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We study quantum information scrambling in a random unitary circuit that exchanges qubits with an
environment at a rate p. As a result, initially localized quantum information not only spreads within the
system, but also spills into the environment. Using the out-of-time-order correlator (OTOC) to characterize
scrambling, we find a nonequilibrium phase transition in the directed percolation universality class at a
critical swap rate p.: for p < p. the ensemble-averaged OTOC exhibits ballistic growth with a tunable
light cone velocity, while for p > p, the OTOC fails to percolate within the system and vanishes uniformly
within a finite timescale, indicating that all local operators are rapidly swapped into the environment. To
elucidate its information-theoretic consequences, we demonstrate that the transition in operator spreading
coincides with a transition in an observer’s ability to decode the system’s initial quantum information from
the swapped-out, or “radiated,” qubits. We present a simple decoding scheme which recovers the system’s
initial information with perfect fidelity in the nonpercolating phase, and with continuously decreasing
fidelity with decreasing swap rate in the percolating phase. Depending on the initial state of the swapped-in
qubits, we further observe a corresponding entanglement transition in the coherent information from the

system into the radiated qubits.
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Understanding the complexity of quantum states and
operators undergoing time evolution is a key challenge with
potential implications across fields, from condensed matter
physics, through quantum gravity, to quantum computation.
In condensed matter physics, insights on the growth of
operator complexity have inspired new ways of computing
the dynamics of thermalizing systems [1-8]. Operator
growth, as measured for example by out-of-time-order
correlations (OTOCs) [9-12], is also considered as key to
relating boundary to bulk dynamics in the conjectured
AdS/CFT correspondence [13-19]. Furthermore, under-
standing complexity growth in terms of scrambling of
quantum information has revealed connections between the
dynamics of black holes and the capacity of artificial quantum
circuits to encode and process quantum information [20-23].

Physical observables evolved by simple models of
unstructured unitary circuits or of thermalizing many-body
Hamiltonians are expected to scramble and grow in
complexity indefinitely, or at least to astronomical time-
scales [19,24]. But these models may be too simplified in
some cases. For example, as information is scrambled in a
black hole some of it is lost to Hawking radiation [25].
Similarly decoherence in quantum circuits implies that
some of the information is ultimately lost, or shared with
external degrees of freedom [8,26,27]. Can there exist sharp
thresholds or phase transitions in scrambling, or in the flow
of quantum information, tuned by the rate of such loss
processes?

0031-9007,/23/131(22)/220404(7)

220404-1

Recently, it has been discovered that random unitary
circuits (RUCs) interspersed with local projective measure-
ments can exhibit two distinct dynamical phases, charac-
terized respectively by the partial protection or rapid
destruction of initially encoded quantum information,
which are separated by a continuous phase transition at
a nonzero critical measurement rate [26,28-34]. However,
measurements are highly nonrepresentative of generic
errors, and moreover, such measurement-induced phase
transitions (MIPTs) typically face exponentially large post-
selection barriers to experimental observation [35-37].
It is natural to ask if a phase transition in scrambling
and information flow can occur in a RUC without mea-
surements, thereby avoiding the postselection problem
altogether.

In this Letter, we present a simple model of a RUC that
exhibits a phase transition from scrambling to non-
scrambling dynamics. We extend previous works [38—43]
exploring operator growth in closed-system RUCs by
allowing the system to exchange qubits with an environ-
ment [44-47]; as a consequence, initially localized quan-
tum information not only spreads within the system, but
also spills into the environment. Using a mapping to a
classical nonequilibrium statistical mechanics model of
population dynamics, we show that the circuit exhibits
tunable scrambling: increasing the rate of qubit swaps
reduces the OTOC light cone velocity within the system
until it vanishes at a critical swap rate. At this point, the
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FIG. 1. (a) Circuit diagram for the model studied. An initial operator X, is Heisenberg evolved via a random unitary circuit. In between
layers of unitary gates, swaps with ancilla qubits occur with probability p. The OTOC C(x,t) is obtained from the commutator
[Xo(2), Y,]. (b) Top: OTOCs for typical Clifford circuit realizations, for four swap rates p, for a system of size N = 100. White denotes
C(x,t) = 1, while black denotes C(x, ) = 0. Bottom: averaged OTOC for the same swap rates in a system of size N = 1024, depicting
the narrowing and eventual vanishing of the light cone. Colors are plotted on a log scale for increased contrast. (c) Integrated OTOC
o(t) = (1/N) >, C(x,t) for several swap rates p in a system of size N = 1024. o(¢) exhibits linear growth and saturates at a finite value
for p < p., exhibits power-law growth with exponent 8 ~ 0.3175 at the critical point p. ~ 0.206, and rapidly decays to zero for p > p..
Inset: scaling collapse for several swap rates below p. (green) and above p. (purple), using DP exponents Opp =~ 0.3136 and v pp ~

p =0.16

p =0.206

Xo

1.734 [51,60].

model exhibits a phase transition in the directed percolation
(DP) universality class [48-51] to a nonscrambling phase.
For swap rates above this threshold, all local operators
initially within the system are rapidly swapped to the
environment.

In contrast to previous works on operator growth in open
systems [8,52-59], the transition in the OTOC described
here requires that an observer has access to the swapped-
out, or “radiated,” environment qubits. To determine the
implications of the transition in operator spreading on
the flow of quantum information, we consider a thought
experiment in which an observer attempts to recover
quantum information stored in the initial state of the system
from the radiated qubits alone. Motivated by an analogy to
previous studies of quantum information scrambling in
black holes [21,23,45,46], we provide a simple algorithm
by which an observer with access to the radiated qubits can
decode this quantum information with perfect fidelity in the
nonpercolating phase of the circuit, but with an imperfect
fidelity set by the DP survival probability in the percolating
phase. We numerically demonstrate a corresponding tran-
sition in the coherent information into the radiated qubits,
which depends nontrivially on the observer’s knowledge of
the qubits swapped into the system.

Model.—We consider a one-dimensional system of N
qubits with periodic boundary conditions undergoing
brick-wall random unitary evolution [Fig. 1(a)]. Each
two-qubit unitary gate is independently drawn from either
the Haar or Clifford ensemble. Between layers of unitary
gates, each system qubit is swapped with an environmental
ancilla qubit with probability p; crucially, we use a fresh
ancilla qubit for each such interaction, and we do not trace

out the ancilla following the system-ancilla interaction. For
now, we leave the initial state p3t on the system S and
environment £ unspecified.

We study operator spreading in the RUC U, by computing
the out-of-time-order correlator (OTOC) [9,10,12,39,40],
defined here as

Clt) = {0, Y o). ]} (1)

where Y, is the Pauli-Y operator for the xth qubit, and
Xo(t) = Ul X,U, is the Heisenberg-evolved Pauli-X oper-
ator for the zeroth qubit after ¢ layers of unitary gates.
References [39,40] previously studied operator spread-
ing in closed-system RUCs using the OTOC. Upon
introducing swap gates with an environment, a new
physical feature emerges: the operator X,(f) not only
spreads within the system, but also spills into the environ-
ment. By tuning the swap rate p, the rate of operator growth
within the system can be slowed or even halted altogether.
To see this concretely, it is illuminating to consider
the evolution of the OTOC in random Clifford
circuits [61,62]; see the Supplemental Material [63] for a
corresponding calculation for Haar-random circuits. Since
Eq. (1) is second-order in U, ® U; and the Clifford
ensemble forms a unitary 3-design, the ensemble-averaged
OTOC C(x, r) behaves identically in the Haar and Clifford
circuits [72,73]. Whereas X;(t) evolves into a superposi-
tion of many Pauli strings in generic circuits, in a Clifford
circuit X(#) remains a single Pauli string at all times, and
C(x,1) = 1 whenever X(¢) has Pauli content X or Z at site
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x and vanishes otherwise. Noting that each of the three
Pauli operators appear within X,(7) at a given site with

equal probability, we can express C(x, t) = %m in terms
of an occupation number 7, (#) which equals one whenever
Xo(1) has nontrivial (i.e., nonidentity) Pauli content on site
x in a given Clifford circuit.

We interpret the evolution of the ensemble {n ()} as a
stochastic evolution of particles on a tilted square lattice.
Vertices of the lattice sit at the center of unitary gates, and
the occupation numbers {n,(¢)} at each integer time step
define a distribution of particles along the edges of the
lattice. The rules for obtaining {n,(r+ 1)} from {n. (1)}
are determined by noting that a two-qubit Clifford gate can
evolve a nontrivial two-qubit Pauli string to any of 15
nontrivial two-qubit Pauli strings (up to phase) with equal
probability, while the trivial Pauli string always evolves to
the trivial Pauli string. Upon adding system-ancilla swap
gates, the Pauli content of each site x has an additional
probability p of swapping onto an environment qubit:
effectively, the particle hops from the system to the
environment, and the Pauli content of site x is set to the
identity. We therefore obtain the following probabilities for
the propagation of particles from an occupied vertex [74]:

t 2(1-p? f(1-p)+2pl-p), 2p*+2p,

where a dark line indicates the propagation of a particle,
while a dotted line indicates no propagation of a particle.
The case p = 0 returns the results of Refs. [39,40], which
can be interpreted as the stochastic evolution of particles
which can diffuse, spread, or coalesce, but never annihilate;
the average behavior of the OTOC can be computed exactly
in this case, and one finds a ballistic growth of the OTOC
with a light cone front that broadens as +/7.

In contrast, introducing p > 0 allows particles to
annihilate, and yields the phenomenology of a DP
problem [48,49,51]. The OTOC’s light cone velocity
continuously decreases with increasing p and vanishes at
critical swap rate p., at which point there is a phase
transition in the DP universality class [63]. For swap rates
p < pe» Xo(t) percolates throughout the system qubits
with a finite probability P(¢) corresponding to the survival
probability of the associated DP process. On the other hand,
for p > p, the particle distribution is rapidly driven to the
absorbing state n,(f) = 0; the entire operator X,() is
swapped into the environment within a finite timescale,
and C(x, t) vanishes uniformly at all times thereafter. These
qualitative features are observed in Clifford numerical
simulations, as demonstrated in Fig. 1(b).

Note that the stochastic rules (2) are not microscopically
equivalent to standard bond DP, due to correlations
between the two edges leaving a vertex. This feature is
not expected to affect the universal behavior of the two

phases or the transition, in accordance with the DP
hypothesis [75,76]. To confirm that the phase transition
lies within the DP universality class, we use Clifford
simulations to numerically compute the integrated OTOC

o(t) = (1/N) >, C(x, 1) for several swap rates [Fig. 1(c)].
We find that o(r) grows linearly and saturates at a nonzero
value for p < p,., while it rapidly decays to zero for
P> pe. At p.~0.206, o(t) ~ 1% grows as a power law
with exponent @ ~ 0.3175, in good quantitative agreement
with the critical exponent 6pp ~0.3136 governing the
analogous growth of particle density in bond DP [60].
In the Supplemental Material [63] we present additional
numerical evidence for DP universality at the phase
transition.

Decoding transition.—The growth of the OTOC
can be associated with the spreading of quantum informa-
tion [12,23,77]. However, this interpretation has important
subtleties in our model. Suppose that an observer Alice
stores a k-qubit message in the initial state of the system,
which then undergoes time evolution by the circuit U,.
It may be tempting to associate the percolating OTOC
to a capacity for another observer, Bob, to recover Alice’s
message from the qubits remaining in the system. However,
closer examination shows that even when local operators
develop large support on the system, they have substan-
tially larger support on the qubits swapped out to the
environment. As a result, Bob can never recover any
fraction of Alice’s message at long times.

To explicate the connection between operator spreading
and the flow of quantum information in our model, we
instead ask whether an eavesdropper Eve, who collects
the qubits swapped out of the system, can recover Alice’s
message. We demonstrate here that the transition in
operator spreading coincides with a transition in the fidelity
with which Eve can decode Alice’s quantum information
from the radiated qubits using a simple decoding protocol,
shown in Fig. 2(a) and discussed below. In the discussion,
we comment on an analogy between our model and that of
the Hayden-Preskill thought experiment [21], and the
relation between our decoding protocol and a similar
protocol proposed for Hayden and Preskill’s problem [23].

Alice’s state is stored initially on the first k£ qubits of S,
denoted S;. The remaining N — k qubits of S are denoted
S,. After evolving SE by the circuit U,, Eve collects the
radiated qubits E and attempts to decode Alice’s state
without access to S. To construct the decoder, Eve first
introduces an extra set of N qubits S = S U S} initialized
in an arbitrary state, then applies the reverse unitary circuit
U ,T on S'E [Fig. 2(a)]. Deep in the nonpercolating phase,
where Alice’s state is always swapped entirely into the
environment, such a decoding protocol will perfectly
reproduce Alice’s state on S.

To quantify the success of Eve’s decoding for general p,
we encode Alice’s state using a reference system A
initialized in a maximally entangled state |@y ) with S,
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FIG. 2. (a) Simple decoding protocol for recovering quantum
information encoded initially within the system. Following
random unitary evolution with swap gates on SE via the circuit
U, [Fig. 1(a)], swapped-out or “radiated” qubits are swapped
back into a second system S’ via the reverse circuit U, . (b) Late-
time log-averaged fidelity log, F (green) for the simple decoding
protocol, and late-time average coherent information I.(A)E)
for an initially maximally mixed environment (orange) and an
initially pure environment (blue), as a function of swap rate p in a
system of size N = 512. Averages are taken over 400 Clifford
circuit realizations. The dotted red line denotes p. =~ 0.206, as
estimated from the OTOC.

and compute the fidelity with the same state on AS)
following the decoding protocol:

@i ) (@i

where py = @ ) (P4 | ® p5F s the initial state on

ASS'E, which consists of the entangled state |®} ) (@ |

on AS, and an arbitrary product state pgz SE on the remaining

qubits, and U, denotes the unitary circuit acting on S'E.
A maximal fidelity 7 = 1 implies that an arbitrary initial
state on S; will be exactly reproduced on ) at the end of the
protocol, while a fidelity F = 272 indicates that the final
state on S is uncorrelated with the initial state of S;.

For simplicity, we first assume that Alice’s message
contains kK = 1 qubit. Then, it is straightforward to show
that in a given Clifford circuit, F (¢) simply counts which of
the operators X (1), Yo(t), and Zy(¢) are swapped entirely
into the environment by time 7. Through the mapping to the
stochastic model, this occurs for each such operator with
probability 1 — P,(¢), where P,(t) is the survival proba-
bility of the associated DP process initialized with a single
particle at = 0. In the Supplemental Material [63], we
show that this observation results in an average decoding

fidelity F (1) = 1 —3 Py(1) for k = 1 encoded qubit. More
generally, for arbitrary k we obtain the bounds

F(t) = tr{

Ui*U,poUiU;}, (3)

=P (D[ =27 < F(r) S 1=Py(1)[1 =272, (4)

where P (7) is the survival probability of k initial particles
arranged side-by-side. Notably, since F(¢) is second-order

in U, ® Uf, this result holds identically in both the
Haar and Clifford ensembles. In the nonpercolating phase
p > p. each survival probability falls to zero exponentially
quickly, resulting in a perfect decoding fidelity at late
times as expected. On the other hand, for small p < p,
the survival probability is large, and the decoding fidelity
is close to that of a random final state on AS). The
numerical late-time behavior of log, F for k = N is shown
in Fig. 2(b).

Information transition.—While we have shown that the
decoding fidelity for the simple decoder of Fig. 2(a)
undergoes the same transition as the OTOC, we are more
generally interested in the maximal amount of quantum
information Eve can recover from the radiated qubits E
using any decoding protocol. In other words, we would
like to characterize the quantum channel capacity of the
circuit U,, regarded as a noisy quantum channel from S;
to E [78-83]. Towards this end we consider the coherent
information I.(A)E) = Hgp — Hp from A to E, where
Hy = —trpRlog pX is the von Neumann entropy of sub-
system R. The coherent information can then be used to
lower-bound the single-shot quantum channel capacity of
the circuit [78,80,83,84]. In this section it is useful to focus
on the case k = N, although the generalization to arbitrary
k is straightforward [63].

Unlike the OTOC and the decoding fidelity given above,
the behavior of 7,(A)E) depends strongly on the initial state
of the qubits swapped into the system. First suppose that
the swapped-in qubits are initialized in the maximally
mixed state, p§ = (1/2V#)1, where N ~ pNt is the total
number of swaps; physically, this corresponds to the case in
which Eve has no prior knowledge of the qubits swapped
into the circuit. Then, one can show diagrammatically [63]
that the subsystem purity tr[(p/f)?] = 2NV=Ne F is propor-
tional to the decoding fidelity. This in turn implies that
I.(A)E) = N + log,F in individual Clifford circuit real-
izations. Although the logarithm prevents a simple stat-
istical mechanics interpretation for the average coherent
information in either Clifford or Haar random circuits,

we observe numerically [Fig. 2(b)] that I.(A)E) in the
Clifford ensemble exhibits the same qualitative features as
N +log, F and undergoes a transition at the same critical
swap rate as the fidelity.

In contrast, suppose now that the swapped-in qubits are
initialized in a definite pure state, p§ = |0)(0|®Ne.
Physically, this case occurs when Eve has perfect knowl-
edge of the initial state of each swapped-in qubit. Since the
global state is now pure, we can compute [.(A)E) =
—1.(A)S) by tracing over the swapped-out qubits in E,
upon which the swap operation becomes equivalent to an
amplitude-damping channel [85]. The system density
matrix p? therefore evolves via a strictly contractive
quantum channel with a unique fixed point, and rapidly
forgets its initial conditions and approaches a unique steady
state. As a result, we expect p/S ~p? ® pF to rapidly
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factorize into a product state. This implies that /.(A)S) =
—N after a finite timescale, indicating that no information
can be transmitted from Alice to Bob through the system as
expected. But for a globally pure state, this immediately
suggests I.(A)E) = N is maximal. We confirm numeri-
cally [Fig. 2(b)] that in this case the coherent information
is indeed maximal for any p > 0. Physically, this result
implies that Eve can in principle use her knowledge of the
swapped-in qubits to decode Alice’s information from the
radiated qubits for any p > 0 [63].

Discussion.—We have demonstrated a DP phase tran-
sition in the operator dynamics and the flow of quantum
information in a RUC which exchanges qubits with an
environment. If an observer Alice stores a quantum
message in the initial state of the system, another observer
Eve can utilize a simple decoding protocol [Fig. 2(a)]
to recover Alice’s message from the radiated qubits with
perfect fidelity in the nonpercolating phase p > p. and
with imperfect fidelity in the percolating phase p < p,.

The highly scrambling intrasystem unitary dynamics in
our model plays an essential role in determining the critical
swap rate p. and in obtaining a transition at a nonzero p,.
Indeed, in an alternate model consisting of non-scrambling
dynamics such as free fermion evolution, it is straight-
forward to show that the non-percolating phase occurs for
all p > 0[63]. In contrast, the use of swap gates for system-
environment interactions is not a physically crucial feature.
For example, generic Haar-random gates between the
system and environment can also drive a DP transition if
the intrasystem dynamics is less scrambling, or if multiple
rounds of system-environment interactions are allowed
between layers of intrasystem gates.

We can draw an analogy between our model and the
Hayden-Preskill thought experiment [21] by imagining
our RUC as a black hole emitting Hawking radiation via
qubit swaps with the environment. However, there are
crucial differences: first, instead of assuming that the
unitary circuit scrambles completely before emitting
Hawking radiation, the radiation here is emitted dynami-
cally throughout the scrambling process. Second, Eve does
not have access to early radiation maximally entangled with
the black hole prior to scrambling; as a result, Eve must
collect a large amount (at least of order N) of radiation
before she can decode Alice’s message. Despite these
differences, our model is a close analog to previous
RUC models of evaporating black holes [45,46], and
suggests the possibility of analogous phase transitions in
the recoverability of quantum information in these models.
Furthermore, while our decoding scheme [Fig. 2(a)] is
closely analogous to the decoder proposed for Hayden and
Preskill’s problem [23], the decoding scheme in the present
work does not require Grover search or postselection on
exponentially rare measurement outcomes.

It is fruitful to compare the observed transition with the
MIPT in monitored RUCs [26,29,30,86]. In this setting,

there is also a phase transition in the dynamics of quantum
information: for small measurement rates below a threshold
there is a finite capacity for Alice to transmit quantum
information through the system, while above the threshold
measurements are capable of destroying Alice’s informa-
tion [31,32]. However, unlike the MIPT, the transition
discussed in the present work requires no mid-circuit
measurements and therefore does not suffer from a post-
selection problem. As a result, our transition does not face
the same fundamental barriers to experimental observation
as the MIPT in monitored RUCs.
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