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Abstract—The agriculture industry is extensive utilizing AI
and data-driven systems for efficiency and automation, with the
goal to meet the rising food demand. Individual farm owners
can leverage agricultural cooperatives to consolidate resources,
exchange data, and share domain knowledge. These cooperatives
can enable the generation of Al-supported insights for their
member farmers. However, this collaborative approach has
raised concerns among individual smart farm owners regarding
cybersecurity threats, and privacy. A cybersecurity breach not
only endangers the farm attacked but can also risks the entire
network of smart farms members within the cooperative. In this
research, we emphasize security challenges within cooperative
smart farming and introduce a multi-layered architecture incor-
porating Digital Twins (DT). Further, we introduce a hierarchical
federated transfer learning framework designed to address and
mitigate the security threats in collaborative smart farming. Our
approach leverages Federated Learning (FL) based Anomaly
Detection (AD), which operate on edge servers, enabling the
execution of AD models locally without exposing the farm’s data.
This localization also has excellent generalization ability, which
can highly improve the detection of unknown cyber attacks. We
employ a hierarchical FL structure that supports aggregation at
various levels, fostering multi-party collaboration. Furthermore,
we have devised an approach that integrates Convolutional
Neural Networks (CNN) and Long Short-Term Memory (LSTM)
models, complemented by transfer learning. The objective is
to expedite training duration while upholding high accuracy
levels. To illustrate the efficiency of our proposed architecture,
we present a use case to demonstrate our model’s capabilities.
Furthermore, we also present a proof-of-concept implementation
of our proposed architecture within Amazon Web Services (AWS)
environment, reflecting real-world feasibility.

Index Terms—Federated Learning, Anomaly Detection, Coop-
erative Smart Farming, Security, Privacy, CNN-LSTM, Transfer
Learning, Digital Twin, Amazon Web Services (AWS)

I. INTRODUCTION

According to the United Nations’ Department of Economic
Social Affairs, by year 2050, the global population is projected
to reach approximately 9.1 billion, marking a substantial in-
crease of around 34% compared to today’s figures [1], [2]. The
projected population growth is expected to lead to a simultane-
ous 70% increase in the global demand for food. In response
to this challenge, precision agriculture, also referred to as
digital agriculture, emerges as a critical solution to ensure food
security at a global level. Precision agriculture encompasses
the implementation of technology-driven, data-centric, and
sustainable farm management systems. It requires adopting
contemporary information technologies, software tools, and
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intelligent embedded devices to provide decision support for
agricultural practices [3]-[6].

Cooperative (co-op) farming practice is extensively used
where the farmers pool there resources and share them as per
need from the members. These co-opss offer several benefits
to its members including resource sharing, machine use and
maintenance, hiring farm labour, specialized machine oper-
ators, coordinating market visits, estimating price/purchase
data, etc. They [7], [8] also aid the member farms by alerting
them to crop diseases, pest management, weather, changing
labour costs, price fluctuations, etc. As the farming community
adopts more precision agriculture practices, the working of
co-ops have also evolved. Most recently, the concept of
smart co-ops has been gaining momentum, which helps the
member farmers to improve their productivity, sustainability,
and profitability while providing valuable data-driven insights
for better decision-making. However, as these farming co-
ops become more connected and smart by aggregating shared
data and resources from member farms, they are increasingly
becoming a prime target for cyberattacks, with far-reaching
consequences for rural communities’ well-being and essential
infrastructure like supply networks.

According to the Federal Bureau of Investigation (FBI)
[9], most of these cyberattacks happen during planting and
harvesting seasons, and lead to the theft of sensitive data and
operational disruptions, potentially resulting in financial losses
and food shortages. Notably, in 2021, a ransomware attack
targeted meat producer JBS and two-grain purchasers in the
United States during the harvest season. The cybersecurity of
the farm and agribusiness sectors gained significant attention
following these incidents. In September 2021, the BlackMatter
ransomware struck Iowa’s new co-op, demanding a ransom of
$5.9 million. The company had to take vulnerable machines
offline to prevent the ransomware from spreading further.
Shortly after the new co-op incident, Crystal Valley co-op,
a prominent agricultural co-op in Minnesota, fell victim to an
as-yet-unidentified cyberattack strain [9]. This attack disrupted
the company’s ability to process major credit card transactions.

It should be noted that the implications of cyberattacks on
a co-op extend beyond individual farms and can have a far-
reaching impact on the entire co-op network. If a malicious
actor manages to corrupt or manipulate data on one member
farm, it can adversely affect all the member farms. For
example, consider a scenario where Farm A deploys sensors to
monitor soil moisture, temperature, and humidity and shares

Authorized licensed use limited to: Tennessee Technological University. Downloaded on May 13,2024 at 02:29:28 UTC from IEEE Xplore. Restrictions apply.



the generated data through a central platform managed by co-
op. The nearby farms rely on this shared data to make informed
irrigation, fertilization, and pest management decisions. Let’s
consider that Farm A falls victim to a network cyberattack.
The attacker gains unauthorized access to the network infras-
tructure and manipulates the transmitted sensor data. They
may manipulate the soil moisture readings, transmitting false
data that suggests the soil is adequately moist when, in
reality, it’s dry. As a result, the other farms within the co-op
receive the manipulated data, assuming the soil moisture levels
are correct. Relying on this deceptive information, farmers
may postpone or reduce their irrigation efforts, resulting in
insufficient water supply to their crops. The consequences
for the affected farms may include crop stress, diminished
yields, or in severe cases, crop failure due to the reliance on
inaccurate shared data. Moreover, if the attacker continues to
compromise the network, it can access other shared resources,
such as cloud platforms or collaborative tools. This results in
the disruption of shared services, compromised data integrity,
spread of false information, loss of trust, and financial impact
among the smart farms. In addition, the farmer will eventually
refrain from joining the co-ops, which will impact adoption
of precision agriculture approaches among agriculture.

To address this issue, we propose a hierarchical federated
transfer learning approach in a multi-layered smart co-op
architecture with DT to detect cyberattacks induced anomalies.
The key contributions to this work are as follows:

1) Problem Identification: We identify and delineate the
challenges associated with cooperative smart farming.
We illustrate these issues through a practical use-case
scenario to make them tangible.

2) Hierarchical Federated Transfer Learning Model: We
introduce a novel hierarchical federated transfer learning
model, which combines convolutional neural networks
(CNN) and long short-term memory (LSTM) techniques
for anomaly detection in cooperative smart farming.

3) Practical Application: We showcase the practical appli-
cation of our proposed framework, and using a specific
use case, demonstrate how our approach can effectively
identify and flag cyberattacks induced anomalies.

4) Implementation Framework: We present an implemen-
tation framework in AWS that leverages DT and edge
computing. This framework is designed to facilitate the
seamless integration of our architecture for real-time
anomaly detection in cooperative smart farming.

The remainder of this paper is organized as follows. Section
II discusses relevant literature. Section III addresses challenges
associated with co-op smart farming with a use-case sce-
nario. Section VII introduces the DT-enhanced co-op farming
architecture and highlights its need and limitations. Section
V examines various threats encountered across multi-layered
architecture. Section VII defines the building blocks of secure
co-op farming. Section VII presents the hierarchical federated
transfer learning based framework. Section VIII provides a
proof-of-concept implementation within AWS, followed by
Section IX discussing open challenges and conclusion in
Section X.
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II. RELATED WORK AND BACKGROUND

A. Cooperative Smart farming

Cooperatives, often called co-ops, are structured as formal
organizations owned and operated by their members. These
co-ops unite individual farmers to amplify their business
productivity and overall yields. The overarching objective is
to improve farming practices, sustainability, and productivity,
all while promoting collaboration, the exchange of knowledge,
and the efficient utilization of resources.

In co-op, farmers can share sensor data, weather infor-
mation, and insights with each other and experts, enabling
collaborative decision-making and knowledge exchange. The
authors [7] discussed various technical foundations and ex-
plore potential Al applications that can augment the co-
op smart farming ecosystem. In the subsequent work, the
authors [10] utilized co-op agriculture ontology to perform
data transformation by adding white Gaussian noise to data
generated by all individual smart farms. The authors [11]
highlighted the issue of unfair collaboration within co-op smart
farming, where some smart farms may generate low-quality
data to develop machine-learning models and gain advantages
over other farms with high-quality data.

B. Collaborative Intrusion Detection System (CIDS)

The concept of an Intrusion Detection System (IDS) in co-
op smart farming takes on a collaborative nature. To com-
prehensively address intrusion detection in this environment,
it is essential to explain the core concepts and necessary
background information related to the research contribution in
CIDS. This subsection defines the foundational principles of
CIDS and how the integration of machine learning, federated
learning, and blockchain principles are employed within CIDS.
A CIDS can address the shortcomings of local IDSs [12]. A
CIDS allows the sharing of information and detection of net-
work attacks in a collaborative network. A classic CIDS unit
comprises local monitoring, global monitoring, association and
aggregation, and data-publishing components [13]. CIDSs are
typically developed based on distributed Machine Learning
(DML) for detecting known and unknown attacks with some
generalization capability [14]. The authors [15] introduced a
Privacy-Preserving Machine Learning-Based CIDS designed
for Vehicular Ad Hoc Networks (VANETSs). The initial step
involves utilizing the Alternating Direction Method of Mul-
tipliers (ADMM) to establish a decentralized approach for
solving the Distributed Empirical Risk Minimization (ERM)
problem within a VANET.

FL model guarantees the privacy of general DML algo-
rithms [16]. The authors [12] proposed a novel software-
defined VANET IDS, referred to as SDVN, which blends
FL and Software-Defined Networking (SDN) for training
detection models. In this proposed CIDS, various SDN clients
train models within their sub-networks and upload them to a
centralized cloud server for model aggregation.

Blockchain solutions can be used to enhance trust within
CIDS in network and cloud environments. To illustrate, the
authors [17] conducted a survey exploring methods to in-
tegrate CIDS with blockchain technology. They introduced
the idea of leveraging blockchain techniques to enhance the
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reliability of CIDS, emphasizing that blockchain’s character-
istics can promote trust between different IDS and provide
accountability. The authors [18] conducted a survey to offer
a comprehensive overview of cutting-edge methodologies in
predicting cybercrime, leveraging Machine Learning (ML),
Deep Learning (DL), and Transfer Learning (TL). In [19],
the authors employed statistical analysis methods and machine
learning models for predicting different types of crimes in New
York City, based on 2018 crime datasets. The integration of
Hierarchical FL with DT technology is presented in [20], [21].

Our research distinguishes itself from previous studies
within co-op smart farming scenarios in several notable ways.
We leverage DT technology to facilitate continuous real-time
simulation and monitor traffic data. DT also helps with vul-
nerability assessment and simulation of attack scenarios within
smart farms. Our investigation identified research gaps linked
to DT-enabled smart farming and illustrated these gaps through
diverse use cases. Moreover, we utilize federated transfer
learning, a resilient solution designed to address data distri-
bution challenges effectively across various farms in co-op
smart farming environments. FL addresses privacy and security
concerns, enables Early Threat Identification, and safeguards
against zero-day attacks on individual farms. Additionally, our
approach incorporates the CNN-LSTM hybrid model, ensuring
the precision of AD model. Our methodology also embraces
a hierarchical approach that distinguishes between farms at
both local and regional levels. This design ensures that DT
data for individual farms remains localized on the edge server,
with only the updated model weights being transmitted to the
cloud server. This innovative approach is a practical solution
to address the privacy and security challenges associated with
AD in co-op smart farming systems.

III. COOPERATIVE SMART FARMING

Cooperative smart farming (CSF), characterized by collabo-
rative data sharing and resource pooling, introduces innovative
opportunities for optimizing agricultural practices. However,
the interconnected nature of these collaborative environments
also raises significant security concerns. This section presents
a CSF use case that is aligned with a real-world scenario.

A. Cooperative Smart Farming Use Case

As shown in Figure 1, in this use case, we examine two smart
farms referred to as Smart Farml and Smart Farm2. Smart
Farml uses three sensors: Temp sensor, Humidity sensor, and
Ultraviolet sensor. The utilization of temperature and humidity
sensors is instrumental in assessing the weather conditions
on a rice farm, enabling farmers to make informed decisions
about the most suitable crops for cultivation. Furthermore,
these sensors play a crucial role in the event of unexpected
weather occurrences, such as abrupt temperature fluctuations
or excessive rainfall. The Ultraviolet sensors can measure the
intensity of UV radiation, which is a component of sunlight.
Excessive UV exposure can harm crops, causing sunburn and
damage to leaves. By monitoring UV levels, farmers can take
preventive measures like shading or adjusting planting times
to protect crops from UV stress. These sensor data help Smart
Farm1I’s farmer to improve crop quality, reduce environmental
impact, and improve farm management.
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Fig. 1: Cooperative Smart Farming Use-Case

Similarly, Smart Farm2 uses three sensors: a Soil Moisture
sensor, a Nutrient sensor, and a Light sensor. Soil moisture
sensors measure the moisture content of the soil, which is a
critical parameter for crop health and irrigation management.
By monitoring soil moisture sensors, the farmers can avoid
under and over-water irrigation, which is crucial for growth
and yield optimization. Nutrient sensors measure the levels of
essential nutrients like nitrogen, phosphorus, and potassium
in the soil. These data help farmers apply fertilizers more
accurately, reducing excess fertilization. Light sensors are
used to monitor light levels in fields. The light sensor data
also help to determine if crops receive sufficient sunlight for
photosynthesis and growth. The sensors employed in Smart
Farml and Smart Farm2 aid farmers in gaining valuable
insights and enhancing their decision-making for their re-
spective agricultural endeavours. However, Smart Farm2 may
require temperature and humidity data to safeguard against
unforeseen weather conditions in its fields. The farm two
may not install two additional sensors due to budget con-
straints. Consequently, a collaborative agreement has been
reached between Smart Farml and Smart Farm2. They have
come together to exchange data, with Smart Farml benefiting
from Smart Farm2 NPK sensor data to improve their crop
predictions for the upcoming season. Smart Farm?2 is also
beneficial with the temperature and humidity data. This co-
op arrangement allows both parties to leverage the available
resources more effectively for mutual benefit.

As illustrated in Figure 1, each smart farm is equipped
with sensors that generate a vast volume of data. This sensor
data is transmitted through a Gateway router, edge to a cloud
platform, such as Azure FarmBeats [22]. To access this data,
farmers can request sensor data from particular fields through
a crop monitoring tool hosted on a cloud server. In response,
the requested data is sent via a mobile or desktop application.
The privacy and security of collected data heavily rely on the
security measures implemented by the manufacturers of the
smart devices.

In a broader context, an anomaly encompasses any un-
expected or irregular behaviours or events within the in-
frastructure connecting the smart farms, central server, and
mobile/desktop application. These anomalies can potentially
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signify issues or security threats. The following use case
outlines instances of unusual behaviour and potential threat
scenarios within this CSF environment:

e The soil moisture data transmitted by Smart Farm 2 is
tampered with or altered during the transmission, that
is sending false information indicating that the soil is
adequately moist when dry. As a result, Smart Farm 1
receive this manipulated data, assuming the soil moisture
levels are suitable. Based on this false information, they
may delay or reduce their irrigation practices, leading to
insufficient watering of crops.

o Malicious actors flood the co-op farming network with
excessive data requests, causing network congestion.
Smart Farm 1 and Smart Farm 2 may experience disrup-
tions in data sharing and collaboration, leading to delays
in decision-making and farming activities.

e A cybercriminal gains unauthorized access to the cen-
tral data repository through an exploited vulnerability
in Farm1’s network or server. Once inside the system,
the attacker ex-filtrates sensitive data from the central
repository. The malicious actor can use this stolen data
for various purposes, such as selling sensitive agricultural
information to competitors, extorting the co-op, or lever-
aging the data for financial gain.

IV. DIGITAL TWIN ENHANCED CO-OP SMART FARMING

Digital Twin (DT) is a simulation model representing a
physical entity in the past, present, and future. The physical
entity could be a sensor, device, system, or process [23],
[24]. For the past and the present, a DT in the virtual space
mirrors the behaviour of an entity in the physical space.
Regarding the future, the DT accurately predicts the entity’s
behaviour, which is essential for the control process. The
DTs look for data discrepancies between the physical and
virtual entities by collecting massive amounts of data from all
phases of the product life-cycle and provide simulation data
to the physical entity so that it may improve its calibration
and testing procedures [25]. Such recurrent processes improve
DT models and their physical equivalents, allowing for more
accurate estimate prediction.

In the farmland DT framework context, the object mod-
eled consist of sensor nodes and the gateways responsible
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for transmitting field data to a cloud platform for analysis
[26], [24], [27], [28]. This DT system offers a precise, real-
time portrayal of the farm field’s condition. It achieves this
through visual representations, drone-captured imagery, and
data on essential soil parameters like pH, salinity, nitrogen,
phosphorus, potassium levels, temperature, and humidity.

DTs offer several advantages when integrated into network
anomaly detection in a CSF system (Figure 2). DTs create
a virtual replica of the entire network and its components of
each smart farm, enabling continuous real-time simulation and
monitoring. This means that network activities and anomalies
of the individual smart farm can be analyzed as they happen
before sending the data to the central server, allowing for
immediate threat detection and response [29], [30], [31]. For
example, DoS attacks often flood the network with excessive
traffic, causing congestion and disruptions. The DT layer
can monitor network traffic in real-time and detect unusual
traffic patterns for that farm, such as a sudden increase in
traffic volume to specific devices or services. Such anomalies
can trigger alerts for further investigation. DTs allow for
the creation of isolated testing environments where security
updates, intrusion detection algorithms, and other changes can
be tested without affecting the other smart farm’s network
[32]. [33]. This reduces the risk of unintended disruptions
in the other smart farm’s network data. DTs can also model
vulnerabilities within the Smart Farm’s network. By simulating
attack scenarios, farms can identify weak points in their
infrastructure that could be exploited in a network attack. This
information allows for proactive vulnerability remediation.

Nevertheless, while utilizing DTs for network anomaly
detection in CSF has several benefits, it also has inherent
limitations. As shown in Figure 2, this model consolidates
all network data from sensors, devices, and individual farms
within a central repository. The central server is susceptible to
single point of failure. The entire network’s anomaly detection
capabilities may be compromised if the server experiences
technical issues or a security breach. As the Co-op grows
more prominent, more smart farms add to infrastructure. The
central server may be incapable of handling the increased
data volume and processing demands, leading to scalability
issues. Also, analyzing data in a centralized manner can intro-
duce delays, which could impact farm operations negatively.
Individual farms may also have reservations about sharing
their network traffic data with others, which poses challenges
when designing network anomaly detection systems for CSF.
Moreover, when the DT of a system is created, the potential
attack surface effectively doubles—adversaries can go after
the physical system or attack the DT of that system.

V. THREAT MODEL

In this section, we describe the possible threat situation
and motivated our research and led to the development of
hierarchical federated transfer learning.

A. Attacks on Physical Layer

The physical layer consists of sensors and gateway devices
spread across agriculture farms. These devices include drones
flying in the air, autonomous tractors, sensors embedded in

Authorized licensed use limited to: Tennessee Technological University. Downloaded on May 13,2024 at 02:29:28 UTC from IEEE Xplore. Restrictions apply.



livestock, or hub devices installed to communicate among
the DT. Attackers may physically tamper with these sensors,
actuators, or other devices in the farming environment. For
instance, the attackers may alter sensor readings or sabotage
machinery to disrupt farm operations. They could also gain
unauthorized control over farm machinery, such as tractors
or irrigation systems, causing damage or disrupting farming
processes. Jamming devices can disrupt wireless communica-
tion used by IoT devices in the field. This interference can
cause data loss or affect automated farming processes. They
may deploy rogue IoT devices, which could collect data or
interfere with operations.

B. Attacks on Network layer

A DT (resides in the edge cloud) continuously receives data
from its physical counterpart to provide an up-to-date virtual
model, and the virtual model can also provide feedback to
the physical world through the same communication channel.
The data transmission from or to the cloud may face serious
threats. Threats on data communication may be divided into
five main types such as: Man in the Middle Attack, Denial
of Service or Distributed Denial of Service, Eavesdropping,
Spoofing, and Replay Attack.

In a Man-in-the-Middle (MITM) attack, the attacker can
insert malicious code between communicating nodes or eaves-
drop on the ongoing conversation between any two communi-
cating nodes [34]. MITM vulnerabilities extend across various
protocols and technologies inherent in smart farming systems.
For instance, security vulnerabilities within the Wi-Fi standard
widely used in Smart farming are the primary cause of the
wireless re-installation attack, which can expose DT data.
Smart farming systems utilizing Bluetooth and the ZigBee
Protocol are also susceptible to exploitation through MITM
attacks [35], [36].

Denial of Service (DoS) [37] and Distributed Denial of
Service (DDoS) [38] attacks endanger the availability and
accessibility of DTs in Smart farming environments. These
attacks happen by overloading the farming network with
excessive traffic. By this attack, a malicious actor can dis-
rupt operations within the deployed DT in Smart farming,
potentially rendering essential services inaccessible to farmers.
The unavailability of these services can potentially disturb the
functionality of the DT in the Smart farming system.

In an eavesdropping attack, the network traffic flowing from
sensors to controllers is susceptible to interception [39]. This
passive attack allows the attacker to gain insights into the
communication between sensors and controllers.

In a spoofing attack, the attacker masks their identification
to engage in malicious and deceitful actions [39]. The attacker
manipulates a node within the wireless sensor network to
achieve network access or reroute network traffic. Spoofing
has the potential to corrupt signals or messages transmitted
from sensors to the controller.

A Replay Attack is a type of post-attack that relies on a prior
preparatory phase. During this preliminary stage, the attacker
observes, captures, and stores a specific data set to resend it
later [40], [41]. Consequently, when this re-transmitted data or
signal is employed, it can potentially trigger harmful actions
on sensors or controllers within the system.
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C. Attacks on Virtual Layer

In anomaly-based intrusion detection tools, farmers (both
benign and malicious) can continuously monitor the ongoing
process to observe the excepted behaviour of farming objects.
The smart farming system uses the DT concept, connecting
real-time data (dynamic variables) with historical data (vir-
tual process) to prevent rule violations related to safety and
security. For example, by analyzing the relationship between
the dynamic variable (pest activity) and the historical variable
(past pesticide applications and weather conditions), the smart
farming system can detect a potential S&S rule violation. The
benign user (Farmer) uses the information to spot deviations
from a defined or learned baseline and alert security analysts.
However, malicious users can exploit the data and the co-
relation of variables to disrupt the DT’s behaviour such that
twins do not follow the expected misbehaviour. If the attacker
successfully attacks DT, no anomaly can be detected; thus, it
is difficult to identify long-term deviations in the network.

To replicate the simulation of a DT network, a network
simulation tool proves invaluable. A network DT serves as a
computer-based model that encompasses the communication
network, its operational surroundings, and the application
traffic it carries. This network DT proves highly useful for
studying the behavior of its physical counterpart across various
operating scenarios, even including cyberattacks, all within a
low-cost, zero-risk environment.

However, it’s important to recognize that if an attacker man-
ages to intercept and gain insights into the traffic generated by
the network simulation tool, they could potentially manipulate
not only the DT but also its physical counterpart. This opens
the door for the attacker to execute various attacks as outlined
in section V-B.

D. Attacks on cloud Storage

Most data storage activities in DT applications are conducted
within cloud computing environments. Numerous trust-related
concerns and privacy issues are associated with data storage,
mainly when it involves public cloud services where the
service provider company holds complete control.

VI. BUILDING BLOCKS FOR SECURE
C0-0P SMART FARMING

This section describes the fundamental components of our
proposed model and underscores their significance within our
cooperative farming system. It provides a concise overview of
FL, Transfer learning and federated transfer learning in our
proposed approach.

A. Federated Learning (FL)

FL is a communication-efficient process for training neural
networks on decentralized data. FL process comprises a central
server and a group of clients, each equipped with a predefined
local dataset. Such a process consists of several rounds of FL
in which the server selects a random number of clients and
sends them to the neural network model for local training.
The selected client trains the model with the local data and
sends it back to the server, which integrates all the updates
with the global model. This process is iterated several times
until the test accuracy is reached. The central concept of this
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process is the aggregation of local updates and the amount of
computation performed at each round [42], [43].

In our proposed model, FL is used to share attack and
anomaly profiles with other smart farms, enhancing the de-
velopment of a comprehensive and versatile model capable
of recognizing various attack patterns and behaviors without
sharing the raw data itself. FL enables an anomaly detection
system to adapt quickly to new and evolving cyberthreats
across smart farms in the co-op. Imagine that one of the Smart
Farms faces a novel malware strain, specifically targeting
agricultural automation systems. This malware was previously
unidentified during the initial model creation. Through FL,
the central aggregator combines this update with other farms
to create an improved model that now includes detection
capabilities for this new threat. As a result, all farms in the co-
op benefit from the rapid adaptation of the anomaly detection
system to this emerging cyberthreat. The collaborative nature
of FL also enables farms to collectively identify cybersecurity
threats and zero-day attacks early, providing more time to
respond and mitigate potential damage. If one of Smart Farms
identifies an unusual sensor data pattern indicating possible
tampering with irrigation controls. Through FL, all farms in
the network can now detect this new threat pattern, even if it is
a zero-day attack that has not been seen before in the broader
cybersecurity community. This rapid sharing and adaptation
help in early threat identification and response across the co-
op smart farming network.

B. CNN-LSTM Model with Transfer Learning

A Convolutional Neural Network (CNN) typically comprises
several key layers: an input layer, a convolutional layer, a
pooling layer, a fully connected layer, and an output layer.
The input time series data is processed through convolutional
kernels. The pooling layer is placed after the convolutional
layer, and this pooling operation helps in reducing the number
of connections between the convolutional layers while also
aiding in downscaling the time series data. Subsequently, a
fully connected layer summarizes the local features extracted
by all the convolutional units. CNNs can automatically learn
features from the data and feature local connectivity, weight
sharing, pooling operations, and multi-layer structures. These
characteristics help reduce complexity, mitigating overfitting

3309

and improving the model’s generalisation ability.

The fundamental component of an LSTM network com-
prises three essential elements: forgetting gates, input gates,
and output gates (Figure 3). These elements play distinct roles
in processing input data and managing the network’s memory.

1) Forgetting Gates: The input values, denoted as x;, are
integrated into the forgetting gate alongside the previous
state memory unit s;_; and the intermediate output h;_.
They collectively contribute to forgetting part of the state
memory unit.

Input Gates: The input values x; transform the sigmoid
and tanh functions within the input gate. These transfor-
mations jointly determine the retention vector within the
state memory cell. This retention vector decides which
information should be stored or updated in the cell state.
Intermediate Output: The intermediate output h; is calcu-
lated based on the updated state memory Sy, in combina-
tion with the output O,. Calculating the output O, follows
a specific procedure outlined in the Equation below.

2)

3)

ft =0 (Wyzxs + Wyephe 1 +by)
iy = 0 (Wigxs + Winhi—1 + b;)
ot = 0 (Wozt + Worhi—1 + bo)
gt = T (Woexs + Wynhs 1 + by)
St = giy + Sp—1 - fi
hy = 7(S) .o

Where f, 144, 0¢, g¢, he, S¢ in Eq. describes the states of obliv-
ion gate, input gate, output gate, input node, intermediate
output and state unit. Wy, Wep,, Wig, Wi, Wos, Wop, denote
the matrix weights of input z; multiplied by the intermediate
output h;_; in the corresponding gate. bs,b;, b,, b, denote
the bias in the corresponding gate. o, T represent the sigmoid
and tanh activation functions. . represents the dot product of
matrix elements. LSTM network utilizes these components
to control the flow of information and manage memory,
allowing it to effectively capture and retain relevant patterns
and dependencies in sequential data.

In the depicted transfer learning process (as shown in Figure
3), the proposed hybrid CNN-LSTM model comprises two
components: the CNN and the LSTM. The CNN handles fea-
ture extraction, while the LSTM focuses on network anomaly
classification. Specifically, the CNN model excels at extracting
valuable features from network traffic data, emphasizing its
ability to capture essential patterns. In contrast, the LSTM
network’s primary function is analyzing historical time series
relationships among quality indicators. To optimize this model
for smart farming applications, we maintain the Convolution
layer in a frozen state and adjust the parameters of the LSTM
layer, a customization that aligns with individual preferences
within the smart farming framework. This strategic approach
significantly reduces training time by transferring trainable
parameters into non-trainable ones. The proposed technique
streamlines the model’s training process, allowing for efficient
customization of the LSTM component while leveraging the
pre-learned features from the CNN for enhanced performance
in smart farming scenarios.
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C. Federated Transfer Learning

The Federated learning process solves data privacy and col-
laborative learning, but another crucial issue is data hetero-
geneity. Suppose we directly apply the server model to the
client. In that case, it still performs poorly due to greater
data distribution between different farms’ networks and the
unique characteristics of each IoT network within the co-op.
Moreover, the server model typically learns coarse features
from a large dataset of traditional network traffic but cannot
capture the finer details specific to individual IoT networks
within the co-op smart farming environment. Therefore, after
obtaining the server model, the individual farm can perform
transfer learning to get a personalized client model.

In our model, Federated transfer learning is used to mini-
mize the training time while maintaining high accuracy. The
model training for federated transfer learning mainly includes
six steps, as discussed below.

1) First, the server model is trained according to the public
network traffic dataset and distributed to all client farms.
Then each local farm can train its model on its own
network traffic dataset. In this step, the data distribution
between the server and the client farm is different.
Transfer learning is performed to reduce the training time
for each client.

Each client model computes the logits based on the public
dataset as the input. The logits are the intermediate values
in a CNN’s output layer before they are transformed into
probabilities for classification. It represents how confident
the network is about each class before making the final
decision.

Each client farm uploads the logits to the server.

The server integrates them and transmits the new logit to
the farm clients.

Each client trains their model on the public dataset to
make its logit approach to new logits. After that, each of
the farm client models trains again on a private dataset
for a few epochs to get a personalized client model.

2)

3)

4)

0)

The step 3 to 6 are repeated throughout the training process
till the desired accuracy has been achieved. After the training
process, the personalized network intrusion model generated
in the final transfer learning process is used to detect network
intrusion. The detailed algorithm for federated transfer learn-
ing is provided in Algorithm 1.

VII. PROPOSED HIERARCHICAL FEDERATED TRANSFER
LEARNING FRAMEWORK

The proposed architecture demonstrates a real-world sce-
nario of CSF where multiple farms signed a cooperative
agreement between them. We consider that there are four smart
farms named as Smart Farm 1, Smart Farm 2, Smart Farm 3
and Smart Farm 4. Figure 4 illustrates the use case according
to our proposed system model.

Integrating IoT technologies and implementing smart farm-
ing practices in CSF ecosystem are governed by shared
agricultural policies and regulations, ensuring consistency and
standardization across different agricultural regions within
the smart farming network. Each agricultural region within
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Algorithm 1: Federated Transfer Learning Algorithm
for Cooperative Smart Farming

Data: Private Datset Dpg, Public Dataset Dpy,
Result: Trained Model f; , k= 1,2,3..n
1 Initialization: Train the CNN-LSTM Model f; with
public Datset Dp;, on Cloud;
// The CNN-1STM is used for federated
transfer learning
2 Distribution: The server model f; is distributed to all
the client farms;
// fs represent the sever model
3 Transfer learning: Each client farm trains their client
model fj on public and private dataset Dpy and
Dpr using(4);
4 Federated Process:
5 for Each round 1, 2..r do
6 Each client farm calculate their logits /; on public
dateset Dpy, and upload it to cloud;
7 The cloud aggregates the logits [, of all the client
farm and calculate the average logits l4,4 ;
8 The cloud sends lq.4 to all the client farms;
9 Each client farm trains their client model f; on the
public dataset Dpy, to make its logit close to lgyg

b}

10 Transfer learning: Each client model trains client
model fj, on private dataset Dpr again based on
fine tune;

11 end for;

the smart farming network may have multiple smart farms,
contributing to the overall intelligent agriculture framework. I1-
lustrating this scenario, consider two smart farms, Smart Farm
1 and Smart Farm 2, operating within Region 1 of the CSF
system and Smart Farm 3 and Smart Farm 4 operating within
region 2. Each Smart farm allows for diverse Smart farming
technologies and practices with unique features, capabilities,
and innovations. These solutions may encompass advanced
sensors, communication systems, and intelligent algorithms to
optimize agricultural operations and align with the overarching
goals of smart farming.

Various Smart Farms require distinct computing capabilities,
leading to establishment of a localized computing resource
known as "Edge Server”. The Edge server also helps to facili-
tate efficient data processing and AD within each smart farm.
Each smart farm within the region can host and deploy the DT
and network simulation tool. The DT can help in continuous
real-time simulation and monitor traffic data described in
section . A network simulation tool represents the network
topology, traffic load, and the benign and malicious traffic
flowing in their network. Information is collected from DT, and
the network simulation tool at this juncture aids in examining
and detecting malicious activities within the smart farming
network.

A Packet auditor tool is used, which facilitates network
traffic data synchronization between the DT and IoT devices.
The PA tool verifies the authenticity and integrity of incoming
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Fig. 4: Proposed Framework for

packets. It checks that the data packets have not been altered
or tampered with during transmission, ensuring the accuracy
of the information used for anomaly detection. Providing
the data’s security prevents potential attacks like man-in-
the-middle attacks, which could compromise the quality and
reliability of the data used to detect anomalies. Features are
collected from the DT and network DT that include TCP and
UDP packets, packet time to arrive, open or closed connec-
tions, IP addresses, and sensor data are used for analysis.

The network traffic data and sensor data associated with
network DT and DT train an AD model for Smart Farms
within Region 1. Similarly, Smart Farm 3 and Smart Farm
4, operated within Region 2, can have their AD Models.
There’s a strong emphasis on fostering collaboration among
these models to reinforce the efficiency of this anomaly de-
tection model. In this scenario, the anomaly detection models
deployed within each smart farm region possess the capacity
to engage in collaborative learning facilitated by FL described
in section . FL empowers these models to exchange knowledge
and insights while preserving the region’s privacy and security
of agricultural data. A more resilient and precise anomaly de-
tection model can be constructed by consolidating the acquired
expertise from the individual models through techniques like
weighted aggregation and CNN-LSTM-based transfer learning
described in section . This collective intelligence enhances
Smart Farm’s overall anomaly detection capabilities for im-
proved farm management and productivity.

In CSF, collaboration goes beyond individual farming re-
gions. For example, the anomaly detection model in Region
1 can work together with the one in Region 2 using a
concept called Hierarchical Federated Learning (HFL) [44].
This collaboration happens by exchanging model information,
represented as gradients, on a shared multi-cloud server.
These gradients represent shared knowledge that can boost
the performance of both anomaly detection models. Using the
collaborative power of FL and sharing these gradients on the
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Secure Cooperative Smart Farming

multi-cloud server, the anomaly detection models in differ-
ent farming regions can learn from each other’s experiences
and insights. In Figure 4, Smart Farm 1 and Smart Farm
2 collaborate together by exchanging their local gradients
(Awl, Aw2) with Region server-1 to build robust anomaly
detection model. Similarly, Smart Farm 3 and Smart Farm
4 exchange their local gradients (Aw3, Aw4) with region
server-2 using hierarchical federated approach. The smart
farm’s global gradients (Aw-Globall, Aw-Global2) aggregate
at the Federated multi-cloud server to build a global model
Aw Global at the top layer. This cross-regional collaboration
improves anomaly detection across the entire smart farming
network by combining knowledge from different areas and
equipment behaviours, making the system more effective.

VIII. PROOF OF CONCEPT IN AWS

In this section, we discuss the prototype implementation,
which has the potential for further expansion to accommodate
a substantial number of sensor devices and has the capabilities
to suit a wide array of farms. Our approach involves FL,
which mandates that the training data remains on the edge
devices. Edge computing also guarantees swift data retrieval
and accelerated data processing. AWS offers an array of
services designed to facilitate data processing, analysis, and
storage in proximity to your endpoints. This setup enables the
deployment of APIs and tools in locations beyond AWS data
centres, fostering the creation of high-performance applica-
tions that can process and store data near its source [45].

We have opted for AWS Green Grass Group [46] deploy-
ment at the edge to meet these requirements. As depicted in
Figure 5, this framework encompasses an array of compo-
nents, including sensor devices, Docker containers, Lambda
functions, Raspberry Pi, and Streamline Databases. We deploy
a diverse set of sensor devices, such as Temperature Sensors,
Humidity Sensors, Soil Moisture Sensors, Barometric Sensors,
and Light Sensors. Specifically, we designate these sensors as
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follows: DHT11 Temperature Humidity Sensor, AITRIP Ca-
pacitive Soil Moisture Sensor, Adafruit BMP390 - Barometric
Pressure Sensor, and GL5528 Light Sensor. Within this setup,
a user-defined Lambda function operates on the Greengrass
core, ingesting time-series data and subsequently storing it
within the Streamline data storage. Simultaneously, another
Lambda function operates in parallel to transmit network
traffic data to the Streamline data storage.

We employe a container-based application, deploye using
the Docker application deployment connector, to execute the
DT. This functionality is facilitated through the utilization of
a Docker Compose file. Container images, whether stored in
public or private repositories like Amazon Elastic Container
Registry (Amazon ECR) or Docker Hub, can be referenced
for this purpose [47]. Notably, we adopt distinct containers for
the DT and the network analysis tool. Additionally, we have
incorporated Lambda functions to guarantee no packet loss or
data loss throughout the establishment of the network DT or
DT module. The data generated by both containers is directed
to the docker container for anomaly detection. Subsequently,
users or farmers can access visualizations through a tool like
Kibana [48] (Figure 5). To enhance the accuracy of local
AD models, the local parameters of the anomaly detection
model are shared with a cloud server through a grouping
approach. Our proposed model effectively identifies anomalies
and triggers alerts to the farm’s DT via Lambda functions, as
depicted in Figure 5.

IX. OPEN CHALLENGES

A. Robustness to Environmental Factors

”Robustness to Environmental Factors” involves improving
anomaly detection models to effectively distinguish between
real anomalies and typical, natural variations in the farming
environment. The goal should be to reduce the number of
false alarms triggered by the system. Environmental conditions
in farming are inherently subject to regular fluctuations. For
instance, temperature, humidity, and light levels fluctuate
throughout the day and with changing seasons. Soil moisture
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levels can vary due to factors like rainfall or irrigation sched-
ule. Without robustness to environmental factors, the anomaly
detection system may generate numerous false alarms when
faced with typical, natural environmental variations.

B. Adversarial Attack

In our approach, we have used hierarchical federated transfer
learning for anomaly detection, employing machine learning
to identify anomalies within each farm. However, it’s essential
to acknowledge that machine learning systems are susceptible
to various attacks. These attacks can occur during both the
training and testing/inferring phases and potentially undermine
the performance of the machine learning system, leading to
sub-optimal decision-making. These attacks fall into several
categories, including Poisoning Attacks, Impersonation At-
tacks, Evasion Attacks, and Inversion Attacks [49].

C. Explainable Al

Explainable AI is an approach in artificial intelligence that
focuses on making machine learning and AI models more
transparent and understandable. When applied to anomaly
detection in co-op smart farming, it entails developing a model
beyond anomaly detection. These models should be designed
to explain the classification of a specific data point or event
as an anomaly. This explanation is essential because it helps
farmers to understand and trust the system’s decisions.

X. CONCLUSION

CSF is emerging as a critical driver in the agricultural
sector, with a strong potential to support precision agriculture
practices and contribute to a country’s GDP. As more farmers
adopt these smart co-ops, it is essential to make them secure
and trustworthy. In this research paper, we explore cooperative
smart farming comprehensively and identify key challenges to
make this ecosystem secure. First, we propose a DT-enhanced
cooperative smart farming multi-layered architecture. Next,
we identify potential cyberthreats across layers and explain
conceivable attack scenarios. To counter these threats, we
propose a hierarchical federated transfer learning approach and
present a proof-of-concept implementation highlighting this
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architecture integration in both edge and AWS environments.

We

conclude by discussing open challenges. The solutions

put forth in our framework hold significant promise for the
adoption of smart farming technology. For future work, we
will transition from a prototype to real-world deployment,
thus facilitating further exploration and investigation in this
evolving field.
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