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Large machine learning models are revolutionary technologies of artificial
intelligence whose bottlenecks include huge computational expenses, power,
and time used both in the pre-training and fine-tuning process. In this work, we
show that fault-tolerant quantum computing could possibly provide provably
efficient resolutions for generic (stochastic) gradient descent algorithms,
scaling as O(T? x polylog(n)), where n is the size of the models and T is the
number of iterations in the training, as long as the models are both sufficiently
dissipative and sparse, with small learning rates. Based on earlier efficient
quantum algorithms for dissipative differential equations, we find and prove
that similar algorithms work for (stochastic) gradient descent, the primary
algorithm for machine learning. In practice, we benchmark instances of large
machine learning models from 7 million to 103 million parameters. We find
that, in the context of sparse training, a quantum enhancement is possible at
the early stage of learning after model pruning, motivating a sparse parameter
download and re-upload scheme. Our work shows solidly that fault-tolerant
quantum algorithms could potentially contribute to most state-of-the-art,
large-scale machine-learning problems.

M Check for updates

It is widely believed that large-scale machine learning might be one of
the most revolutionary technologies benefiting society', including
already important breakthroughs in digital arts?, conversation like
GPT-3*, and mathematical problem solving’. However, training such
models with considerable parameters is costly and has high carbon
emissions. For instance, twelve million dollars and over five-hundred
tons of CO, equivalent emissions have been produced to train GpT-3°.
Thus, on the one hand, it is important to make large-scale machine-
learning models (like large language models, LLM) sustainable and
efficient.

On the other hand, machine learning might possibly be one of the
flag applications of quantum technology. Running machine learning
algorithms on quantum devices, implementing readings of so-called
quantum machine learning, is widely seen as a potentially very fruitful
application of quantum algorithms’. Specifically, many quantum
approaches are proposed to enhance the capability of classical
machine learning and hopefully find some useful applications, like®’.
Despite rapid development and significant progress, current quantum
machine learning algorithms feature substantial limitations both in
theory and practice. First, practical applications of quantum machine
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learning algorithms for near-term devices are often lacking theoretical
grounds that guarantee or at least plausibly suggest to outperform
their classical counterparts. Second, for fault-tolerant settings of
quantum machine learning problems'°®, rigorous super-polynomial
quantum speedups can actually be proven? for highly structured
problems. That said, these prescriptions are arguably still far from real
state-of-the-art applications of classical machine learning. Some of
them are primarily using quantum states as training data instead of
classical data, which can be—highly encouraging as these approaches
are—argued to be not the currently most important classical machine
learning application’***>, Efforts need to be made to extend our
understanding of quantum machine learning, in the sense that we have
to understand how they could have theoretical guarantees and how
they could solve timely and natural problems, at least in principle, of
classical machine learning. For instance, they should relate to scalable
and sustainable natural problems in large-scale machine-learning.

In this work, we take significant steps in this direction by design-
ing end-to-end quantum machine learning algorithms that are expec-
ted to be timely for the current machine learning community and that
are to an extent equipped with guarantees. Based on a typical large-
scale (classical) machine-learning process (see Fig. 1 for an illustration),
we find that after a significant number of neural network training
parameters have been pruned (sparse training)** >’ and the classical
training parameters compiled to a quantum computer, we suggest to
find a quantum enhancement at the early state of training before the
error grows exponentially. At its heart, the quantum algorithm part of
the work includes suitable modifications of the quantum algorithm*
for solving differential equations to running (stochastic) gradient
descent algorithms—presumably the primary classical machine learn-
ing algorithm—into a quantum processor after linearization. The
expectation of a possible quantum enhancement is rooted in an
application of a variant of the so-called Harrow-Hassidim-Lloyd (HHL)
algorithm®, an efficient quantum algorithm for sparse matrix inversion
that solves the problem within O(log n) time for suitably conditioned
n x n sparse matrices. We find that our algorithm can solve large-scale
model-dimension-n machine learning problems in O(polylog(n) x T) or
O(polylog(n) x T?) time, where T is the number of iterations. The
scaling in n outperforms the scaling of any classical algorithms we
know of. However, for a given machine learning problem with required
performances, there is no guarantee that our hybrid quantum-classical
algorithm will necessarily outperform all other conceivable classical
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Fig. 1| A possible learning process in large-scale models, which might use
sparse training, whose early stage in learning might admit possible quantum
enhancement. A dense neural network is pre-trained classically. The neural net-
work weights are then pruned and only a small fraction is preserved. A quantum
ordinary difference equation system that corresponds to the sparse training
dynamics is created using the sparse network and the training data. To allow
quantum enhancement, the system must be sparse and dissipative. Measurement
on the solution state is performed to obtain the final trained parameters, used to
construct a trained classical sparse neural network.

algorithms for related, but different tasks (for instance, for algorithms
that are not gradient-based). Thus, our result gives, to the best of our
knowledge, rise to a potential substantial quantum speedup or
enhancement of particular classical algorithms, instead of a quantum
advantage over the entire problem class.

From a quantum algorithms perspective, stochastic gradient
descent processes are solved here using quantum ordinary differential
equation (ODE) solvers derived from the findings of ref. 30, based on
linearizing non-linear equations using so-called quantum Carleman
linearization. We find that the corresponding differential equation
solvers can, in principle, also be used in the discrete setting and for
stochastic gradient descent in machine learning. However, in the dis-
crete setting, the theoretical details are significantly different from
those applicable in the small learning rate limit. In this work, we sys-
tematically establish a novel discrete Carleman linearization in
the supplementary material, including reformulations of the Carleman
linearization theory, a tensor network diagrammatic notation for the
discretization error, analytic derivations of higher-order corrections,
and explicit examples for lower order expansions. Further details
about the novelty of our algorithms beyond the findings of ref. 30 are
summarized in the supplementary material.

It is important to stress that the above algorithm has a number of
requirements that do admit a quantum enhancement. First, both the
machine learning model and the weight vectors have to be sufficiently
sparse, which will ensure a fast interface between classical and quan-
tum processors (this requirement could be relaxed in the presence of
quantum random access memory (QRAM)*, a fast uploader towards
quantum data, but we stress that this is not required and there are no
hidden resources in our scheme). Second, the model has to be suffi-
ciently dissipative. For dissipative systems, the linearization error is
well controlled, ensuring that the HHL algorithm can obtain reliable
results even with non-linear machine learning models. We find dis-
sipation happens generically in the early training process of large-scale
machine learning.

We corroborate the intuition developed here by a number of
theorems, as well as extensive numerical experiments. The formal
definition of dissipation, sparsity, and quantum speedups are rigor-
ously proven in the supplementary material. Informal readings of the
main theorems are presented in “Results”, while solid numerical evi-
dence up to 103 million training parameters are provided in “Numer-
ical analysis”. Finally, a conclusion providing also an outlook will be
provided in “Discussion”.

Results

Theorems

In this section, we will lay out the informally formulated main theorems
that are established in this work. Details can be found in the supple-
mentary material.

Theorem 1 (Informal). For a sparse machine learning model
with model size n, running T iterations, with the algorithm being
fully dissipative with small learning rates (whose formal definition
is given in the supplementary material), there is a quantum
algorithm that runs in

O(T xpoly(logn,1)) @

time with precision € > 0. The sparsity condition also ensures the effi-
ciency of uploading and downloading quantum states towards classi-
cal processors.

Theorem 2 (Informal). For a sparse machine learning model
with model size n, running in T iterations, and the algorithm
being almost dissipative with small learning rates (whose formal
definition is given in the supplementary material), then there is a
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quantum algorithm that runs in

O(T2 x poly(logn, %)) ()

time with precision € > 0. The sparsity condition also ensures the effi-
ciency of uploading and downloading quantum states towards classi-
cal processors.

In these expressions, m =log,(n) takes the role of a system size of
the quantum system. First, we describe the problem we are trying to
solve. A machine learning model is defined partially by a function £ ,,
called the loss function, as a function of weight vector (variational
angle) 6 € R" =(0,), and the input training set A. The weight vector has
n components if an n-dimensional model. The task is to minimize the
function £ , by adjusting 6 making use of T iterations.

The presumably most widely utilized algorithm in machine
learning is called (stochastic) gradient descent. Starting from the initial
weight vector 6(¢=0), we implement the following ordinary differ-
ential equation from ¢=0 to t= T with small, positive learning rate 7,

dar
0,(t+1)=0,t)—n—22| . )
" s deﬂ o(t)

Variants of the gradient descent algorithms also include adding ran-
dom noise §,(t) in each step, so-called stochastic gradient descent
algorithms. One can show that in many cases, at the end of training,
0,(t=T) can make the loss function £ ,(6(t = T)) sufficiently small.

The quantum algorithm with the promised efficiency in Theorem
1 and Theorem 2 is described in the following.

* Our starting point of the algorithm is given by a initial weight
vector, 6(0), the maximal number of iterations 7, and the
machine learning architecture £ 4, with model size n.

* Inafirst step, we use so-called quantum Carleman linearization
introduced in ref. 30, to linearize the model £ , with the matrix M
(see the supplementary material for more details).

* Then, we need to upload the sparse weight vector 6(0) as a state
vector in quantum devices, using tools of ref. 33 or alternatively
more sophisticated and at the same time challenging archi-
tectures like quantum random access memory (QRAM)*.

* Then, in a further step, we use a variant of the HHL solver that
has been introduced in ref. 31 and the supplementary material,
to solve the state vector at the end ¢ = T. The pipeline is runnable
under the condition of sparsity and dissipation, which is satisfied
by our models. Sparsity includes the sparsity of model them-
selves, and the sparsity of weight vectors (ensured by the
assumptions of sparse training), while dissipation is a natural
property of the early steps of training, extensively discussed in
“Numerical analysis”.

* Finally, we exploit tomographic methods described in, for
instance, refs. 24,34 and the supplementary material, to obtain
the classical model parameters 6(7).

Finally, we wish to mention that this potential enhancement
from quantum computing is concerning the size of the model, not
necessarily the precision. For instance, we use tomographic
method to download the sparse quantum state at the end of
quantum ODE solver with the precision scaling as 1/¢. This scal-
ing might be optimal in the quantum setting**, but may not be
ideal compared to purely classical algorithms (although the pre-
cise relationship between the error and the performances of
classical machine learning models is generically not clear to date).
We leave those interesting issues for future works.

Linearizing classical neural networks
In this section, we provide a short and heuristic description of how to
solve stochastic gradient descent using HHL algorithms. For a given

(stochastic) gradient descent process, the recursion relation is given
by

q
Su=u(t+1)—u(t)=>_ Fu®(r)
=0 4)

=Fu®i(0)+ ... +Fu® () + Flu(t)+F,,

with the initial condition u(0) = uin. Here, u(¢) = (6,)(?) is a set of weight
vectors at the iteration t, 60:=o(t+1) - o(t) represents the discrete
difference between two time steps (¢+1) and (¢) for a variable o (see
ref. 30 for the continuous version), and u® is the ¢-th order tensor
product. Thus, Eq. (4) characterizes the dynamics of g-th order non-
linearity in classical neural networks. Now, we introduce a linear
process designed to approximate the non-linear model (4), called
quantum Carleman linearization, as

[ u T i u ] [F 0 ]
u®2 a®2 0
u®3 u®3 0
5| =A| +] . (5)
u®WnN-1 u®WN-1) 0
u®N u®v 0

In this linear process, the vector space (whose vectors could be
denoted by y) is given by the weight vectors and all possible tensor
products thereof, while A is a large matrix with matrix elements given
by the F,, the so-called quantum Carleman matrix (QCM). In principle,
this linear relation is infinitely dimensional, so we are replacing the
original non-linear recursions to an infinite set of linear relations. If we
wish to solve this infinite process by a digital system, we need to make
truncation. In this work, we show that for dissipative systems (whose
QCMs have enough negative eigenvalues, roughly corresponding to
large enough positive eigenvalues for the Hessian of the loss functions
in classical neural networks; the positive eigenvalues are called
dissipative modes in the supplementary material, while negative
eigenvalues are called divergent modes), the truncation error can be
well-controlled.

For sparse, dissipative systems, Eq. (5) can be treated as a matrix
inversion problem, thus solved by the HHL algorithm using quantum
computers,

1 ¥0) Yin

—+A I ) b
. o=l ©

—U+A 1 JT -1 b

~t+A 1] ¥ b

Here, we are considering T +1 iterations in total from¢=0to t="T7, and
the vector space has been further extended T +1 times. / is the identity
matrix, and y;, is the initial weight vector corresponding to u;,, written
as a tensor product. This quantum ODE solver is our primary strategy
towards solving stochastic gradient descent equations using quantum
computers.

Although similar to its continuous version®, the distinct differ-
ences between our algorithms and those of ref. 30 are extensively
discussed in the supplementary material. More precisely, the discrete
contributions will lead to higher order terms in the learning rate 5. In
fact, in the continuous case A4 is linearly depending on various F, while
in the discrete case, A also has contributions scaling as ?F + p°F -
(see the supplementary material for detailed examples). In the limit
where n-> 0, the discrete contributions become identical to the
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Fig. 2 | Numerical results on ResNet as a function of step (Each step corre-
sponds to a step of stochastic gradient descent based on the derivatives of the
loss computed from 2048 randomly selected training samples). a ResNet Hes-
sian spectra during training. b Estimated error proxy during training. ¢ Training
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Fig. 3 | Hessian of the pruned 103 million parameter model immediately after
pruning without any additional training.

continuous ones. It is also worth clarifying that those discrete con-
tributions go beyond those considered in ref. 30. In fact, although one
has to discretize the differential equations eventually in the ODE setup
of ref. 30, the time derivative is computed before discretization for
higher order Carleman linearization. For instance, d(u®?)(¢) is treated as
du ® u+ u® duboth at the time ¢, while in the discrete case one has to
consider contributions both from the (¢ +1)-st step and the t-th step.
This contribution is the primary difference between the continuous
and the discrete ODEs. Finally, in our problem setup, we always assume
that an explicit form of the gradient descent equation is accessible,
such that one can construct the Carleman linearization and make it
available to quantum devices. This may not always be true for generic
complicated classical neural networks whose complexity of analytic
decomposition might grow with the size of the network. We leave a
more thorough treatment to future research.

Numerical analysis

In this part of our work, we focus on providing numerical evidence of a
potential quantum enhancement for large-scale machine-learning
models. Commercial large-scale LLMs like GpT-3 can have O(100)
billion parameters and even more, which is challenging as a starting
point due to its tremendous computational costs. Instead, here we
provide examples of classification and computer vision machine
learning models, which are relatively small compared to language
models used in industry. Our computational resources allow us to
achieve the scale up to O(100) million, which is both practically
minded and reachable. We expect that LLMs and other models will
feature a similar behavior to those examples since our algorithm works
in general as a replacement for stochastic gradient descent.

Thus, in order to provide evidence of the functioning of our
quantum algorithm in the context of practically minded machine
learning, we perform numerical experiments on a state-of-the-art
machine vision architectures, namely the so-called ResNet, to tenta-
tively outline schemes with a potential quantum enhancement. First,
we study a model with 7 million trainable parameters trained to dis-
tinguish images of 100 classes®. We first pre-train the neural network,
use the largest 10% of learned parameters for initialization, and use the

quantum ODE system to obtain a sparse output model. We record the
Hessian spectra during sparse training, allowing us to track the evo-
lution of an error bound related quantity, given by

1 04 ) | t
N_C/—oc p(@)|1+a)|da+ N_c/().4 p(a)|(1+a)|da, @

where p is the eigenvalue density, a is the negative of Hessian eigen-
values, and N, is the renormalization constant implicitly defined by

-0.4 oo
Ni / p(a)da+ Ni /0 \ p(@da=1. 8

This error proxy discards small magnitude Hessian eigenvalues
because they are close to 0, extremely abundant, and renders the error
proxy stationary.

This numerical prescription is created according to criteria
towards positivity of Hessian eigenvalues (dissipative modes). More
dissipative systems have more positive Hessian eigenvalues, more
negative a, and a better behaved error proxy. Specifically, the dis-
sipative nature of the training dynamics initially leads to a reduction in
this error proxy, which then gets overtaken by divergent modes and
leads to an exponentially increasing error bound as shown in Fig. 2b.
This motivates us to download the quantum trained model parameters
sparsely and re-upload to the quantum computer to continue training
every 100 steps. The effect of this procedure is that the exponentially
increasing error restarts at O after re-uploading, with the side effect of
Hessian broadening and accuracy reduction as shown in Fig. 2.

There is another strategy assuming the existence of QRAM. To
combat the effect of Hessian broadening on the error proxy, we train
the model classically for 10 steps after download before re-uploading
of the new dense parameters, during which no training error is
accrued. Although classical training has a cost linear in n, it is a small
fraction of the entire training process. The accuracy dips immediately
after download improves as training progresses, so our quantum
training scheme is capable of producing useful sparse models. Finally,
we examine the Hessian of a 103 million parameter ResNet. We start
with a pre-trained model and prune 90% of the parameters. Due to the
immense computational cost of computing Hessian for a large
machine learning model (a relatively large-scale model for computa-
tional vision based on our computational resources), we only bench-
mark the Hessian spectra to provide evidences of dissipation and
potential quantum enhancements. Figure 3 shows the initial Hessian,
which clearly shows the dominance of dissipative modes over diver-
gent modes similar to the 7 million parameter model. Since the Hessian
improves with training for the 7 million parameter model, we believe
this is evidence that the 103 million parameter model will have simi-
larly manageable error growth.

Discussion

In our work, we have provided quantum algorithm strategies that are
presumably helpful for solving the (stochastic) gradient descent
dynamics for large-scale classical machine learning models, like LLMs
such as GpT-3. We identify certain precisely stated dissipative and
sparse regimes of the model where quantum devices could mean-
ingfully contribute, providing an end-to-end HHL-type quantum algo-
rithm application that could outperform known classical algorithms.
The observation that an efficient classical algorithm for efficiently
solving all instances of non-linear dissipative differential equations
would imply an efficient classical algorithm for any problem that can
be solved efficiently by a quantum computer (is BQP hard)* can be
seen as an argument that our algorithm is implausible to be de-
quantized by classical proposals along the lines of ref. 36. Frankly, the
core thesis of this work is that a main application of quantum com-
puters may be in the training of classical neural networks.

Nature Communications | (2024)15:434



Article

https://doi.org/10.1038/s41467-023-43957-x

Indeed, we claim that our algorithm might significantly increase
the scalability and sustainability of classical large-scale machine-
learning models and provide evidence for our claims numerically up to
103 million training parameters. Our work provides solid theoretical
guarantees and intersections with state-of-the-art classical machine
learning research. It sharply deviates from the mindset of variational
quantum algorithms, and instead aims at augmenting classical
machine learning by a key quantum step that constitutes a bottleneck
for the classical training. In a way, it can be seen as adding flesh to the
expectation that quantum formulations of neural networks may lead
to new computational tools”. Specifically, our model requires the
sparsity to be kept as a constant (or feature a polynomial scaling) in the
size of the model to maintain a potential enhancement, which is con-
sistent with the so-called lottery ticket hypothesis®. The setup is
expected to be favorable in large-scale machine learning numerical
experiments, although the sparsity ratio will generically decay.

Our work is expected to open up several potential directions in
the field of quantum machine learning where one can reasonably hope
for algorithmic improvements. In the supplementary material, we hint
at a number of potentially particularly fruitful directions for future
research. In short, they include the development of an alternative,
time-dependent version during gradient descent trajectories, the
identification of better formal criteria for dissipation, work on con-
nections to diffusion models in classical machine learning and LLMs*’,
theoretical improvements on the truncated HHL algorithms, and the
identification of mechanisms of possible quantum speedups beyond
notions of dissipation. We hope that this work can provide some sti-
mulus for this type of research.

Data availability
The full data for this work is available at ref. 40.

Code availability

The full code for this work is available at ref. 40.
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