau” parameter regions where the
gradients become exponentially small as the problem size
grows. Instead, the NOQE approach benefits from using
a quantum processor to compute both matrix elements of
the Hamiltonian and the set of overlap-matrix elements
between dynamically correlated nonorthogonal states in
parallel, at a low-order polynomial cost for a fixed number
of radical sites.

The NOQE algorithm also allows simultaneous calcula-
tion of both ground and excited electronic eigenstates of
the molecular Hamiltonian within the Born-Oppenheimer
description (i.e., for fixed nuclear positions). In particular,
our analysis of Hy with the NOUCC(2) ansatz shows that
the algorithm can efficiently compute the relative order-
ing and energy gaps of a select number of low-lying
eigenstates in a single calculation without incurring addi-
tional measurement overhead, whereas the conventional
VQE focuses on optimizing the ground state alone. While
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excited-state estimates can in principle be obtained from
a quantum subspace expansion (QSE) based on a sin-
gle VQE ground state [126], we expect that the use by
NOQE of multiple nonorthogonal reference states will
enable a more flexible and compact description of strongly
correlated states. We also note that NOQE amplitudes
would provide a compact and high-quality guess for FCI
eigenstates for use in fault-tolerant (i.e., non-near-term)
algorithms such as quantum phase estimation (QPE) for
estimating eigenvalues. The large improvement in fidelity
over a single Slater Hartree-Fock reference is promising
and efficient on a quantum computer but needs to be inves-
tigated further to show the overall cost-benefit analysis of
this more involved state-preparation technique for QPE.
It would be interesting here to compare the overall cost
with that using classically determined NOCI amplitudes,
which when combined with efficient preparation of multi-
determinant wave functions [127] would similarly provide
a polynomially scaling alternative but one with reduced
prefactors compared to NOQE.

Another major computational advantage of NOQE over
the conventional variational approach embodied by the
VQE is that our “one-shot” method, built on a multiref-
erence set of configuration interaction states, focuses on a
chemistry-specific ansatz with significant input from clas-
sical quantum chemistry. This results in a very high-quality
set of nonorthogonal reference states that do not require
iterative parameter optimization on a quantum device.
Instead, the expressivity of the output solution is provided
by the multireference construction. The result is a dramatic
reduction in both the gate complexity and the total number
of measurements required to extract molecular energies or
energy differences from running the algorithm on quantum
devices. Furthermore, NOQE completely avoids the issues
associated with possibly encountering a large number of
nonglobal minima in the energy landscape when perform-
ing variational optimization or getting trapped on barren
plateaus where the gradient nearly vanishes. These issues
complicate the black-box use of the VQE and are partic-
ularly problematic for strongly correlated systems such as
square Hy. We note that the variational step of the VQE
does appear to provide some intrinsic error mitigation via
the updating of circuit parameters in the classical opti-
mization step, which is not present in NOQE. Instead,
for the NOQE algorithm as for other nonvariational quan-
tum algorithms, error mitigation on NISQ devices can be
implemented by using the techniques of randomized com-
piling [113,114] or by methods based on virtual distillation
[128,129].

From the perspective of seeking energies and wave
functions for strongly correlated systems, the use of classi-
cally inspired ansitze, i.e., electronic wave-function forms
that can be motivated and justified by chemical or physi-
cal insights, is an advantageous feature. Furthermore, the
maturity of wave-function-based techniques for electronic

structure calculations in classical quantum chemistry pro-
vides a well-paved roadmap for future improvements in
NOQE. In this work, we focus primarily on using ampli-
tudes from second-order perturbation theory within a
UCCD-like ansatz, which are then decomposed to readily
prepare relatively low-depth quantum circuits. As shown
here for the examples of H, and Hy, this choice already
leads to encouraging levels of accuracy, although achiev-
ing the goal of chemical accuracy in one shot (i.e., within
1.6 mHa of the exact values) requires amplitude-scaling
procedures. We expect that there are other ab initio options
for improving the ansatz states, beyond uniform or spin-
component scaling, that do not dramatically increase the
classical cost for preparing the ansatz states. Options
include using amplitudes from CCSD [57] or from energy-
gap-dependent regularized MP2 [130], as well as orbitals
from methods other than Hartree-Fock [131,132]. Addi-
tionally, in this work, we take preliminary steps to explore
the benefit of adding classically optimized Jastrow cor-
relators to the UHF states, building a NOUCIJ ansatz for
NOQE, which appears to enable a reduction in the cost of
quantum circuits for comparable accuracy for the H; sys-
tem. In future work, we shall explore the performance of
the classically variationally optimized NOUCJ ansatz for
NOQE calculations of larger systems.

B. Comparison with classical methods

A few comments are in order to clarify the advantage of
our quantum NOQE methods versus classical approaches.
We note that classical projected coupled-cluster methods
with truncated cluster operators also show formal poly-
nomial scaling in the number of spin orbitals N. Indeed,
the electronic ground states of the small H, and Hy exam-
ples presented in this work can be exactly evaluated with
polynomially scaling variants such as CCSD and CCS-
DTQ, respectively, acting on a single-reference Hartree-
Fock determinant. However, excitations of order up to the
number of radical sites d must be included in the cluster
operator in order to exactly model an arbitrary strongly
correlated system with CC, resulting in a classical compu-
tational cost that scales as O (N“**). This approach would
therefore be infeasible for larger systems such as dimetal
complexes, where d is quite large. In practice, CC meth-
ods of higher order than CCSDTQ are seldom employed
and almost never beyond rather small basis sets [133,134],
restricting the practical utility of such classical methods
to d < 4. Even CCSDTQ requires a very large amount of
resources for systems as small as benzene in the cc-pVDZ
basis [135]. Therefore, a multireference approach involv-
ing electron correlations between different radical sites is
essential. The resource-estimate analysis in this work sug-
gests that implementation of the polynomial scaling NOQE
algorithm on quantum computers could be feasible for
strongly correlated dimetallic species in the longer term.
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The classical analog to NOQE would be variational
NOCI-CC, which is intractable on classical computers.
A related more approximate model is variational NOCI-
MP2, i.e., NOCI with addition of MP2 correlations to
the single-reference states, with all many-electron matrix
elements rigorously evaluated. In this method, the calcu-
lation of matrix elements of the Hamiltonian and over-
lap between dynamically correlated nonorthogonal single-
reference states also results in an intractably large number
of terms. To avoid this, a viable NOCI-MP2 algorithm on
classical computers [136] must make a potentially uncon-
trolled additional approximation: namely, to truncate the
matrix elements at first or second order in the fluctuation
potential for each many-electron basis state. However, this
computationally viable NOCI-MP2 approach is no longer
variational, unlike NOQE.

Other related classical analogs that target multireference
systems include the complete active space second-order
perturbation theory (CASPT2 [46,47]) and the closely
related “N-electron valence space second-order pertur-
bation theory” (NEVPT2 [48]) approaches, where exact
diagonalization is performed within a predefined “active
space” of a few electrons and orbitals assumed to be rel-
evant for static correlation, followed by a perturbative
treatment of dynamic correlation. This has obvious par-
allels with NOQE using exact diagonalization within a
nonorthogonal basis for modeling strong correlation, with
the unitary coupled-cluster operator, utilizing perturbative
amplitudes in the NOUCC(2) implementation, accounting
for dynamic correlation. While both CASPT2 or NEVPT2
and NOQE require an exponentially growing number of
states (with respect to the number of radical sites) in the
exact diagonalization step, the latter scales with a rela-
tively softer exponential. Specifically, for the general case
with d radical sites, n, up spins and ng down spins (where
Ne +1npg < d and m; = n, — ng), the subspace for exact
diagonalization in CASPT2 and NEVPT?2 has a size Mcas,

_ )’
" Nampl(d — nu)!(d — np)!’

Mcas (42)

which, as mentioned above, is much larger than the
corresponding NOQE diagonalization subspace given by
Eq. (27). In particular, for the case of n, =ng =d/2,
Mcas = MﬁIOQE. The reduction in subspace size for NOQE
is due to the fact that the use of nonorthogonal refer-
ence states allows for a more compact representation of
the multireference wave function required for describ-
ing strong correlation. Furthermore, CASPT2 or NEVPT2
usually entails a self-consistent field (CASSCF [40]) stage,
in which the Mcas dimensional CAS wave function is
iteratively optimized through repeated diagonalization and
orbital rotations. In contrast, NOQE does not require any
such optimization and is “one-shot” by construction. This
leads to further computational efficiency compared to the

classical CAS methods. We also note that the ground-state
NOQE method is bounded from below by the FCI ground-
state energy, which is not guaranteed to be the case for
CASPT?2 or NEVPT2. Indeed, while dynamic correlation
in NOQE is evaluated through perturbative amplitudes,
the use of the UCC formalism and diagonalization of the
Hamiltonian within the subspace spanned by NO states
enables NOQE to be more robust against failures some-
times encountered in purely perturbative classical theories
[137—139]. In particular, the diagonal elements of the
Hamiltonian in NOQE are correct to the third order in
perturbation theory, indicating that NOQE goes beyond
classical second-order perturbation theories for dynamic
correlation outside the exact diagonalization subspace.

Finally, there is another very important point in which
NOQE provides a significant advantage over classical
algorithms in the case of multireference systems. This
is that our hybrid quantum-classical NOQE implemen-
tation possesses long-sought-after properties of approxi-
mate methods to solve the electronic structure problem
for ground and excited states. It is a basic tenet of quan-
tum chemistry that such methods are necessarily based
on approximate models, given the general infeasibility
of finding the exact wave function for arbitrary chemi-
cal systems. Today’s classical quantum chemistry meth-
ods are typically not both variational and size-extensive
(the exceptions are the quite inaccurate mean-field HF or
CIS approach and the completely intractable exact full
CI model). Indeed, it has been argued that these proper-
ties are mutually exclusive [140]. For example, coupled-
cluster algorithms rely on subspace projections to solve
for the cluster amplitudes, while popular multireference
approaches (e.g., CASPT2 and NEVPT2) rely on second-
order perturbation theory—both of these types of models
are not variational. Furthermore, CI methods (which also
form the basis of QSE approaches) and even multirefer-
ence generalizations of this are not size extensive. In this
context, NOQE can be viewed as an approximate model
for quantum chemistry of greater formal sophistication
than all feasible and accurate classical approaches, in the
sense that it is both variational and size extensive (given
an appropriate choice of active spaces). UCC also shares
these properties but NOQE can, in addition, treat strong
and weak correlations in ground and excited states.

From the perspective of quantum chemistry, this appears
to be a new type of practical quantum advantage in the
sense that the NOQE model possesses a combination of
desirable properties only attainable at present via a quan-
tum algorithm. Indeed, it is unclear whether other approx-
imate classical models with these desirable properties can
even be developed in the future. This is distinct from a
run-time quantum advantage based on asymptotic scaling
of the algorithm with system size. While the time complex-
ity of NOQE does also show polynomial scaling with the
number of spin orbitals and comparison with alternative
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multireference approaches such as CASPT2 and NEVPT2
shows a clear advantage for NOQE in terms of scaling
with the number of radical sites, we believe that the com-
bination of both variational character and size extensivity
may constitute the most important quantum advantage of
NOQE.

VII. CONCLUSIONS

In summary, the NOQE method presented in this work
is a promising quantum electronic structure algorithm that
excels at the accurate computation of energy gaps between
low-lying eigenstates of a strongly correlated molecular
system over a wide range of internuclear distances, allow-
ing the construction of potential-energy surfaces for both
ground and excited states. NOQE aims to systematically
capture both static and dynamic correlation in a manner
that is infeasible within a completely classical algorithm,
whereas the quantum computer requires only a polyno-
mial gate depth for a fixed number of radical sites. The
method avoids the difficulties of variational optimization
on quantum processors and instead takes advantage of
carefully designed classical ansitze. We expect that the
method will complement existing approaches for treat-
ing the ground states of strongly correlated systems when
implemented on quantum computers in the fault-tolerant
regime. The initial benchmark results presented here for
H; and Hy are encouraging. Future work will focus on per-
forming NOQE calculations on currently available noisy
intermediate-scale quantum devices, analyzing the effects
of noise on these, investigating more sophisticated single-
reference ansatz forms to employ in the NOQE multiref-
erence ansatz, and benchmarking the method for larger
systems with more complex electronic structures.

ACKNOWLEDGMENTS

U.B,, O.L.,, D.H.,, M.H.G., and K.B.W. were supported
by the National Science Foundation (NSF) Quantum Leap
Challenge Institutes (QLCI) program through Grant No.
OMA-2016245. Early stages of this work were sup-
ported by the U.S. Department of Energy, Office of Sci-
ence, Office of Advanced Scientific Computing Research,
Quantum Algorithm Teams Program, under Contract No.
DE-AC02-05CH11231 (U.B., W.H., and K.B.W.). J.S.
acknowledges funding from the National Institute of Gen-
eral Medical Sciences of the National Institutes of Health
under Award No. F32GM142231. T.E.S. is a Quantum
Postdoctoral Fellow at the Simons Institute for the The-
ory of Computing, supported by the U.S. Department of
Energy, Office of Science, National Quantum Information
Science Research Centers, Quantum Systems Accelera-
tor. We thank Hang Ren and Wendy Billings for helpful
discussions and comments.

[1] B. O’Gorman, S. Irani, J. Whitfield, and B. Fefferman,
Electronic structure in a fixed basis is QMA-complete,
arXiv preprint arXiv:2103.08215 (2021).

[2] S. F. Boys and N. C. Handy, A calculation for the ener-
gies and wavefunctions for states of neon with full elec-
tronic correlation accuracy, Proc. R. Soc. Lond. A 310, 63
(1969).

[3] D. W. Small and M. Head-Gordon, Post-modern valence
bond theory for strongly correlated electron spins, Phys.
Chem. Chem. Phys. 13, 19285 (2011).

[4] J. Shee, M. Loipersberger, D. Hait, J. Lee, and M.
Head-Gordon, Revealing the nature of electron correla-
tion in transition metal complexes with symmetry break-
ing and chemical intuition, J. Chem. Phys. 154, 194109
(2021).

[5] M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator
transitions, Rev. Mod. Phys. 70, 1039 (1998).

[6] R. J. Witzke, D. Hait, K. Chakarawet, M. Head-Gordon,
and T. D. Tilley, Bimetallic mechanism for alkyne
cyclotrimerization with a two-coordinate Fe precatalyst,
ACS Catal. 10, 7800 (2020).

[7]1 C. A. Gould, K. R. McClain, D. Reta, J. G. C. Kragskow,
D. A. Marchiori, E. Lachman, E.-S. Choi, J. G. Analytis,
R. D. Britt, N. F. Chilton, B. G. Harvey, and J. R. Long,
Ultrahard magnetism from mixed-valence dilanthanide
complexes with metal-metal bonding, Science 375, 198
(2022).

[8] M. Askerka, G. W. Brudvig, and V. S. Batista, The O;-
evolving complex of photosystem II: Recent insights from
quantum mechanics/molecular mechanics (QM/MM),
extended x-ray absorption fine structure (EXAFS), and
femtosecond x-ray crystallography data, Acc. Chem. Res.
50, 41 (2017).

[9] Y. Umena, K. Kawakami, J.-R. Shen, and N. Kamiya,
Crystal structure of oxygen-evolving photosystem II at a
resolution of 1.9 A, Nature 473, 55 (2011).

[10] J. Raymond and R. E. Blankenship, The origin of the
oxygen-evolving complex, Coord. Chem. Rev. 252, 377
(2008).

[11] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-
Gordon, Simulated quantum computation of molecular
energies, Science 309, 1704 (2005).

[12] S. E. Smart and D. A. Mazziotti, Quantum Solver of
Contracted Eigenvalue Equations for Scalable Molecular
Simulations on Quantum Computing Devices, Phys. Rev.
Lett. 126, 070504 (2021).

[13] S. E. Smart and D. A. Mazziotti, Many-fermion simu-
lation from the contracted quantum eigensolver without
fermionic encoding of the wave function, Phys. Rev. A
105, 062424 (2022).

[14] S. E. Smart, J.-N. Boyn, and D. A. Mazziotti, Resolving
correlated states of benzyne with an error-mitigated con-
tracted quantum eigensolver, Phys. Rev. A 105, 022405
(2022).

[15] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q.
Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien,
A variational eigenvalue solver on a photonic quantum
processor, Nat. Commun. 5, 1 (2014).

[16] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-
Guzik, The theory of variational hybrid quantum-classical
algorithms, New J. Phys 18, 023023 (2016).

030307-26



SAY NO TO OPTIMIZATION...

PRX QUANTUM 4, 030307 (2023)

[17] A. G. Taube and R. J. Bartlett, New perspectives on uni-
tary coupled-cluster theory, Int. J. Quantum Chem. 106,
3393 (2006).

[18] Google Al Quantum and Collaborators, Hartree-Fock on
a superconducting qubit quantum computer, Science 369,
1084 (2020).

[19] T.E. O’Brien et al., Purification-based quantum error miti-
gation of pair-correlated electron simulations, arXiv:2210.
10799 [quant-ph] (2022).

[20] J. Lee, W. J. Huggins, M. Head-Gordon, and K. B. Wha-
ley, Generalized unitary coupled cluster wave functions
for quantum computation, J. Chem. Theory Comput. 15,
311(2019).

[21] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush,
and H. Neven, Barren plateaus in quantum neural network
training landscapes, Nat. Commun. 9, 1 (2018).

[22] A. Uvarov, J. D. Biamonte, and D. Yudin, Variational
quantum eigensolver for frustrated quantum systems,
Phys. Rev. B 102, 075104 (2020).

[23] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L.
Cincio, and P. J. Coles, Noise-induced barren plateaus in
variational quantum algorithms, Nat. Commun. 12, 6961
(2021).

[24] A. Arrasmith, M. Cerezo, P. Czarnik, L. Cincio, and
P. J. Coles, Effect of barren plateaus on gradient-free
optimization, Quantum 5, 558 (2021).

[25] E. R. Anschuetz and B. T. Kiani, Beyond barren plateaus:
Quantum variational algorithms are swamped with traps,
arXiv preprint arXiv:2205.05786 (2022).

[26] W. J. Huggins, J. Lee, U. Baek, B. O’Gorman, and K.
B. Whaley, A non-orthogonal variational quantum eigen-
solver, New J. Phys. 22, 073009 (2020).

[27] R. Broer and W. C. Nieuwpoort, Broken orbital-symmetry
and the description of hole states in the tetrahedral
[CrO4]~ anion. I. Introductory considerations and calcu-
lations on oxygen 1s hole states, Chem. Phys. 54, 291
(1981).

[28] A.J. W. Thom and M. Head-Gordon, Hartree-Fock solu-
tions as a quasidiabatic basis for nonorthogonal configu-
ration interaction, J. Chem. Phys. 131, 124113 (2009).

[29] E. J. Sundstrom and M. Head-Gordon, Non-orthogonal
configuration interaction for the calculation of multi-
electron excited states, J. Chem. Phys. 140, 114103
(2014).

[30] S. R. Yost and M. Head-Gordon, Size consistent for-
mulations of the perturb-then-diagonalize Meller-Plesset
perturbation theory correction to non-orthogonal configu-
ration interaction, J. Chem. Phys. 145, 054105 (2016).

[31] R. M. Parrish and P. L. McMahon, Quantum fil-
ter diagonalization: Quantum eigendecomposition with-
out full quantum phase estimation, arXiv preprint
arXiv:1909.08925 (2019).

[32] O. Kyriienko, Quantum inverse iteration algorithm for
programmable quantum simulators, Npj Quantum Inf. 6,
1 (2020).

[33] N. H. Stair, R. Huang, and F. A. Evangelista, A mul-
tireference quantum Krylov algorithm for strongly cor-
related electrons, J. Chem. Theory. Comput. 16, 2236
(2020).

[34] K. Klymko, C. Mejuto-Zaera, S. J. Cotton, F. Wudarski,
M. Urbanek, D. Hait, M. Head-Gordon, K. B. Whaley,

J. Moussa, N. Wiebe, W. A. de Jong, and N. M. Tub-
man, Real-Time Evolution for Ultracompact Hamiltonian
Eigenstates on Quantum Hardware, PRX Quantum 3,
020323 (2022).

[35] J. Cohn, M. Motta, and R. M. Parrish, Quantum filter diag-
onalization with double-factorized Hamiltonians, arXiv
preprint arXiv:2104.08957 (2021).

[36] A.Szabo and N. S. Ostlund, Modern Quantum Chemistry:
Introduction to Advanced Electronic Structure Theory
(Dover Publications, Inc., Mineola, New York, 1996), p.
286.

[37] J. D. Whitfield, P. J. Love, and A. Aspuru-Guzik, Com-
putational complexity in electronic structure, Phys. Chem.
Chem. Phys. 15, 397 (2013).

[38] D. Cremer, Moller—Plesset perturbation theory: from
small molecule methods to methods for thousands of
atoms, Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 509
(2011).

[39] R. J. Bartlett and M. Musial, Coupled-cluster theory in
quantum chemistry, Rev. Mod. Phys. 79, 291 (2007).

[40] T. Helgaker, P. Jorgensen, and J. Olsen, Molecular
Electronic-Structure Theory (John Wiley & Sons, Chich-
ester, England, 2014).

[41] K. D. Vogiatzis, D. Ma, J. Olsen, L. Gagliardi, and
W. A. De Jong, Pushing configuration-interaction to the
limit: Towards massively parallel MCSCF calculations, J.
Chem. Phys. 147, 184111 (2017).

[42] N. M. Tubman, J. Lee, T. Y. Takeshita, M. Head-Gordon,
and K. B. Whaley, A deterministic alternative to the full
configuration interaction quantum Monte Carlo method,
J. Chem. Phys. 145, 044112 (2016).

[43] A. A. Holmes, N. M. Tubman, and C. J. Umrigar,
Heat-bath configuration interaction: An efficient selected
configuration interaction algorithm inspired by heat-bath
sampling, J. Chem. Theory Comput. 12, 3674 (2016).

[44] D. S. Levine, D. Hait, N. M. Tubman, S. Lehtola, K.
B. Whaley, and M. Head-Gordon, Casscf with extremely
large active spaces using the adaptive sampling configu-
ration interaction method, J. Chem. Theory Comput. 16,
2340 (2020).

[45] N. M. Tubman, C. D. Freeman, D. S. Levine, D. Hait,
M. Head-Gordon, and K. B. Whaley, Modern approaches
to exact diagonalization and selected configuration inter-
action with the adaptive sampling CI method, J. Chem.
Theory Comput. 16, 2139 (2020).

[46] K. Andersson, P. A. Malmgqyvist, B. O. Roos, A. J. Sadle;j,
and K. Wolinski, Second-order perturbation theory with
a CASSCEF reference function, J. Phys. Chem. 94, 5483
(1990).

[47] K. Andersson, P.-A. Malmqvist, and B. O. Roos, Second-
order perturbation theory with a complete active space
self-consistent field reference function, J. Chem. Phys. 96,
1218 (1992).

[48] C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and
J.-P. Malrieu, Introduction of n-electron valence states for
multireference perturbation theory, J. Chem. Phys. 114,
10252 (2001).

[49] P. M. W. Gill, J. A. Pople, L. Radom, and R. H. Nobes,
Why does unrestricted Moller-Plesset perturbation theory
converge so slowly for spin-contaminated wave func-
tions?, J. Chem. Phys. 89, 7307 (1988).

030307-27



UNPIL BAEK et al.

PRX QUANTUM 4, 030307 (2023)

[50] N.J. Mayhall, P. R. Horn, E. J. Sundstrom, and M. Head-
Gordon, Spin-flip non-orthogonal configuration interac-
tion: A variational and almost black-box method for
describing strongly correlated molecules, Phys. Chem.
Chem. Phys. 16, 22694 (2014).

[51] I. Shavitt and R. J. Bartlett, Many-Body Methods in
Chemistry and Physics: MBPT and Coupled-Cluster The-
ory (Cambridge University Press, Cambridge, England,
2009).

[52] M. Schiitz, G. Hetzer, and H.-J. Werner, Low-order scal-
ing local electron correlation methods. I. Linear scaling
local MP2, J. Chem. Phys. 111, 5691 (1999).

[53] C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, and
F. Neese, Sparse maps—a systematic infrastructure for
reduced-scaling electronic structure methods. II. Linear
scaling domain based pair natural orbital coupled cluster
theory, J. Chem. Phys. 144, 024109 (2016).

[54] J. E. Subotnik, A. Sodt, and M. Head-Gordon, A near
linear-scaling smooth local coupled cluster algorithm for
electronic structure, J. Chem. Phys. 125, 074116 (2006).

[55] Y. Matsuzawa and Y. Kurashige, Jastrow-type decomposi-
tion in quantum chemistry for low-depth quantum circuits,
J. Chem. Theory Comput. 16, 944 (2020).

[56] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin,
and X. Yuan, Quantum computational chemistry, Rev.
Mod. Phys. 92, 015003 (2020).

[57] J. Romero, R. Babbush, J. R. McClean, C. Hempel, P.
J. Love, and A. Aspuru-Guzik, Strategies for quantum
computing molecular energies using the unitary coupled
cluster ansatz, Quantum Sci. Technol. 4, 014008 (2018).

[58] P. S. Epstein, The Stark effect from the point of view
of Schroedinger’s quantum theory, Phys. Rev. 28, 695
(1926).

[59] R. K. Nesbet, Configuration interaction in orbital theories,
Proc. R. Soc. Lond. A 230, 312 (1955).

[60] C. Murray and E. R. Davidson, Different forms of pertur-
bation theory for the calculation of the correlation energy,
Int. J. Quantum Chem. 43, 755 (1992).

[61] S. Grimme, Improved second-order Mgller-Plesset per-
turbation theory by separate scaling of parallel-and
antiparallel-spin pair correlation energies, J. Chem. Phys.
118, 9095 (2003).

[62] Y. Jung, R. C. Lochan, A. D. Dutoi, and M. Head-Gordon,
Scaled opposite-spin second order Mgller-Plesset correla-
tion energy: An economical electronic structure method,
J. Chem. Phys. 121, 9793 (2004).

[63] M. Motta, E. Ye, J. R. McClean, Z. Li, A. J. Minnich, R.
Babbush, and G. K.-L. Chan, Low rank representations for
quantum simulation of electronic structure, npj Quantum
Inf. 7, 1 (2021).

[64] N. C. Rubin, J. Lee, and R. Babbush, Compressing
many-body fermion operators under unitary constraints, J.
Chem. Theory Comput. 18, 1480 (2022).

[65] E.P.Hoy and D. A. Mazziotti, Positive semidefinite tensor
factorizations of the two-electron integral matrix for low-
scaling ab initio electronic structure, J. Chem. Phys. 143,
64103 (2015).

[66] B. Peng and K. Kowalski, Highly efficient and scal-
able compound decomposition of two-electron integral
tensor and its application in coupled cluster calculations,
J. Chem. Theory Comput. 13, 4179 (2017).

[67] M. Motta, J. Shee, S. Zhang, and G. K.-L. Chan, Efficient
ab initio auxiliary-field quantum Monte Carlo calculations
in Gaussian bases via low-rank tensor decomposition, J.
Chem. Theory Comput. 15, 3510 (2019).

[68] See the Supplemental Material at http:/link.aps.org/supple
mental/10.1103/PRXQuantum.4.030307 for a brief intro-
duction to quantum chemistry, along with additional data,
details, and derivations.

[69] P. S. Bagus and B. I. Bennett, Singlet-triplet split-
tings as obtained from the X «-scattered wave method:
A theoretical analysis, Int. J. Quantum Chem. 9, 143
(1975).

[70] C. A. Jimenez-Hoyos, T. M. Henderson, and G. E.
Scuseria, Generalized Hartree-Fock description of molec-
ular dissociation, J. Chem. Theory Comput. 7, 2667
(2011).

[71] D. W. Small, E. J. Sundstrom, and M. Head-Gordon, A
simple way to test for collinearity in spin symmetry bro-
ken wave functions: General theory and application to
generalized Hartree-Fock, J. Chem. Phys. 142, 094112
(2015).

[72] B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and
T. L. Windus, New basis set exchange: An open, up-to-
date resource for the molecular sciences community, J.
Chem. Inf. Model. 59, 4814 (2019).

[73] R. Bauernschmitt and R. Ahlrichs, Stability analysis for
solutions of the closed shell Kohn-Sham equation, J.
Chem. Phys. 104, 9047 (1996).

[74] 1. Cizek and J. Paldus, Stability conditions for the solu-
tions of the Hartree-Fock equations for atomic and molec-
ular systems. application to the pi-electron model of cyclic
polyenes, J. Chem. Phys. 47, 3976 (1967).

[75] R. Seeger and J. A. Pople, Self-consistent molec-
ular orbital methods. XVIII. Constraints and stabil-
ity in Hartree-Fock theory, J. Chem. Phys. 66, 3045
(1977).

[76] R. Mathias and C.-K. Li, The definite generalized eigen-
value problem: A new perturbation theory, (2004).

[77]1 G. W. Stewart, Perturbation bounds for the definite gen-
eralized eigenvalue problem, Linear Algebra Appl. 23, 69
(1979).

[78] A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu,
Theory of Trotter Error with Commutator Scaling, Phys.
Rev. X 11, 011020 (2021).

[79] W. Magnus, On the exponential solution of differential
equations for a linear operator, Commun. Pure Appl.
Math. 7, 649 (1954).

[80] I. D. Kivlichan, J. McClean, N. Wiebe, C. Gidney,
A. Aspuru-Guzik, G. K.-L. Chan, and R. Babbush,
Quantum Simulation of Electronic Structure with Linear
Depth and Connectivity, Phys. Rev. Lett. 120, 110501
(2018).

[81] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, Simu-
lation of electronic structure Hamiltonians using quantum
computers, Mol. Phys. 109, 735 (2011).

[82] M. B. Hastings, D. Wecker, B. Bauer, and M. Troyer,
Improving quantum algorithms for quantum chemistry,
Quantum Inf. Comput. 15, 1 (2015).

[83] T. Kato, On the eigenfunctions of many-particle systems
in quantum mechanics, Commun. Pure Appl. Math. 10,
151 (1957).

030307-28



SAY NO TO OPTIMIZATION...

PRX QUANTUM 4, 030307 (2023)

[84] B. L. Hammond, W. A. Lester, and P. J. Reynolds, Monte
Carlo Methods in Ab Initio Quantum Chemistry (World
Scientific, Farrer Road, Singapore, 1994), Vol. 1.

[85] P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W.
A. Lester, Jr., Fixed-node quantum Monte Carlo for
molecules, J. Chem. Phys. 77, 5593 (1982).

[86] E. Neuscamman, Communication: A Jastrow factor cou-
pled cluster theory for weak and strong electron correla-
tion, J. Chem. Phys. 139, 181101 (2013).

[87] E. Neuscamman, The Jastrow antisymmetric geminal
power in Hilbert space: Theory, benchmarking, and appli-
cation to a novel transition state, J. Chem. Phys. 139,
194105 (2013).

[88] E. Neuscamman, Improved optimization for the cluster
Jastrow antisymmetric geminal power and tests on triple-
bond dissociations, J. Chem. Theory Comput. 12, 3149
(2016).

[89] E. N. Epperly, L. Lin, and Y. Nakatsukasa, A the-
ory of quantum subspace diagonalization, arXiv preprint
arXiv:2110.07492 (2021).

[90] W. J. Huggins, J. R. McClean, N. C. Rubin, Z. Jiang,
N. Wiebe, K. B. Whaley, and R. Babbush, Efficient and
noise resilient measurements for quantum chemistry on
near-term quantum computers, npj Quantum Inf. 7, 1
(2021).

[91] J. R. McClean et al., OpenFermion: The electronic struc-
ture package for quantum computers, Quantum Sci. Tech-
nol. 5, 034014 (2020).

[92] Q. Sun et al., Recent developments in the PySCF program
package, J. Chem. Phys. 153, 024109 (2020).

[93] E. Epifanovsky et al., Software for the frontiers of quan-
tum chemistry: An overview of developments in the
Q-Chem 5 package, J. Chem. Phys. 155, 084801 (2021).

[94] S. F. Boys, Construction of some molecular orbitals to be
approximately invariant for changes from one molecule to
another, Rev. Mod. Phys. 32, 296 (1960).

[95] C. Edmiston and K. Ruedenberg, Localized atomic and
molecular orbitals, Rev. Mod. Phys. 35, 457 (1963).

[96] H. G. A. Burton and D. J. Wales, Energy landscapes for
electronic structure, J. Chem. Theory Comput. 17, 151
(2021).

[97] D. Hait and M. Head-Gordon, Excited state orbital opti-
mization via minimizing the square of the gradient: Gen-
eral approach and application to singly and doubly excited
states via density functional theory, J. Chem. Theory
Comput. 16, 1699 (2020).

[98] D. Hait and M. Head-Gordon, Orbital optimized density
functional theory for electronic excited states, J. Chem.
Phys. Lett. 12, 4517 (2021).

[99] The CIrQ Developers, “CIRQ” (2019).

[100] C. A. Coulson and I. Fischer, XXXIV. Notes on the molec-
ular orbital treatment of the hydrogen molecule, Philos.
Mag. 40, 386 (1949).

[101] D. Hait, A. Rettig, and M. Head-Gordon, Well-behaved
versus ill-behaved density functionals for single bond dis-
sociation: Separating success from disaster functional by
functional for stretched H,, J. Chem. Phys. 150, 094115
(2019).

[102] N. Mardirossian and M. Head-Gordon, Thirty years of
density functional theory in computational chemistry: An

overview and extensive assessment of 200 density func-
tionals, Mol. Phys. 115, 2315 (2017).

[103] D. Hait, A. Rettig, and M. Head-Gordon, Beyond the
Coulson-Fischer point: Characterizing single excitation CI
and TDDFT for excited states in single bond dissociations,
Phys. Chem. Chem. Phys. 21, 21761 (2019).

[104] W.J. Hehre, R. F. Stewart, and J. A. Pople, Self-consistent
molecular-orbital methods. I. Use of Gaussian expansions
of Slater-type atomic orbitals, J. Chem. Phys. 51, 2657
(1969).

[105] R. Ditchfield, W. J. Hehre, and J. A. Pople, Self-
consistent molecular-orbital methods. IX. An extended
Gaussian-type basis for molecular-orbital studies of
organic molecules, J. Chem. Phys. 54, 724 (1971).

[106] R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople,
Self-consistent molecular orbital methods. XX. A basis
set for correlated wave functions, J. Chem. Phys. 72, 650
(1980).

[107] B. O’Gorman, W. J. Huggins, E. G. Rieffel, and K. B.
Whaley, Generalized swap networks for near-term quan-
tum computing, arXiv preprint arXiv:1905.05118 (2019).

[108] A. Bocharov, M. Roetteler, and K. M. Svore, Efficient
Synthesis of Universal Repeat-Until-Success Quantum
Circuits, Phys. Rev. Lett. 114, 080502 (2015).

[109] K. Temme, S. Bravyi, and J. M. Gambetta, Error Mitiga-
tion for Short-Depth Quantum Circuits, Phys. Rev. Lett.
119, 180509 (2017).

[110] S. Endo, S. C. Benjamin, and Y. Li, Practical Quantum
Error Mitigation for Near-Future Applications, Phys. Rev.
X 8, 031027 (2018).

[111] W. J. Huggins, S. McArdle, T. E. O’Brien, J. Lee, N.
C. Rubin, S. Boixo, K. B. Whaley, R. Babbush, and
J. R. McClean, Virtual Distillation for Quantum Error
Mitigation, Phys. Rev. X 11, 041036 (2021).

[112] B. Koczor, Exponential Error Suppression for Near-Term
Quantum Devices, Phys. Rev. X. 11, 031057 (2021).

[113] J.J. Wallman and J. Emerson, Noise tailoring for scalable
quantum computation via randomized compiling, Phys.
Rev. A 94, 052325 (2016).

[114] A. Hashim, R. K. Naik, A. Morvan, J.-L. Ville, B.
Mitchell, J. M. Kreikebaum, M. Davis, E. Smith, C. Iancu,
K. P. O’Brien, 1. Hincks, J. J. Wallman, J. Emerson, and
I. Siddiqi, Randomized Compiling for Scalable Quan-
tum Computing on a Noisy Superconducting Quantum
Processor, Phys. Rev. X 11, 041039 (2021).

[115] Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Hug-
gins, Y. Li, J. R. McClean, and T. E. O’Brien, Quantum
error mitigation, arXiv preprint arXiv:2210.00921 (2022).

[116] F. B. Maciejewski, Z. Zimboras, and M. Oszmaniec, Mit-
igation of readout noise in near-term quantum devices by
classical post-processing based on detector tomography,
Quantum 4, 257 (2020).

[117] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Quantum
amplitude amplification and estimation, Contemp. Math.
305, 53 (2002).

[118] B.F. Gherman and C. J. Cramer, Quantum chemical stud-
ies of molecules incorporating a CuzOgJr core, Coord.
Chem. Rev. 253, 723 (2009).

[119] D. G. Liakos and F. Neese, Interplay of correlation
and relativistic effects in correlated calculations on

030307-29



UNPIL BAEK et al.

PRX QUANTUM 4, 030307 (2023)

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

transition-metal complexes: The (Cu,0,)** core revisited,
J. Chem. Theory Comput. 7, 1511 (2011).

Y. Yang, E. R. Davidson, and W. Yang, Nature of ground
and electronic excited states of higher acenes, Proc. Natl.
Acad. Sci. 113, E5098 (2016).

C. Romelt, J. Song, M. Tarrago, J. A. Rees, M. van Gastel,
T. Weyhermiiller, S. DeBeer, E. Bill, F. Neese, and S. Ye,
Electronic structure of a formal Iron(0) porphyrin complex
relevant to CO, reduction, Inorg. Chem. 56, 4745 (2017).
J. S. Derrick, M. Loipersberger, R. Chatterjee, D.
A. Tovan, P. T. Smith, K. Chakarawet, J. Yano,
J. R. Long, M. Head-Gordon, and C. J. Chang,
Metal-ligand cooperativity via exchange coupling pro-
motes iron-catalyzed electrochemical CO, reduction at
low overpotentials, J. Am. Chem. Soc. 142, 20489
(2020).

S. Sharma, K. Sivalingam, F. Neese, and G. K. Chan,
Low-energy spectrum of iron-sulfur clusters directly from
many-particle quantum mechanics, Nat. Chem. 6, 927
(2014).

C. Mejuto-Zaera, D. Tzeli, D. Williams-Young, N. M.
Tubman, M. Matousek, J. Brabec, L. Veis, S. S. Xanth-
eas, and W. A. de Jong, The effect of geometry, spin,
and orbital optimization in achieving accurate, correlated
results for iron-sulfur cubanes, J. Chem. Theory Comput.
18, 687 (2022).

Z. Li, J. Li, N. S. Dattani, C. J. Umrigar, and G. K.-L.
Chan, The electronic complexity of the ground-state of
the FeMo cofactor of nitrogenase as relevant to quantum
simulations, J. Chem. Phys. 150, 024302 (2019).

J. R. McClean, M. E. Kimchi-Schwartz, J. Carter, and W.
A. De Jong, Hybrid quantum-classical hierarchy for miti-
gation of decoherence and determination of excited states,
Phys. Rev. A 95, 042308 (2017).

N. M. Tubman, C. Mejuto-Zaera, J. M. Epstein, D. Hait,
D. S. Levine, W. Huggins, Z. Jiang, J. R. McClean,
R. Babbush, and M. Head-Gordon et al., Postponing
the orthogonality catastrophe: Efficient state preparation
for electronic structure simulations on quantum devices,
arXiv preprint arXiv:1809.05523 (2018).

W. J. Huggins, S. McArdle, T. E. O’Brien, J. Lee, N.
C. Rubin, S. Boixo, K. B. Whaley, R. Babbush, and
J. R. McClean, Virtual Distillation for Quantum Error
Mitigation, Phys. Rev. X 11, 041036 (2021).

N. Yoshioka, H. Hakoshima, Y. Matsuzaki, Y. Tokunaga,
Y. Suzuki, and S. Endo, Generalized Quantum Subspace
Expansion, Phys. Rev. Lett. 129, 020502 (2022).

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

030307-30

J. Shee, M. Loipersberger, A. Rettig, J. Lee, and M.
Head-Gordon, Regularized second-order Mgller-Plesset
theory: A more accurate alternative to conventional MP2
for noncovalent interactions and transition metal thermo-
chemistry for the same computational cost, J. Phys. Chem.
Lett. 12, 12084 (2021).

L. W. Bertels, J. Lee, and M. Head-Gordon, Third-order
Moller-Plesset perturbation theory made useful? choice of
orbitals and scaling greatly improves accuracy for ther-
mochemistry, kinetics, and intermolecular interactions, J.
Phys. Chem. Lett. 10, 4170 (2019).

A. Rettig, D. Hait, L. W. Bertels, and M. Head-Gordon,
Third-order Mgller-Plesset theory made more useful? The
role of density functional theory orbitals, J. Chem. Theory
Comput. 16, 7473 (2020).

A. Karton, S. Daon, and J. M. L. Martin, W4-11: A high-
confidence benchmark dataset for computational thermo-
chemistry derived from first-principles W4 data, Chem.
Phys. Lett. 510, 165 (2011).

D. Hait, N. M. Tubman, D. S. Levine, K. B. Whaley,
and M. Head-Gordon, What levels of coupled cluster the-
ory are appropriate for transition metal systems? A study
using near-exact quantum chemical values for 3d transi-
tion metal binary compounds, J. Chem. Theory Comput.
15, 5370 (2019).

J. J. Eriksen et al., The ground state electronic energy of
benzene, J. Phys. Chem. Lett. 11, 8922 (2020).

S. R. Yost and M. Head-Gordon, Efficient implementation
of NOCI-MP?2 using the resolution of the identity approxi-
mation with application to charged dimers and long C—C
bonds in ethane derivatives, J. Chem. Theory Comput. 14,
4791 (2018).

B. O. Roos and K. Andersson, Multiconfigurational per-
turbation theory with level shift—the Cr, potential revis-
ited, Chem. Phys. Lett. 245, 215 (1995).

G. Ghigo, B. O. Roos, and P.-A. Malmgqvist, A modified
definition of the zeroth-order Hamiltonian in multicon-
figurational perturbation theory (CASPT2), Chem. Phys.
Lett. 396, 142 (2004).

W. Kurlancheek and M. Head-Gordon, Violations of N-
representability from spin-unrestricted orbitals in Mgller-
Plesset perturbation theory and related double-hybrid den-
sity functional theory, Mol. Phys. 107, 1223 (2009).

S. Hirata and I. Grabowski, On the mutual exclusion of
variationality and size consistency, Thom H. Dunning,
Jr. A Festschrift from Theoretical Chemistry Accounts,
267275 (2015).



