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We formulate a semiclassical circuit model to clarify the role of quantum entanglement in the recently
discovered encoding phase transitions in quantum circuits with measurements. As a starting point, we define
a random circuit model with nearest neighbor classical gates interrupted by erasure errors. In analogy with
the quantum setting, this system undergoes a purification transition at a critical error rate above which the
classical information entropy in the output state vanishes. We show that this phase transition is in the directed
percolation universality class, consistent with the fact that having zero entropy is an absorbing state of the
dynamics; this classical circuit cannot generate entropy. Adding an arbitrarily small density of quantum gates
in the presence of errors eliminates the transition by destroying the absorbing state: the quantum gates generate
internal entanglement, which can be effectively converted to classical entropy by the errors. We describe the
universal properties of this instability in an effective model of the semiclassical circuit. Our model highlights the

crucial differences between information dynamics in classical and quantum circuits.
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I. INTRODUCTION

Recent pioneering experiments manipulating a large num-
ber of qubits have brought questions on the resilience of
quantum information in noisy circuits into sharp focus and
motivated a theoretical effort to understand universal aspects
of this dynamics [1-4]. A case in point is the discovery of
a measurement induced phase transition in circuits consist-
ing of random unitary gates interrupted by occasional local
measurements [5—11]. It was found that this system sustains
large scale entanglement below a critical measurement rate
marking the transition from volume-law to area-law scaling
of the bipartite entanglement. The stability of the volume law
phase is understood to be a result of the nonlocal encoding
of information in the circuit, which protects quantum infor-
mation from the disentangling effect of measurements [8].
Thus, in the volume law phase, a finite fraction of the quantum
information encoded in the initial state persists in the circuit
for arbitrarily long times (in an infinitely wide circuit) in spite
of the nonunitary element of the dynamics.

In the measurement-induced transition, the “errors” in uni-
tary circuits are effected by active measurements performed
by an observer, rather than decoherence or uncontrolled noise
due to coupling to a passive environment. The quantum
information encoded in the circuit is conditioned on the ob-
server’s knowledge of the measurement outcomes, and only
by making use of this knowledge is it theoretically possi-
ble to retrieve the information. Thus the protected encoding
in this case relies on the unique nature of measurements
in quantum mechanics—measurements generally destroy off-
diagonal quantum coherence while they simultaneously reveal
some classical information encoded in the measurement out-
comes. To make a closer connection to realistic quantum
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dynamics, it is important to understand the dynamics of en-
coded information under quantum circuits in the presence of
uncontrolled errors.

To address this question, we take one step back and char-
acterize an encoding phase transition in random classical
circuits, where random measurements are replaced by era-
sures of bits, representing realistic errors. After establishing
that such classical circuits exhibit an information encoding
phase transition, we then introduce quantum effects pertur-
batively to determine their impact on the classical encoding
transition. The vicinity of the classical critical point allows a
controlled description of information dynamics in the quan-
tum circuit (see Fig. 1).

The classical circuit we consider, shown in Fig. 2(a), con-
sists of random two bit gates operating on nearest neighbors
in a chain of classical bits. An erasure error that resets the
bit to a value 0 can occur with probability p on each site
following application of a logic gate. Without the errors, the
circuit implements a reversible unitary transformation on the
input bit-string. Thus all the information encoded initially
is also present in the scrambled output string, regardless of
the circuit depth. In the presence of errors, the information
content in the output state is degraded, but vanishes only
above a critical error rate. We present theoretical arguments
and numerical evidence that this classical encoding transition
is in the directed percolation universality class. The state with
vanishing information entropy plays the role of an inescapable
absorbing state. If the information on the input state is gone it
cannot be resurrected.

The classical model can also be viewed as a quantum
circuit with unitary gates that do not entangle computational
basis states (aka bit-strings) [12]. We introduce entanglement
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FIG. 1. Circuit phase diagram. Phase diagram for our model;
error rate p on the horizontal and “quantumness” ¢ on the vertical.
There is a sharp transition for ¢ = 0, at p = p, (classical critical
point); dotted lines indicate the critical fan marking the quantum
critical region. The background color shows the decay timescale
for input:output mutual information (N = 120 qubits). In the cod-
ing phase, mutual information persists at long times, while in the
noncoding phase, any initial encoded information is quickly lost.

growth in a controlled way by adding a small density g of
Hadamard gates. Once the system is entangled, erasure er-
rors can generate entropy even from a pure state. Therefore
the zero entropy state is no longer an absorbing state in the
presence of the Hadamard gates. We demonstrate numerically
that the quantum perturbation ¢ has the scaling properties of
an additive noise term near the directed percolation critical
point. Thus the quantum system shows an error induced uni-
versal crossover governed by the critical point located on the
classical axis g = 0.

II. RANDOM CLASSICAL CIRCUITS

We consider a classical model of two-bit gates operating on
a string of N bits, X = xx2, ...xy. The gates are arranged in
a brick-wall structure in space-time as illustrated in Fig. 2(a).
Each gate implements a permutation of the four possible two-
bit input states {00, 01, 10, 11}, represented by a4 x 4 unitary
matrix g. Gates are chosen at random from independent uni-
form distributions over the permutation group S4. In addition
to reversible gates, bit-strings are subject to erasure errors oc-
curring at every position in each time step with probability p.
The bit at an error site is reset to the O state. We are interested
in the dynamics and protection of information in such circuits.
Specifically, if the input state encodes a certain amount of
information, what fraction of this information survives after
t time steps? We show that in the thermodynamic limit of
infinitely wide arrays, the information surviving at long times
vanishes at a critical error rate p. and that the transition is in
the directed percolation universality class. For p < p,, a finite
fraction of the information is protected from errors.

It is instructive to first consider a simple initial state that
encodes one bit of information: x;, = (0,...,0,x;,0...0).
The encoded site j hosts a random variable taking a value
0 or 1 with equal probabilities, while all other sites take a
definite value. The reversible gates spread the encoded logical
bits over an increasing number of physical sites, in effect
duplicating the information, but not changing the information
content. The encoding state at a given time is represented by

a joint probability distribution P(xy, ..., xy) and the informa-
tion content is quantified by the associated Shannon entropy.

The reversible time evolution, effected by the gates, gives
rise to a growing cluster of sites hosting indefinite bits, as
depicted in Figs. 2(b) and 2(c). Erasure errors reset the bit
in the physical error site, giving it a definite value 0, thereby
removing part of the duplicated information and stunting the
growth of the “information cluster.” As long as indefinite bits
remain, however, a fraction of the information survives with
them.

It is natural to expect an error threshold, above which
the errors prevent information clusters from growing to in-
finite size, as seen in Fig. 2(b). Once all encoded bits are
destroyed all the encoded information is permanently erased.
The growth of the information cluster follows the general
scheme of a directed percolation (DP) process or an equivalent
population dynamics model [13-15]. The indefinite bits can
be viewed as a population of bacteria that move and multiply
through the action of the reversible gates, and are killed by
erasure errors.

A. Diffusion-reaction model

While this illustration considers only one bit of infor-
mation initially encoded at site i, it is straight forward to
generalize to translationally invariant initial states with a fi-
nite density of encoded information. In fact, the dynamics
of the purity of the probability distribution, averaged over
random instances of classical circuits, can be mapped ex-
actly to a stochastic diffusion-reaction model in the DP class.
Using this model, it can be established that the information
encoding/nonencoding phase transition, defined as follows,
belongs to the directed-percolation universality class. More
specifically, we consider N bits initially in a uniform probabil-
ity distribution, p(x) = 1/2V with x € {0, 1}®*", undergoing
random classical circuits in the presence of erasure errors. In
order to identify a phase transition we evaluate the dynamics
of the collision probability Q =", p?(x) of bit-string dis-
tributions at the output, averaged over the choice of random
classical gates in the presence of erasure errors occurring
at predetermined locations. Generalizing our analysis to a
random location of erasure errors should be straight-forward.
We ask if the average of O quickly approaches 1, where all
information in the circuit is lost, or it remains exponentially
small in ~N for a long time, where ~ —log,(Q) bits of
information remain protected in the circuit. The average Q is
directly related to the annealed averaged Renyi-2 entropy

Q=e>. ¢))

Our main result will be that the dynamics of Q as a function
of circuit depth is governed by a diffusion-reaction model
whose phase transition belongs to the directed percolation
universality class.

Our strategy is the following. First, we consider the
tensor-network representation of random classical circuit evo-
lution. Tensors in this section are associated with probability
distributions rather than quantum wavefunctions. In this rep-
resentation, we encode p(x) using a network of tensors with
total N open legs of dimension 2 (running over 0 and 1).
The open legs enumerate over 2V bitstrings {x}, and the
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FIG. 2. Effective directed percolation model. Circuit diagram for our classical circuit model (a), mapping to a directed percolation problem
[(b) and (c)]. Consider the dynamics of a single encoded bit (yellow bond). As it reaches a gate (lattice vertex), it stays the same, jumps one
site, or branches into two encoded bits. Errors (red dots) break the bonds created by encoded bits. In (b), the error rate is low enough that a
percolation cluster reaches the end of the circuit. In (c), the errors overwhelm the encoded bits and the cluster does not span the circuit. These
demonstrate typical dynamics of an encoded bit in the encoding and noncoding phases, respectively.

contraction of the network against a given assignment x for the
open legs evaluates p(x). At initial time (zero circuit depth),
the uniform probability distribution is factorizable, hence can
be represented by N separate tensors. A classical gate oper-
ation g corresponds to a 4 x 4 matrix T,, where the indices
o and B run over four possible bitstrings {00, 01, 10, 11}
and (Tg)ep =1 if g(B) = a and O otherwise. Since we only
consider reversible gates, T, is equivalent to the linear repre-
sentation of the symmetry group S4. The erasure error acting
on a single bit can be described a 2 x 2 matrix

T—l ! 2
(Y ®

T, maps any local input bit values, i.e., either ‘0’ represented
by (1,0)7 or ‘I’ by (0, 1)7, to ‘0’ ((1, 0)7). As explained in
the main text, this error is equivalent to (i) summing over two
possible values of a bit, followed by (ii) inserting a fresh bit set
to the constant ‘0’. The diagrammatic representation is shown
in Fig. 3.

Second, we consider two copies of identical classical
circuits and erasure errors represented in tensor network di-
agrams. By properly contracting two networks, we obtain a
joint tensor network whose contraction evaluates the collision
probability Q for a particular instance of random circuit and
erasure errors. The exact contraction of such tensor network
amounts to simulating the dynamics of the classical circuits.

Finally, we perform averaging over all possible choices of
random permutations g € S4. This can be done without eval-
uating the full tensor network diagram for individual circuit
realizations. In particular, we utilize the following identity:

1
@ZTA’@TF >

8ESs 01,02,71,12€{1,x}

M, 1,),01,00) %1 ® T2 ® 61 ® 62,

(©))

where |S4| = 24 is the number of elements in the permutation
group S4; T and 6 are 2 x 2 matrices defined as

ifr=1

ift=x

R 1 ifo=1 R 11
o= and T =

X ifo=x %X

“

with the Pauli opertor X := (0, 1; 1, 0); and the weight matrix

1 0 0 0

P LR VE R VAR VE -
0 1/3 13 13

0 1/3 13 173

in the order (1, 1), (1, x), (x, 1), (x, x). The relation in Eq. (3)
can be checked by explicit calculation. The diagrammatic
representation of Eq. (3) is shown in Fig. 3(d). Repeatedly
applying Eq. (3) for every gate, we obtain an expression that
resembles a partition sum over variables o, T € {1, x}.

The partition sum can be simplified. The contraction of &
and 7 tensors arising from two successive gates evaluates to
the kronecker delta function 4, .. Also, the erasure error in
the classical circuit leads to a kronecker delta function &, i,
which is equivalent to forcing the corresponding o variable to
take the value 1 independent of the value of the contracted
T variable. Using these kronecker delta functions, one can
eliminate all T variables from the partition sum except those
at the top boundary. The t tensors at the top boundary shall
be traced out as we will describe below. The final expression
for the bulk of our diagram only involves the partition sum
over all possible configurations of o variables weighted by
products of M, each depending on four o variables at its
corners [Fig. 3(c)].

The partition sum can be interpreted as a path integral of
a diffusion-reaction model. More specifically, we note that
the row and column sums of the weight matrix M are unity,
hence M describes a Markov process. One can interpret o; = 1
or o; =x as a particle being absent or present at the site
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FIG. 3. (a) Tensor-network representation of random classical circuits with erasure errors. (b) The duplicated tensor network diagram
allows evaluating the collision probability Q. (c) Averaging over random classical gates leads to a diffusion reaction model. (d) Averaging a
single random classical gate gives rise to the summation over classical configurations of o and t variables € {1, x} weighted by M. In the
language of the diffusion-reaction model, ¢ = 1 or ¢ = x corresponds to the absence or the presence of a particle at the site. The weight
M can be considered as a Markov map describing the diffusion and reaction process of the particles. [(e),(f)] Useful identities to derive the

diffusion-reaction model.

i, respectively. Then, the weight matrix M describes a local
Markov process: (i) if two neighboring sites are both empty,
e.g., (04, 0,41) = (1, 1), then they remain in the same config-
uration, and (ii) if at least one of the two sites is occupied by
a particle, e.g. (07, 0i41) € {(1,x), (x, 1), (x, x)}, the two sites
will take one of the three configurations with probability 1/3
after the Markov process. Here (ii) describes both diffusion
and reaction processes of particles. The presence of erasure
error in the classical circuit effects the spontaneous loss of
particles. This model has an absorbing state, where every site
is empty.

After time evolution, T tensors are contracted with top
boundary tensors that evaluate the collision probability in the
classical circuit. In terms of the diffusion-reaction model, such
contraction is equivalent to taking the trace of all T tensors at
the top in Fig. 3.

0=> p(r;H] ulz (6)
{7} J

where the summation is over all possible configurations of T
variables at the top boundary and p({z;}) is the probability
distribution of each configuration, obtained from the Markov
process in the bulk. Since the Pauli X operator is traceless, the
only nonvanishing contribution to Q arises when every 7; = 1.
Therefore

0O = Pr(t; = 1 at every site j). 7

Apparently, this quantity undergoes a phase transition in the
diffusion-reaction model. When the particle loss rate is suf-
ficiently large, the system reaches the absorbing state with
high probability, and Q &~ 1 (noncoding phase). However, if
the loss rate is sufficiently small, the particles proliferate and
Q remains small. Note that, due to the initial configuration,
i.e., every o variables are 1 and x with equal probability, the
system starts in the absorbing state with the probability 1/2".

Therefore Q is at least 1/2V at all time, which is consistent
with the fact that the collision probability cannot be smaller
than 1/2V.

B. Numerical results

We validate the prediction for an encoding phase transition
in the DP universality class by direct simulation of the circuit
model. As the reversible gate operations form a subset of the
Clifford group (with only {I, o°} stabilizers), we can use the
stabilizer formalism [16] to efficiently simulate the circuit.
Generalization to a quantum circuit model is straightforward
using this approach. For now, we focus on the classical circuit
dynamics. We initialize the system in a maximal entropy state
(uniform distribution over all 2V bitstrings). The entropy of
the state at each subsequent time step is computed using
standard techniques [17,18].

Figure 4(a) shows the decay of the entropy (information)
with time for different values of the error rate. We see these
curves follow the expected behavior: for rates p < p., the
entropy decays only slightly to some finite amount, for p >
Pe, the entropy decays to zero over a finite time scale 7. To
determine v we let the system evolve beyond a time f;, at
which transient effects become negligible, and define 7 to be
the time it takes the entropy to decay to 15% of its value at
to. The transition is signaled by a divergence of t, which is
cut off at T ~ N* in a system with N bits. Figure 4(b) shows
a good crossing of the rescaled decay time t(p)/N?, allowing
us to extract the critical error rate p. = 0.081 and dynamical
exponent z = 1.51. The inset shows good data collapse using
the scaling ansatz T = N*F((p — p.)N %) with the extracted
Z, pe, and correlation length exponent v = 1.1. These values
are consistent, within errors, with the accepted exponents
of the directed percolation universality class z = 1.58 and
v =1.09 [15].
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FIG. 4. Classical circuit dynamics. (a) Example system entropy
versus time curves with ¢ = 0, N = 120. Darker color corresponds
to higher p; for small p, the entropy decays to a finite value, while
for larger p, it decays to zero. The inset shows the scaling behavior
of the entropy vs time curves, with different scaling laws for p < p.
and p > p.. We find y = 0.75, using z, v extracted from the scaling
in (b). (b) Scaling for the decay timescale t at different error rates and
system sizes (N = 40 to N = 120 in increments of 20, light to dark).
Rescaling the y axis yields dynamical exponent z = 1.51 and criti-
cal error rate p. = 0.081. x-axis rescaling (inset) recovers exponent
v=1.1.

As an additional check on our results, we studied the
dynamics of antipodal mutual information in our circuit. Con-
sidering the mutual information between antipodal segments
of length N/4 of our system as a function of error rate p (see
Fig. 5), we found the expected peak around our critical value
p. = 0.081—the actual peaks are shifted slightly by finite size
effects, but they converge to p. in the thermodynamic limit.
The critical exponent v = 1.2 is consistent with our previous
results.

The qualitative behavior of the mutual information also
matches with our understanding of information dynamics in
this model. For error rates above the critical point, the errors
overwhelm the unitary gates and very little information is
spread over long distances, leading to almost no mutual infor-
mation between antipodal regions. For error rates below the
critical point, unitary gates are able to scramble information
very efficiently with little interference from errors; this also
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FIG. 5. Antipodal mutual information as a function of error rate
for different system sizes N, from N = 60 to N = 200 going from
left to right. We considered segments of length %, and evaluated
mutual information at r = N*, where z = 1.51 is our previously
extracted dynamical exponent. The inset shows the scaling collapse
with critical exponent v = 1.2 which is consistent with the directed
percolation universality. Here, o = 0.28. Note that the apparent

crossover in the unscaled data is not relevant.

leads to low mutual information between any two regions. In
the thermodynamic limit, there should only be nonzero mutual
information at the critical point.

III. SEMICLASSICAL CIRCUITS

Having characterized an encoding phase transition in a
classical model, our next task is to extend the analysis to
quantum circuits that can approach the classical limit contin-
uously. This extension involves two important elements. First,
we must reinterpret the classical circuit elements as operating
on quantum bits. Second, we must add gates such that the
circuit can build up quantum entanglement. Here we restrict
these to Clifford gates to facilitate efficient computation.

Classical gates were defined by their action on strings of
classical Pauli operators I and o*. To embed the classical gates
in a quantum circuit we should also specify how they act on
strings containing o* and . The “classicality” constraint that
the space of o strings remains closed under the action of the
gates is not sufficient to fully specify the extension. For ex-
ample, classical gates implementing the identity permutation
of two bits can be extended not only to the identity unitary,
but also to any unitary that rotates about the o° axes of the
two qubits. This freedom allows us to choose the extension of
the classical gates in such a way that the space of Pauli strings
involving only o is also closed under their action. This condi-
tion together with the requirement that Clifford gates preserve
the commutation relations between the stabilizers, completely
determines the action of the gates on the full Hilbert space.

The errors also need to be interpreted within a quantum
framework. The quantum channel corresponding to erasure
errors can be implemented by operating a swap between the
affected qubit and an environment ancilla qubit initialized to
the state |0), then tracing over the ancilla. When this quantum
channel operates on a nonentangled (i.e., classical) pure state
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the output is a pure classical state, which coincides with the
effect of a classical erasure error. On the other hand, if the
affected qubit is entangled with other system qubits, the en-
tanglement is transferred to the environment and performing
the trace will add to the entropy of the system. Thus, in
a quantum model with entangled states propagating in the
circuit, the entropy does not quantify the amount of previously
encoded information and can be generated by an error, even
if the error acts on a pure state of the system. But to have
entanglement in the circuit in the first place, the “classical
gates” discussed so far must be supplemented by gates that
create coherence between computational basis states. Within
the stabilizer picture, this translates to mixing between o* and
o strings, which can be achieved by introducing single-qubit
Hadamard gates. The combined action of the Hadamards and
the two-qubit classical gates can now produce entanglement
inside the system. By tuning the probability ¢ of applying
Hadamard gates, we control the rate of entanglement gener-
ation; g = 0 will return us to the classical circuit model.

Having a nonvanishing ¢ has a dramatic impact on the
information dynamics in the circuit. Because acting on an
entangled state with an erasure error can produce entropy
even if the error acts on a pure state, the zero entropy state
no longer provides an absorbing state needed to protect the
directed percolation phase transition. Within the effective the-
ory of the transition we expect ¢ > 0 to produce an additive
noise term, which is a relevant perturbation to the directed
percolation fixed point. This perturbation leads to broadening
of the transition to a universal crossover, which is governed
by the underlying phase transition at g = 0.

In particular for p = p, the strength g of the quantum term
generates the only scale for the saturation timescale and value
of the entropy. This suggests the scaling form for the decay
of the entropy at p = p.: S(t,q) ~ q"/"F(tq”/"). Here n is
the scaling dimension of the perturbation g and y the scaling
dimension of the entropy at the directed percolation critical
point. If g behaves as an additive noise perturbation to the
DP critical point, then we expect n = 2.34 and y = 0.75 [15].
Note that we already found an entropy scaling consistent with
y = 0.75 when rescaling the classical entropy versus time
curves [see inset of Fig. 4(a)].

We verify these theoretical expectations by direct simula-
tion of the stabilizer circuits. Figure 6 shows the evolution
of the system entropy S for different values of ¢, at the
critical error rate p. = 0.081. When g > 0, S decays to a
finite equilibrium value rather than decaying to zero. A good
scaling collapse is obtained using the exponents n = 2.34 and
y = 0.75, consistent with the expected directed percolation
exponents (see inset of Fig. 6). This confirms that the quantum
effects leading to entanglement act as a relevant additive noise
perturbation at the directed percolation critical point.

Additionally, it can be shown that a classical additive noise
process acting on a classical circuit has the same scaling
behavior: we also considered adding a simple, completely
classical noise process to the circuit. We implemented this
noise process by allowing bits with a defined value to become
indeterminate with some probability % at each time step—we
can now introduce encoded bits with junk entropy. Now, in
addition to the probability p that a bit will be replaced with
a 0, we have the probability % that the bit will be erased
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FIG. 6. Addition of quantum gates and classical noise. (a) En-
tropy vs time curves for N = 120, different ¢ (¢ = 0 to ¢ = 0.05,
bottom to top). We find n = 2.34 and y = 0.75. Exponents n and
y agree with the known directed percolation exponents [15]. (In
the cited reference, the exponents 1 and y are given by o /v, and
1 — B/v, respectively.) (b) Entropy vs time curves for p = 0.81,
N =200, and different 2 (h =0 to h = 0.05 from bottom to top).
As when adding Hadamard gates, 4 > 0 leads to a finite saturation
value of entropy. The scaling collapse is shown in the inset, using the
same scaling relation as for the semiclassical circuits. Our exponents
agree with our previous results and with the expected directed perco-
lation values: z = 1.58, y = 0.75, and n = 2.34.

and replaced with a junk encoded bit. Entropy can now be
generated inside our circuit; we expect the absorbing state to
be destroyed just as with the addition of Hadamards.

Allowing both erasure errors and this noise process, we
study the behavior of the system entropy at the critical point
p. = 0.081 as a function of time and of noise strength % [see
Fig. 6(b)]. As in the quantum case, when & > 0, there remains
finite entropy in the system at long times even for p > p.. The
critical exponents governing the scaling behavior for # and ¢
match as well [see the inset of Fig. 6(b)].

Even though the absorbing state in the entropy disappears
for ¢ > 0, we might ask if another quantity, like the ini-
tial:final mutual information still retains one. In the classical
model, measuring the system entropy was equivalent to mea-
suring the mutual information. This equivalence no longer
holds for ¢ > 0, meaning the mutual information might cap-
ture the transition while the entropy does not. However, while
the mutual information does still have an absorbing state for
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q > 0, any p > 0 will drive the system into this absorbing
state. This is because monogamy of entanglement, coupled
with the infinite size of the bath, ensures that for times larger
than order N bath-system correlations dominate the reference-
system correlations (the reference encodes the initial state).
Thus the memory of the initial state is always lost for g > 0;
the universal crossover discussed in this work is a crossover
in the timescale at which this happens (see Fig. 1).

IV. DISCUSSION

We have introduced a family of semiclassical quantum cir-
cuits, which allowed us to controllably add entanglement and
study it’s impact on the dynamics of information encoding.
In the strictly classical limit, the circuits undergo an encoding
transition in the directed percolation class at a critical error
threshold. Adding a small density of Hadamard gates, which
allow buildup of entanglement in the circuit, behaves as an
additive noise perturbation on the DP critical point. Thus
quantum effects eliminate the error threshold and broaden the
transition to a universal crossover. In the crossover regime,
decay of the encoded information is controlled by the critical
exponents of the underlying DP transitions.

An important open question is whether quantum circuits
with more structure can protect quantum information for

arbitrary long times. The proximity to the classical critical
point can help to identify what structures can counter act the
relevant perturbation and resharpen the transition.

The semiclassical circuits introduced here offer a new ap-
proach for studying the crossover from quantum to classical
dynamics, while using powerful tools—such as mapping to
statistical mechanics models—developed for random circuits.
For example, such studies may shed light on the relation
between classical and quantum chaos.

Note added. Recently, a preprint appeared showing a di-
rected percolation transition in chaotic classical circuits [19].
The effect of quantizing the classical circuit has not been
considered previously.
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