2023 IEEE International Conference on Quantum Computing and Engineering (QCE) | 979-8-3503-4323-6/23/$31.00 ©2023 IEEE | DOI: 10.1109/QCE57702.2023.00090

2023 IEEE International Conference on Quantum Computing and Engineering (QCE)

Tackling the Qubit Mapping Problem with
Permutation-Aware Synthesis

Ji Liu*T, Ed Younis®T, Mathias Weiden®, Paul Hovland*, John Kubiatowicz$, Costin Iancu*
* Mathematics and Computer Science Division, Argonne National Laboratory
! Computational Research Division, Lawrence Berkeley National Laboratory
§Department of Electrical Engineering and Computer Science, University of California, Berkeley
t Contributed equally to this work

Abstract— We propose a scalable, hierarchical qubit mapping
and routing algorithm that harnesses the power of circuit
synthesis. First, we decompose large circuits into subcircuits
small enough to be directly resynthesized. For each block, we
pre-synthesize them for all permutations of its input and output
qubits. Following this offline step, we employ a permutation-
aware, block-based generalization of the popular SABRE map-
ping algorithm. This mapping step stitches together blocks by
choosing an input-output permutation that minimizes intra-
block gate count and required inter-block communication (SWAP
and bridge gates). Our approach has a twofold advantage: 1)
circuit synthesis may eliminate more two-qubit gates than other
optimizing compilers; 2) considering all permutations of input
and output qubits eliminates communication operations transpar-
ently. In contrast, other mapping algorithms can only introduce
communication operations. We show that we can produce better-
quality circuits than commercial compilers: shorter by up to
68% (18% on average) fewer gates than Qiskit, up to 36% (9%
on average) fewer gates than Tket. We outperform BQSKkit, a
permutation-unaware, synthesis-based compiler, by up to 67%
(21% on average) fewer gates. We also exceed experimental
optimal mappers such as OLSQ in quality (10.7% shorter
circuits) and time to solution. Our scalable, heuristic approach
can be seamlessly integrated into any quantum circuit compiler
or optimization infrastructure, and it applies well to any qubit
technology, such as superconducting and trapped ions.

I. INTRODUCTION

Circuit depth and gate count are direct measures of quan-
tum program performance in the circuit model [28]. Ac-
cordingly, compilation infrastructures, such as Qiskit, TKET,
and BQSkit [7], [37], [47], minimize these using a variety
of approaches. Hardware-agnostic optimizations first delete
redundant gates by using functional equivalence [12], [21],
[42], pattern rewriting [16], [37] or circuit resynthesis [45],
[46] techniques. Qualitatively, synthesis-based optimizations
provide higher gate count reduction than peephole or pattern
rewriting methods; however, complete compilation pipelines
combine all methods. For small circuits, synthesis starts with
the unitary representation of a program and discovers a new
shorter implementation [6], [32], [38], [48]. This process is a
form of global optimization. For large circuits it employs [30],
[45] a divide-and-conquer approach based on partitioning and
direct synthesis of small circuits.

Domain scientists usually develop circuits without consider-
ation of hardware connectivity constraints, leaving this prob-
lem to be tackled using mapping and routing algorithms [17],
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[20], [22], [24], [27], [39]. While “optimizations” delete gates,
mapping introduces additional gates to perform communica-
tion (SWAP) between qubits that are not directly connected.
This qubit mapping problem is known to be NP-hard [4]. Most
existing algorithms consider only a pair of qubits as endpoints
at any given time and introduce two-qubit entangling gates
(e.g., CNOT, iSWAP) between these.

This paper presents a novel circuit mapping approach that
integrates the power of topology-aware synthesis into tradi-
tional mapping algorithms. A large circuit is first partitioned
into smaller blocks that are directly synthesized to maximize
gate count reduction. For each block, we synthesize circuits for
all mapping of input qubit permutations to output qubit per-
mutations. This consideration ensures we can find the shortest
possible implementation, and we refer to this as permutation-
aware synthesis (PAS). Each input-output permutation of a
k — qubit block is also synthesized for all the k — qubit
couplings embedded into the physical hardware connectivity.
This ensures that we apriori find the best possible mapping
of the best possible implementation: we do not introduce
spurious qubit communication within this step, and we can
exploit hardware connectivity richer than the logical connec-
tivity. For mapping, we extend the SABRE [20] algorithm
to consider interactions between permutations of many-qubit
blocks. SABRE divides the circuit into multiple layers and
iteratively routes the gates in the front layer. It selects the
best route based on a heuristic cost function considering the
distance between mapped physical qubits. We refer to this
entire process as permutation-aware mapping (PAM).

The central intuition behind our approach is that by ex-
tending traditional mapping algorithms to consider many-qubit
block interactions and all their permutations (PAS), we can
make a selection (PAM) that minimizes gate count within each
block together with the required inter-block communication,
given the hardware connectivity constraints. This work makes
the following contributions:

« We introduce the idea of permutation awareness and pro-
pose Permutation-Aware Synthesis (PAS). Considering
arbitrary input-output qubit permutations at the unitary
level leads to shorter circuits, and it finds the permu-
tation that minimizes routing cost. This is described in
Section IV.

« We present Permutation-Aware Mapping (PAM), a block-

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 03,2024 at 00:39:29 UTC from IEEE Xplore. Restrictions apply.



(a) Original circuit

(b) OLSQ

(C) Qsearch (d) PAS

Fig. 1: 3-qubit quantum Fourier transform (QFT) mapped to a linear topology with different algorithms

based qubit mapping framework. PAM employs PAS’s
optimization and mapping potential together with block-
level routing heuristics. This is described in Section V.

o We demonstrate the ability to leverage rich hardware
connectivity directly. On these architectures, the logical
circuit connectivity is often directly embedded in the
hardware connectivity; that is, the circuit is already
mapped, and existing algorithms will not modify it. In
contrast, our topology-aware PAS step can entirely re-
structure circuits to exploit the hardware. This particularly
benefits fully-connected architectures, such as trapped ion
qubits, as discussed in Section VIIIL.

We have implemented our algorithm within the BQSKit
compilation infrastructure and evaluated it on a series of
benchmarks previously used for assessing mapping algorithms
and across multiple existing and proposed future architectures,
up to 1024 qubits. We show that we can produce better-
quality circuits than commercial compilers and their state-of-
the-art mappers: shorter by up to 68% (18% on average) fewer
gates than Qiskit, up to 36% (9% on average) fewer gates
than Tket. We outperform BQSkit, a permutation-unaware,
synthesis-based compiler, by up to 67% (21% on average)
fewer gates. We also exceed experimental optimal mappers
such as OLSQ in quality (10.7% shorter circuits) and time to
solution. Our scalable, heuristic approach can be seamlessly
integrated into any quantum circuit compiler or optimization
infrastructure, and it applies well to any qubit technology, such
as superconducting and trapped ions.

II. BACKGROUND AND MOTIVATION

Quantum compilers must produce circuits containing multi-
qubit gates only between physically connected qubits. This
process can be decomposed into two steps: finding the ini-
tial logical-to-physical qubit pairing (mapping) and applying
SWAP gates to move the qubits to physically connected qubits
(routing). Qubit mapping and routing is NP-hard [4], and
previous algorithms are classified into two categories: heuristic
or optimal mapping algorithms.

A. Heuristic Mappers

SABRE [20] is a canonical heuristic algorithm that has been
adopted by the Qiskit and BQSKit compilers [7], [47], as well
as multiple routing algorithms [22], [29]. SABRE first divides
the circuit into layers. The algorithm then routes gates in the
front layer and selects a path using a heuristic cost function
based on the distance between mapped physical qubits. The
heuristic cost function routes the front layer with lookahead.

It balances the routing cost for the gates in the front layer and
the gates in the extended layer, comprised of gates that will
be routed in the future. The initial mapping is updated based
on the reverse traversal of the circuit.

SABRE has inspired several heuristic algorithms. Liu et
al. [22] proposed an optimization-aware heuristic that mini-
mizes the number of 2-qubit gates after circuit optimizations.
Niu et al. proposed a layered hardware-aware heuristic [29]
based on calibration data. Other heuristic algorithms in-
clude TKET [37], commutation-based routing [17], simulated
annealing-based routing [50], dynamic lookahead [51], and
time-optimal mapping [49].

B. Optimal Mapppers

Optimal mappers convert the problem into constraints and
find the circuit with optimal SWAP gate count or depth
using optimal solvers. For example, the OLSQ [39] approach
formulates mapping and routing as a satisfiability modulo
theory (SMT) optimization problem and then uses the Z3 SMT
solver [26] to find the optimal circuit. The BIP mapper [27]
in Qiskit finds the optimal mapping and routing by solving
a binary integer programming (BIP) problem. Because of
the exponential growth of the search space, constraint-based
solvers usually face scalability issues.

C. Synthesis for Mapping

A unitary synthesis algorithm generates a quantum circuit
starting from a unitary matrix representation of the input. Al-
beit limited to handling small problems, good direct synthesis
algorithms usually produce better quality circuits than pattern
rewriting-based quantum compilers alone. The BQSKit [47]
compilation framework can handle very large circuits using a
combination of algorithms to partition circuits into smaller
subcircuits (blocks) and direct synthesis methods for each
block.

In this paper, we make use of the capability of topology-
aware direct synthesis as illustrated by the QSearch [6] al-
gorithm. Qsearch employs an A* heuristic to search over a
tree of possible circuits based on device topology: it builds
circuits bottom-up, and at each step, it attempts to place a
CNOT gate only between physically connected qubits. This
approach enables it to generate near-optimal depth circuits for
any physical qubit connectivity.

Synthesis algorithms directly construct a circuit based on
the unitary matrix, regardless of the original circuit structure.
In particular, when comparing against mapping algorithms, the
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latter has to maintain the circuit structure and can only intro-
duce communication (SWAPs), while QSearch can potentially
delete redundant communication present in the original circuit.

The following 3-qubit QFT algorithm example illustrates
this optimization potential. The best-known implementation
of this algorithm [43] is shown in Figure la, which contains
six CNOT gates and assumes all-to-all connectivity. As shown
in Figure 1b, mapping the circuit onto a linear topology with
the optimal routing algorithm OLSQ [39] adds a single SWAP
gate to make a total of nine CNOTs. As shown in Figure Ic,
the Qsearch algorithm finds a better linearly connected design
with only six CNOT gates.

D. Blocks, Permutations, and Synthesis

Mapping and routing can be performed at the many-qubit
gate level. The Orchestrated Trios [8] compiler shows that
preserving Toffoli 3-qubit operations during qubit mapping
and routing can reduce routing overhead. Wille et al. [44]
introduce using output permutations for routing classical
circuits composed of Toffoli gates. It’s worth noting that
classical reversible logic synthesis [34], [44] reduces the
search space with garbage output bits. In practical quantum
circuits, however, none of the output qubits are garbage. All
these approaches leverage a fixed block implementation, e.g.,
unchangeable implementations of the Toffoli gate.

Applying the power of synthesis when reasoning about
many-qubit blocks within a circuit provides the main insight
of this paper: Given a block, we need to consider arbitrary
permutations of its input and output qubits to find the best
quality implementation.

Considering the 3-qubit QFT example, permutation-aware
synthesis (PAS) further reduces the gate cost by finding the
best output permutation. It implements this circuit with only
five CNOTs, as shown in Figure 1d. To the best of our
knowledge, this is the best-known implementation of this
essential circuit. Note that the circuit maps (g, g1, g2) onto
the permutation (g1, go, g2)-

III. PAM OVERVIEW

An overview of the PAM framework is shown in Figure 2.
First, PAM vertically partitions the input n-qubit quantum
circuit into k-qubit blocks, By, ... , By, by grouping adjacent
gates. Second, based on the previous discussion, we need
to resynthesize each block for all possible mapping of input
qubit permutations to output qubit permutations. This ensures
we find the shortest possible implementation for some given
topology. Additionally, We must resynthesize for all k-qubit
topologies (sub-topologies) to ensure we have the best version
for all potential placements on hardware. As shown in the
previously mentioned example, 3-qubit blocks generally need
four sub-topologies. One comes from the fully-connected or
all-to-all 3-qubit architecture, and the other three represent all
orientations of a 3-qubit line or nearest-neighbor architecture.
The resynthesis results, including the associated qubit permu-
tation, sub-topology, and circuit are stored for use during the
next mapping phase.

The permutation-aware mapping algorithm continues over
the partitioned circuit, unlike standard heuristical mappers,
which mainly deal with native gates. To accomplish this, we
supplement the SABRE algorithm with a novel heuristic to
evaluate the current mapping state. Additionally, we add an
extra processing step when moving gates from the unmapped
to the mapped region. During this step, we utilize another
novel heuristic to select the synthesized block permutation that
best balances gate count and routing overhead for subsequent
blocks. These block-level permutations leverage implicit com-
munication buried in their computation to beneficially affect
the state of the progressing mapping algorithm, drastically
reducing the need for SWAP gates to perform global com-
munication.

IV. PERMUTATION-AWARE SYNTHESIS

We formalize here the concept of permutation-aware syn-
thesis. Consider the example in Figure 3, where given U, a
3-qubit unitary, a synthesis algorithm constructs a circuit with
three CNOTs, and the qubit ordering is preserved. However,
we can consider alternate qubit permutations by inserting an
input order permutation P; and its inverse P! This insertion
is allowed since P; and P,iT will cancel out, and the circuit’s
functionality will remain unchanged. Similarly, we can insert
an output order permutation P, and its inverse P7.

After introducing these four extra permutations, we can
group P;, U, and P, to generate a permuted unitary for
synthesis. Since applying a gate on the left is equivalent
to multiplying its unitary matrix on the right, the permuted
unitary gate is represented as P,U P;. This permuted unitary
operation may require fewer basic gates to implement. We can
easily simulate the insertion of permutations P;* and P,” by
classically reordering the qubit register and does not require
any gates to implement.

As shown in Figure 3, the gate marked in yellow is a
permuted unitary gate, which can be synthesized with only two
CNOT gates. The permutations P;* and P,” have the effect of
permuting the input and output qubit orders but can be handled
classically by changing the index of the input and output
qubit orders. In other words, permutations can be factored
out to the inputs and outputs and resolved through classical
processing. The core idea of our permutation-aware synthesis
and permutation-aware mapping algorithm is the association
of the original unitary with input and output permutations and
the methodology to resolve the remaining permutations. We
can then synthesize permutations to find the one that yields
the fewest gates.

A. Permutation Search Space

For an m-qubit circuit, there are n! x n! input and output
permutation combinations in total. We refer to the algorithm
that evaluates all the input and output permutation combi-
nations as FullPAS. To reduce the search space, we also
introduce a sequential permutation-aware synthesis algorithm
called SeqPAS. In SeqPAS, we first evaluate all the input
permutations to find the best permutation P;. Then, we fix the
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Fig. 2: This example applies permutation-aware mapping on a circuit with 3-qubit blocks. Each block is synthesized with possible input and output
permutations. Our permutation-aware mapping procedure then resolves the different qubit permutations as we map the blocks to the device. Additionally, as

with any mapping or routing algorithm, inserting SWAP gates is necessary.
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Fig. 3: Regular synthesis will construct a circuit implementing a given unitary matrix preserving input and output qubit orderings. Before synthesizing a
unitary, permutation-aware synthesis will factor out implicit qubit communication, leading to an overall shorter circuit. This action, however, will not preserve
input and output qubit orderings and will require some simple classical processing when preparing the initial qubit state and reading out the final qubit state.

best input permutation P; to find the best output permutation
P,. The total number of evaluations in SeqPAS is 2 x n!. In
Section VII-A, we will comprehensively compare these two
PAS designs with the other synthesis and routing algorithms.
In most cases, SeqPAS generates circuits with a gate count
close to that of FullPAS and with much lower compilation
overhead.

V. PERMUTATION-AWARE MAPPING

In this section we clarify how we combine circuit parti-
tioning, block-level permutation-aware resynthesis, and novel
heuristics with tried-and-trued routing techniques to assemble
our permutation-aware mapping framework. In addition to a
target architecture, this process takes as input a logical circuit
composed of native gates acting on any subset of qubits. It
outputs a physical circuit consisting of the same native gates
now only acting on valid sets of qubits allowed by the target.

Like other mapping algorithms, we break the problem into
two steps: layout and routing. Layout discovers an initial
logical to physical qubit mapping; routing then progresses this
mapping through the circuit, updating it and adding SWAP
gates as necessary to connect interacting logical qubits. While
these two steps are distinct in our framework, the same circuit
sweep methods that utilize circuit partitions and permutation-

aware synthesis implement both. As such, we first describe our
partitioning and resynthesis steps and then detail our heuristic
circuit sweep. After proposing the full algorithm, we provide
an analysis of PAM’s computational complexity.

A. Circuit partitioning

The PAM algorithm first partitions a logical circuit verti-
cally into k-qubit blocks. Vertical partitioning groups together
gates acting on nearby qubits into blocks and is commonly
implemented by placing gates into bins as a circuit is swept
left to right. This method contrasts horizontal partitioning
techniques [1] used in distributed quantum computing to
best separate qubits. The binning approach to partitioning
is excellent for our algorithm due to its scalability. These
partitioners are linear with respect to gate count, O(M), and
we found that alternative partitioning techniques showed little
variance in experimental results.

B. Permutation-aware resynthesis

After partitioning a circuit, we represent it as a sequence
of k-qubit logical blocks containing the original gates. Later,
layout and routing will replace these blocks with one of many
permutated versions. Having all block permutations accessible
enables our heuristic to compare the quality of each and select
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the one that best balances its gate count with its effect on
mapping. To discover all possible block permutations, we use
permutation-aware synthesis.

If we perform permutation-aware synthesis online during
mapping, we would serialize the required block synthesis. For
very large circuits, this will become intractable very quickly.
To overcome this, we perform the resynthesis step across all
blocks in parallel offline. While this is an embarrassingly
parallel problem, performing it offline has the added challenge
of not knowing the block’s final physical position and, there-
fore, its required topology. As a result, we will also need to
synthesize for different topologies in addition to permutations.

We now resynthesize each block once for each possible
permutation and connectivity requirement. We synthesize for
all topologies because it allows us to identify extra connections
provided by the hardware. For example, as shown in Figure 2,
every three-qubit block will have six possible input permu-
tations, six possible output permutations, and four different
possible connectivities. Naively, this totals 144 synthesis calls
for every three-qubit block.

We can dramatically reduce the number of required syn-
thesis calls in two ways. First, we can perform a quick sub-
topology check of the target architecture to eliminate possible
connectivities. For example, if the target architecture is only
linearly-connected, we do not need to consider the all-to-
all connectivity requirement during block resynthesis. This is
because no possible placement of a 3-qubit block on a linearly-
connected topology can ever be fully-connected. Although
not intuitive, it is common to eliminate some required sub-
topologies when targetting realistic architectures with 3-qubit
blocks.

The second way to reduce the number of synthesis calls
is to recognize equivalent permutations. One can permute a
resynthesized circuit to produce a new circuit implementing
the same unitary with different input and output permutations
and a rotated topology. Since there are n! ways to permute
a circuit, we can reduce the number of synthesis calls re-
quired for permutation-aware resynthesis by that many. After
applying this optimization to 3-qubit blocks, we only need to
synthesize a max of 24 different unitaries.

C. Heuristic circuit sweep

PAM’s layout and routing algorithms utilize the same circuit
sweep responsible for evolving a given logical-to-physical
qubit mapping through a circuit. This section describes how
we augment the SABRE algorithm [20] to leverage block-level
permutations.

We follow the SABRE convention in dividing the logical
circuit into a front layer F' and F, an extended set. The front
layer consists of gates with no predecessors, and the extended
set consists of the first |E| successors of the front layer,
where | E| is configurable. The extended layer E is defined for
lookahead analysis. As the sweep builds the physical circuit,
it removes gates from the logical circuit and updates F' and
E.

In our first change from the SABRE algorithm, we general-
ized the heuristic cost function from [52] to support arbitrary-
sized gates given by:

Flr) = % SO Dl(bi)] (b))

bEF i,5€b

£(m) = % S° S Dir(b)] (b))

beE i,jcb
H(m) =F(m)+ E(m)

Here b is a gate block. D is the distance matrix that records
the distance between physical qubits. |F’| and |E| are the size
of the front and extended layers, respectively. Minimizing this
heuristic requires bringing all front layer gates’ logical qubits
physically closer together. To add lookahead capabilities, the
operations in the extended set also contribute a term weighted
by a configurable value Wg.

It is essential to note some challenges with heuristic map-
ping algorithms when generalizing from two-qubit to many-
qubit gates. There are many ways to bring more than two
qubits together on a physical architecture, creating many
local minimums in a heuristic swap search. To combat this,
we disabled swaps between any pair of logical qubits if an
operation exists in the front layer containing both.

The second change we make to the SABRE algorithm is
adding a step when removing an executable gate from the
front layer and placing it in the physical circuit. In our case,
the gates are blocks, and we have already pre-synthesized their
permutations. The current mapping determines the block’s
input permutation and sub-topology, leaving the block’s output
permutation to be freely chosen. For 3-qubit blocks, we will
have six possible choices for output permutation.

Two factors determine which output permutation to select
for a given block. The chosen permutation will alter the
ongoing mapping process potentially for the better. Also, the
circuits associated with each permutation will have differing
gate counts. We want to choose an output permutation that
balances the resulting block’s gate count with the overall effect
on mapping. We modify the swap search heuristic to select the
best permutation, producing the following heuristic:

P(m) = Wp x C[b|[Gy][(P;, F,)] + H(F,(Pi(r)))

Here C[b][Gy][(P;, P,)] is the 2-qubit gate count for the
block b with subtopology G} and permutations (P;, P,). The
Wp weights the gate cost with the mapping cost and has been
empirically discovered to be 0.1. Note that after applying the
permuted block, the mapping cost function is evaluated using
mapping updated by both input and output permutations.

In summary, our circuit sweep iterates over a partitioned
circuit inserting swaps according to a swap search with a
generalized heuristic to make blocks in the front layer exe-
cutable. At this point, they are moved to the physical circuit
and assigned a permutation according to a novel heuristic that
updates the mapping state as the algorithm advances.
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D. Layout and routing

Both of PAM’s layout and routing algorithms are built
trivially using the circuit sweep method previously described.
Similar to SABRE, layout is conducted by randomly starting
with an initial mapping and evolving it via the heuristic circuit
sweep. Once complete, layout evolves the resulting mapping
through the reverse of the logical circuit. This back-and-forth
process is repeated several times until a stable mapping has
been discovered. Routing then performs a single forward pass
of the circuit sweep starting from the mapping that layout
found.

Some corner cases exist where the heuristic may not select
the best permutation. After routing the circuit, we can catch
these corner cases by repartitioning and resynthesizing the
circuit. The repartitioning process will group newly placed
SWAP gates with other operations. This process is termed
as gate absorption in some prior works [27], [40]. However,
these works primarily discussed the absorption of SWAP gates
with SU(4) gates. In our case, repartitioning and resynthesis
of many-qubit blocks and swap networks allow us to reduce
circuit gate count further.

E. Complexity analysis

The PAM framework is scalable in terms of both the number
of qubits /V and the total 2-qubit gate count M. It has the same
level of time complexity as SABRE, which is O(N?-5M).

The PAM framework consists of four compilation steps.
First, a circuit is partitioned into gate blocks with the par-
titioning algorithm. The default quick partition algorithm [47]
in BQSKit has complexity of O(M). Second, we use PAS to
synthesize the permutations for each block. Since we limit the
block size to less than three, the synthesis time for each block
is bounded by a constant time limit O(C'). In the worst case,
the total number of block equals the total number of gates
M over the constant block size. Therefore, the PAS step has
time complexity of O(M). The layout step and the routing
step in the worst case have the same time complexity as does
the SABRE routing algorithm, O(N?2-5M ). By adding all the
steps together, the PAM framework has time complexity of
O(N?®M), which is as scalable as that of other heuristic
routing algorithms.

VI. EXPERIMENTAL SETUP

The permutation-aware synthesis and mapping algorithms
are implemented by using the BQSKit framework [47].
We compared the proposed algorithms with the original
SABRE algorithm and three industrial compilers: Qiskit [7],
TKET [37], and BQSKit. When possible, we additionally
compared the algorithms with an optimal mapping algorithm
OLSQ [39] followed by Qiskit optimizations.

A. Benchmarks

We used two sets of benchmarks to evaluate the proposed
permutation-aware algorithms. When evaluating algorithms at
the block level, we used a collection of small 3-, and 4-qubit
circuits, which are either commonly used as building blocks
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in larger quantum programs or represent a smaller version
of standard programs. These are listed in Figure 4a. Qiskit
generated all of them except for the QAOA circuit, which
was generated by Supermarq [41]. The Toffoli and Fredkin
gates are well studied, and often compilers will be able to
handle them through optimized workflows. To ensure a diverse
benchmark set, we included some less-optimized gates: the
singly and doubly controlled-MS XX gate [25]. QFT and
QAOA circuits were included because they have been used
extensively in past benchmark sets. Supermarq [41] generated
the 4-qubit, fermionic-SWAP QAOA circuit.

Benchmark | CNOT Gates Benchmark | CNOT Gates
ccx3 6 adder63 1405
cswap3 8 mul60 11405
cxx3 22 qft5 20
ccxx4 118 qft64 1880
qft3 6 grover5 48
qft4 12 hubl18 3541
qaoa4 18 shor26 21072
qaoal2 198
(a) small block benchmarks tim64 4032
tfxy64 4032

(b) large quantum benchmarks

Fig. 4: Two-qubit gate counts for the small block and large quantum program
benchmark suites. The number of qubits in the circuit is given as a suffix.

To evaluate the qubit mapping and circuit optimization capa-
bilities of our proposed algorithm against full-scale compilers,
we used a benchmark suite consisting of 10 real quantum
programs of various types ranging in size from 5 to 64 qubits.
We included two commonly used arithmetic circuits [5], [45],
which contain long chains of 2-qubit gates. These chains
are worst-case scenarios for partitioning compilers and are
useful to evaluate. We included a 5-qubit Grover and 26-qubit
Shor circuit generated by Qiskit [11], [36]. The suite also
included two variational quantum algorithms: Supermarq’s 12-
qubit fermionic-SWAP QAOA circuit [9], [41] and an 18-qubit
circuit simulating a spinful Hubbard model generated with
OpenFermion [13], [23]. Moreover, we included two real-
time evolution circuits: a transverse-field ising (TFIM) [35]
and a transverse-field XY (TFXY) model. The constant-depth
F3C++ compiler [2], [3], [18] produced these circuits, which
before PAM were the best implementations. Figure 4b lists
all large quantum program benchmarks alongside their gate
counts.

B. Experiment platform

All experiments were executed with Python 3.10.7 on a 64-
core AMD Epyc 7702p system with 1 TB of main memory
running Ubuntu 20.04 as the operating system. We used
versions 1.0.3, 0.38.0, 1.6.1, and 0.0.4.1 for the BQSKIT,
Qiskit, PyTKET, and OLSQ packages, respectively.

C. Algorithm configuration

Unless otherwise specified, we used the Qsearch algorithm
for 3-qubit synthesis and the LEAP algorithm for 4-qubit
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Qsearch 8 8 5 6 16 18 15 10.21 7.51 1.78 3.23 90.45 216.25 54.33  Qsearch
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FullPAS 7 8 4 5 13 12 10 23.83 8338 749 980 46733.13 16582.57 36676.70 FullPAS
(a) CNOT counts (b) Compile time in seconds
Fig. 5: Common quantum circuit building blocks compiled to a linear topology using varying methods.
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Qiskit 6 7 17 6 12 18 114 242 239 247 2.40 245 2.44 3.20  Qiskit
TKET 6 7 17 6 12 12 95 0.06 0.07 0.15 0.07 0.13 0.15 0.92 TKET
OLSQ+Opt 6 7 17 6 12 18 114 2.61 261 2381 2.59 2.75 273 5.27 OLSQ+Opt
Qsearch 6 7 5 6 12 13 11 740 1134 261 6.45 1683.54 2752.78 336.55 Qsearch
SeqPAS 6 7 5 6 13 12 9 19.73  46.65 5.88 9.79 4117.27 1793.36 1232.44  SeqPAS
FullPAS 6 7 4 5 10 9 9 25.64 6595 8.85 13.46 234174.05 101642.08 20775.23 FullPAS

(a) CNOT counts

(b) Compile time in seconds

Fig. 6: Common quantum circuit building blocks compiled to a fully-connected topology using varying methods.
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Fig. 7: Comparison of OLSQ+O0pt, Qsearch, and FullPAS on ibm_oslo

synthesis. For both, we used the BQSKit implementation
configured with the recommended settings: 4 multistarts and
the default instantiater with a success threshold of 10719, The
default BQSKit partitioner handled all circuit partitioning.

Similarly to the original SABRE evaluation, we configured
PAM with a maximum extended set size | F'| of 20 and a weight
WEg of 0.5. We used a decay delta of 0.001 and reset the decay
every five steps or after mapping a gate. When discovering
the initial layout, we performed two complete forward-and-
backward passes. PAM’s gate count heuristic weight Wp is
set to 0.1. We used the BQSKit implementation and the
same values for common parameters when evaluating the
original SABRE algorithm. For the Qiskit, BQSKit, and TKET
compilers we used the recommended settings with maximum
optimization level.

The experimental results are verified with classical sim-
ulation and numerical instantiation based error upper-bound
verification [30], [46]. The error upper bounds on all outputs
were less than 1078,
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VII. EVALUATION
A. Block mapping

We first evaluated the mapping and optimization potential
for synthesis and our permutation-aware synthesis framework
at the block level. We selected two architectures to evaluate the
different methods: a line with only nearest-neighbor connectiv-
ity and a fully connected topology. Figures 5 and 6 respectively
detail the final CNOT counts and total compile time for the
two different target architectures.

Fully permutation-aware synthesis (FullPAS) produced
shortest circuits in all cases. FullPAS built circuits with an
average of 42%, 43%, 42%, and 21% fewer gates than
did Qiskit, TKET, OLSQ, and QSearch, respectively, where
SeqPAS produced circuits with an average of 37%, 37%, 36%,
and 12% fewer gates.

An optimal decomposition is not always precomputed and
available or trivial to compute by hand, however, as in the case
of the controlled MS gates. FullPAS resulted in a cxx circuit
with 19% and 24% of the gates in the best nonsynthesized re-
sult when compiling to the linear or fully connected topology,
respectively. This improvement is even more pronounced in the
case of the ccxx circuit, where FullPAS produced circuits with
as much as 27 times fewer gates; however, improvements over
Qsearch are much more modest. Nonetheless, these modest
gains are still significant. FullPAS compiled a 5-CNOT qft3
circuit for all topologies; this is, to the best of our knowledge,
the new best-known implementation of this essential circuit.

These significant improvements in quality require many
synthesis calls and, as a result, more runtime than other
methods require. Since FullPAS calls for synthesizing all
pairs of input and output permutations, its scaling is limited.
SeqPAS, however, is much more palatable, with an average
runtime of 24.25 seconds for 3-qubit blocks and 3175 seconds
for 4-qubit blocks.

We evaluate the cxx and ccxx benchmarks on a 27-qubit
ibm_oslo computer. The gate counts are reported in Fig-
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TABLE I: Mapping and optimizing a quantum circuit benchmark suite to a fully connected topology.

SABRE Qiskit TKET BQSKit PAM3
benchmark | #CX | time(s) | #CX | time(s) | #CX | time(s) | #CX time(s) #CX time(s)
adder63 1405 3.23 1405 9.98 484 14.45 1195 34.41 442 187.08
mul60 11405 24.09 11403 72.27 4144 428.55 9926 225.75 3938 1493.63
qft5 20 0.28 20 2.42 20 0.49 20 4.04 18 18.59
qft64 1880 3.78 1720 10.74 1784 24.61 1771 188.87 1665 771.31
grover> 48 0.35 48 2.69 46 0.79 48 10.82 44 51.80
hubl8 3541 6.87 3529 22.86 3428 76.35 3498 50.59 3459 524.00
shor26 21072 42.01 21072 | 109.30 | 20884 | 836.27 16319 | 1020.94 | 14950 | 9976.45
qaoal2 198 0.58 198 3.15 132 2.03 191 8.43 129 75.93
tiim64 4032 9.79 4030 31.17 4032 107.38 4013 169.91 2820 2232.45
tfxy64 4032 9.84 4032 31.00 4032 108.84 4014 170.04 3294 1791.33

TABLE II: Mapping and optimizing a quantum circuit benchmark suite targeting Rigetti’s Aspen M2 chip

SABRE Qiskit TKET BQSKit PAM3
benchmark | #CX | time(s) | #CX | time(s) | #CX | time(s) | #CX | time(s) #COX time(s)
adder63 3931 6.62 3250 23.90 1798 15.51 3801 85.62 1566 301.63
mul60 30386 38.24 24832 | 196.47 | 14708 | 441.12 | 25580 | 514.29 11172 2400.01
qft5 41 0.39 34 2.68 35 0.26 29 4.18 28 24.23
qft64 6383 10.38 5107 34.19 4970 25.40 5575 293.78 3861 1194.87
grover> 108 0.49 110 3.05 82 0.57 63 13.57 59 89.74
hubl8 15151 10.58 13031 67.51 11680 77.20 12236 187.58 11785 1089.22
shor26 44907 33.39 39171 220.17 | 46192 862.52 32110 | 795.92 29055 15528.36
qaoal2 303 0.55 198 4.34 253 1.96 219 13.29 302 (188) 100.12
tim64 3403 25.13 4032 95.63 4032 109.26 6040 170.96 | 4532 (2804) | 4014.57
tfxy64 8403 24.52 4032 138.95 4032 110.24 7884 292.50 | 5963 (3319) | 5577.72

The numbers in brackets represent the experimental results of PAM3 with extra isomorphism check.

ure 5. As shown in Figure 7, FullPAS generates the circuit that
has the highest success rate. In the ccxx example, permutation-
aware synthesis reduces the CNOT gate count from 15 to 10,
resulting in a 3.5x success rate boost.

B. Large circuits

To evaluate the mapping methods, we chose four real quan-
tum architectures implemented in state-of-the-art quantum
processors: Rigetti’s Aspen M2 80-qubit chip [33], Google’s
72-qubit Bristlecone chip [10], IBM 127-qubit Eagle chip [14],
and a 64-qubit fully-connected topology similar to trapped-ion
architectures [15], [31].

The 3-qubit version of the PAM algorithm (PAM3) produced
the shortest circuits in the most trials, with an average of 35%,
18%, 9%, and 21% fewer gates than SABRE, Qiskit, TKET,
and BQSK:it. The results are demonstrated in Table LILIILIV.
The optimal OLSQ mapper cannot find any solution for the
benchmarks with tens of qubits, therefore we exclude it from
the large circuit comparison. PAM3 built the shortest circuit
in 29 out of the 40 trials (10 circuits and 4 architectures) or
37 out of 40 with an isomorphism check added.

QAOA, TFIM, and TFXY: In eight of the eleven times PAM3
produced a worse circuit, the benchmark was either a QAOA,
TFIM, or TFXY circuit. This result is due to placement.
These three circuits all require only linear connections, and
theoretically, they can be mapped to all four chips without
routing. Qiskit and TKET do a subgraph isomorphism check,
which sometimes catches a perfect placement. This extra check
highlights the downside of comparing our experimental map-
ping algorithm to complete commercial compilers. However,
in the cases where they did not catch the isomorphism, PAM
produced shorter circuits. Additionally, integrating the same

isomorphism check can outperform them because we can often
further reduce the circuit depth on a line. For example, suppose
we pick a perfect placement and map the QAOA to a line
with PAM3. In that case, we get a result with 188 CNOTs,
which can be directly placed on any of the four experiment
architectures and is shorter than all other compilers’ output.
Similarly, TFIM and TFXY can be compiled with 2804 and
3319 CNOTs by adding the isomorphism check. The isomor-
phism check only takes tens of seconds which is negligible.
PAM3 produced the shortest circuit in 37 of the 40 trials by
adding an isomorphism check. In the tables, The isomorphism
check data is presented in parentheses.

C. Comparison with optimal layout solver

In this section, we compare PAM’s solution quality and
compilation time with the optimal solver OLSQ to evidence
the effectiveness of permutation-aware mapping. Table V
demonstrates the final gate count and the compile time. We use
OLSQ for routing, followed by Qiskit optimizations. OLSQ
finds the optimal mapping and routing that minimizes the
number of inserted SWAP gates; however, since PAM directly
synthesizes the unitary based on hardware connectivity, the
resulting circuit is, on average, 10.7% smaller than OLSQ.
Moreover, the optimal solver has scalability issues. It cannot
find any solution on the coupling map of Google’s Bristlecone.
As shown in the table, when compiled with limited backend
connectivity(Aspen-M2, IBM-Eagle), PAM has a shorter com-
pilation time than OLSQ for most benchmarks.

D. Scaling beyond the NISQ era

To evaluate the scalability of the mapping algorithms past
the capabilities of quantum hardware today, we generated a set
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TABLE III: Mapping and optimizing a quantum circuit benchmark suite targeting Google’s Bristlecone chip

SABRE Qiskit TKET BQSK:it PAM3
benchmark | #CX | time(s) | #CX | time(s) | #CX | time(s) | #CX | time(s) #COX time(s)
adder63 3274 6.79 2726 21.22 1326 15.89 2755 65.79 925 297.99
mul60 24974 32.35 20014 | 171.35 | 11989 | 437.34 | 18396 | 361.08 9169 2404.43
qft5 35 0.30 30 2.54 32 0.26 31 3.49 22 25.65
qft64 5153 9.14 4304 30.27 4175 25.30 4262 228.93 3624 1195.86
grover5 108 0.36 96 3.03 82 0.58 85 3.85 62 81.08
hubl8 11227 8.89 10137 55.49 9084 77.05 9064 124.58 8682 1095.16
shor26 38241 29.86 36365 | 204.72 | 38070 | 849.95 | 28624 | 659.49 24021 15547.82
qaoal2 198 0.36 198 64.47 237 1.94 205 12.03 243 (188) 95.88
tim64 6591 24.35 4828 80.56 4773 156.35 5187 173.95 | 4344 (2804) | 4312.13
tfxy64 6591 24.13 5204 78.47 4773 158.04 5814 255.63 | 4778 (3319) | 5825.42

TABLE IV: Mapping and optimizing a quantum circuit benchmark suite targeting IBM’s Eagle chip

SABRE Qiskit TKET BQSKit PAM3

benchmark | #CX | time(s) | #CX | time(s) | #CX | time(s) | #CX | time(s) #CX time(s)

adder63 4906 9.08 4172 34.09 2318 16.02 4070 107.74 1827 316.22
mul60 37982 | 44.92 31284 | 349.58 | 18000 | 442.01 | 30817 | 612.56 14553 2493.17

qfts 41 1.37 35 2.72 38 0.26 32 6.26 28 60.02
qftod 6491 11.31 5760 46.52 5682 26.00 5511 321.04 4466 1190.36

grover> 114 1.38 122 3.14 82 0.58 60 12.00 59 79.73
hubl18 17692 12.84 16990 93.66 13648 77.91 14288 | 222.41 14365 1161.29
shor26 50334 | 40.52 | 43705 | 239.15 | 54156 | 858.67 | 35659 | 978.47 34205 15684.63

qaoal2 309 1.54 198 3.38 241 1.81 276 12.60 232 (188) 96.14
tiim64 12126 41.26 4032 402.50 4032 107.16 8730 241.97 10652 (2804) 4493.52
tfxy64 12126 [ 40.90 4032 395.86 | 4032 108.33 9469 297.04 | 8260 (3319) 5852.39

TABLE V: Quality of solutions and compile time (s) of OLSQ + opt and PAM3

Fully-connected Aspen M2 IBM Eagle
OLSQ PAM3 OLSQ PAM3 OLSQ PAM3
benchmark | #CX | time(s) | #CX | time(s) | #CX | time(s) | #CX | time(s) | #CX | time(s) | #CX | time(s)
alu-v0 17 2.8 13 15.17 28 207.36 21 27.89 28 324.10 21 27.99
qft5 20 1.58 18 18.59 28 12.20 28 24.23 28 11.86 28 60.02
grover5 48 2.25 44 51.80 76 393.67 59 89.74 76 352.52 59 79.73
qaoa8 24 1.98 23 8.1 38 66.18 35 9.33 45 666.38 47 11.75

of QFT circuits ranging from 128 to 1024 qubits and mapped
them to a proposed heavy-hexagonal chiplet architecture [19].
We built an architecture following the tree-of-grids approach . Compiling QFT Circuits at Various Widths

—— Qiskit

with a 3-node tree containing a 4 x 4-grid of 27-qubit chiplets. 30{ — Boski
The results are shown in Figure 8. PAM always generates the — eam
circuit with the fewest gate count; for the 1024 qubit QFT

algorithm, PAM generates the shortest circuit with 206310
CNQOTs, with 8159 CNOT gate reduction compared to the next
best result from TKET. As the number of qubits increases,
the gaps between the compilation time of PAM and other

10

Nurnber of CNOTs in Compiled Circuit

compilers are narrowing. This highlights the scalability of o
our routing framework and the capability to handle future ' Circurt Width (Number of Gubits) -

hardware designs. Furthermore, PAM’s synthesis step is em-
Compiling QFT Circuits at Various Widths

barrassingly parallel and can be sped up with more computing
power. To demonstrate this, we reran the benchmarks with 16
Nodes of NERSC’s Perlmutter supercomputer and plotted the =
new times alongside the others.

Compile Time (s)

E. Closer examination of the improvements

PLR!

Qiskit
BOSKit

Since we have introduced a few features that improve upon

the original SABRE algorithm, we thought it necessary to 27 e
analyze how much each improves individually. In Figure 9 i T PAM-8-Nodes
each additional feature is measured separately when compiling ‘ Circuit Width (Number of Gubits ‘

the multiply circuit. The PrePAM and PostPAM represent the
cases where we only enable permutation on the input or output
sides. We start with the original SABRE algorithm and then

Fig. 8: Scaling of the QFT benchmark
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Fig. 9: A breakdown of the improvements each individual feature adds on
top of the SABRE algorithm. These results are from compiling the 60-qubit
multiply circuit to the IBM Eagle architecture.

introduce the concept of partitioning. Just by mapping blocks
in a circuit rather than gates, we can see an improvement which
we believe is because this increases the lookahead factor of the
SABRE. Using synthesis to route inside the blocks improves
the results. When we introduce the concept of permutation-
aware-synthesis, we see the next big jump even if it is just
one-sided with PrePAM and PostPAM. Furthermore, doing
both sides in SeqPAM introduces the biggest jump. Finally,
gate absorption further improves the result.

VIII. DISCUSSION

A. Relevance to trapped ions

We have mentioned that our permutation-aware algorithms
can leverage hardware connectivity by design. This effect is
visible when compiling the linearly connected tfim64 and
tfxy64 circuits to the fully connected topology. No other
compiler can effectively utilize the full-connectivity by design;
however, PAM3 produces a circuit with 2,820 CNOTSs versus
the 4,032 tfim64 input. The next best is BQSKit with 4,013
CNOTs. These TFIM input circuits were previously the best-
known implementations of these real-time evolution circuits.

One way to quantify this concept is by using Super-
marq’s [41] program communication metric. The metric mea-
sures how sparsely or densely a circuit’s logical connectivity
is. A program communication value of 0 implies no connec-
tivity, while a value of 1 implies that every qubit requires
a connection with every other qubit. The 12-qubit QAOA
started with a communication score of 0.167 but ended with
a score of 1. This shift implies that we took the linearly
connected input and returned a fully connected output with
fewer CNOTs than any other compiler. Additionally, the scores
improved in all the other cases when compiling to an all-to-
all architecture and in most cases with the densely connected
Bristlecone architecture. Increasing program communincation
has particular significance for trapped-ion architectures. This
class of quantum processors allows a program to apply a gate
to any two pairs of qubits. PAM’s ability to fully leverage the
hardware connectivity is advantageous as an optimization pass
for these architectures.

B. Building PAM into a workflow

PAM3 produced circuits shorter than state-of-the-art com-
pilers in many trials tested; however, PAM3 is just a mapping
algorithm with good optimization potential. We can replace
the mapping algorithm inside Qiskit, TKET, and BQSKit and
sum up to a better compiler. We did this and compiled the
qft64 to the M2 chip and saw an additional reduction of 15%,
55%, and 13% CNOTs when compiling with Qiskit, TKET,
and BQSK:it, respectively.

C. Tunability

PAM?3 has built efficient circuits, but it always tends to take
a lot more time than other compilers. Algorithm scientists will
spend the time necessary to produce the best circuit possible,
mainly since circuits are often compiled only once, quantum
computer time is expensive, and longer circuits are more
likely to produce erroneous results. Our proposed algorithm
has many parameters one can adjust to improve runtime.
In particular, the number of multistarts for instantiation has
the most significant impact on runtime. For example, if we
decrease the number of multistart to one, the runtime of the
the shor26 reduces from 15547.82 seconds to 5908.40 seconds
for the Bristlecone architecture.

IX. CONCLUSION

In this work we built on top of both general unitary
synthesis and heuristic-based mapping algorithms by intro-
ducing the idea of permutation awareness with respect to
the mapping problem. This codesign was accomplished by
first lifting mapping from the native gate level to the block
level. This elevation led to generally good results on its own
but also introduced many new opportunities for optimization.
While we have shown that these algorithms are effective and
competitive, we have demonstrated the ability to leverage
hardware connectivity is particularly helpful for optimizing
the circuits for fully connected architectures. We have also
shown the implementability and tunability of our algorithms
with potential application in existing compiler frameworks.
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