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We introduce a multi-modal, multi-level quantum complex exponential least
squares (MM-QCELS) method to simultaneously estimate multiple eigenvalues
of a quantum Hamiltonian on early fault-tolerant quantum computers. Our the-
oretical analysis demonstrates that the algorithm exhibits Heisenberg-limited
scaling in terms of circuit depth and total cost. Notably, the proposed quantum
circuit utilizes just one ancilla qubit, and with appropriate initial state condi-
tions, it achieves significantly shorter circuit depths compared to circuits based
on quantum phase estimation (QPE). Numerical results suggest that compared
to QPE, the circuit depth can be reduced by around two orders of magnitude
under several settings for estimating ground-state and excited-state energies of
certain quantum systems.

1 Introduction

The estimation of ground-state energies and excited-state energies of a Hamiltonian is
a fundamental problem in quantum physics with numerous practical applications, such
as in the design of new materials, drug discovery, and optimization problems. While the
ground-state is often the state of interest for many quantum systems, excited-state energies
also provide crucial information for understanding the electronic and optical properties of
materials. Classical computers are limited in their ability to accurately estimate these
energies for large-scale systems, and quantum computers have the potential to provide a
significant speedup in solving such problems. Therefore, developing efficient and accurate
methods for estimating ground-state and excited-state energies on quantum computers has
become a major area of research in quantum information science.

When estimating multiple eigenvalues on quantum computers, there are two different
strategies to consider. The first method involves preparing a variety of initial states that
approximate different target eigenstates, and then estimating each eigenvalue one by one.
The second method is to prepare a single initial state that has nontrivial overlap with all
eigenstates of interest and estimate the eigenvalues simultaneously. The effectiveness of
each approach depends on the assumptions and qualities of the initial state. This paper

Zhiyan Ding: zding.m@math.berkeley.edu
Lin Lin: linlin@math.berkeley.edu

Accepted in {Yuantum 2023-09-27, click title to verify. Published under CC-BY 4.0. 1



concerns the second approach. Given a quantum Hamiltonian H € CM*M

that we can prepare an initial quantum state |¢)) with K dominant modes. Specifically,
let {(Am, |¢m>)}n]\f=1 denote the eigenvalue and eigenvector pairs of H, and define p,, =
|(¥m|1h)|?* as the overlap between the initial state and the m-th eigenvector. We assume
that we can choose a set D C {1,2,--- , M} satisfying |D| = K, and p,,, = Q(R¥)) for any
m € D. Here RE) = 3" e Py is called the residual overlap, and D¢ = {1,2,--- , M}\D.
The eigenvalues { A, }mep are called the dominant eigenvalues of H with respect to the
initial state |¢) (or dominant eigenvalues for short), and the associated eigenvectors are
called the dominant eigenvectors (or dominant modes). We assume {\p,}mep C [, 7]
for simplicity. Using an oracle access to the Hamiltonian evolution operators e ¥ for any
t € R, we introduce an efficient quantum algorithm to estimate these dominant eigenvalues.
We quantify the efficiency of a quantum algorithm by means of the maximal runtime
denoted by Tiax, and the total runtime Tigga. Assuming an algorithm needs to run a
set of Hamiltonian evolution operators {exp(—it,H)}._;, then the maximal runtime is
Thax = Maxi<np<n |tn| and the total runtime is Tiotal = Zflv:l |tn|- Here, Tiax and Tiotal
approximately measure the circuit depth and the total cost of the algorithm, respectively,

in a way that is oblivious to the details in implementing the Hamiltonian evolution operator
e—itH

we assuime

)

Our algorithm satisfies the following properties:

(1) Allow a nonzero residual overlap: R(%) = > mrepe Pmy > 0.

(2) Maintain Heisenberg-limited scaling [11],[41],[42]: To estimate all dominant eigenval-
ues to precision € with probability 1 — 7, the total cost is O(e~! poly log(e~1n™1));

(3) Use one ancilla qubit.

(4) Reduce the circuit depth: the maximal runtime can be (much) lower than 7 /e, es-
pecially when the ratio of residual overlap to the minimum overlap in the dominant
set R /(min,,ep prm) approaches zero.

(5) Use the information of the spectral gap to further reduce maximal runtime: in the
presence of a spectral gap A, when e € A, the maximal runtime can be independent
of € as O(A™1), and in this case, the total runtime is O(e~2) (see detail in Remark
2).

Our algorithm is designed to perform only classical postprocessing on the quantum
data that is generated by the Hadamard test circuit, which uses one ancilla qubit. It is
particularly well-suited for early fault-tolerant quantum devices that may be limited in the
number of ancilla qubits and maximal coherence times.

The structure of this paper is organized as follows: In Section 2, we present the main
idea of our method and provide a brief summary of related works. Next, in Section 3,
we describe the main algorithm and provide the complexity results. The proof is included
in the Appendix. Finally, we showcase the efficiency of our algorithm through numerical
examples in Section 4.

2 Main idea and related work

In order to illustrate the main idea of the algorithm, we assume that we can use a quantum
circuit (see Section 3.1) to accurately estimate

M

(Yl exp(—itH) [¢) = D pm exp(—itmt) (1)

m=1
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for any ¢t € R, where ¢ is drawn from a probability distribution with a symmetric density
a(t), i.e., a(t) >0, a(t) = a(—t), and ||a(t)| pr = [Z5 a(t)dt = 1. In our implementation, to
estimate (1), we first use a classical computer to randomly sample ¢ from distribution a(t).
Then, we execute the Hadamard test circuit (Fig. 2) on a quantum computer multiple
times and average the output of measurement to estimate (1). We emphasize that the
random selection of ¢ plays an important role in improving the efficiency of our algorithm
(see Section 2.1).

Define the Fourier transform of the probability density
Flz) = / a(t) exp(izt) dt , 2)
—0Q

which is a real-valued even function. As detailed in the following explanation, our approach
requires carefully selecting an appropriate distribution a(t) to ensure that the resulting filter
function F'(z) reaches its maximum at = 0 and decay rapidly as |z| increases. There are
several choices of a(t) such that F(z) concentrates around x = 0. In this paper, we choose
a(t) as the density function of a truncated Gaussian function:

1 12
a(t) = Wexp <_2T2) Y_yrqm(t), for T,v>0, (3)

where the normalization constant A, = jj,y J%exp (—%) dt. The selection of a(t) is

guided by the observation that the Fourier transform of a Gaussian function remains a

Gaussian function. More specifically, when v = oo, we have F(x) = exp (— TQQ‘TQ), which

attains its maximal value at = 0 and exponentially decays to zero with respect to T'|x|.
In addition, the use of the truncated Gaussian ensures that the maximal runtime never
exceeds vT'. We may also use the notation ar(t) = a(t), Fr(x) = F(z) to emphasize the
dependence on T.

From this we can define an ideal loss function as
2

Lic (o 00HL) = [ att) ar. ()

M K
Z Dm exp(—iApt) — Z ri exp(—ibit)
m=1 k=1

Then we can we estimate the dominant eigenvalues { A, };mep by solving the optimization
problem
K K . K K
(s A0 HLL) = argmin Lxc (s {0:HSL) - (5)
r€C,0,eR
Intuitively, if the residual overlap R¥) = Y miepe Pmy 18 small enough, to minimize
the loss function, {(r},05)} , should be close to {(pm,Am)}mep so that the optimizer
Zszl r exp(—i0;t) can eliminate the dominant term ), cp pm exp(—iAp,t). For example,
consider the case K = 1, we can obtain a closed form expression for the ry variable, and
the optimization problem in Eq. (5) can be rewritten as

M oo
=S pm / a(t) exp(i(6F — Am)t) dt, (6)
m=1 V=00
and
M oo 2 M
0] = argmax Z pm/ a(t) exp(i(0 — \p,)t) dt| = argmax Z i F (0 — M)l -
(2SS m=1 —0o0 0cR m=1

(7)
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Since F(z) is a function that concentrates around = = 0, we expect that 07 ~ A+, where
m* = arg max,, Pm.

In practice, we can only generate an approximate value of (] exp(—itH) |¢)) up to
statistical errors for a finite number of time steps ¢. As a result, the loss function we use
in our optimization problem is only an approximation of the ideal loss function presented
in Eq. (4). The main objective of this work is to generalize this idea to the estimation of
multiple eigenvalues, and to rigorously implement this idea and control the complexity.

Using the concentration property of F'(x), we can demonstrate that the solution of the
optimization problem is within /T of the dominant eigenvalues A,,. Therefore by choosing
Tmax = 9/€, the parameter ¢ directly affects the circuit depth, and can be selected to be
arbitrarily small if R¥) is small enough. Additionally, the solution of the optimization
problem presented in Eq. (5) is robust to the measurement noise, which means that we
do not need to generate a large number of data points and samples to construct the
approximated optimization problem. This ensures that the algorithm can achieve the
Heisenberg limit, i.e., Tiotal = O(1/€) (see Section 3.3).

2.1 Related work

If the initial quantum state |¢) is a precise eigenvector of H with a single dominant eigen-
value, such as A;, the Hadamard test algorithm is the simplest algorithm for estimating
this eigenvalue with e-accuracy. Given any real number T # 0, we can run the Hadmard
test circuits (Fig. 2) several times to generate an estimate Zp =~ (1| exp(—iTH) [1p1) =
exp(—iTA1). We then define the approximation A} = —%. Because we assume
A1 € [—m, 7], it suffices to choose T' = 1 and A} can be arbitrarily close to A1 by in-
creasing the number of measurements. This observation implies that the maximal running
time Thax = 1 suffices to achieve arbitrary precision when employing the Hadamard test
algorithm. Although the Hadamard test algorithm only utilizes a short circuit depth, it
has several limitations: (1) the initial state |¢)) must be an exact eigenstate, (2) the total
runtime Tioa does not satisfy the Heisenberg-limited scaling and is Q(¢~2), and (3) it
cannot estimate multiple eigenvalues. The first two limitations can be addressed by using
quantum phase estimation (QPE) and its variants [17, 19, 26, 31, 1, 13, 12]. The textbook
version of QPE [28] uses multiple ancilla qubits to store the phase and relies on inverse
quantum Fourier transform (QFT). However, it can be difficult to employ the textbook
version of QPE for multiple eigenvalue phase estimation due to the difficulty in handling
spurious eigenvalues. In addition, although QPE can start from an imperfect eigenstate
and saturates the Heisenberg-limited scaling, it requires the maximal runtime Ty, at least
7 /e to achieve € accuracy [28, Section 5.2.1].

Ref. [9] recently proposed a multiple eigenvalue phase estimation method that satisfies
the Heisenberg limit scaling without any spectral gap assumptions. However, the theoret-
ical analysis assumes that all non-dominant modes vanish [9, Definition 3.1 and Theorem
4.5], i.e., ppr = 0 for any m’ € D Additionally, it has not yet been demonstrated that
the method satisfies the short-depth property (4) described at the beginning of the paper.

An alternative way to understand the phase estimation problem is to view it as a sparse
Fourier transform problem in classical signal processing. In recent years, the sparse Fourier
transform problem has been extensively studied in both the discrete [38, 3, 40, 8, 2, 16] and
continuous [32, 4, 15] settings. In particular, Ref. [32] concerns the recovery of the Fourier
frequency of a continuous signal in the low noise setting. Our Theorem 1 shares similarities
with [32, Theorem 1.1]. However, in our approach, each data point is generated by running
the Hadamard test once, resulting in significantly higher noise level than that in [32]. Our
optimization based method may also be easier to implement in practice. Very recently,
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Ref. [21] introduces a robust multiple-phase estimation (RMPE) algorithm that can be
considered as an extension of the multi-level robust phase estimation method (RPE) pro-
posed in an earlier work [27]. By leveraging a multi-level signal processing technique [20],
the RMPE algorithm can estimate multiple eigenvalues with Heisenberg-limited scaling
without spectral gap assumptions. Under an additional spectral gap assumption, and with
a different technique called ESPRIT [22| originally developed for super-resolution of sig-
nals and capable of efficiently estimating multiple eigenvalues in polynomial time [36], the
resulting algorithm can satisfy the short-circuit depth property when the residual overlap
R(K)/(minmep D) is small.

Quantum subspace diagonalization (QSD) methods, quantum Krylov methods, and
matrix pencil methods [5, 14, 18, 24, 25, 30, 33, 35, 29] estimates the eigenvalues by
solving certain projected eigenvalue problems or singular value problems, and have been
used to estimate ground-state and excited-state energies in a number of scenarios. Classical
perturbation theories suggest that such projected problems can be highly ill-conditioned
and the solutions are sensitive to noise. However, it has been observed that these methods
can perform better than the pessimistic theoretical predictions. Recently, Ref. [10] provided
a theoretical analysis explaining this phenomenon in the context of quantum subspace
diagonalization methods used for computing the smallest eigenvalue. Nevertheless, the
error of these methods generally increase with respect to the number of data points, which
is related to the dimension of the projected matrix problem. In contrast, the error of
our algorithm decreases with respect to the number of data points, making it much more
robust to measurement noise. It is worth noting that the sharp complexity analysis of
these methods (especially, with respect to the dimension of the projected matrix problem)
remains open.

The loss function (4) utilized in this work is inspired by a recently developed subroutine
called quantum complex exponential least squares (QCELS) [6]. QCELS employs the same
quantum circuit as depicted in Fig. 2 to generate data and uses an optimization-based
approach for estimating a single dominant eigenvalue. Although our method is also based
on solving an optimization problem, it is important for us to emphasize that directly
extending QCELS to estimate multiple eigenvalues does not yield satisfactory results. We
detail the differences in the following;:

e QCELS samples the time steps ¢ on a uniform grid as t, = 7 for 0 <n < N — 1.
In order to satisfy the Heisenberg-limited scaling, Ref. [6] proposed a multi-level
QCELS algorithm that gradually increases the step size 7 = T/N as one refines
the estimate to the eigenvalue. However, such an approach can result in aliasing
problems for multiple eigenvalue estimation since it may not be possible to distinguish
exp(—iAm, tn) and exp(—idpy,t,) in the loss function if (Ay,, — Ay, )T/N = 27q for
some my # mo and ¢ € Z. To overcome this difficulty, we combine the random
sampling strategy [23, 37| with QCELS and sample t,,’s randomly from a probability
density a(t).

e For estimating a single dominant eigenvalue, our method also achieves improved
theoretical results. In Ref. [6], QCELS requires p; > 0.71 and the circuit depth
satisfies Tinax = 0/€, where § = ©(y/1 — p1). By applying our method to the single
eigenvalue estimation problem, our analysis demonstrates that the method works for
any p1 > 0.5, and the constant ¢ can be improved to § = ©(1—p1). This improvement
tightens the bound for the circuit depth. For clarity, the disparities in the constant
dependence can be observed in Fig. 1.
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Figure 1: A comparison of the theoretical upper bound of § = Ty,.c€ for QCELS, QPE-type algorithm,
and MM-QCELS for ground state energy estimation. The Hadamard test is only applicable when p; =1
and the theoretical result in [6] requires p; > 0.71 for QCELS.

e As previously noted, QCELS [6] is formulated as a multi-level algorithm to attain
Heisenberg-limited scaling and mitigate the aliasing problem. In our work, we also
develop MM-QCELS as a multi-level method to help us control the random noise
throughout the entire optimization domain. However, unlike QCELS [6], our ap-
proach can be simplified to solve the optimization problem with suitable parameters
only once to approximate the dominant eigenvalues, resulting in a one-level algo-
rithm. We put detailed discussion in the first comment of Remark 2.

In the original QCELS [6], it was demonstrated that the maximum runtime can be
further decreased to Tiax = ©(1/(Ag — A1) by initially employing a ground state
filter [23] to enhance p;. Our approach extends this characteristic to the estimation
of multiple eigenvalues without requiring the use of a ground-state filter. This signif-

icantly simplifies the post-processing procedure. See the second comment of Remark
2.

We include a summary of the comparison among various methods for estimating mul-
tiple eigenvalues in Table 1.

3 Main method and informal complexity result

This section begins by presenting a quantum circuit for data generation. Subsequently, we
use these data points to formulate an approximated optimization problem and propose the

main algorithm. Finally, we provide an intuitive complexity analysis for our algorithm,
followed by its rigorous statement.
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Algorithms Requirement
(1) Nonzero (2) Heisenberg (3)Single (4) Short (5) Use
Residual limit ancilla depth gap
QSD type ([5]-[10]) ? ? ?
QEEA [34] X ? ?
ESPRIT [36] 7 ? ? ?
Ref. [9] ? X
Ref. [21, Theorem III.5] X X
Ref. [21, Theorem IV.2] ?
MM-QCELS (this work)

Table 1: Comparison of various methods for estimating multiple eigenvalues.

3.1 Generating data from quantum circuit

The quantum circuit used in this paper is the same as that used in the Hadamard test. In
Fig. 2, we may

(1) Set W = I, measure the ancilla qubit and define a random variable X,, such that
X,, = 1 if the outcome is 0 and X,, = —1 if the outcome is 1. Then

E(Xn) = Re (| exp(—itH) [¢)) . (8)

(2) Set W = ST (S is the phase gate), measure the ancilla qubit and define a random

variable Y;, such that Y,, = 1 if the outcome is 0 and Y,, = —1 if the outcome is 1.
Then

E(Yy) = TIm ({¢] exp(—it H) |¢))) . (9)

We assume an oracle access to the Hamiltonian evolution operator e~ for any t € R.
This assumption is not overly restrictive. For instance, if we can approximate e "™ for
some desired 7 > 0 using the Trotter method of a certain order (the choice of 7 and the order
of the Trotter splitting is problem dependent and should balance between efficiency and
—itH _ (e—iTH)pe—iT’H

accuracy), we may express e , where t = pr+7/, p € Z, and |7'| < 7.

The cost for implementing e =" # should be no larger than that of implementing e~ . The
Trotter error can be systematically controlled and this is an orthogonal issue to the type
of error considered in this paper (see, e.g., 23, Appendix D] for how to factor such errors
into the analysis). Therefore, throughout the paper, we assume that the implementation
of e for any t € R is exact.

Given a set of time points {t,}2_; drawn from the probability density a(t), we use the
quantum circuit in Fig. 2 to prepare the following data set:

Dy = {(thn)}szl : (10)
By running the quantum circuit (Fig. 2) for each ¢, once, we define the output
Zy = Xy +1Y5,. (11)

Here X,,,Y, are independently generated by the quantum circuit (Fig. 2) with different W
and satisfy (8), (9) respectively. Hence, we have

E(Zn) = <1/)‘ exp(—ith) |'¢> ’ |Zn| <2. (12)
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Therefore Z, is an unbiased estimation (1| exp(—it,H) 1) = S M_ | pp exp(—idmts). We
also note that if we use the above method to prepare the data set in Eq. (10), the maximal
simulation time is Tipax = Maxj<,<n |tn| and the total simulation time is Y-, |t,].

Given t,, we can sample the circuit Ny times such that |Z, — (¢|exp(—it, H) [¢)]| =
O(1/+/Ns). Most algorithms, including the QCELS algorithm in Ref. [6], require this
repetition step. In this aspect, our algorithm is innovative in that it achieves convergence
with just a single sample per t,, i.e., Ny = 1. For simplicity, we assume N, = 1 throughout
the paper. Increasing N, reduces the statistical noise in Z, and can further decrease
the error in the eigenvalue estimate. This also increases Tiota by a factor of Ng without
affecting Tax-

Classical postprocessing

s, 0) —{H]——

e

Random evolution time t ~ a(t)

Figure 2: Choosing W = I or W = St (S is the phase gate), the Hadamard test circuit allows us
to estimate the real or the imaginary part of (i|exp(—itH)|1)) on quantum computers. H is the
Hadamard gate. The classical computer provides the evolution time ¢ according to a probability density
a(t), and performs postprocessing on the quantum data for eigenvalue estimation.

Algorithm 1 describes the data generating process.

Algorithm 1 Data generator

Preparation: Number of data pairs: N; probability density: a(t);

n <+ 1;

while n < N do
Generate a random variable ¢,, with the probability density a(t).
Run the quantum circuit (Figure 2) with ¢ = ¢,, and W = I to obtain X,.
Run the quantum circuit (Figure 2) with ¢ = ¢, and W = ST to obtain Y;,.
I — Xp + Y5,
n<—n-+1

end while

Output: {(tn, Zn)}Y

n=1

._.
e

3.2 Main algorithm

After generating the data set, we define the numerical loss function (referred to as the loss
function for short) as

K 2
Ly — Zrk exp(—ifxty) (13)

N
Lic (o 10ML) = = 3
k=1

n=1
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and the optimization problem

({riHSr 100 ) = argmin Lic (e 4035 - (14)
rp€C,0eR

Compared to the ideal loss function described in Eq. (4), the current loss function is con-
siderably noisier. Define the expectation error E, = Z,, — Z;",{Zl Dm exp(—idAptyn). We note
that |E,| is bounded by 3 but not small since Z, is generated by running the quantum
circuit only once. On the other hand, the expectation of E,, is zero and {E,})\_; are inde-
pendent. This implies ‘% >N En’ =0 (1/\/N> Define the vector r = (r1,72,...,7K)
and @ = (61,62, ...,0k), and plug this into (13), we have

argmin Lk (r, 0)

r,0
1o K 2
=argmin — Z Zn — Z ri exp(—ibxty,)
re N k=1
| N M K 2
=argmin N Z Dm €xXp(—iAmtn) — Z i exp(—itxtn)
r, n=1Im=1 k=1 15
N « (15)
2 .
-5 Z Re <En, Z Tk exp(—z&ktn)>
n=1 k=1
o M K 2
R arg min/ a(t) Z DPm exp(—int) — Z rpexp(—ifgt)| dt
r,0 J—o0 E—1

m=1

=argmin Lx (r,6) ,

r,0

where (a,b) = a@-b for any a,b € C. In the second equality, we omit terms that are indepen-
dent of (r, ). In the approximation step, we use % SN Re <En, S exp(—iﬂktn)> ~
0 when N > 1. While the loss function L may not converge to the ideal loss function
as N approaches infinity due to the statistical noise in Z,, we find that the optimization
problem in Eq. (14) can still yield a solution that approaches that in Eq. (5) with the ideal
loss.

After formulating the loss function (13) and the optimization problem (14), we are ready
to introduce our main algorithm. Inspired by the multi-level QCELS [6], the algorithm
contains two steps:

o Step 1: Choose a relative small Typ. Set T = Tp, a(t) = ag,(t) and solve the op-
timization problem (14) to give a rough estimation for each dominant eigenvalues
{Am}mED-

e Step 2: Gradually increase T so that:
1. The solution with T} gives a good initial guess for the optimization problem
with Tj+1.
2. The total running time still satisfies the Heisenberg-limit.
The detailed algorithm is summarized in Algorithm 2, which is referred to as the multi-
modal, multi-level quantum complex exponential least squares (MM-QCELS) algorithm.

We note that the optimization problems (16) in Algorithm 2 have the technical constraint
|r[[t1 < 1. This constraint is natural since each rj should approximate some py,,, and
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the sum of the absolute value thus should exceed 1. This constraint is added to simplify
the complexity analysis for a uniform upper bound of the expectation error (see Lemma 8
in Appendix E for detail). In practice, we find that the performance of the algorithm is
independent of this constraint (see the numerical tests in Section 4).

Algorithm 2 Multi-modal, multi-level quantum complex exponential least squares
(MM-QCELS)

1: Preparation: Number of data pairs: {N; }220; number of iterations: [; sequence of time
steps: {Tj}ézo; sequence of probability distributions {ar; (t)}g-:(); number of dominant
eigenvalues: K

2: Running:

3 k+1; > Step 1 starts

4: while £ < K do

5 Amink = —T; Amax,k < T > [Amin k> Amax,k] i the estimation interval.

6: k+—k+1

7: end while

8 <+ 0

9: while j <[ do

10: Generate a data set {(t,, Zn)}gil using Algorithm 1 with az ().

11: Define the loss function Lk (r,6) in Eq. (13).

12: Minimizing loss function:
(r*,0") « arg min Ly (r,0) . (16)
”r”l§179k€[)\min,k¢)\max,k]
13: Amink < 0 — 75 Amaxk < O + 7 > Shrink the search interval.
J J
14: jg+1
15: end while > Step 2 ends

16: Output: {(r*,0")}K

3.3 Complexity analysis of Algorithm 2
In this section, we study the complexity of Algorithm 2. First, the cost of the algorithm

depends on a number of parameters used throughout the analysis, including
1. The minimal dominant overlap:
K) _ . 17
pmm nr?el%pm ’ ( )

2. The minimal dominant spectral gap:

AR = min = Al ; (18)

m,m’€D,m#m/’

3. The residual overlap:

R = Z Py - (19)

m/eDe

Now, we are ready to introduce the complexity result of Algorithm 2, which is summa-
rized in the following theorem.
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Theorem 1. Given the failure probability 0 < n < 1/2, error € > 0, and any ¢ > 0.

Assume p(K) > 3R and define ¢ = @(R(K>/p§§3). In Algorithm 2, we choose the

min
following parameters:

o Sety=0 <log (1/min {pfﬁq, (pfﬁ) ( frfrz - BR(K))}))'

o For Step 1, set

Ty =6 ((A&K))_l log(q‘1)> , No=6 <T02 (o5 (L5~ 3RU9)) ™ poly log(n‘1)> :

(20)
o For Step 2, set | = max{[log, (¢/(¢Tv))],1}, T; = 2/ Ty, and
- —4
N;=© ( (pin) @~ poly log(log(C‘l)n‘l)> (21)
for1 <j <l
This gives
) ~ el -
Tmax == Tiotal = © polylog(log(¢™)s ) | . (22)

(pﬁf gltce

where § = © (q log(q_l)). In the above equations, the constant in 5) depends at most
polynomially on log (( (K)( (K) _ 3R(K)))71K). Then with probability 1 — n , for any

Prmin \Pmin

m € D, there exists a unique 1 < k,, < K such that
A — 0, < . (23)
Here, ¢ can be chosen arbitrarily close to O and the constant in 5 depends on (.

We put the proof of the above theorem in the Appendix. To provide a clear exposition
of the core concept, we first present the intuitive idea of the proof in Appendix B. The key
step in our proof is to demonstrate that solving the ideal optimization problem (5) could
yield a precise approximation to dominant eigenvalues with a short maximal running time.
The rigorous proof of the theorem is then given in Appendix C. In particular, we rigorously
bound the approximation error in (15), and optimizing the numerical loss function (13)
gives us an accurate approximation of dominant eigenvalues with low cost.

Remark 2. The results of Theorem 1 can be extended as follows:

1. In the above theorem, we could relaz the condition that Ty = ©((AX) 'log(g™).
To be more precise, if we are given a lower bound Aoy, for Af, we could set Ty =
O((Alow) tlog(qg™1)), and the result of the theorem still holds.

2. In Theorem 1 and Algorithm 2, we utilize a sequence of T,, to approrimate the domi-
nant eigenvalues. This is due to a technical consideration in our theoretical analysis.
Specifically, in order to ensure the feasibility of optimization problem (16), our proof
requires that the random discrepancy between (16) and the ideal optimization problem
(5) remains uniformly small when O € [Amink, Amax,k] (see Appendiz C' Lemma /
for detail). Achieving this requires a uniform bound for infinitely many continuous
random variables, which necessitates constraining Amax k — Amink to be sufficiently
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small, thus guaranteeing the manageability of random noise with a reasonable number
of samples. Detailed information can be found in Appendix E.

In practical calculations, Algorithm 2 may be simplified into a one-level algorithm
by directly choosing sufficiently large values for Tya.x and N. Moreover, if we op-
timize our function only over a finite number of grid intervals such that 0 €
—m+ ke, 0< k< 2{, it is theoretically possible to show that by minimizing (16) once
with Thax = O (q/€) and N = ©(q~27°M), we can achieve e-accuracy for all domi-
nant eigenvalues. This approach also offers benefits such as short circuit depth and
Heisenberg-limited scaling.

3. When a spectral gap exists between the dominant eigenvalues and the non-dominant
ones (represented as Ay ), it may be feasible to further reduce the mazimum runtime

t0 Thax = ©(1/ min{Ay, AE\K)}). The reason is given in the first point of Remark 3.

4 Numerical results

In this section, we numerically demonstrate the efficiency of our method using two different
models. In Section 4.1, we compare the performance of Algorithm 2 with QPE (textbook
version [28]) for a transverse-field Ising model. In Section 4.2, we compare the performance
of Algorithm 2 with QPE for a Hubbard model. In both cases, we assume there are two
dominant eigenvalues (A1, A2), meaning K = 2. We share the code on Github (https:
//github.com/zhiyanding/MM-QCELS).

In our numerical experiments, we normalize the spectrum of the original Hamiltonian
H so that the eigenvalues belong to [—m/4,7/4]. Given a Hamiltonian H, we use the
normalized Hamiltonian in the experiment:

~ TH

H=——. 24
P 24)

Recall that the textbook version of QPE [28] relies on a quantum circuit that involves the
inverse Quantum Fourier Transform (QFT). This circuit serves to encode the information
of approximate eigenvalues using the ancilla register. By measuring the ancilla qubits, we
could acquire an output 6 that closely approximates A, one of the eigenvalues of Hamil-
tonian H. To find an approximation to the smallest eigenvalue, we repeat the quantum
circuit for N times and defines the approximation 67 = mini<,<n 05, where 6, is the
output of n-th repetition. The analysis of this method can be found in e.g., [23, Section
I.A]. However, QPE can also produce spurious eigenvalues which lead to failures, and it is
not straightforward to generalize the procedure above for estimating multiple eigenvalues.

Consequently, in our experiment, we first utilize QPE to estimate the smallest eigen-
value A\ and measure the error accordingly. We then use Algorithm 2 to estimate the two
dominant eigenvalues and measure the error by (assuming 67 < 65)

error = max{|67 — M|, |65 — A2} (25)

For simplicity, in this section, Algorithm 2 is implemented without the constraint ||r|j; < 1
in (16). While QPE’s error is gauged based on a single eigenvalue, the error of Algorithm
2 is evaluated using the maximum error across two eigenvalues. This testing design intrin-
sically gives QPE a head start. Even with this bias, we demonstrate that Algorithm 2 can
outperform QPE.
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4.1 Ising model

Consider the one-dimensional transverse field Ising model (TFIM) model defined on L sites
with periodic boundary conditions:

L—1 L
H=— (Z ZiZiv1+ ZL21> -9y X; (26)
=1 =1

where ¢ is the coupling coefficient, Z;, X; are Pauli operators for the i-th site and the
dimension of H is 2. We choose L = 8,9 = 4. In the test, we set p; = p = 0.4. In
Algorithm 2, the parameters are set to be K = 2,Ty = 2(Aa — A1) ™', Ng = 3 x 103, Nj>1 =
2 x 10% and v = 1. An illustrative example, Fig 3 demonstrates the landscape of the loss
function in Eq. (13). As T increases, the landscape of the loss function becomes increasingly
complex. However, the value of the loss function around the true eigenvalues decreases
significantly, which also leads to a reduction in run-to-run variation of the optimizer. As a
result, the optimizer concentrates more tightly around the true eigenvalues.

We apply Algorithm 2 and QPE to estimate the dominant eigenvalues (A1, Ay) of the
normalized Hamiltonian H according to Eq. (24). We then run Algorithm 2 (with K =
2,To =2(A2—A1)"1, No = 3x 103, N;>1 = 2x 10% and v = 1) to compute the error of both
A1 and Ao. We also run QPE 10 times only to estimate A;. The comparison of the results
is shown in Fig. 4. We find that the errors of both QPE and Algorithm 2 are proportional
to the inverse of the maximal evolution time (Tpax). But the constant factor § = Te of
Algorithm 2 is much smaller than that of QPE. Fig. 4 shows that Algorithm 2 reduces the
maximal evolution time by two orders of magnitude. The error of QPE is observed to scale
as 67 /T. Moreover, the total evolution time (Tiota1) of Algorithm 2 is also slightly smaller
than that of QPE.

According to Theorem 1, accurate estimation of the dominant eigenvalues with a short
circuit depth using MM-QCELS depends on two critical factors: the appropriate selection
of the parameter K and the fulfillment of the condition R)/ pfnﬁ < 1. We would like to
emphasize that these criteria are necessary for addressing worst-case scenarios. However,
in practical implementations, even if a slightly larger value of K is chosen and the ratio
R / pr(fg approximates 1, Algorithm 2 is still possible to produce a precise approximation
of the dominant eigenvalues with short circuit depth. In Appendix A, we test these two
cases and demonstrate the robustness of MM-QCELS to the choice of parameters.

4.2 Hubbard model

Consider the one-dimensional Hubbard model defined on L spinful sites with open bound-
ary conditions

L—-1 L
1 1
Bt S S et US (mo ) (e 3).
Jj=1

J=loe{t.l}

Here cjyg(c;ﬂ) denotes the fermionic annihilation (creation) operator on the site j with

spin 0. (-,-) denotes sites that are adjacent to each other. n;, = c}:gcjyg is the number
operator.

We choose L = 4,8, t =1, U = 10. To implement Algorithm 2 and QPE, we again
normalize H according to Eq. (24) and choose overlap p1 = 0.4, po = 0.4. We run Algorithm
2 (with K = 2,Tp = 10(A2 — A1)}, No = 4 x 10*, Nj>1 = 2 x 103,y = 1), and QPE 10
times to compare the errors (using Eq. (25) for Algorithin 2 and only estimating the error

Accepted in {Yuantum 2023-09-27, click title to verify. Published under CC-BY 4.0. 13



-0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60
) )

Figure 3: The landscape of the loss function L (13) from the TFIM model at time 7} with p; = 0.4,
po =04, K =2 Ty =2\ — A1), Ng =3 x 103, Nj>1=2x 103, v = 1. We run the experiment
ten times and plot the positions of ten minimizers 6* using star (67) and triangle (03) points. The
landscape of the loss function is calculated using the data from the last experiment. The blue solid
line stands for Ly (r*,61,63) (the variable is 6), and the blue square is the true eigenvalue A;. The
orange dash—dotted stands for Ly (r*, 07, 62) (the variable is 63), and the orange filled circle is the true
eigenvalue A2. When T is large, the minimizer of the loss function concentrates around the dominant
eigenvalues A1 and ;.
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Figure 4: QPE vs Algorithm 2 in TFIM model with 8 sites. p; = pa = 0.4. Left: Depth (Tinax):

Right: Cost (Tiota). For Algorithm 2, we choose K = 2,Ty = 2(Aa — A1)}, Ng = 3 x 103, N> =
2 x 103, v = 1. 1,T; are chosen according to Theorem 1. Both methods have the error scales linearly

in 1/Tmax. The constant factor § = Te of Algorithm 2 is much smaller than that of QPE.

of A\; for QPE). The results are shown in Fig. 5 (4 sites) and Fig. 6 (8 sites). In both cases,
it can be seen that the maximal evolution time of Algorithm 2 is almost two orders of

magnitude smaller than that of QPE. The total cost of the two methods are comparable.
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Figure 5: QPE vs Algorithm 2 in Hubbard model with 4 sites. p; = po = 0.4. Left: Depth (Tinax):
Right: Cost (Tiota1). For Algorithm 2, we choose K = 2, Ty = 10(A2 — A1) ™', Nog = 4 x 10*, Nj>; =
2 x 103. 1, T are chosen according to Theorem 1. Compared with QPE, to achieve the same accuracy,

Algorithm 2 requires a much smaller circuit depth.
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Figure 6: QPE vs Algorithm 2 in Hubbard model with 8 sites. p; = po = 0.4. Left: Depth (Tinax):
Right: Cost (Tiota1). For Algorithm 2, we choose K = 2, Ty = 10(A2 — A1) ™', Nog = 4 x 10*, N;>; =
2x10%,v=1. [, T; are chosen according to Theorem 1 with ¢/ = 0. Compared with QPE, to achieve
the same accuracy, Algorithm 2 requires a much smaller circuit depth.

5 Discussion

In this paper, we have developed a new algorithm to simultaneously estimate multi-
ple eigenvalues using a simple circuit. This optimization-based approach, called multi-
modal, multi-level quantum complex exponential least squares (MM-QCELS) saturates
the Heisenberg-limited scaling, and achieves a relatively short maximal running time when
the residual overlap (denoted by RK )) is small. With a proper initial state, this algorithm
can be used to efficiently estimate ground-state and excited-state energies of a quantum
many-body Hamiltonian on early fault-tolerant quantum computers.
There are a number of directions to extend this work and to strengthen the analysis.

1. If the initial state has significant high energy contributions, it can be implicitly fil-
tered using the circuit in Fig. 2 [23], or explicitly filtered using quantum eigenvalue
transformation of unitary matrices (QETU) [7] to satisfy the condition of small resid-
ual overlap. Similar to the discussion in Ref. [6], this does not necessarily require
a large spectral gap between the dominant eigenvalues and the non-dominant ones,
and a relative overlap condition (which is a property of the initial state rather than
the Hamiltonian) could suffice.

2. Our complexity analysis depends the minimal dominant spectral gap A&K). This
is a necessary condition, since the simulation time should be long enough in order
to separate the eigenvalues. If two or more eigenvalues are nearly degenerate (i.e.,
the distance is less than €), we may combine them and view these nearly degenerate
eigenvalues as a single eigenvalue. The MM-QCELS method can still be applied
without changes. However, compared to the result in Theorem 1, there may not be
a one-to-one correspondence between the estimated eigenvalues 05 and the dominant
eigenvalues A, .

3. Due to the complex energy landscape of the loss function, if we use a grid search to
find the global minima, the cost of solving the optimization problem in Eq. (14) on
a classical computer may scale exponentially in K in the worst case. On the other
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hand, the signal processing method in [32, 21| can scale polynomially in K, but the
implementation can be much more complicated than ours. Therefore it is desirable
to improve our algorithm (e.g., using a robust initialization strategy) to reduce the
cost on the classical post-processing step for large K.

. While Algorithm 2 is formulated as a multi-level optimization problem, as discussed

in Remark 2, solving (14) with sufficiently large values of T and N once may be
enough to approximate the dominant eigenvalues. This approach differs from the
signal processing-based method discussed in [21], which requires multi-level signal
processing.
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The appendix is organized as follows:

Appendix A.We give two extra numerical tests to demonstrate the robustness of MM-
QCELS in relation to parameter selection.

Appendix B.We give an intuitive proof for Theorem 1 in this section.
Appendix C.We give a rigorous proof for Theorem 1 in this section.
Appendix D.We give the proof of Proposition 5, which is a key in the proof of Theorem 1.

Appendix E.We provide some other technical estimations used for our proof.

A Additional numerical experiments

In this section, we numerically demonstrate the robustness of Algorithm 2 using the one-
dimensional transverse field Ising model (TFIM) model with L = 8, g = 4, as defined in
Section 4.1. We also normalize the spectrum of the original Hamiltonian H using (24).
In our first test, we set p1 = 0.7, pa = 0.2, and py = 1/2540 for 3 < k < 256 (so that
> Pk = 1). Therefore according to Theorem 1, we should choose K =1 or K = 2. We
apply Algorithm 2 (with K = 2,3,4" Ty = 10(A2 — A1) 71, Np = 3 x 103, Nj>1 = 2 x 103
and v = 1) to estimate (A1, A\2) and compute the maximal error (25). We also run QPE 10
times only to estimate A;. The comparison of the results is shown in Fig. 7. Surprisingly,
although R(%) / pfjfg > 1 when we choose K = 3,4, meaning that it does not satisfy the
condition of Theorem 1, Algorithm 2 still estimates (A1.A2) accurately with short circuit
depth (Thax). Moreover, the total evolution time (Tiota1) of Algorithm 2 is similar to that
of QPE. One intuitive explanation for this phenomenon can be derived from the proof of
Theorem 1 in Appendix B. When K > 2, aiming to reach the global minimum leads us
to anticipate the existence of a unique pair (ki,k2) € {1,2,---, K}®? with the property
that 0; =~ A1 and 0, ~ Xa. Then, analogous to the derivation of (37), we can show

(K) (K) e .
05, — M| =0 (%) and T|0;, — Ao| = O <Rp2T ) These equalities imply that, even if
a wrong choice of K is chosen, as long as R(K)/pl < 1 and R(K)/pQ < 1 hold true, an
accurate estimation of the dominant eigenvalues can still be obtained with relatively short

circuit depth.

The second test in this section focuses on studying the effect of small p(K) (or RUK)/ p(Kg ~

min mi

1). We construct the initial state with p; = 0.21,p; = 0.6 and set K = 2. In this set-
ting, we have R(K)/pfgg = 0.19/0.21 = 1. We apply Algorithm 2 (with K = 2T =
10(A2 — A1) 75 No = 3 x 103, Nj>1 = 2 x 10% and v = 1) to estimate (A1, A2) and compute
the maximal error (25). We also run QPE 10 times to estimate A; only. The results
is summarized in Fig. 8. Interestingly, although Theorem 1 requires R(%) /p](qu < 1to
achieve short circuit depth, MM-QCELS still demonstrates superior performance in circuit
depth compared to QPE in this case. Intuitively, this phenomenon finds its explanation
through reasoning analogous to the first point raised in Remark 3. To be more specific,
for any given 6 > 0 and a small enough e, when T' > §/e > A;17 where A is the spectral
gap between the dominant eigenvalues and the non-dominant ones, we can establish that

!The output of the algorithm comprises K pairs of approximated eigenvalues and corresponding weights
denoted as (r;, 67 )IKZ .- From this set, we identify the two approximated eigenvalues with the greatest
absolute weights, considering them to be the approximated dominant eigenvalues.
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|0f — A | < €. Here, 0} is the solution to the ideal loss function (4). Furthermore, we
can select the number of data points as IV = (:)(5_2_"(1)) to effectively control the ran-
dom measurement error. This approach ultimately enables us to attain Heisenberg-limited
scaling and a short circuit depth.

10t 10t
-%- error of QPE p_1=0.7 -%- error of QPE p_1=0.7
100 -@®  error of MM-QCELS p_1=0.7,K=2 100 ® - error of MM-QCELS p_1=0.7,K=2
-@ error of MM-QCELS p_1=0.7,K=3 -@ error of MM-QCELS p_1=0.7,K=3
-@-- error of MM-QCELS p_1=0.7,K=4 -@-- error of MM-QCELS p_1=0.7,K=4
1 . < X
10 \‘* —— 0.06/T scaling 10 .
O " *~7 " —— 6mT scaling < 5 *” \*,*\
g 10 g 10 *\\
£ = ‘S\T 3
[} o 10 S N
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1074 b x‘_'
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105 12}
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Tto tal

Figure 7. QPE vs Algorithm 2 in TFIM model with 8 sites. p; = 0,7,p2 = 0.2, p,, = 1/2540 for
k > 3. Left: Depth (Tmax); Right: Cost (Tiota1). For Algorithm 2, we choose K = 2,3,4,Tp =
10(A2 — A1), No =3 x 103, Nj>1 = 2 x 10%,v = 1. [, T} are chosen according to Theorem 1. Both
methods have the error scales linearly in 1/T},.x. The constant factor § = T'e of Algorithm 2 is much
smaller than that of QPE.
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Figure 8: QPE vs Algorithm 2 in TFIM model with 8 sites. p; = 0,21, po = 0.6. Left: Depth (Tinax):
Right: Cost (Ttota). For Algorithm 2, we choose K = 2, Ty = 10(A2 — M) No =3 x 103,N]-21 =
2 x 103,y = 1. 1,T; are chosen according to Theorem 1. Both methods have the error scales linearly
in 1/Timax. The constant factor § = T'e of Algorithm 2 is much smaller than that of QPE.

B An intuitive proof of Theorem 1

In this section, we first give an informal derivation to show that by solving the optimization
problem, it is possible to find an accurate approximation to dominant eigenvalues with a
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short maximal running time. For simplicity, in the inituitive proof, we only consider the
case when

1. The minimal dominant spectral gap Ag\K) is much larger than the precision e: AE\K) >
€

(K)

2. The modes in D are dominant: p,;, > CR™) for some constant C' > 0;

3. The maximal runtime is sufficient for resolving the dominant eigenvalues: Tiax >
C’/AS\K) for some constant C”>0.

Here, ]z)r(n[l{r)l is defined in (17), AE\K) is defined in (18), and R is defined in (19).
For now we only focus on the ideal loss function, which can be rewritten as

Lk (r,0) =x'U (O)r — (VI (0)r +x1V (8)) + W (27)

Here U (8) € CK*K v () € CH) | and W € R are defined as

M 00 M 2
Uy by = F(O — 00)s Ve = 3 (0 — A), W = / ()| S pmexp (—idnt)| dt
m=1 - m=1

for 1 < k, k1, ko < K. For simplicity, in this intuitive analysis we also neglect the difference
between the truncated Gaussian distribution and the Gaussian distribution, i.e.,

F(z)= / a(t) exp(izt) dt ~ exp(—=T%x%/2). (28)
Denote D = {my,ma,...,mg}, where m; < mg < --- < mg. Without loss of general-

ity, assume the minimizer satisfies 07 < 65 <--. < 6%. We first claim (without giving the
proof here) that when T'= (1/Ag\K))7

AE)
|)\mk—9}‘;|§%, Vi<k<K. (29)

In other words, each @} approximates a unique dominant eigenvalue up to a constant
proportional to the minimal dominant spectral gap. The next step is to refine the eigenvalue
estimate to the target precision e.

When T = Q2 (1 / A&K)>7 the matrix U is approximately the identity matrix, and Vj ~
Py F (0 — A, ). This gives

m/eDe

K

Lk (r,0) ~ Z (|Tk2 - 2Re(pmkrk)F(9k - /\mk) -2 Z Re(pm/mi) F(Ok — Amr) | + W
k=1

(30)

Hence conceptually, we can solve for each pair (rg,0k),1 < k < K independently as

(r}, 0;5) = argmin |72 — 2Re(py, 1) F (0 — An,.) — 2 Z Re(pr)F(0 — M) . (31)
r,0 m/eDe

Consider the minimization problem on the right-hand side with fixed k. Noticing that this
new loss function is quadratic in 7, we obtain that

05, = argmax pp, F(0 — A\, ) + Z P F (0 — M) (32)
0 m/eDe
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Plugging 0 = A, in the right-hand side, we obtain

pmkF(H,’; - /\mk) + Z pm’F(elt - )‘m’) 2 Pmy, + Z pm’F()‘mk - /\m’) . (33)
m’eDe m/eDe

Using the Gaussian approximation F(z) = exp(—T?2?/2), we have
|F'(z)| = T? |z| exp(~T?2?/2) < (Supzexp(—ZQ/Q)) T=0(T),
z€R

where we view T'|z| as z in the inequality. This implies F'(x) is a O(T)-Lipschitz function.
Combining this with (33), we obtain

2(0% _ 2
exp <_T(9k/\mk)) 1

2
pm’ *
2 Z (F(Amy, = Awr) = F(O; — Ar)) (34)
m/eDe Pmy,
RE) .
> - min{O(|T' (0 — Am,)I), 1}

m

where we use 0 < F' <1 and F is a O(T')-Lipschitz function in the last inequality. From
2 (0% _ 2
(34), we first have exp (—M) >1- y, which implies
’Vnk

(K)
Tw;:—Amk|=0( i ) (35)

pmk

When R®) is sufficiently small, combining Eqs. (34) and (35), we further obtain

20p% 2(p0% _ 2 (K)
P DO =) (ﬂW) > 1 -0 - A (30)

4 2 my,

This implies

RE)
T|9?§ - /\mk| =0 : (37)
pmk
In summary, to obtain [0} — A, | < € for all 1 <k < K, we can set
REK)
pmin6

This implies the depth constant of maximal running time Ti,.x = © <%) is much
smaller than © when R(%)/ pr(rﬁ is close to 0.

We remark that when K = 1, there is only one dominant mode my, and p,,, =1 —RK)
by definition. In this case, the result in Eq. (35) is comparable to the estimate in Ref. [6] for
the QCELS method. The analysis in this work provides a tighter bound of the maximal
runtime (or the circuit depth). Specifically, Eq. (37) provides a quadratic improvement
with respect to the preconstant R for estimating a single dominant eigenvalue, and the
same conclusion holds for estimating multiple eigenvalues.
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Remark 3. 1. When a spectral gap exists between the dominant eigenvalues and the
non-dominant ones (represented as Ay ), we can further reduce the mazimum runtime

t0 Thax = ©(1/ min{A,, AS\K)}). This reduction can be derived in a similar manner
to the previous intuitive analysis. Specifically, referring to equation (34), when T is

sufficiently large to ensure ‘Q(K) — )\mk‘ < %, we have

|F i, = M) = F(OF) = am')| = O(exp(~T243/8)) .

Following a similar derivation to (35)-(37), we obtain the following expression:

716 — Ay = O (eXp(‘TzAi/ 8)> ,
Pmy,

This implies that Tyax = é(l/min{A,\,Ag\K)}) is sufficient to ensure e-accuracy.

However, in this scenario, while Ty.x logarithmically depends on the desired precision

€, the number of data points needs to increase to N = Q(e2) to adequately control

the random noise. This is similar in flavor to the result in [39] as well as in QCELS

[6] for estimating a single dominant eigenvalue.

2. The rigorous proof of Theorem 1 follows a slightly different path from the previous
intuitive derivation. The numerical loss function (13) admits a similar quadratic
expansion as in Eq. (27) with noisy coefficients U(0), V(0), and W. Due to the
presence of noise and off-diagonal entries in U, the perfect separation assumed in
(31) no longer holds, and the analysis of the independent optimization problem cannot
be directly applied to show that 85 is close to Ap,,. To overcome this difficulty, we
adopt the idea of separation and decompose the numerical loss function after bounding
the noise. By comparing the resulting loss function with Li ({Pm }meD, { \m tmeD),

T2(0% —Am, )2 %
we demonstrate that exp | ——-t5="2~ ) — 1 = O(q) and |0}, — A\m,| = O(q¢/T),

min)

time Trmax = v = 8/¢, where § = © (qlog(q™)).

where ¢ = @(R(K)/p(K) . This implies, to obtain e-accuracy, the maximal running

C Rigorous proof of Theorem 1
To prove Theorem 1, we first rewrite the optimization problem (14) as

argmin Lk (r, 0)

r,0
1 N M K 2
= arg min N Z Z Pm exp(—idAmtn) — Z r exp(—ifxty)
r,0 n=1|m=1 k=1
9 N K
% Z:l Re <<En, kz: Tk exp(—zﬂktn)>>
n= =1

2

o0
=arg min/ a(t) dt+Ep,+FE.,+ E,. 2z

r,0 —o0

M K
Z DPm exp(—idpt) — Z ) exp(—ifxt)
k=1

m=1

(39)
where we omit term % SN |E,|? in the first equality and pp,pp €xp(i(Am — Ap )t) terms
in the second equality because they do not affect the solution of the optimization problem.
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M K |
E,,(r,0) =2Re Z merk <N Z exp(i(0r — Am)tn) — F (0 — )\m)>) ,

n=1

K 1 N
E,,(r,0) = 2Re ( > TriTh (N > exp(i(Br, — Ok, )tn) — F(Ok, — 9k1)>) . (40)

k=1

Roughly speaking, when N > 1, we have the expectation error |E,,|,|E,
O(1/V/'N) (see Appendix E for detail).

The proof contains two steps: 1. Find initial estimation intervals for the dominant
eigenvalues (using Ty, No); 2. In the correct estimation intervals, find more accurate ap-
proximations of the dominant eigenvalues (from Tj to Tj11). Now, we introduce a lemma
and a proposition to control the complexity of these two steps respectively.

Let E(r,0) = E, ,(r,0)+E, .(r,0)+E, z(r,0). We use the following lemma to control
the complexity of the first step:

3 |E’I"7Z| =

Lemma 4. Given 0 < ¢ <1 such that ¢ = Q(R(K)/pgi?l), where pfgg and R are defined
in (17) and (19), we assume pgi{ > 3RY). Define

(r*,0")=  argmin Lg (r,0),
Il <1,0k €[,

where Ly is defined in (13). If
7 = 6 (log (1/ min {p{1i)a, (phrin) (P — 3R7)) 1)),
=9 ((AE\K))_l log ((pfﬁﬁ)_l maX{( i — 3R(K))_1 a ﬁfﬁ)_l Q‘2}>) C(41)
|E|=0 (min{(pfﬁﬁ)zcﬂpﬂﬁ (pim - 3R(K))}> ,

then, for each m € D, there must ezist a unique 1 < kn < K such that

q
‘)\m - elf;m S Ta

Pm — 7%, | < aom - (42)

Lemma 4 constitutes a key element in the remaining part of the proof. According
to Lemma 4, when the expectation error is small enough, the error of refined dominant
eigenvalue estimation is bounded by ¢/T, where ¢ is a fixed (maybe small) constant and
T is the maximal runtime. Combining this lemma with Lemma 8 by setting ¢ = 1, we can

-1
demonstrate that when Tp = Q ((A&K)) ) and Ny = Q(T¢), solving the optimization
problem gives us a reasonable approximation to the refined dominant eigenvalues, meaning:

for each m € D, there must exist a unique 1 < k,, < K such that ’)\m — sz‘ =0 (A&K)).

Proof of Lemma 4. First, we define

. T22 o ] 22 .
F*(x) = exp (— 5 > = /_oo Noras exp (_2T2> exp(ixt) dt .
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Notice

2
dt

) 1 t2 M . K .
Lg (r,0) = /700 T exp <_2TQ> lem exp(—iApt) — Z ) exp(—ifit)

k=1
+ Ep,r + E’V‘,’l‘ + ET,Z + EF )

dt.

o] 2 . . 2
where Ep = [77 (a(t) - \/217T exp (—#)) ‘Z%zl Pm exp(—iAmt) — SR exp(—zﬁkt)‘
Using the tail bound of a Gaussian and the choice of v (41), we have

|Bp| = O (exp(—?/2)) = O <min { (pfﬁq)g (Pl — 3R pfﬁ}) - 43)
Notice

Lk ({pm}mED ) {)‘m}mED)

g/_o:o a(t)| > pmexp(—iAmt)

meDe
o0
< / a(t)
—0o0

<(REN2 + B+ Ep,

2
dt+ E+ Ep

2 (44)
dt + E+ Ep

M
Z Dm exp(—iApt) — Z Dm exp(—iApt)
m=1 meD

where we E = E ({pm}mep s {Amtmep)s and Er = Ep ({Pm}mep s {Am b men)-
We separate the proof into two steps. In the first step, we show that for each m € D,
there must exist a unique 1 < k,,, < K such that

(K)
A
Am = 0F,,| < =~ (45)

In the second step, we further improve the bound in (45).
Step 1: Show each 0}, should be close to one )\, for m € D.
Suppose there exists m* € D such that for any 1 < k < K,

(K)
e — 6] > =—.

Then, let E* = E (r*,0%) and E}, = Ep (r*,0%),

Lg (r*,0%)

K
= /Oo a(t) (( Z Dm exp(—idApt) — Z Ty exp(—i@Zt)) + Z DPm exp(—i)\mt))
> meD,m#m* k=1 meDe
+pm+ exp(—idp=t)|? dt + E* + B}
(raf®)’
16

>pte — 2pm RE — 16exp | — +E*+ Ey

2 N ~
> (R(K)) +E+Ep
ZLK ({pm}meD ’ {/\m}mE'D> .
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In the second inequality, we use pp+ > 3R, (41), and (43). In the first inequality, we
use the decaying property of F(z) to obtain

2
x (raf)
/ Dm exp(—iApt) — Z r} exp(—i05t) | pm exp(—iAp«t) dt| < 8exp | —~————
meD, m;ém* k=1 16

< Pm~ R(K)

‘/_O:O a(t) ( > pm eXp(—i/\mt)) P+ €xp(—iAm+t) dt

meDe

where we use | Ay, — A< | > AE\K)/2, |07 — A | > A&K)/él. This contradicts the assumption
that ({rZ}szl, {9;;}?:1) is the minimization point. Thus, (45) is true for all 1 < k < K.
Step 2: Improve the upper bound.

Define
1 x2 2
— m —iAmt) — 77 —i0 t dt .
. mTeXp< 2T2> n;pp exp (—idmt) — ry, exp (—iby 1)
We have
Ly (r*,0%)
o 2
:/ a(t) <Z P exp(—iAmt) — 75, exp(—iﬁ,’;mt)> + Z Pmexp(—iApt)| + E* + Ep
o meD meDe

2

Z Pm exp(—iApt)| dt + E* + E%

meDe

>F* — 2(F*)Y/2RE) +/ alt

Noticing that (r*, 8*) is the minimum point and comparing the above inequality with the
second inequality of (44), we have

Fr—2(F) PRI < |B - B

+ ‘EF—
Be| B3 = 0 ((skie)”).

F =2 2RI = 0 (o))

(46)

Using (41) and conditions of Theorem 1, we have ‘E

*
N E,

This implies

Since ¢ = (R(K)/pmln) we further have F* = < pis) ) >

Using (45), > || < 1, and exp (— AE\K)T 2/8 =0 ( pfnﬁq ) we can show

>

m,m’ €D ,m#m’

0 2
/_oo \/ZLWT exp <_2xTQ) (pm exp (—idpt) — 5, exp (—if}, 1))
: (pm/ exp (—iApt) — 1}, exp (—i@,ﬁm/t)) dt’
T2 /\m — Ao 2 . T2(>\m —9;; ,)2
< > DmPwexp (—(m)) + Pl , Xp (—m

m,m' €D, m#m/’ 2 2

. T2(9k — A )? . TN\ — 05 /)2
+ T, Pm/ €XD ’"f + Tk Tk, €XD -

2
ctowp (280 0 (4220)").
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Expanding F*, we find that
F=y /OO Lexp (—t2> [P exp (—idt) — 7%, exp (—if, ¢)|° dt
2w e (i,
-2 Z /OO ! exp <—$2> (pm exp (—iAmt) — rj, exp (—ib} t))
€D o |00 V27T 21 " "

. (pm/ exp (—iApt) — 1y, exp (—w?;m,t)) dt‘ .

(48)
By utilizing the bound F* = O ((pl(fgq) ) and (47), we can infer from (48) that

) N % (K) \?
/ ————exp |Pm exp (—iAmt) — %, €XD (—z@kmt)|2 dt =0 < Prnind ) .
meD v 2T ( 2T2> ( )

(49)
This implies

> v, <1 —exp (fT2 (0%, — )\m)z))

meD
© 1 t? 2
< - v ok
_mEGD /_Oo T exp( 2T2) \pmexp (i (05, — Am) t) — 1k |~ dt

t? . " . 2
= Z /OO 7T exp <_2T2) |Dm exp (—idpt) — rp, exp (—iff t)|” dt

meD
=0 ((pfn]fﬁq) )

2
Because p,, > pfmg for m € D, we obtain that, for each k, 1 — exp <—T2 ()\m — Gl’gm) =

O (¢?), which implies the first inequality of (42). For the second inequality of (42), (49)

also implies
2
=0 ((pfﬁ)lq) )

2
Because ‘exp (—T2 (HZM - Am) /2> — 1‘ = O(¢*), we have |py, — 7} | < qppm. This
concludes the proof of the second inequality of (42). O

[pmexp (=12 (6, = n)? /2) = 7%,

The following proposition controls the complexity of the second step of the algorithm:

Proposition 5. Given failure probability 0 < n < 1/2, any small constant ¢ >0, 0 < ¢ <

1 such that ¢ = O(R! /pmm), and given a sequence of rough intervals {Ix}5_, C R, we
assume 1. |Iy| < 4w /T; 2. for any m € D, there exists a unique 1 < k,, < K such that
Am € Iy, ; 3. p( 13 > 3R, Define

(r*,0") = argmin Lk (r,0),
llrll1<1,0x €1k

where L is defined in (13). If

7=0 (log<( fnﬁ) q )) :
r=9 ((A&K))_l log <(pf§3)_1 q‘1>> , (50)
N=0 (72( U9) "4+ Opolylog (Klog((l) ( gfﬁ)fln*)) :
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then with probability 1 — n,
Ao = Ol < 0 [P = 7| < @pin (51)

We give the proof of Proposition 5 in Appendix D. Here, we emphasize that Proposition
5 can not be directly proved by combining Lemma 4 and Lemma 8. According to Lemma
4, to obtain the accuracy q/T, we need the expectation error |E| = O(¢?). According
to Lemma 8, to guarantee |E| = O(q?), we need to choose N = Q(q~*), which is worse
than the scaling of N with respect to ¢~! in the proposition. This means that to achieve
the correct scaling of N with respect to ¢~!, we need to bound the expectation error in a
different way to obtain the sharp estimation.

Now, we are ready to use Lemma 4 and Proposition 5 to prove Theorems 1.

Proof of Theorem 1. First, according to the definition of Ty, we have Ty = (:)((Aﬁ‘()_1 log(q1)).
Combining (20) with Lemma 4 and Lemma 8 (by setting ¢ = 1 in Lemma 4 and p =
7Ty and £ = © ((pg](r)l — 3R(K)>pfnli(3> in Lemma 8 (59)), after step 1, with probability

1 —n/(l + 1), we obtain that, for every m € D, there exists an unique 1 < k,;, < K such
that

. 1 . N .
|)‘m_9k,m|§1—b<mln{2\171—b ) ‘pm_rkm|§pm~ (52)

Thus, with probability 1 —n/(l + 1), after step 1, Ir,, = [Amin k> Amax k] Satisfies the
condition of Proposition 5 with T' = T7.
Next, for j =1 in step 2, using Proposition 5 by setting T' = T, we obtain that, with
probability 1 —n/(l + 1),
q T

A =0, | < = <

<o <7 [P — 75, | < qpm - (53)

This implies that, after step 2 with j = 1, with probability 1 — 2n/(l + 1), I, =
[Amin,km > Amax,kn, ] Satisfies the condition of Proposition 5 with 7" = T5. Using this re-
cursively, we finally obtain that, when j = [, with probability 1 — n, we have

q
P =00, | < <& pm =7, ] < apm-

which implies (23).
Finally, using the choices of ~,1,T; and N;, we obtain

q 1 1)
Tmax:n'y:@ 710g =
(6 min {p\0a, (pia ) (Phain — 3RU) | €
and
- e ~ [ polylog(log(¢—1)s—1n~t
Tiotal = O TN poly log(log(¢ 1)77 1) -0 poly g((Kz;g(g )0~ ) 7
(pmin) g e (pmin> S1+¢e
where § = © (qlog(¢™1)). O
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D Proof of Proposition 5

In this section, we prove Proposition 5. The proof idea is similar to [6, Appendix B.2]. We
first give a rough complexity result that has a O(g~*) scaling in N. Then, we consider the
difference of the expectation error more carefully and improve this scaling to (’)(q_Q_O(l))
using an iteration argument.

Applying Eq. (59) from Lemma 8 in Appendix E to bound the expectation error E(r, 8),
we obtain the following lemma:

Lemma 6. Given failure probability 0 < n < 1/2, any small constant ¢ > 0, 0 < ¢ < 1
such that ¢ = Q(R(K)/p(K)), and given a sequence of rough interval {I}<, C R, we

min

assume 1. |Ix| < 4w /T; 2. for any m € D, there exists a unique 1 < k,, < K such that
Am € Iy, ; 3. p(K) > 3R, Define

min

(r*,0") = argmin Lk (r,0),
||| <1,0, €1k

where L is defined in (13). If

v = (log ((142) a))
r=q <(A§K))_1 log ((pfﬁ)l) q 1)) , (54)
N=Q (7 ( fmﬁ) q *polylog (K (pii) _177_1)> :
then with probability 1 —n,
Am = 0%, < %’ Pm = 7%, < apm - (55)

Proof of Lemma 6. According to the second equality of (54), we have

47 A(K)
I
el < 7 < ==
which implies that for all m € D
A(K)
A = O, | < = (56)

2
Using (54) and Lemma 8 (59) by setting £ = O <(p£ﬁ)lq) ), we can conclude that with

min q

probability 1 — 7, |E| = O ((p(K) ) > Finally, since we have obtained a rough bound

(56), we can use the same argument as the second step in the proof of Lemma 4 to prove
(55). O

Next, in order to improve the scaling O(g~*) in (54). We propose a different approach
to bound the error terms. Instead of bounding E(r*,0*) and E({pm}, {\mn}) separately,
we aim to bound the difference between these two error terms. Intuitively, when (rj, 05 )
and (pm, Am) are close to each other, the two error terms are likely to cancel each other

out when we compare the difference between L(r*,0*) and L({pn},{A\n}). This intu-

ition is supported by Lemma 8 (60). Assuming that we already have ’9};7” — )\m‘ < &
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and |rk,, — Pm| < qPm, then it is sufficient to choose N = O (q2§72) to ensure that
|E(r*,0%) — E{pm}, {\m})| > & with high probability. This requirement, compared with
the second inequality of (54), reduces the blow-up rate to O(¢~2) as ¢ — 0, which matches
the condition in Proposition 5. However, the above calculation is assuming |0} — )\m‘ < #
and |r,, — Pm| < qPm, which is unknown to us in advance. To overcome this difficulty, we
need to use an iteration argument to obtain the desired order. This is summarized in the
following lemma:

Lemma 7. Given failure probability 0 < n < 1/2, an integer S > 1, any small constant
¢ >0, a sequence of rough interval {Ix}X_ | C R, and a decreasing sequence {qs}>_, with
0<q <1andqs= Q(R(K)/pgi(g), we assume 1. |Ix| < 4w /T; 2. for any m € D, there
exists a unique 1 < ky, < K such that Ay, € I, ; 3. pfﬁ > 3R 4. (54) holds with

q=qo- If

v =0 (1o ((15) " as"))
7 =0 ((a89) s ((44) " 5")) (57)

—4 -1
N=0 ( max {(pr(xﬁ) q;flquolylog (KQ (pfﬁ) q;rllqsn_l) }) ’

0<s<S—1
then with probability 1 —n,
as *
|)\m - eltm < Lk |pm - Tkm| < gspm - (58)
Proof of Lemma 7. By utilizing Lemma 6 in conjunction with (54), we can demonstrate
that with probability 1 —7n/(2Q),
40

—0F | <

|Pm — 7%, | < qopm -

2
Using these inequalities with Lemma 8 (60), where we have p = qg, £ = ( Egr)lm) d0 L we

. . 2
obtain that with probability 1 —n/Q, |E — E*|,|Ex|,|E5| = O <(p§§gq1) ) Then, simi-
lar to the second step in the proof of Lemma 4 (plugging the bound of [E — E*|, ‘EA’ 7|, | Ef
into (46)), we can show that with probability 1 —n/Q,
* q1
’)\m - Gk‘m| < T |pm - sz < @1pm -
Next, similar to previous argument, using these inequalities with Lemma 8 (60), where we
2 . .
have p = ¢1,£ = (pgi(r)qu) q7 ", we obtain that with probability 1-31/(2Q), |E — E*|, EF‘
2
o ((pfnli)lqg) ) This further implies, with probability 1 — 21/Q,
* q2 *
|)\m_9km| < ?7 |pm_rkm| SQ2pm~
Doing this repeatedly, we finally obtain (58). O

Finally, we are ready to prove the proposition 5:

Proof of Proposition 5. Using the given ¢ from the conditions of the proposition, we con-
2—(1/2)%
struct a decreasing positive sequence {qs}sszo with g, = ¢2-1/2% . With this choice, we
4

-4 2 TaC 5
have ¢ "¢ = q *-(/»°.

Setting ¢ = (1/2)°7! > — 2 and using Lemma 7 (58), we prove (51). O

4
2-(1/2)%
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E Bound of the expectation error

In this section, we bound the expectation error. Recall the definition in (40),

M K 1
E,, (r,0) =2Re (Z merk (N Z exp(i(0 — Am)tn) — F (0 — )\m)>> ,

m=1 k=1

N
E,, (x,8) = 2Re ( S Ttk (;f S exp(i(h, — O )tn) — F (0, — %))) ,
n=1

k17#k2

E,7(r,0) = —2Re (Z % ( ZE exp(ifxty, )))
n=1

Intuitively, when N > 1, we have |E, .|, |Ey,|, |Eyz| = O(1/v/N) for fixed r, 8. However,
this result does not directly apply to the optimization problem because the range of (r, 8)
is always an infinite set. To overcome this difficulty, we notice that the Lipschitz constant
of the function exp(ift) is bounded by T if t < T'. First, we use Hoeffding’s inequality to
obtain a uniform bound for these expectation errors with a finite number of (r, 8) points.
Then, we extend this bound to all other points using the Lipschitz continuity property of
exp(i0t). Specifically, we have the following result that gives a uniform bound for these
expectation errors:

Lemma 8. Define E, ., E,,, E, 7 as above. Assume a(t) is defined as (3), then

o Given 0 < n < 1/2 and a sequence of interval {Ix}5_, on R, we define p =
man{Tllk‘/Q}, Zf

N = Q (max{y%p?, 1}¢ polylog(K& ")) |

then
P ( sup |Ep,r (r,0)] = 5) =n
Hl‘||1§1,9k61k
P ( sup |Eyy (r,0)] > 5) <n. (59)
|\r||1§1,9kelk
]P’( sup |EZ(I',9)|2§> <n
|\r||1§1,9kelk
o Denote D = {my,...,mi}. Given 0 <n < 1/2, a sequence of intervals {I;}5_, on

R, and a sequence of discs {Rk},ff:l on C, we assume: 1. Ay, € I; 2. pm,, € Ry.
Define p = maxy{T|I|/2, radius(Rg)/pm, }- If

N = 0 (max{y?p?, 1}¢ *polylog(KE~'n™))

then
P ( sup  |Epyr (r,8) = By ({(Dmgs Ay ) Yimr)| 2 Pf) <n
rrERL .0 ELL
P ( sup | Epyr (1,0) = B ({(imgs Ay Yoo | = p£> <7 (60)
rrERY 0 ETY

P ( sup | Bz (r,0) = Ez({(pmy; Ay )| = p£> <

rrERY 0 ElY
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Proof of Lemma 8. We start by proving (59). We will only prove the inequalities for E,, .,
but note that the other two can be shown similarly. Define

N M
GW)I&Z( Pmexp(i(0 — A ) (me (0 — Am >
1

n=1 \m=

For the truncated filter, since t, < T, we have
[G(01) — G(62)| <AT01 — 0o ,

which implies G is a yT-Lipschitz function. Because |F(6 — \;,)| < 1, using Hoeflding’s
inequality, for fixed 6, we have

2
B(IG(0)] > €) < 4exp (—ﬁg) .

Combining this with the fact that G is a yT-Lipschitz function, we have

8p NE?
P G(9)] > Te| < X2 —— .
(3312' O)] =&+~ e)_TEexp< 32)
Choosing € = ﬁ, &= % log/?(8VNK /n),

P <sup 1G(0)] = (4\/§log1/2(8\/NK/17) + w)

0cly,

1 <
VN) ~ K’
which implies the first inequality of (59) using Y |rx| < 1.

We proceed to prove (60). As before, we only show the proof of the first inequality in
(60). Fixed 1 < k < K, when r € Ry and 6y € I, we have

TG (Ok) — Py G(Aimy) = (T — Py )G (Ok) + Py (G(Ok) — G(Amy,)) -
For the first term, we have |ry — pm, | < 2ppm, and

P ( sup [G(0))] > s/2> e

ekEIk

according to the previous proof. This implies

n
P ( up 3 I | [G160)] 2 p£/2> 3 (61)
rkeRk,OkeIkk 1
For the second term, we first notice that
Z Pm exp(i(0r — Z Pim €xp(i(Amy, — Am)ta)| < YT |0k — Am, | < 2p
m=1
and G(6) is a yT-Lipschitz function. Then, similar to before, we have
n
sup ) |G(0x) — G(Am, )l 2 p§/2 ) < o=
<9k €l /¢Z1 " 2K
Since ); pm, < 1, we have
n
P ( Sup Z |pk ( mk))| > p£/2> 5
Y'kERk,ekEIkk. 1
Combining this inequality with (61), we prove the first inequality of (60). O
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