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AbstractÐThe agriculture industry is extensive utilizing AI
and data-driven systems for efficiency and automation, with the
goal to meet the rising food demand. Individual farm owners
can leverage agricultural cooperatives to consolidate resources,
exchange data, and share domain knowledge. These cooperatives
can enable the generation of AI-supported insights for their
member farmers. However, this collaborative approach has
raised concerns among individual smart farm owners regarding
cybersecurity threats, and privacy. A cybersecurity breach not
only endangers the farm attacked but can also risks the entire
network of smart farms members within the cooperative. In this
research, we emphasize security challenges within cooperative
smart farming and introduce a multi-layered architecture incor-
porating Digital Twins (DT). Further, we introduce a hierarchical
federated transfer learning framework designed to address and
mitigate the security threats in collaborative smart farming. Our
approach leverages Federated Learning (FL) based Anomaly
Detection (AD), which operate on edge servers, enabling the
execution of AD models locally without exposing the farm’s data.
This localization also has excellent generalization ability, which
can highly improve the detection of unknown cyber attacks. We
employ a hierarchical FL structure that supports aggregation at
various levels, fostering multi-party collaboration. Furthermore,
we have devised an approach that integrates Convolutional
Neural Networks (CNN) and Long Short-Term Memory (LSTM)
models, complemented by transfer learning. The objective is
to expedite training duration while upholding high accuracy
levels. To illustrate the efficiency of our proposed architecture,
we present a use case to demonstrate our model’s capabilities.
Furthermore, we also present a proof-of-concept implementation
of our proposed architecture within Amazon Web Services (AWS)
environment, reflecting real-world feasibility.

Index TermsÐFederated Learning, Anomaly Detection, Coop-
erative Smart Farming, Security, Privacy, CNN-LSTM, Transfer
Learning, Digital Twin, Amazon Web Services (AWS)

I. INTRODUCTION

According to the United Nations’ Department of Economic

Social Affairs, by year 2050, the global population is projected

to reach approximately 9.1 billion, marking a substantial in-

crease of around 34% compared to today’s figures [1], [2]. The

projected population growth is expected to lead to a simultane-

ous 70% increase in the global demand for food. In response

to this challenge, precision agriculture, also referred to as

digital agriculture, emerges as a critical solution to ensure food

security at a global level. Precision agriculture encompasses

the implementation of technology-driven, data-centric, and

sustainable farm management systems. It requires adopting

contemporary information technologies, software tools, and

intelligent embedded devices to provide decision support for

agricultural practices [3]±[6].

Cooperative (co-op) farming practice is extensively used

where the farmers pool there resources and share them as per

need from the members. These co-opss offer several benefits

to its members including resource sharing, machine use and

maintenance, hiring farm labour, specialized machine oper-

ators, coordinating market visits, estimating price/purchase

data, etc. They [7], [8] also aid the member farms by alerting

them to crop diseases, pest management, weather, changing

labour costs, price fluctuations, etc. As the farming community

adopts more precision agriculture practices, the working of

co-ops have also evolved. Most recently, the concept of

smart co-ops has been gaining momentum, which helps the

member farmers to improve their productivity, sustainability,

and profitability while providing valuable data-driven insights

for better decision-making. However, as these farming co-

ops become more connected and smart by aggregating shared

data and resources from member farms, they are increasingly

becoming a prime target for cyberattacks, with far-reaching

consequences for rural communities’ well-being and essential

infrastructure like supply networks.

According to the Federal Bureau of Investigation (FBI)

[9], most of these cyberattacks happen during planting and

harvesting seasons, and lead to the theft of sensitive data and

operational disruptions, potentially resulting in financial losses

and food shortages. Notably, in 2021, a ransomware attack

targeted meat producer JBS and two-grain purchasers in the

United States during the harvest season. The cybersecurity of

the farm and agribusiness sectors gained significant attention

following these incidents. In September 2021, the BlackMatter

ransomware struck Iowa’s new co-op, demanding a ransom of

$5.9 million. The company had to take vulnerable machines

offline to prevent the ransomware from spreading further.

Shortly after the new co-op incident, Crystal Valley co-op,

a prominent agricultural co-op in Minnesota, fell victim to an

as-yet-unidentified cyberattack strain [9]. This attack disrupted

the company’s ability to process major credit card transactions.

It should be noted that the implications of cyberattacks on

a co-op extend beyond individual farms and can have a far-

reaching impact on the entire co-op network. If a malicious

actor manages to corrupt or manipulate data on one member

farm, it can adversely affect all the member farms. For

example, consider a scenario where Farm A deploys sensors to

monitor soil moisture, temperature, and humidity and shares
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the generated data through a central platform managed by co-

op. The nearby farms rely on this shared data to make informed

irrigation, fertilization, and pest management decisions. Let’s

consider that Farm A falls victim to a network cyberattack.

The attacker gains unauthorized access to the network infras-

tructure and manipulates the transmitted sensor data. They

may manipulate the soil moisture readings, transmitting false

data that suggests the soil is adequately moist when, in

reality, it’s dry. As a result, the other farms within the co-op

receive the manipulated data, assuming the soil moisture levels

are correct. Relying on this deceptive information, farmers

may postpone or reduce their irrigation efforts, resulting in

insufficient water supply to their crops. The consequences

for the affected farms may include crop stress, diminished

yields, or in severe cases, crop failure due to the reliance on

inaccurate shared data. Moreover, if the attacker continues to

compromise the network, it can access other shared resources,

such as cloud platforms or collaborative tools. This results in

the disruption of shared services, compromised data integrity,

spread of false information, loss of trust, and financial impact

among the smart farms. In addition, the farmer will eventually

refrain from joining the co-ops, which will impact adoption

of precision agriculture approaches among agriculture.

To address this issue, we propose a hierarchical federated

transfer learning approach in a multi-layered smart co-op

architecture with DT to detect cyberattacks induced anomalies.

The key contributions to this work are as follows:

1) Problem Identification: We identify and delineate the

challenges associated with cooperative smart farming.

We illustrate these issues through a practical use-case

scenario to make them tangible.

2) Hierarchical Federated Transfer Learning Model: We

introduce a novel hierarchical federated transfer learning

model, which combines convolutional neural networks

(CNN) and long short-term memory (LSTM) techniques

for anomaly detection in cooperative smart farming.

3) Practical Application: We showcase the practical appli-

cation of our proposed framework, and using a specific

use case, demonstrate how our approach can effectively

identify and flag cyberattacks induced anomalies.

4) Implementation Framework: We present an implemen-

tation framework in AWS that leverages DT and edge

computing. This framework is designed to facilitate the

seamless integration of our architecture for real-time

anomaly detection in cooperative smart farming.

The remainder of this paper is organized as follows. Section

II discusses relevant literature. Section III addresses challenges

associated with co-op smart farming with a use-case sce-

nario. Section VII introduces the DT-enhanced co-op farming

architecture and highlights its need and limitations. Section

V examines various threats encountered across multi-layered

architecture. Section VII defines the building blocks of secure

co-op farming. Section VII presents the hierarchical federated

transfer learning based framework. Section VIII provides a

proof-of-concept implementation within AWS, followed by

Section IX discussing open challenges and conclusion in

Section X.

II. RELATED WORK AND BACKGROUND

A. Cooperative Smart farming

Cooperatives, often called co-ops, are structured as formal

organizations owned and operated by their members. These

co-ops unite individual farmers to amplify their business

productivity and overall yields. The overarching objective is

to improve farming practices, sustainability, and productivity,

all while promoting collaboration, the exchange of knowledge,

and the efficient utilization of resources.

In co-op, farmers can share sensor data, weather infor-

mation, and insights with each other and experts, enabling

collaborative decision-making and knowledge exchange. The

authors [7] discussed various technical foundations and ex-

plore potential AI applications that can augment the co-

op smart farming ecosystem. In the subsequent work, the

authors [10] utilized co-op agriculture ontology to perform

data transformation by adding white Gaussian noise to data

generated by all individual smart farms. The authors [11]

highlighted the issue of unfair collaboration within co-op smart

farming, where some smart farms may generate low-quality

data to develop machine-learning models and gain advantages

over other farms with high-quality data.

B. Collaborative Intrusion Detection System (CIDS)

The concept of an Intrusion Detection System (IDS) in co-

op smart farming takes on a collaborative nature. To com-

prehensively address intrusion detection in this environment,

it is essential to explain the core concepts and necessary

background information related to the research contribution in

CIDS. This subsection defines the foundational principles of

CIDS and how the integration of machine learning, federated

learning, and blockchain principles are employed within CIDS.

A CIDS can address the shortcomings of local IDSs [12]. A

CIDS allows the sharing of information and detection of net-

work attacks in a collaborative network. A classic CIDS unit

comprises local monitoring, global monitoring, association and

aggregation, and data-publishing components [13]. CIDSs are

typically developed based on distributed Machine Learning

(DML) for detecting known and unknown attacks with some

generalization capability [14]. The authors [15] introduced a

Privacy-Preserving Machine Learning-Based CIDS designed

for Vehicular Ad Hoc Networks (VANETs). The initial step

involves utilizing the Alternating Direction Method of Mul-

tipliers (ADMM) to establish a decentralized approach for

solving the Distributed Empirical Risk Minimization (ERM)

problem within a VANET.

FL model guarantees the privacy of general DML algo-

rithms [16]. The authors [12] proposed a novel software-

defined VANET IDS, referred to as SDVN, which blends

FL and Software-Defined Networking (SDN) for training

detection models. In this proposed CIDS, various SDN clients

train models within their sub-networks and upload them to a

centralized cloud server for model aggregation.

Blockchain solutions can be used to enhance trust within

CIDS in network and cloud environments. To illustrate, the

authors [17] conducted a survey exploring methods to in-

tegrate CIDS with blockchain technology. They introduced

the idea of leveraging blockchain techniques to enhance the
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reliability of CIDS, emphasizing that blockchain’s character-

istics can promote trust between different IDS and provide

accountability. The authors [18] conducted a survey to offer

a comprehensive overview of cutting-edge methodologies in

predicting cybercrime, leveraging Machine Learning (ML),

Deep Learning (DL), and Transfer Learning (TL). In [19],

the authors employed statistical analysis methods and machine

learning models for predicting different types of crimes in New

York City, based on 2018 crime datasets. The integration of

Hierarchical FL with DT technology is presented in [20], [21].
Our research distinguishes itself from previous studies

within co-op smart farming scenarios in several notable ways.

We leverage DT technology to facilitate continuous real-time

simulation and monitor traffic data. DT also helps with vul-

nerability assessment and simulation of attack scenarios within

smart farms. Our investigation identified research gaps linked

to DT-enabled smart farming and illustrated these gaps through

diverse use cases. Moreover, we utilize federated transfer

learning, a resilient solution designed to address data distri-

bution challenges effectively across various farms in co-op

smart farming environments. FL addresses privacy and security

concerns, enables Early Threat Identification, and safeguards

against zero-day attacks on individual farms. Additionally, our

approach incorporates the CNN-LSTM hybrid model, ensuring

the precision of AD model. Our methodology also embraces

a hierarchical approach that distinguishes between farms at

both local and regional levels. This design ensures that DT

data for individual farms remains localized on the edge server,

with only the updated model weights being transmitted to the

cloud server. This innovative approach is a practical solution

to address the privacy and security challenges associated with

AD in co-op smart farming systems.

III. COOPERATIVE SMART FARMING

Cooperative smart farming (CSF), characterized by collabo-

rative data sharing and resource pooling, introduces innovative

opportunities for optimizing agricultural practices. However,

the interconnected nature of these collaborative environments

also raises significant security concerns. This section presents

a CSF use case that is aligned with a real-world scenario.

A. Cooperative Smart Farming Use Case

As shown in Figure 1, in this use case, we examine two smart

farms referred to as Smart Farm1 and Smart Farm2. Smart

Farm1 uses three sensors: Temp sensor, Humidity sensor, and

Ultraviolet sensor. The utilization of temperature and humidity

sensors is instrumental in assessing the weather conditions

on a rice farm, enabling farmers to make informed decisions

about the most suitable crops for cultivation. Furthermore,

these sensors play a crucial role in the event of unexpected

weather occurrences, such as abrupt temperature fluctuations

or excessive rainfall. The Ultraviolet sensors can measure the

intensity of UV radiation, which is a component of sunlight.

Excessive UV exposure can harm crops, causing sunburn and

damage to leaves. By monitoring UV levels, farmers can take

preventive measures like shading or adjusting planting times

to protect crops from UV stress. These sensor data help Smart

Farm1’s farmer to improve crop quality, reduce environmental

impact, and improve farm management.

Fig. 1: Cooperative Smart Farming Use-Case

Similarly, Smart Farm2 uses three sensors: a Soil Moisture

sensor, a Nutrient sensor, and a Light sensor. Soil moisture

sensors measure the moisture content of the soil, which is a

critical parameter for crop health and irrigation management.

By monitoring soil moisture sensors, the farmers can avoid

under and over-water irrigation, which is crucial for growth

and yield optimization. Nutrient sensors measure the levels of

essential nutrients like nitrogen, phosphorus, and potassium

in the soil. These data help farmers apply fertilizers more

accurately, reducing excess fertilization. Light sensors are

used to monitor light levels in fields. The light sensor data

also help to determine if crops receive sufficient sunlight for

photosynthesis and growth. The sensors employed in Smart

Farm1 and Smart Farm2 aid farmers in gaining valuable

insights and enhancing their decision-making for their re-

spective agricultural endeavours. However, Smart Farm2 may

require temperature and humidity data to safeguard against

unforeseen weather conditions in its fields. The farm two

may not install two additional sensors due to budget con-

straints. Consequently, a collaborative agreement has been

reached between Smart Farm1 and Smart Farm2. They have

come together to exchange data, with Smart Farm1 benefiting

from Smart Farm2 NPK sensor data to improve their crop

predictions for the upcoming season. Smart Farm2 is also

beneficial with the temperature and humidity data. This co-

op arrangement allows both parties to leverage the available

resources more effectively for mutual benefit.

As illustrated in Figure 1, each smart farm is equipped

with sensors that generate a vast volume of data. This sensor

data is transmitted through a Gateway router, edge to a cloud

platform, such as Azure FarmBeats [22]. To access this data,

farmers can request sensor data from particular fields through

a crop monitoring tool hosted on a cloud server. In response,

the requested data is sent via a mobile or desktop application.

The privacy and security of collected data heavily rely on the

security measures implemented by the manufacturers of the

smart devices.

In a broader context, an anomaly encompasses any un-

expected or irregular behaviours or events within the in-

frastructure connecting the smart farms, central server, and

mobile/desktop application. These anomalies can potentially
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Fig. 2: Digital Twin Enhanced CSF

signify issues or security threats. The following use case

outlines instances of unusual behaviour and potential threat

scenarios within this CSF environment:

• The soil moisture data transmitted by Smart Farm 2 is

tampered with or altered during the transmission, that

is sending false information indicating that the soil is

adequately moist when dry. As a result, Smart Farm 1

receive this manipulated data, assuming the soil moisture

levels are suitable. Based on this false information, they

may delay or reduce their irrigation practices, leading to

insufficient watering of crops.

• Malicious actors flood the co-op farming network with

excessive data requests, causing network congestion.

Smart Farm 1 and Smart Farm 2 may experience disrup-

tions in data sharing and collaboration, leading to delays

in decision-making and farming activities.

• A cybercriminal gains unauthorized access to the cen-

tral data repository through an exploited vulnerability

in Farm1’s network or server. Once inside the system,

the attacker ex-filtrates sensitive data from the central

repository. The malicious actor can use this stolen data

for various purposes, such as selling sensitive agricultural

information to competitors, extorting the co-op, or lever-

aging the data for financial gain.

IV. DIGITAL TWIN ENHANCED CO-OP SMART FARMING

Digital Twin (DT) is a simulation model representing a

physical entity in the past, present, and future. The physical

entity could be a sensor, device, system, or process [23],

[24]. For the past and the present, a DT in the virtual space

mirrors the behaviour of an entity in the physical space.

Regarding the future, the DT accurately predicts the entity’s

behaviour, which is essential for the control process. The

DTs look for data discrepancies between the physical and

virtual entities by collecting massive amounts of data from all

phases of the product life-cycle and provide simulation data

to the physical entity so that it may improve its calibration

and testing procedures [25]. Such recurrent processes improve

DT models and their physical equivalents, allowing for more

accurate estimate prediction.

In the farmland DT framework context, the object mod-

eled consist of sensor nodes and the gateways responsible

for transmitting field data to a cloud platform for analysis

[26], [24], [27], [28]. This DT system offers a precise, real-

time portrayal of the farm field’s condition. It achieves this

through visual representations, drone-captured imagery, and

data on essential soil parameters like pH, salinity, nitrogen,

phosphorus, potassium levels, temperature, and humidity.

DTs offer several advantages when integrated into network

anomaly detection in a CSF system (Figure 2). DTs create

a virtual replica of the entire network and its components of

each smart farm, enabling continuous real-time simulation and

monitoring. This means that network activities and anomalies

of the individual smart farm can be analyzed as they happen

before sending the data to the central server, allowing for

immediate threat detection and response [29], [30], [31]. For

example, DoS attacks often flood the network with excessive

traffic, causing congestion and disruptions. The DT layer

can monitor network traffic in real-time and detect unusual

traffic patterns for that farm, such as a sudden increase in

traffic volume to specific devices or services. Such anomalies

can trigger alerts for further investigation. DTs allow for

the creation of isolated testing environments where security

updates, intrusion detection algorithms, and other changes can

be tested without affecting the other smart farm’s network

[32]. [33]. This reduces the risk of unintended disruptions

in the other smart farm’s network data. DTs can also model

vulnerabilities within the Smart Farm’s network. By simulating

attack scenarios, farms can identify weak points in their

infrastructure that could be exploited in a network attack. This

information allows for proactive vulnerability remediation.

Nevertheless, while utilizing DTs for network anomaly

detection in CSF has several benefits, it also has inherent

limitations. As shown in Figure 2, this model consolidates

all network data from sensors, devices, and individual farms

within a central repository. The central server is susceptible to

single point of failure. The entire network’s anomaly detection

capabilities may be compromised if the server experiences

technical issues or a security breach. As the Co-op grows

more prominent, more smart farms add to infrastructure. The

central server may be incapable of handling the increased

data volume and processing demands, leading to scalability

issues. Also, analyzing data in a centralized manner can intro-

duce delays, which could impact farm operations negatively.

Individual farms may also have reservations about sharing

their network traffic data with others, which poses challenges

when designing network anomaly detection systems for CSF.

Moreover, when the DT of a system is created, the potential

attack surface effectively doublesÐadversaries can go after

the physical system or attack the DT of that system.

V. THREAT MODEL

In this section, we describe the possible threat situation

and motivated our research and led to the development of

hierarchical federated transfer learning.

A. Attacks on Physical Layer

The physical layer consists of sensors and gateway devices

spread across agriculture farms. These devices include drones

flying in the air, autonomous tractors, sensors embedded in
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livestock, or hub devices installed to communicate among

the DT. Attackers may physically tamper with these sensors,

actuators, or other devices in the farming environment. For

instance, the attackers may alter sensor readings or sabotage

machinery to disrupt farm operations. They could also gain

unauthorized control over farm machinery, such as tractors

or irrigation systems, causing damage or disrupting farming

processes. Jamming devices can disrupt wireless communica-

tion used by IoT devices in the field. This interference can

cause data loss or affect automated farming processes. They

may deploy rogue IoT devices, which could collect data or

interfere with operations.

B. Attacks on Network layer

A DT (resides in the edge cloud) continuously receives data

from its physical counterpart to provide an up-to-date virtual

model, and the virtual model can also provide feedback to

the physical world through the same communication channel.

The data transmission from or to the cloud may face serious

threats. Threats on data communication may be divided into

five main types such as: Man in the Middle Attack, Denial

of Service or Distributed Denial of Service, Eavesdropping,

Spoofing, and Replay Attack.
In a Man-in-the-Middle (MITM) attack, the attacker can

insert malicious code between communicating nodes or eaves-

drop on the ongoing conversation between any two communi-

cating nodes [34]. MITM vulnerabilities extend across various

protocols and technologies inherent in smart farming systems.

For instance, security vulnerabilities within the Wi-Fi standard

widely used in Smart farming are the primary cause of the

wireless re-installation attack, which can expose DT data.

Smart farming systems utilizing Bluetooth and the ZigBee

Protocol are also susceptible to exploitation through MITM

attacks [35], [36].
Denial of Service (DoS) [37] and Distributed Denial of

Service (DDoS) [38] attacks endanger the availability and

accessibility of DTs in Smart farming environments. These

attacks happen by overloading the farming network with

excessive traffic. By this attack, a malicious actor can dis-

rupt operations within the deployed DT in Smart farming,

potentially rendering essential services inaccessible to farmers.

The unavailability of these services can potentially disturb the

functionality of the DT in the Smart farming system.
In an eavesdropping attack, the network traffic flowing from

sensors to controllers is susceptible to interception [39]. This

passive attack allows the attacker to gain insights into the

communication between sensors and controllers.
In a spoofing attack, the attacker masks their identification

to engage in malicious and deceitful actions [39]. The attacker

manipulates a node within the wireless sensor network to

achieve network access or reroute network traffic. Spoofing

has the potential to corrupt signals or messages transmitted

from sensors to the controller.
A Replay Attack is a type of post-attack that relies on a prior

preparatory phase. During this preliminary stage, the attacker

observes, captures, and stores a specific data set to resend it

later [40], [41]. Consequently, when this re-transmitted data or

signal is employed, it can potentially trigger harmful actions

on sensors or controllers within the system.

C. Attacks on Virtual Layer

In anomaly-based intrusion detection tools, farmers (both

benign and malicious) can continuously monitor the ongoing

process to observe the excepted behaviour of farming objects.

The smart farming system uses the DT concept, connecting

real-time data (dynamic variables) with historical data (vir-

tual process) to prevent rule violations related to safety and

security. For example, by analyzing the relationship between

the dynamic variable (pest activity) and the historical variable

(past pesticide applications and weather conditions), the smart

farming system can detect a potential S&S rule violation. The

benign user (Farmer) uses the information to spot deviations

from a defined or learned baseline and alert security analysts.

However, malicious users can exploit the data and the co-

relation of variables to disrupt the DT’s behaviour such that

twins do not follow the expected misbehaviour. If the attacker

successfully attacks DT, no anomaly can be detected; thus, it

is difficult to identify long-term deviations in the network.

To replicate the simulation of a DT network, a network

simulation tool proves invaluable. A network DT serves as a

computer-based model that encompasses the communication

network, its operational surroundings, and the application

traffic it carries. This network DT proves highly useful for

studying the behavior of its physical counterpart across various

operating scenarios, even including cyberattacks, all within a

low-cost, zero-risk environment.

However, it’s important to recognize that if an attacker man-

ages to intercept and gain insights into the traffic generated by

the network simulation tool, they could potentially manipulate

not only the DT but also its physical counterpart. This opens

the door for the attacker to execute various attacks as outlined

in section V-B.

D. Attacks on cloud Storage

Most data storage activities in DT applications are conducted

within cloud computing environments. Numerous trust-related

concerns and privacy issues are associated with data storage,

mainly when it involves public cloud services where the

service provider company holds complete control.

VI. BUILDING BLOCKS FOR SECURE

CO-OP SMART FARMING

This section describes the fundamental components of our

proposed model and underscores their significance within our

cooperative farming system. It provides a concise overview of

FL, Transfer learning and federated transfer learning in our

proposed approach.

A. Federated Learning (FL)

FL is a communication-efficient process for training neural

networks on decentralized data. FL process comprises a central

server and a group of clients, each equipped with a predefined

local dataset. Such a process consists of several rounds of FL

in which the server selects a random number of clients and

sends them to the neural network model for local training.

The selected client trains the model with the local data and

sends it back to the server, which integrates all the updates

with the global model. This process is iterated several times

until the test accuracy is reached. The central concept of this
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Fig. 3: Transfer Learning Process

process is the aggregation of local updates and the amount of

computation performed at each round [42], [43].

In our proposed model, FL is used to share attack and

anomaly profiles with other smart farms, enhancing the de-

velopment of a comprehensive and versatile model capable

of recognizing various attack patterns and behaviors without

sharing the raw data itself. FL enables an anomaly detection

system to adapt quickly to new and evolving cyberthreats

across smart farms in the co-op. Imagine that one of the Smart

Farms faces a novel malware strain, specifically targeting

agricultural automation systems. This malware was previously

unidentified during the initial model creation. Through FL,

the central aggregator combines this update with other farms

to create an improved model that now includes detection

capabilities for this new threat. As a result, all farms in the co-

op benefit from the rapid adaptation of the anomaly detection

system to this emerging cyberthreat. The collaborative nature

of FL also enables farms to collectively identify cybersecurity

threats and zero-day attacks early, providing more time to

respond and mitigate potential damage. If one of Smart Farms

identifies an unusual sensor data pattern indicating possible

tampering with irrigation controls. Through FL, all farms in

the network can now detect this new threat pattern, even if it is

a zero-day attack that has not been seen before in the broader

cybersecurity community. This rapid sharing and adaptation

help in early threat identification and response across the co-

op smart farming network.

B. CNN-LSTM Model with Transfer Learning

A Convolutional Neural Network (CNN) typically comprises

several key layers: an input layer, a convolutional layer, a

pooling layer, a fully connected layer, and an output layer.

The input time series data is processed through convolutional

kernels. The pooling layer is placed after the convolutional

layer, and this pooling operation helps in reducing the number

of connections between the convolutional layers while also

aiding in downscaling the time series data. Subsequently, a

fully connected layer summarizes the local features extracted

by all the convolutional units. CNNs can automatically learn

features from the data and feature local connectivity, weight

sharing, pooling operations, and multi-layer structures. These

characteristics help reduce complexity, mitigating overfitting

and improving the model’s generalisation ability.

The fundamental component of an LSTM network com-

prises three essential elements: forgetting gates, input gates,

and output gates (Figure 3). These elements play distinct roles

in processing input data and managing the network’s memory.

1) Forgetting Gates: The input values, denoted as xi, are

integrated into the forgetting gate alongside the previous

state memory unit st−1 and the intermediate output ht−1.

They collectively contribute to forgetting part of the state

memory unit.

2) Input Gates: The input values xi transform the sigmoid

and tanh functions within the input gate. These transfor-

mations jointly determine the retention vector within the

state memory cell. This retention vector decides which

information should be stored or updated in the cell state.

3) Intermediate Output: The intermediate output ht is calcu-

lated based on the updated state memory St, in combina-

tion with the output Ot. Calculating the output Ot follows

a specific procedure outlined in the Equation below.

ft = σ (Wfxxt +Wfhht−1 + bf )

it = σ (Wixxt +Wihht−1 + bi)

ot = σ (Woxxt +Wohht−1 + bo)

gt = τ (Wgxxt +Wghht−1 + bg)

St = gt.it + St−1 · ft

ht = τ (St) .ot

Where ft, it, ot, gt, ht, St in Eq. describes the states of obliv-

ion gate, input gate, output gate, input node, intermediate

output and state unit. Wfx,Wfh,Wix,Wih,Wox,Woh denote

the matrix weights of input xt multiplied by the intermediate

output ht−1 in the corresponding gate. bf , bi, bo, bg denote

the bias in the corresponding gate. σ, τ represent the sigmoid

and tanh activation functions. . represents the dot product of

matrix elements. LSTM network utilizes these components

to control the flow of information and manage memory,

allowing it to effectively capture and retain relevant patterns

and dependencies in sequential data.

In the depicted transfer learning process (as shown in Figure

3), the proposed hybrid CNN-LSTM model comprises two

components: the CNN and the LSTM. The CNN handles fea-

ture extraction, while the LSTM focuses on network anomaly

classification. Specifically, the CNN model excels at extracting

valuable features from network traffic data, emphasizing its

ability to capture essential patterns. In contrast, the LSTM

network’s primary function is analyzing historical time series

relationships among quality indicators. To optimize this model

for smart farming applications, we maintain the Convolution

layer in a frozen state and adjust the parameters of the LSTM

layer, a customization that aligns with individual preferences

within the smart farming framework. This strategic approach

significantly reduces training time by transferring trainable

parameters into non-trainable ones. The proposed technique

streamlines the model’s training process, allowing for efficient

customization of the LSTM component while leveraging the

pre-learned features from the CNN for enhanced performance

in smart farming scenarios.
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C. Federated Transfer Learning

The Federated learning process solves data privacy and col-

laborative learning, but another crucial issue is data hetero-

geneity. Suppose we directly apply the server model to the

client. In that case, it still performs poorly due to greater

data distribution between different farms’ networks and the

unique characteristics of each IoT network within the co-op.

Moreover, the server model typically learns coarse features

from a large dataset of traditional network traffic but cannot

capture the finer details specific to individual IoT networks

within the co-op smart farming environment. Therefore, after

obtaining the server model, the individual farm can perform

transfer learning to get a personalized client model.

In our model, Federated transfer learning is used to mini-

mize the training time while maintaining high accuracy. The

model training for federated transfer learning mainly includes

six steps, as discussed below.

1) First, the server model is trained according to the public

network traffic dataset and distributed to all client farms.

2) Then each local farm can train its model on its own

network traffic dataset. In this step, the data distribution

between the server and the client farm is different.

Transfer learning is performed to reduce the training time

for each client.

3) Each client model computes the logits based on the public

dataset as the input. The logits are the intermediate values

in a CNN’s output layer before they are transformed into

probabilities for classification. It represents how confident

the network is about each class before making the final

decision.

4) Each client farm uploads the logits to the server.

5) The server integrates them and transmits the new logit to

the farm clients.

6) Each client trains their model on the public dataset to

make its logit approach to new logits. After that, each of

the farm client models trains again on a private dataset

for a few epochs to get a personalized client model.

The step 3 to 6 are repeated throughout the training process

till the desired accuracy has been achieved. After the training

process, the personalized network intrusion model generated

in the final transfer learning process is used to detect network

intrusion. The detailed algorithm for federated transfer learn-

ing is provided in Algorithm 1.

VII. PROPOSED HIERARCHICAL FEDERATED TRANSFER

LEARNING FRAMEWORK

The proposed architecture demonstrates a real-world sce-

nario of CSF where multiple farms signed a cooperative

agreement between them. We consider that there are four smart

farms named as Smart Farm 1, Smart Farm 2, Smart Farm 3

and Smart Farm 4. Figure 4 illustrates the use case according

to our proposed system model.

Integrating IoT technologies and implementing smart farm-

ing practices in CSF ecosystem are governed by shared

agricultural policies and regulations, ensuring consistency and

standardization across different agricultural regions within

the smart farming network. Each agricultural region within

Algorithm 1: Federated Transfer Learning Algorithm

for Cooperative Smart Farming

Data: Private Datset DPR, Public Dataset DPL

Result: Trained Model fk , k= 1,2,3..n

1 Initialization: Train the CNN-LSTM Model fs with

public Datset DPL on Cloud;

// The CNN-lSTM is used for federated

transfer learning

2 Distribution: The server model fs is distributed to all

the client farms;

// fs represent the sever model

3 Transfer learning: Each client farm trains their client

model fk on public and private dataset DPL and

DPR using(4);

4 Federated Process:

5 for Each round 1, 2..r do

6 Each client farm calculate their logits lk on public

dateset DPL and upload it to cloud;

7 The cloud aggregates the logits lk of all the client

farm and calculate the average logits lavg ;

8 The cloud sends lavg to all the client farms;

9 Each client farm trains their client model fk on the

public dataset DPL to make its logit close to lavg
;

10 Transfer learning: Each client model trains client

model fk on private dataset DPR again based on

fine tune;

11 end for;

the smart farming network may have multiple smart farms,

contributing to the overall intelligent agriculture framework. Il-

lustrating this scenario, consider two smart farms, Smart Farm

1 and Smart Farm 2, operating within Region 1 of the CSF

system and Smart Farm 3 and Smart Farm 4 operating within

region 2. Each Smart farm allows for diverse Smart farming

technologies and practices with unique features, capabilities,

and innovations. These solutions may encompass advanced

sensors, communication systems, and intelligent algorithms to

optimize agricultural operations and align with the overarching

goals of smart farming.

Various Smart Farms require distinct computing capabilities,

leading to establishment of a localized computing resource

known as ºEdge Serverº. The Edge server also helps to facili-

tate efficient data processing and AD within each smart farm.

Each smart farm within the region can host and deploy the DT

and network simulation tool. The DT can help in continuous

real-time simulation and monitor traffic data described in

section . A network simulation tool represents the network

topology, traffic load, and the benign and malicious traffic

flowing in their network. Information is collected from DT, and

the network simulation tool at this juncture aids in examining

and detecting malicious activities within the smart farming

network.

A Packet auditor tool is used, which facilitates network

traffic data synchronization between the DT and IoT devices.

The PA tool verifies the authenticity and integrity of incoming
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Fig. 4: Proposed Framework for Secure Cooperative Smart Farming

packets. It checks that the data packets have not been altered

or tampered with during transmission, ensuring the accuracy

of the information used for anomaly detection. Providing

the data’s security prevents potential attacks like man-in-

the-middle attacks, which could compromise the quality and

reliability of the data used to detect anomalies. Features are

collected from the DT and network DT that include TCP and

UDP packets, packet time to arrive, open or closed connec-

tions, IP addresses, and sensor data are used for analysis.

The network traffic data and sensor data associated with

network DT and DT train an AD model for Smart Farms

within Region 1. Similarly, Smart Farm 3 and Smart Farm

4, operated within Region 2, can have their AD Models.

There’s a strong emphasis on fostering collaboration among

these models to reinforce the efficiency of this anomaly de-

tection model. In this scenario, the anomaly detection models

deployed within each smart farm region possess the capacity

to engage in collaborative learning facilitated by FL described

in section . FL empowers these models to exchange knowledge

and insights while preserving the region’s privacy and security

of agricultural data. A more resilient and precise anomaly de-

tection model can be constructed by consolidating the acquired

expertise from the individual models through techniques like

weighted aggregation and CNN-LSTM-based transfer learning

described in section . This collective intelligence enhances

Smart Farm’s overall anomaly detection capabilities for im-

proved farm management and productivity.

In CSF, collaboration goes beyond individual farming re-

gions. For example, the anomaly detection model in Region

1 can work together with the one in Region 2 using a

concept called Hierarchical Federated Learning (HFL) [44].

This collaboration happens by exchanging model information,

represented as gradients, on a shared multi-cloud server.

These gradients represent shared knowledge that can boost

the performance of both anomaly detection models. Using the

collaborative power of FL and sharing these gradients on the

multi-cloud server, the anomaly detection models in differ-

ent farming regions can learn from each other’s experiences

and insights. In Figure 4, Smart Farm 1 and Smart Farm

2 collaborate together by exchanging their local gradients

(∆w1, ∆w2) with Region server-1 to build robust anomaly

detection model. Similarly, Smart Farm 3 and Smart Farm

4 exchange their local gradients (∆w3, ∆w4) with region

server-2 using hierarchical federated approach. The smart

farm’s global gradients (∆w-Global1, ∆w-Global2) aggregate

at the Federated multi-cloud server to build a global model

∆w Global at the top layer. This cross-regional collaboration

improves anomaly detection across the entire smart farming

network by combining knowledge from different areas and

equipment behaviours, making the system more effective.

VIII. PROOF OF CONCEPT IN AWS

In this section, we discuss the prototype implementation,

which has the potential for further expansion to accommodate

a substantial number of sensor devices and has the capabilities

to suit a wide array of farms. Our approach involves FL,

which mandates that the training data remains on the edge

devices. Edge computing also guarantees swift data retrieval

and accelerated data processing. AWS offers an array of

services designed to facilitate data processing, analysis, and

storage in proximity to your endpoints. This setup enables the

deployment of APIs and tools in locations beyond AWS data

centres, fostering the creation of high-performance applica-

tions that can process and store data near its source [45].

We have opted for AWS Green Grass Group [46] deploy-

ment at the edge to meet these requirements. As depicted in

Figure 5, this framework encompasses an array of compo-

nents, including sensor devices, Docker containers, Lambda

functions, Raspberry Pi, and Streamline Databases. We deploy

a diverse set of sensor devices, such as Temperature Sensors,

Humidity Sensors, Soil Moisture Sensors, Barometric Sensors,

and Light Sensors. Specifically, we designate these sensors as
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Fig. 5: Proof of Concept Implementation of Secure Cooperative Smart Farming in AWS

follows: DHT11 Temperature Humidity Sensor, AITRIP Ca-

pacitive Soil Moisture Sensor, Adafruit BMP390 - Barometric

Pressure Sensor, and GL5528 Light Sensor. Within this setup,

a user-defined Lambda function operates on the Greengrass

core, ingesting time-series data and subsequently storing it

within the Streamline data storage. Simultaneously, another

Lambda function operates in parallel to transmit network

traffic data to the Streamline data storage.

We employe a container-based application, deploye using

the Docker application deployment connector, to execute the

DT. This functionality is facilitated through the utilization of

a Docker Compose file. Container images, whether stored in

public or private repositories like Amazon Elastic Container

Registry (Amazon ECR) or Docker Hub, can be referenced

for this purpose [47]. Notably, we adopt distinct containers for

the DT and the network analysis tool. Additionally, we have

incorporated Lambda functions to guarantee no packet loss or

data loss throughout the establishment of the network DT or

DT module. The data generated by both containers is directed

to the docker container for anomaly detection. Subsequently,

users or farmers can access visualizations through a tool like

Kibana [48] (Figure 5). To enhance the accuracy of local

AD models, the local parameters of the anomaly detection

model are shared with a cloud server through a grouping

approach. Our proposed model effectively identifies anomalies

and triggers alerts to the farm’s DT via Lambda functions, as

depicted in Figure 5.

IX. OPEN CHALLENGES

A. Robustness to Environmental Factors

ºRobustness to Environmental Factorsº involves improving

anomaly detection models to effectively distinguish between

real anomalies and typical, natural variations in the farming

environment. The goal should be to reduce the number of

false alarms triggered by the system. Environmental conditions

in farming are inherently subject to regular fluctuations. For

instance, temperature, humidity, and light levels fluctuate

throughout the day and with changing seasons. Soil moisture

levels can vary due to factors like rainfall or irrigation sched-

ule. Without robustness to environmental factors, the anomaly

detection system may generate numerous false alarms when

faced with typical, natural environmental variations.

B. Adversarial Attack

In our approach, we have used hierarchical federated transfer

learning for anomaly detection, employing machine learning

to identify anomalies within each farm. However, it’s essential

to acknowledge that machine learning systems are susceptible

to various attacks. These attacks can occur during both the

training and testing/inferring phases and potentially undermine

the performance of the machine learning system, leading to

sub-optimal decision-making. These attacks fall into several

categories, including Poisoning Attacks, Impersonation At-

tacks, Evasion Attacks, and Inversion Attacks [49].

C. Explainable AI

Explainable AI is an approach in artificial intelligence that

focuses on making machine learning and AI models more

transparent and understandable. When applied to anomaly

detection in co-op smart farming, it entails developing a model

beyond anomaly detection. These models should be designed

to explain the classification of a specific data point or event

as an anomaly. This explanation is essential because it helps

farmers to understand and trust the system’s decisions.

X. CONCLUSION

CSF is emerging as a critical driver in the agricultural

sector, with a strong potential to support precision agriculture

practices and contribute to a country’s GDP. As more farmers

adopt these smart co-ops, it is essential to make them secure

and trustworthy. In this research paper, we explore cooperative

smart farming comprehensively and identify key challenges to

make this ecosystem secure. First, we propose a DT-enhanced

cooperative smart farming multi-layered architecture. Next,

we identify potential cyberthreats across layers and explain

conceivable attack scenarios. To counter these threats, we

propose a hierarchical federated transfer learning approach and

present a proof-of-concept implementation highlighting this

Authorized licensed use limited to: Tennessee Technological University. Downloaded on May 13,2024 at 02:29:28 UTC from IEEE Xplore.  Restrictions apply. 



3313

architecture integration in both edge and AWS environments.

We conclude by discussing open challenges. The solutions

put forth in our framework hold significant promise for the

adoption of smart farming technology. For future work, we

will transition from a prototype to real-world deployment,

thus facilitating further exploration and investigation in this

evolving field.
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