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Abstract— A key challenge to ensuring the rapid transition
of robotic systems from the industrial sector to more ubiq-
uitous applications is the development of algorithms that can
guarantee safe operation while in close proximity to humans.
Motion planning and control methods, for instance, must be
able to certify safety while operating in real-time in arbitrary
environments and in the presence of model uncertainty. This
paper proposes Wrench Analysis for Inertial Transport using
Reachability (WAITR), a certifiably safe motion planning and
control framework for serial link manipulators that manipulate
unsecured objects in arbitrary environments. WAITR uses reach-
ability analysis to construct over-approximations of the contact
wrench applied to unsecured objects, which captures uncertainty
in the manipulator dynamics, the object dynamics, and contact
parameters such as the coefficient of friction. An optimization
problem formulation is presented that can be solved in real-time
to generate provably-safe motions for manipulating the unsecured
objects. This paper illustrates that WAITR outperforms state
of the art methods in a variety of simulation experiments and
demonstrates its performance in the real-world.

I. INTRODUCTION

A key challenge of non-prehensile robotic manipulation is
safe trajectory planning for manipulation of supported objects.
The lack of force/form closure in non-prehensile manipulation
tasks means that an incorrectly applied wrench can result in
damage to the unsecured objects or the environment. This
challenge is compounded when the non-prehensile manipu-
lation task must be performed in environments that may only
be known at run-time as this requires real-time generation
of motion plans. Because the model of the object being
manipulated may not be known perfectly, these methods must
be able to account for model uncertainty as well. Therefore,
robotic manipulators need to be capable of finding and robustly
executing provably safe trajectories in real-time.

To safely manipulate supported objects, the relative motion
between the objects and supporting surface needs to be
constrained. To generate such a motion, previous methods
formulate optimal control problems which solve for a time-
optimal trajectory along a pre-specified, discretized geometric
path that is assumed to be collision-free [1]–[4]. Relative
motion is partially or fully constrained through a friction cone
constraint [2], as well as a lift and tipping constraint [1]
and a rotational friction cone constraint [3], [4]. Note that
relative motion is fully constrained only if all six degrees
of freedom of the object are constrained. Other methods also
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Fig. 1. This paper considers the problem of safe motion planning for manip-
ulation of unsecured objects with uncertain dynamics such as manipulating an
unsecured cup filled with an uncertain mass around randomly placed obstacles
(red) such that the cup does not move relative to the tray supporting it. WAITR
operates in receding-horizon fashion, moving from a start configuration (blue)
to a global goal (green) by repeatedly generating new motion plans in real-
time. In each motion planning iteration, WAITR calculates a reachable set
(blue and purple) for the contact wrench between the manipulator and the
object as well as a Forward Reachable Set (FRS) for the whole manipulator
system for a continuum of possible motion plans. The FRS is shown in purple
in a) for a single planning iteration. WAITR solves a constrained trajectory
optimization problem to find a collision-free motion in this FRS that does
not result in relative motion while making progress towards an intermediate
waypoint (grey) and the global goal. Parts c)-e) show the contact constraints
enforced during a hardware experiment for a single planning iteration.

incorporate optimization of the geometric path into the time-
optimal trajectory following task [3], [5]–[7].

Unfortunately, these methods are unable to generate a prov-
ably safe continuous-time trajectory in real-time while also
accounting for modeling error. In particular, during implemen-
tation, the optimization problems are only able to represent the
collision avoidance constraint at discrete time-instances. Finer
discretizations result in trajectories that are more likely to be
safe and dynamically feasible, but have higher computation
times. More troublingly, time-optimal trajectories commonly
result in the robot operating near the constraint boundaries. If
not dealt with robustly, then uncertainty in the properties of
the manipulator or object being manipulated could result in the
executed time-optimal trajectory being unsafe. Uncertainty in
both parameter estimation and execution error was considered
in [8], however, the contact and dynamics constraints are still
enforced at discrete time instances.

The contributions of this paper are two-fold. First, we
develop a framework that uses polynomial zonotopes to
represent the reachability of wrenches exerted throughout a
serial chain manipulator, including contact wrenches applied
to manipulated objects. Second, we formulate a trajectory
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Operation Computation
[z]→ z (Interval Conversion) (A8) Exact

P1⊕P2 (PZ Minkowski Sum) (A10) Exact
P1P2 (PZ Multiplication) (A12) Exact

P1⊗P2 (PZ Cross Product) (A13) Exact
slice(P,x j,σ) (A14) Exact

inf(P) (A16) and sup(P) (A15) Overapproximative
f (P1)⊆ P2 (Taylor expansion) A(23) Overapproximative

TABLE I
Summary of polynomial zonotope operations.

optimization problem that can be tractably solved in real-time
with continuous-time safety guarantees for preventing relative
motion of unsecured objects. As illustrated in Fig. 1, this
framework is implemented in a receding horizon fashion and
can robustly handle uncertainty in both the manipulator and
object parameters. Note this framework extends ARMOUR
[9], which provides collision-free and dynamically feasible
trajectories in real-time that account for tracking error due
to modeling uncertainty in the manipulator, but is unable to
make guarantees about the wrenches applied during motion.
To make this distinction clear, WAITR is tested in simulation
and on hardware and compared against ARMOUR.

Next, we briefly summarize the structure of this paper.
Sec. II presents relevant notation and mathematical objects.
Sec. III describes the robot dynamics, the contact model and
constraints, and presents a continuous-time optimization prob-
lem that ensures safe manipulation of unsecured objects. Sec.
IV summarizes a passivity-based robust controller [9], then
describes the generation of polynomial zonotope overapprox-
imations of the manipulator’s trajectory and contact wrench
and how that is used to form a tractable implementation of the
continuous-time optimization problem which has continuous-
time safety guarantees. Section V details the simulation and
hardware experiments.

II. PRELIMINARIES

This section describes our notation conventions, several set
representations, and operations on these set representation.
These operations are summarized for convenience in Tab.
I. This paper uses a letter preceding an equation number,
e.g. (A12), to refer to equations provided in supplementary
appendices which can be found at https://roahmlab.github.io/
waitr-dev/.

The n-dimensional real numbers are Rn, natural numbers N,
the unit circle is S1, and the set of 3×3 orthogonal matrices is
SO(3). Subscripts may index elements of a vector or a set. Let
U , V ⊂ Rn. For a point u ∈U , {u} ⊂U is the set containing
only u. The power set of U is P(U). The Minkowski Sum is
U ⊕V the Minkowski Difference is U ⊖V = U ⊕ (−V ). For
vectors a,b ∈ R3, we write the cross product a×b. If n = 3,
the set-based cross product is defined as U ⊗V = {u× v |
u ∈ U,v ∈ V}. If {Ui ⊂ Rn}m

i=1 then let×n
i=1 Ui denote the

Cartesian product of the Ui’s. Let X ⊂Rn×n be a set of square
matrices. Then, set-based multiplication is defined as XV =
{Av, | A ∈ X ,v ∈V ⊆ Rn}. Let 0 (resp. 1) denote a matrix of
zeros (resp. ones) of appropriate size, and let In be the n×n
identity matrix.

We use intervals to describe uncertain manipulator parame-
ters [10]. An n-dimensional interval is a set [x] = {y∈Rn | xi≤

yi ≤ xi, ∀i = 1, . . . ,n}. When the bounds are important, we
denote an interval [x] by [x,x], where x and x are the infimum
and supremum, respectively, of [x]. Let IRn be the set of all
real-valued n-dimensional interval vectors.

Because multidimensional intervals can only describe
hyperrectangles, they may be overly conservative when
outer approximating other shapes. To build a tighter outer-
approximative representation of multidimensional sets, we
use zonotopes and polynomial zonotopes. Here, we provide
necessary definitions of zonotopes and polynomial zonotopes
as well as a few important operations, with more operations
summarized in Tab. I. App. A 1 rigorously defines the opera-
tions given in Tab. I.

To define zonotopes, we introduce an indeterminate vector
x∈ [−1,1]ng and exponents αi ∈Nng . Letting α1 = [1,0, . . . ,0],
α2 = [0,1,0, . . . ,0], . . . , αng = [0,0, . . . ,0,1], we note that xα1 =
x1, . . . ,xαng = xng where the exponentiation is applied element-
wise. A zonotope Z ⊂ Rn is a convex, centrally-symmetric
polytope defined by a center g0 ∈ Rn and generators gi ∈ Rn

as Z = {z∈Rn | z = ∑
ng
i=0 gixαi , x∈ [−1,1]ng}, where there are

ng ∈ N generators.
Note we have written Z as the set of points produced by the

polynomial p(x) = ∑
ng
i=0 gixαi over the domain x ∈ [−1,1]ng . A

polynomial zonotope is the more general case where exponents
αi ∈Nng can be arbitrary, which includes zonotopes as a sub-
set. When we need to emphasize the generators and exponents
of a polynomial zonotope, we write P=PZ(gi,αi,x). Note we
exclusively use bold symbols to denote polynomial zonotopes.

We use polynomial zonotopes P to represent a set of
possible positions of a robot arm operating near an obstacle.
It may be beneficial to know whether a particular choice
of P’s indeterminates yields a subset of positions that could
collide with the obstacle. To this end, we introduce the
operation of “slicing” a polynomial zonotope P=PZ(gi,αi,x)
by evaluating an element of the indeterminate x. Given the jth

indeterminate x j and a value σ ∈ [−1,1], let slice(P,x j,σ)
denote the slicing operation which yields a subset of P by
plugging σ into the specified element x j and is formally
defined in (A14). It is possible to efficiently generate upper
and lower bounds on the values of a polynomial zonotope
through overapproximation. In particular, we define the sup
and inf operations which return these upper and lower
bounds, respectively in (A15) and (A16). Note that for any
z ∈ P, sup(P)≥ z and inf(P)≤ z, where the inequalities are
taken element-wise.

III. WRENCH AND ONLINE OPTIMIZATION

This section introduces an extended arm model for the
manipulator-tray-object system and a contact model between
the tray and object. To simplify exposition, this paper primarily
focuses on ensuring that the manipulator operates without
causing any relative motion between the serving tray and the
objects on it. Section V describes how to apply ARMOUR [9]
to ensure that the robot does not collide with obstacles while
satisfying input and joint limit constraints.

1Supplementary Appendices found at https://roahmlab.github.io/waitr-dev/
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Fig. 2. Free body diagram of a manipulated object. pCoM is the projection
of the COM onto the contact plane and n̂ is the contact normal vector and is
chosen to be the z-axis of the contact frame.

A. Manipulator Model

Given an nq-dimensional serial robotic manipulator with
configuration space Q and a compact time interval T ⊂ R we
define a trajectory for the configuration as q : T → Q ⊂ Rnq .
The velocity of this configuration trajectory is q̇ : T → Rnq .
We make the following assumptions about the robot model:

Assumption 1. The robot operates in a three dimensional
workspace, W ⊂R3. The robot is composed of revolute joints,
where the jth joint actuates the robot’s jth link. The robot
has encoders that allow it to measure its joint positions and
velocities. The robot is fully actuated, where the robot’s input
u : T → Rnq .

We make the one-joint-per-link assumption with no loss of
generality because joints with multiple degrees of freedom
(e.g., spherical joints) may be represented using links with zero
length. This work can be extended to robots with prismatic
joints by straightforward extensions to the RNEA algorithms
presented in [9]. Finally, let Nq = {1, . . . ,nq}.

1) Tray and Object Model: As illustrated in Fig. 2, the
system considered in this paper is a robotic manipulator that
grasps a flat surfaced tray with an object resting on it. The
contact normal to the tray is denoted by the unit vector n̂∈R3.
We make the following assumption:

Assumption 2. The manipulator maintains force closure on
the tray for all time. The object has a circular contact area
with radius r. The friction between the tray and the object is
described by linear Coulomb Friction where the coefficient of
static friction is µs.

As a result, the tray can be treated as part of the link which
maintains force closure on it, which we choose to be the nth

q
link for convenience. The approach described in this paper
can be generalized to ensure that a force closure condition
was satisfied throughout the motion, but in the interest of
simplicity, we leave that extension for future work.

2) Kinematics and Dynamics: Next, we introduce the kine-
matics and dynamics of the system. Suppose there exists a
fixed inertial reference frame, which we call the world frame,
and a base frame, which we define as 0th frame, that indicates
the origin of the robot’s kinematic chain. The jth reference
frame {x̂ j, ŷ j, ẑ j} is attached to the robot’s jth revolute joint,

and ẑ j = [0,0,1]⊤ corresponds to the jth joint’s axis of rotation
for j ∈ Nq. For a configuration at a particular time, q(t), the
position and orientation of frame j with respect to frame
j− 1 can be expressed using homogeneous transformations
[11, Ch. 2] with a a configuration-dependent rotation matrix,
R j−1

j (q j(t)), and a fixed translation vector from frame j−1 to
frame j, p j−1

j .
The robot is composed of nq rigid links with

inertial parameters given by the vector ∆arm =
(m1, . . . ,mnq ,cx,1, . . . ,cz,nq , Ixx,1, . . . , Izz,nq)

⊤, where m j,
c j = (cx, j,cy, j,cz, j)

⊤, and (Ixx, j, . . . , Izz, j)
⊤ represent the

mass, center of mass (CoM), and inertia tensor of the
jth link, respectively. The properties for nth

q link are
comprised of the gripping link and tray properties. The
object is a rigid body with inertial parameters given by
the vector ∆o = (mo,cx,o, . . . ,cz,o, Ixx,o, . . . , Izz,o)

⊤, where mo,
co = (cx,o,cy,o,cz,o)

⊤, and (Ixx,o, . . . , Izz,o)
⊤ represent the mass,

center of mass, and inertia tensor of the object, respectively.
The arm dynamics are represented by the standard manip-

ulator equations [11, (10.13)]

M(q(t),∆arm)q̈(t)+C(q(t), q̇(t),∆arm)q̇(t)+G(q(t),∆arm)

= u(t)+ J⊤(q(t))wc(q(t))
(1)

where M(q(t),∆arm) ∈ Rnq×nq is the positive definite inertia
matrix, C(q(t), q̇(t),∆arm) ∈ Rnq×nq is the Coriolis matrix,
G(q(t),∆arm) ∈ Rnq is the gravity vector, u(t) ∈ Rnq is the
input torque, J(q(t))∈R6×nq is the manipulator Jacobian, and
wc(q(t)) ∈ R6 is the wrench applied by the object onto the
manipulator, all at time t.

Let wo = −wc be the wrench that the manipulator applies
to the object. We refer to wo as the contact wrench and define
it as wo(q(t)) =

[
fo(q(t))⊤ no(q(t))⊤

]⊤ where fo(q(t) ∈ R3

is the contact force and no(q(t)) ∈ R3 is the contact moment
[12, (5.99)]. If there are no other external wrenches applied to
the object, then the object at time t is manipulated solely by
the contact wrench. The object dynamics can be represented
using standard Newton-Euler equations for a rigid body.

While following a trajectory, if the object moves with
respect to the tray during operation, we say that the object
is experiencing relative motion. This paper’s goal is to
devise a planning strategy to avoid relative motion when
beginning from some initial condition while trying to reach
a user-specified goal configuration or end effector position.
Importantly, when there is no relative motion, the object can
be treated as a rigid body attached to the tray. However, instead
of treating it as part of the last link similar to the tray, we
instead define a fixed joint between the object and tray. We
define the location of the fixed joint to be at pCoM, as shown
in Fig. 2. The reference frame for the fixed joint has the z-axis
ẑo chosen to be aligned with the contact normal n̂. We choose
the y-axis ŷo to be oriented towards the plane of the supporting
surface aligned with joint nq and Throughout the remainder of
the paper, we refer to this manipulator, tray, and object system
as the extended arm. We also let Ne = {1, . . . ,nq +1}.



There are several benefits to this modeling choice. The
first is that the dynamics of the entire system, including
the object, can be calculated using the forward pass of a
modified Recursive Newton-Euler Algorithm (RNEA) which
is described in App. B1. The second is that the backward pass
of RNEA calculates the wrench exerted through the fixed joint
by the tray on the object, which due to the choice of joint
location, corresponds to the contact wrench applied to the
object.

For the extended arm, the object inertial parameters in
∆o are inserted into the nth

q+1 positions in the manipulator
inertial parameter vector ∆arm to form the extended arm inertial
parameter vector, ∆. We make the following assumption about
the extended arm’s inertial parameters:

Assumption 3. The model structure (i.e., number of joints,
sizes of links, etc.) of the robot is known, but its true in-
ertial parameters ∆ are unknown. The uncertainty in each
inertial parameter is known and given by the interval vector,
[∆] = ([m1], . . . , [mo], [cx,1], . . . , [cz,o], [Ixx,1], . . . [Izz,o])

⊤. The true
parameters lie in this interval, i.e., ∆∈ [∆]. All elements of this
interval vector have bounded elements and any inertia tensor
drawn from [I j] must be positive semidefinite.

Before continuing, we make one final observation. Note that
the state of the robot depends on the inertia parameter
vector. We leave out this dependence for convenience unless
we want to emphasize the importance of this dependence in
which case we write q(t;∆).

B. Trajectory Parameterization and Online Control

WAITR performs planning in a receding horizon fashion.
We assume without loss of generality that the control input
and trajectory of a planning iteration begin at time t = 0 and
end at a fixed time tf. To ensure persistent real-time operation,
we require that WAITR identifies a new trajectory parameter
within a fixed planning time of tp seconds, where tp < tf.
Thus WAITR has limited planning time and must select a
new trajectory parameter before completing its tracking of the
previously identified desired trajectory.

In each planning iteration, WAITR chooses a desired tra-
jectory to be followed by the arm. These trajectories are
chosen from a continuum of trajectories, with each uniquely
determined by a trajectory parameter k ∈ K and are writ-
ten as qd(t;k) or qd(t;k,∆) when we want to emphasize
the dependence on the inertia parameter vector. The set
K ⊂ Rnk , nk ∈ N, is compact and represents a user-designed
continuum of trajectories. In general, K can be designed
to include trajectories designed for a wide variety of tasks
and robot morphologies [13]–[15]. Finally, we assume that
q̈d(·;k) is a Lipschitz continuously differentiable function and
at q̇d(tf;k) = q̈d(tf;k) = 0.

A user can track a particular desired trajectory by applying
some feedback controller. As a result we write q(·;k) for a
trajectory of the system at time k. Note WAITR uses a specific

1Supplementary Appendices found at https://roahmlab.github.io/waitr-dev/

type of feedback controller that is described in Sec. IV-A.
Because the feedback controller can be a function of the state
and the desired trajectory and its derivatives, we define a total
feedback trajectory, qA, as:

qA(t;k) =
[
q(t;k) q̇(t;k) qd(t;k) q̇d(t;k) q̈d(t;k)

]
. (2)

C. Contact Constraints
To ensure that the object does not experience

relative motion, we need to compute the wrench applied on
the object during motion. This contact wrench is applied
by the manipulator through the supporting surface, and an
equivalent contact wrench wo can be written with respect to
point pCoM. The contact wrench is a function of the robot’s
configuration trajectory and its velocity and acceleration.
Because there are no external wrenches applied to the
object, the object at time t is manipulated solely by the
following contact wrench wo. Then, the motion of the object
can be constrained in all six degrees of freedom by using
components of the contact wrench wo. Using the following
lemma, whose proof can be found in App. C1, one can ensure
no relative motion occurs:

Lemma 4. Let the vertical separation be defined as:

hsep(wo(qA(t;k))) :=−fo,z(qA(t;k)) (3)

Let the linear slip be defined as:

hslip(wo(qA(t;k))) := (fo,x(qA(t;k)))2+

+(fo,y(qA(t;k)))2− (µsfo,z(qA(t;k)))2 (4)

Let the tip of the object be defined as:

htip(wo(qA(t;k))) := (n̂×no(qA(t;k)))2+

− r2(n̂ · fo(qA(t;k)))2 (5)

If (3),(4), and (5) are less than or equal to zero for all t ∈ T ,
then the object does not experience relative motion while the
robot is moving along q.

D. Online Trajectory Optimization
Then by using this parameterization and the constraints

described in Sec. III-C, one could compute a trajectory to
manipulate an unsecured object with zero relative motion by
solving the following problem:

min
k∈K

cost(k) (6)

hsep(wo(qA(t;k,∆)))≤ 0 ∀t ∈ T,∆ ∈ [∆] (7)
hslip(wo(qA(t;k,∆)))≤ 0 ∀t ∈ T,∆ ∈ [∆] (8)
htip(wo(qA(t;k,∆)))≤ 0 ∀t ∈ T,∆ ∈ [∆]. (9)

Note that the total trajectory in this instance is a function of
the parameterized trajectory and the true inertia parameters
of the extended arm. Because these parameters may not be
known, we require that the constraints be satisfied for all
possible inertia parameters. Implementing a real-time opti-
mization algorithm to solve this problem is challenging for
several reasons. First, the dynamics of the robot are nonlinear
and constructing an explicit solution to them is intractable.
Second, the constraints must be satisfied for all time t in an
uncountable set T .



IV. PLANNING ALGORITHM FORMULATION

The key technical idea of this work is forming polynomial
zonotope overapproximations of the desired trajectories and
the contact wrench. This enables us to generate polynomial
zonotope overapproximations of all constraints in the opti-
mization problem (6)-(9) at the start of the planning itera-
tion, then use these constraint overapproximations to perform
optimization within tp. Then, we can use the robust passivity-
based controller proposed in [9, Sec. VII] to bound the tracking
error of the extended arm. This section begins by summa-
rizing the important properties of the aforementioned robust
passivity-based controller. Subsequently, it describes how to
represent the aforementioned constraints conservatively using
polynomial zonotopes. This section concludes by describing
how to transform the optimization problem (6)-(9) into an
implementable version whose solutions can be be followed by
the robot without experiencing relative motion while satisfying
input constraints.
A. Robust Passivity-Based Controller

We begin by restating Cor. 12 from [9]:

Lemma 5. Suppose there exists a σm > 0 such that 0 < σm ≤
λm(M(q(t),∆)) for all q(t) ∈ Q and ∆ ∈ [∆]. Let e(t;k) :=
qd(t;k)−q(t;k). Let e(0) = ė(0) = 0, and let VM > 0 and Km≥
0 be user-specified constants. Define

εp :=
1
Kr

√
2VM

σm
and εv := 2

√
2VM

σm
. (10)

Then there exists a feedback controller that when applied to
the extended arm dynamics (1) ensure that |e j(t)| ≤ εp and
|ė j(t)| ≤ εv for all t ∈ T and j ∈ Ne.

We make two important remarks about the feedback controller.
First, we compute σm numerically and verify that it is greater
than zero during experiments. Second, note that one can
compute the feedback controller by applying a variant of the
Recursive Newton Euler Algorithm (RNEA) [9, Sec. VII-B].
To bound the error for all time rather than just over t ∈ T one
can apply the previous lemma and [9, Rem. 13] which we
summarize here for convenience:

Remark 6. Suppose that the initial condition of the desired
trajectory in the first planning iteration matches the actual
state of the robot, and that the initial condition of all sub-
sequent desired trajectories match the state of the previous
desired trajectory at t = tp. Then, one can satisfy the bounds
described by Lem. 5.

Note that to apply Rem. 6, one only needs to know the final
state of the previous desired trajectory rather than the final
state of the robot’s actual trajectory.

B. Polynomial Zonotope Overapproximation

This subsection describes how WAITR uses Lem. 5 to
overapproximate parameterized desired trajectories to conser-
vatively account for continuous time operation and tracking
error within our optimization framework. The desired trajec-
tories qd(t;k) are functions of only time t and the trajectory

Fig. 3. An illustration of the polynomial zonotope overapproximations of
the configuration, force, and constraint trajectories. The motion of the robot
is shown in intermediate configurations the top of the figure. Blue indicates
unsliced reachable sets, purple indicates sliced reachable sets and black lines
are the nominal values. Red indicates a constraint boundary.

parameter k. As illustrated in Fig. 3, our approach creates
polynomial zonotope versions of T and K, which are then
plugged into the formula for qd(t;k) to create polynomial
zonotope overapproximations which are then extended to the
joint trajectory, the force trajectory, and subsequently the
tipping constraint for the manipulation problem.

1) Time Horizon and Trajectory Parameter PZs: We first
create polynomial zonotopes representing the time horizon
T . Choose a timestep ∆t so that nt := T

∆t ∈ N. Let Nt :=
{1, . . . ,nt}. Divide the compact time horizon T ⊂ R into
nt time subintervals. We represent the ith time subinterval
corresponding to t ∈ [(i−1)∆t, i∆t] as a polynomial zonotope
Ti =

{
t | t = (i−1)+i

2 ∆t + 1
2 ∆txti , xti ∈ [−1,1]

}
. with indeter-

minate xti ∈ [−1,1].
In this work, we choose K =×nq

j=1 K j, where each K j is
a compact one-dimensional interval. For simplicity, let each
K j = [−1,1]. We represent the interval K j as a polynomial
zonotope Kj = xk j where xk j ∈ [−1,1] is an indeterminate. Let
xk ∈ [−1,1]nq denote the vector of indeterminates where the jth

component of xk is xk j . With this choice of K j, any particular
k j directly yields k j = slice(Kj,xk j ,k j) (see (A14)2).

2) Trajectory PZs: Recall that Ti and Kj have indetermi-
nates xti and xk j , respectively. Because the desired trajectories
only depend on t and k, the polynomial zonotopes qd,j(Ti;K),
q̇d,j(Ti;K) and q̈d,j(Ti;K) depend only on the indeterminates
xti and xk. By plugging in a given k for xk via the slice
operation, we obtain a polynomial zonotope where xti is the
only remaining indeterminate. Because we perform this partic-
ular slicing operation repeatedly throughout this document, if
we are given a polynomial zonotope, qd,j(Ti;K), we use the
shorthand qd,j(Ti;k) = slice(qd,j(Ti;K),xk,k). Because of
our previous observation, qd, j(t;k) ∈ qd,j(Ti;k) for all t ∈ Ti.

Next, we use Lem. 5 to generate polynomial zonotopes that
overapproximate any trajectory that is followed by the robot.

2Supplementary Appendices found at https://roahmlab.github.io/waitr-dev/



Lemma 7. Let εεεp,j = εp, jxep, j and εεεv,j = εvxev, j , with indeter-
minates xep, j ∈ [−1,1] and xev, j ∈ [−1,1]. Then, let

qj(Ti;K) := qd,j(Ti;K)⊕ εεεp,j (11)
q̇j(Ti;K) := q̇d,j(Ti;K)⊕ εεεv,j (12)

for each i ∈ Nt . The polynomial zonotopes qj(Ti;K) and
q̇j(Ti;K) overapproximate the set of all joint trajectories that
can be executed by the robot, i.e., for each k ∈K and j ∈ Ne,
q j(t;k) ∈ qj(Ti;k) and q̇ j(t;k) ∈ q̇j(Ti;k),∀t ∈ Ti.

Moving forward, let qd(Ti;K) =×nq
j=1 qd,j(Ti;K) and

q(Ti;K) =×nq
j=1 qj(Ti;K) We similarly define q̇d(Ti;K),

q̇(Ti;K), q̈d(Ti;K), and q̈(Ti;K). Furthermore, let Ep =

×nq
j=1 εεεp,j and Ev =×nq

j=1 εεεv,j.
After generating the polynomial zonotope overapproxima-

tions of joint trajectories in the previous subsection, WAITR
composes these together to compute a polynomial zonotope
overapproximation of the contact wrench by applying Alg.
1. This algorithm is based on RNEA, which is a tool to
compute the dynamics of serial chain manipulators. Alg. 1 is a
polynomial zonotope version of the RNEA, and was originally
proposed in [9]. Importantly, because of the extended arm
modeling choice described in Sec. III, this same algorithm
now computes an overapproximation of the contact wrench.
Using [9, Lem. 7] and the fact that the vertical separation,
linear slip, and tip constraints are all polynomial functions,
one can prove the following result:

Lemma 8. Let {wj
j(qA(Ti;K), [∆])} j∈Ne =

PZRNEA(qA(Ti;K), [∆]) for each i ∈ Nt . Then the
vertical separation, linear slip, and tip constraints can
be overapproximated by polynomial zonotopes using
wnq+1

nq+1(qA(Ti;K), [∆]), i.e., for each k ∈K

hsep(wo(qA(t;k,∆))) ∈ hsep(w
nq+1
nq+1(qA(Ti;k), [∆])) (13)

hslip(wo(qA(t;k,∆))) ∈ hslip(w
nq+1
nq+1(qA(Ti;k), [∆])) (14)

htip(wo(qA(t;k,∆))) ∈ htip(w
nq+1
nq+1(qA(Ti;k), [∆])), (15)

∀t ∈ Ti and ∆ ∈ [∆].

C. Implementable Online Optimization Problem
Using the polynomial zonotope overapproximations of the

vertical separation, linear slip, and tip constraints, one can
construct an representation of (6)-(9):

min
k∈K

cost(k) (16)

sup(hsep(w
nq+1
nq+1(qA(Ti;k), [∆]))≤ 0 ∀i ∈ Nt (17)

sup(hslip(w
nq+1
nq+1(qA(Ti;k), [∆]))≤ 0 ∀i ∈ Nt (18)

sup(htip(w
nq+1
nq+1(qA(Ti;k), [∆]))≤ 0 ∀i ∈ Nt . (19)

Using Lem. 8 one can prove the following theorem about this
optimization problem.

Theorem 9. Any feasible solution k to the optimization
problem described in (16)-(19) parameterizes a trajectory that

Algorithm 1: {wj
j(qA(Ti;K), [∆])} j∈Ne = PZRNEA(qA(Ti;K), [∆])

1: Let q̇a(Ti;K) := qd(Ti;K)⊕KrEp.
2: Let q̈a(Ti;K) := q̇d(Ti;K)⊕KrEv.
3: Let a0

0 =
[
0 0 9.81

]⊤.
4: parfor i ∈ Nt
5: for j = 1 : nq +1
6: Rj−1

j ,pj−1
j ← Sj−1

j (qj(Ti;K))

7: Rj
j−1← pzTranspose(Rj−1

j )
8: end for
9: for j = 1 : nq +1

10: ω
j
j ← Rj

j−1ω
j−1
j−1

⊕
q̇jz j

11: ω
j
a,j← Rj

j−1ω
j−1
a,j−1

⊕
q̇a,jz j

12: ω̇
j
j ← Rj

j−1ω̇
j−1
j−1

⊕
((Rj

j−1ω
j
a,j)

⊗
(q̇jz j))

⊕
q̈a,jz j

13: aj
j← (Rj

j−1aj−1
j−1)

⊕
(ω̇

j
j
⊗

pj−1
j )

⊕
(ω

j
j
⊗
(ω

j
a,j

⊗
pj−1

j ))

14: aj
CoM,j← aj

j
⊕
(ω̇

j
j
⊗

pj
CoM,j)

⊕
(ω

j
j
⊗
(ω

j
a,j

⊗
pj

CoM,j))

15: Fj
j←mia

j
CoM,j

16: Nj
j← Ij

jω̇
j
j
⊕
(ω

j
a,j

⊗
(Ij

jω
j
j ))

17: end for
18: Initialize fnq+2

nq+2,n
nq+2
nq+2,R

nq
nq+2

19: for j = nq +1 :−1 : 1
20: fj

j(qA(Ti;K), [∆])← (Rj
j+1fj+1

j+1)
⊕

Fj
j

21: nj
j(qA(Ti;K), [∆])← (Rj

j+1nj+1
j+1)

⊕
(pj

CoM,j
⊗

Fj
j)⊕

(pj
j+1

⊗
(Rj

j+1fj+1
j+1))

⊕
Nj

j

22: wj
j(qA(Ti;K), [∆])←

[
fj
j(qA(Ti;K), [∆])

nj
j(qA(Ti;K), [∆])

]
23: end for
24: end parfor

results in no relative motion between an unsecured object and
the end-effector of the robot over the time horizon T .

The implementation of this optimization problem is summa-
rized in Alg. 2. Note in particular that we apply Rem. 6 and
Lem. 7 to compute the polynomial zonotope overapproxima-
tions of the parameterized trajectories and the actual trajectory
of the system for each time interval i∈Nt in parallel in Line 2.
In addition, note that one can calculate the analytical gradients
of the cost function and constraints and provide them to an
optimization solver. One can use polynomial differentiation of
the polynomial zonotope representations of the constraints to
compute the required gradients [9, Sec. IX-C]. In conjunction
with ARMOUR, additional constraints can be added to the
optimization problem such that the parameterized trajectory is
guaranteed collision-free and can be tracked while satisfying
joint and input limits [9, Sec. IX-B]. Thus, a solution to this
optimization problem results in a safe manipulation trajectory.

D. WAITR’s Online Operation

The online operation of WAITR is summarized in Alg. 3.
Because WAITR operates in receding horizon fashion, the
controller in Lem. 5 is used to track the trajectory parameter
computed during the previous planning iteration on Line 7.
At the same time, WAITR computes the trajectory parameter
for the following planning iteration on Line 8. Recall that if a



Algorithm 2: k∗ = Opt(qd0 , q̇d0 , q̈d0 ,cost, tp,Nt ,∆0, [∆],εp,εv)

1: Parfor i = 1 : Nt
2: {q(Ti;K), . . . , q̈d(Ti;K)}← PZ(qd0 , q̇d0 , q̈d0) // Sec. IV-B2
3: // object wrench reachable set using Alg. 1 //
4: {wj

j(qA(Ti;K), [∆])} j∈Ne = PZRNEA(qA(Ti;K), [∆])

5: // constraints using Lem. 8 and wnq+1
nq+1(qA(Ti;K), [∆]) //

6: Compute hsep,hslip, and htip
7: End Parfor
8: Try: k∗← solve (16) – (19)
9: Catch: (if te > tp), then k∗ = NaN // te measures the amount

of time since Opt was called //

Algorithm 3: WAITR Online Planning and Control

1: Require: tp > 0, Nt ∈ N, [∆],∆0 ∈ [∆], cost : K→ R,, εp, εv
2: Initialize: l = 0, t j = 0, and

k∗l = Opt(qstart,0,0,O,cost, tp,Nt ,∆0, [∆],εp,εv)
3: If k∗l = NaN, then execute brake
4: Loop:
5: // Line 7 executes simultaneously with Lines 8 – 10 //
6: // Use Lem. 5 //
7: Apply feedback controller to robot for t ∈ [tl , tl + tp]

8: k∗l+1 = Opt(qd(tp;k∗l ), q̇
j
d(tp;k∗l ), q̈

j
d(tp;k∗l ),cost, tp,Nt ,∆0,

[∆],εp,εv)
9: If k∗l+1 = NaN, then execute brake and break loop

10: Else tl+1← tl + tp and j← j+1
11: End

new trajectory parameter is not found before time tp, then the
robust controller tracks the braking maneuver of the previous
trajectory to bring the robot to a safe stop, seen on Line 9.
Further, by applying Lem. 5 and Thm. 9, one can prove that
WAITR generates behavior that is dynamically feasible and
results in no relative motion.

V. EXPERIMENTS

This section details the implementation and testing of the
WAITR framework on a Kinova Gen3 7 DOF robotic arm.
WAITR is implemented in C++ and CUDA and a MEX
version is used in MATLAB for simulation experiments. The
code can be found at https://github.com/roahmlab/waitr-dev.
Simulation experiments were run using a AMD Ryzen 9 5950x
processor and an NVIDIA RTX A6000 GPU. Two hardware
experiments were run using an AMD Ryzen 9 3950x processor
and NVIDIA Quadro RTX 8000 GPU.

A. Trajectory Creation

This work parameterizes the reference trajectories by using
a set of degree 5 Bernstein polynomials as is done in [9, Sec.
IX-A]. Letting T = [t0, t f ], WLOG, the reference trajectories
take the form qd, j(t;k) = ∑

5
l=0 β j,lb j,l(t), where β j,l ∈ R are

the Bernstein Coefficients and b j,l : T → R are the Bernstein
Basis Polynomials of degree 5 for each l ∈ {0, . . . ,5}. As a
result of Rem. 6, the initial position, velocity, and acceler-
ation of a parameterized trajectory are constrained. Further,
the parameterized trajectories are constrained to have zero
velocity and acceleration by tf in order to bring the robot to
a stop. Therefore, one can show that five of the six Bernstein

coefficients β j,ν are known and only the last coefficient can be
optimized over. We let the last coefficient β j,5 = η j,1k j +η j,2
where η j,1 and η j,2 ∈ R are user-specified constants. The
choice of trajectory parameter k j directly determines the
coefficient β j,5 and the final position of the robot.

B. Implementation Details

1) Robot Model and Environment: For simulation, the tray
mass was 0.044 kg and the object mass was 0.172 kg. For
the first hardware experiment, the tray mass was 0.058 kg
and the object mass was 0.048 kg. For the second hardware
experiment, the tray mass was 0.354 kg and the object mass
was 0.592 kg. These are added to the robot model as described
in Sec. III. By sampling, the minimum eigenvalue of the mass
matrix was determined to be uniformly bounded from below
by σm = 8.0386.

2) Trajectories: In all experiments, tp = 1.0s and tf = 2.0s.
In simulation experiments, we let η j,2 = qd, j0 and η j,1 =

π

72 ,
so that after tf = 2.0s the final position of any joint trajectory
can differ from its initial position by up to ± π

72 radians. For
hardware experiments, we let η j,2 = qd, j0 and η j,1 = π

32 for
j ∈ 1,2,6 and η j,1 =

π

72 for j ∈ 3,4,5,7.
3) Tracking Error Bound: We use the same controller as

presented in [9, Sec. VII], with a different Kr, VM and σm,
which are reported in App. D3.

4) High-level Planners: We use a cost function that mini-
mizes the distance between q(tp;k) and an intermediate way-
point. Simulation experiments are run with two different high
level planners. The first is a straight line high-level planner
(SL-HLP), which calculates a waypoint along a straight line
between the start and goal in configuration space without
checking for collision. The second is a graph-based high
level planner (GB-HLP), which is constructed using robot
configurations with a flat end-effector pose. Before operation,
the configurations that are in collision with obstacles are
removed from the graph. Note that the high-level planner does
not need safety guarantees because WAITR’s safety guarantees
are independent of the high-level planner.

5) Comparison Framework: We compare WAITR to a
previous method ARMOUR, which does not contain contact
wrench constraints, by running both methods on identical
simulation worlds with the same high level planner.

6) Trajectory Optimization Implementation: The WAITR
C++ framework uses IPOPT [16] to solve the trajectory
optimization problem during each planning iteration. Analytic
gradients/subgradients of the cost function and constraints are
provided for the optimization solver to speed computation.

C. Simulation Experiments

1) Simulation Setup: The simulation experiment consisted
of testing WAITR with two different high-level planners in
100 trials where each was initialized with a random feasible
start and goal state. Each trial had 10 box shaped obstacles
randomly placed in the workspace and randomly scaled side
lengths that were allowed to vary between 0.010 to 0.050 m.

https://github.com/roahmlab/waitr-dev


Method Goals Reached Safe Stops Violations
WAITR + SL-HLP 44 56 0
WAITR + GB-HLP 91 9 0

ARMOUR [9] + GB-HLP 64 30 6
TABLE II

Results on 100 random simulation experiments.

2) Results: The results of the 100 random trials are pre-
sented in Tab. II, with example videos available at https://
roahmlab.github.io/waitr-dev/. WAITR robustly handles infea-
sible waypoints from the SL-HLP while still ensuring safety,
at the cost of not always making it to the goal. When using the
GB-HLP, which provides feasible waypoints, WAITR reaches
the goal 91 times and safely stops 9 times. In contrast, even
though ARMOUR uses the GB-HLP, and is given feasible
waypoints, it reaches the goal only 64 times, safely stops 30
times, and violates the contact constraints 6 times. This shows
that it is not adequate to have a high-level planner that can
provide feasible waypoints.

D. Hardware Results

1) Setup: The first experiment compares WAITR and AR-
MOUR on a Kinova Gen3 robot arm. The tray surface is
covered with Duct tape to adjust the coefficient of friction,
which was experimentally measured to be µ = 0.36. Both
frameworks used the GB-HLP, and had the same random noise
added to the last three joints in the waypoints selected. This
randomly adjusted the orientation of the tray in each waypoint
such that it was not flat. Two obstacles were placed randomly
in the workspace but at the same location when running each
approach. This ensures that the only difference between the
experiments for the two frameworks is the constraints that
they are enforcing. The second experiment demonstrates the
ability of WAITR to operate under the presence of modeling
uncertainty. The object for this experiment was a plastic cup
filled with metal nuts. The coefficient of friction between the
plastic cup and the tray was measured to be µ = 0.60. WAITR
was run in three consecutive trials which each had random
placed obstacles. Before the last trial, the mass of the cup
was adjusted by removing 0.028 kg, or 4.73% of the total
mass of the unsecured object. This also adjusted the inertia
by 4.73%. WAITR was set to account for 5% variation in the
mass and inertia of the object, and the model used by the
WAITR framework was not adjusted to reflect the changed
object parameters.

2) Results: Videos of the hardware experiments are avail-
able at https://roahmlab.github.io/waitr-dev/. The first hard-
ware experiment shows WAITR successfully manipulating
an unsecured object while navigating around two ran-
domly placed obstacles. ARMOUR also successfully navigates
around the obstacles, but fails to manipulate the unsecured
object, resulting in the object slipping and falling off the tray.
The second trial demonstrates that WAITR can successfully
operate in the presence of uncertainty in the inertial param-
eters of the object being manipulated. All of the hardware
experiments were run in real-time.

3Supplementary Appendices found at https://roahmlab.github.io/waitr-dev/

VI. CONCLUSION

This paper describes WAITR, a real-time provably safe
planning and control framework for collision-free non-
prehensile manipulation capable of robustly dealing with un-
certainty in both the manipulator’s and target object’s inertial
parameters. There are several directions of future work for the
WAITR framework. The first is enabling WAITR to handle
changes in the contact state of the objects being manipulated,
such as allowing manipulated objects to slip on the tray. The
second is to form constraints that can guarantee safe force
closure on objects throughout a desired trajectory.
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