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Abstract

While the NLP community has produced nu-

merous summarization benchmarks, none pro-

vide the rich annotations required to simulta-

neously address many important problems re-

lated to control and reliability. We introduce a

Wikipedia-derived benchmark, complemented

by a rich set of crowd-sourced annotations, that

supports 8 interrelated tasks: (i) extractive sum-

marization; (ii) abstractive summarization; (iii)

topic-based summarization; (iv) compressing

selected sentences into a one-line summary;

(v) surfacing evidence for a summary sentence;

(vi) predicting the factual accuracy of a sum-

mary sentence; (vii) identifying unsubstanti-

ated spans in a summary sentence; (viii) cor-

recting factual errors in summaries. We com-

pare various methods on this benchmark and

discover that on multiple tasks, moderately-

sized fine-tuned models consistently outper-

form much larger few-shot prompted language

models. For factuality-related tasks, we also

evaluate existing heuristics to create training

data and find that training on them results in

worse performance than training on 20× less

human-labeled data. Our articles draw from

6 domains, facilitating cross-domain analysis.

On some tasks, the amount of training data mat-

ters more than the domain where it comes from,

while for other tasks training specifically on

data from the target domain, even if limited, is

more beneficial. 1

1 Introduction

Automatic text summarization has been an impor-

tant, active research sub-area in NLP for over two

decades (Radev et al., 2002; Nenkova et al., 2011;

El-Kassas et al., 2021). Numerous summarization

benchmarks have been proposed to facilitate the

development of summarization methods (Nallapati

et al., 2016; Narayan et al., 2018; Wang and Ling,

2016; Gliwa et al., 2019). However, the majority of

1The dataset can be downloaded from https://

github.com/kukrishna/usb

previous work has primarily focused on evaluating

the models’ ability to generate summaries similar

to reference summaries, neglecting key auxiliary

properties of text summarization systems.

Recent research has highlighted the importance

of addressing additional aspects in text summa-

rization. These aspects include the ability to steer

summaries by controlling its focus on a topic or on

specific parts of the source text (Gehrmann et al.,

2019). Furthermore, there is an increasing empha-

sis on ensuring factual correctness and implement-

ing mechanisms to eliminate factual errors from

model outputs (Scialom et al., 2021; Balachandran

et al., 2022). Similarly, to foster trust in the outputs,

it is desirable for summarization systems to present

evidence from sources that corroborate the gener-

ated summaries. As models have improved in gen-

erating coherent and readable summaries (Goyal

et al., 2022), these auxiliary considerations have

gained importance. Aligning summaries with user

requirements and ensuring sufficient factual sup-

port are critical frontiers in summarization research.

The current summarization benchmarks fail to pro-

vide a comprehensive evaluation of model capabil-

ities across various summarization tasks, encom-

passing properties such as factuality and controlla-

bility.

In this work, we introduce USB, a comprehen-

sive benchmark for text summarization that sup-

ports eight auxiliary tasks. The benchmark includes

labeled datasets with high-quality human annota-

tions collected from diverse documents across six

domains. To create the benchmark, we sampled

Wikipedia articles from various categories, such as

people, organizations, and events. We utilized the

introductory section of the articles as a reference

summary and the remaining content as the source

text, resulting in imperfect source-"summary" pairs.

Human annotators then searched for evidence to

support each summary sentence. If evidence was

lacking, corresponding spans or entire sentences
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Figure 1: A schematic of our dataset, annotations, and the supported tasks. The example shown (abridged) displays

the edits made by a human annotator on the initial candidate summary (deletions in red with strike-through; additions

in green). Every summary sentence is supported by one or more evidence sentences highlighted in blue.

were removed. Whenever conflicting evidence was

encountered, the summary was revised with mini-

mal edits to align with the available evidence. The

resulting annotations can be repurposed to create

labeled datasets for 8 useful tasks (Figure 1).

We offer the first human-labeled training datasets

for various summarization tasks, including evi-

dence extraction and identifying spans in sum-

maries without supporting evidence. These datasets

enable the training and evaluation of models specif-

ically for these crucial aspects. We benchmark the

performance of several models such as instruction-

tuned encoder-decoder models and LLMs on our

tasks, including both fine-tuning and well as few-

shot prompting based approaches. Notably, we

found that fine-tuning even small models (fewer

than a billion parameters) substantially outperforms

few-shot prompting of much larger open-source

and private large language models.

Prior efforts have relied on heuristics to generate

synthetic training data for certain tasks included in

our benchmark. For instance, a common heuristic

employed is lexical overlap to identify and extract

supporting evidence (Chen and Bansal, 2018). Sim-

ilarly, artificial factual errors have been introduced

into summaries to train models for factuality classi-

fication or correction (Kryściński et al., 2020; Bal-

achandran et al., 2022). Although such automatic

approaches enable easy creation of large training

datasets, heuristically derived annotations are typi-

cally noisy compared to human annotations. Our

findings demonstrate that models trained on min-

imal amount of human-labeled data outperform

those trained on heuristically generated labeled

datasets, even when the latter are 20× larger.

A common challenge to real-world adoption

of models is their use in resource-poor domains

where one does not have access to abundant la-

beled training data. We compare how the size

of available training data matters vis-a-vis its do-

main for different summarization tasks. We found

that for tasks related to factual correctness of sum-

maries, the amount of training data matters more

than its domain; but for other tasks having domain-

specific training data matters more. Our benchmark

is explicitly segmented into 6 domains based on

Wikipedia categories, and hence provides a natural

test-bed for such domain transfer studies.

Summary of contributions:

• Multi-domain benchmark for training and

evaluating models on 8 different tasks dealing

with some critical but understudied aspects of

text summarization.

• Comprehensive evaluation of models and

training strategies, including fine-tuning, few-

shot prompting, and multi-task training.

• Comparison of relative value of training data

labels generated by humans versus heuristics,

showing that for multiple tasks, human anno-

tations yield better models even with 20× less

training data.

• Practical insights about out-of-domain gener-

alization for different tasks, identifying the
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tasks for which the size of the training data

matters more than it being from a specific tar-

get domain.

2 Dataset Curation

To create the USB benchmark, we first collected

a set of manual annotations on Wikipedia articles.

We then used the collected annotations to create la-

beled data for the benchmark tasks. In this section

we describe the process of collecting these manual

annotations. We consider the text in a Wikipedia

article overview (leading) section as the target sum-

mary S, and the rest of the article as D. In well-

written articles, the overview section (S) provides

a broad summary of the article, and the rest of the

article (D) provides specifics. Hence, the content

in S which highlights parts of D can be effectively

considered its summary. However, for S to be a

valid summary of D, we need to remove contents

within it that mention new information that is not

present in D and cannot be inferred from it.

We recruited annotators and asked them to ex-

ecute the following tasks: (1) Find and annotate

evidence in D for each summary sentence of S,

and; (2) Delete parts of S that are not supported by

D. This yields a document-summary pair where

the summary is fully supported by the document,

and the supporting evidence is explicitly marked.

We provide a detailed description of our data cre-

ation process below.

Retrieval of Wikipedia articles We down-

loaded the Wikipedia English articles dump from

1 July 2022. We extracted the articles from this

corpus using the Wikiextractor tool. 2 We dropped

tables and lists during extraction, but retained sec-

tion headers. We used a set of category filters to

retrieve pages about specific types of entities which

helps us in creating a dataset with diverse domains.

We manually filtered domains to select those in

which articles generally had a substantial part of S

supported by evidence present in D. We retrieved

articles for the following 6 domains: biographies,

companies, schools, newspapers, landmarks, and

disasters.

Selecting documents for annotation Our

heuristic is to assume that the overview section

of a Wikipedia article will feature a significant

amount of overlap with the remaining part which

would be retained after the annotators remove non-

2
https://github.com/attardi/wikiextractor

overlapping parts. To derive a good document-

summary pair from an article, there should ideally

be a large amount of overlap between the overview

part and remaining article. Otherwise, after human

annotation (to remove parts of the summary unsup-

ported by the corresponding document) one would

be left with little text in the summary.

Given an article, with the overview section

represented by S and the remaining part repre-

sented by D, we broke the summary into sentences

s1s2s3...sn using Spacy3. We calculated how many

of the summary sentences have at least one entity

which is also present in D. For this step, we auto-

matically marked entities in S and D by consider-

ing all the words with internal hyperlinks to other

Wikipedia pages as entities. If two hyperlinked

words pointed to the same page, they were con-

sidered the same entity. For annotation, we only

retained articles that have more than 75% of sen-

tences in S with at least one entity overlapping

with D. We also controlled for summary length by

discarding any article where S has fewer than 4 or

more than 12 sentences.

Flagging entity overlaps to help annotators find

evidence To help annotators find evidence sup-

porting any given summary sentence, our interface

highlights entities present in that sentence and also

in the source document, with a different color for

each entity. To maximize the number of entities de-

tected, we took a union of entities extracted using

Wikipedia’s hyperlinks, Spacy and DBpedia. 4

Selection and monitoring of Mechanical Turk

Workers We ran a qualification task on Me-

chanical Turk, tasking workers with annotating one

document-summary pair according to the provided

instructions. To take this qualifier, we required

workers have a HIT approval rate > 95%, and have

more than 1000 approved HITS. Each worker was

allowed to take the qualification task only once. All

workers were given the same document-summary

pair for annotation. A total of 174 workers took the

qualification task. Out of these, 28 workers were

approved by checking their annotation quality man-

ually. The approved workers were then permitted

to work on the main task where they were asked to

annotate different document-summary pairs. Each

pair was annotated by exactly one worker. After

300 annotations for the main task, we analyzed

3
https://spacy.io

4
https://www.dbpedia-spotlight.org
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the annotation quality of the responses again. For

many approved workers, the annotation quality on

the main task was significantly worse than the qual-

ification task, and hence we restricted the worker

set to only 3 workers whose annotation quality

was much better than the rest (hereafter referred to

as primary workers). The remaining annotations

were done by these workers, and a total of 1988

document-summary pairs were annotated.

Verifying annotations Due to the complexity of

the annotation task, evidence has not been anno-

tated in some parts in the summaries after the first

round. To address this, we trained a model to pre-

dict unsupported spans in summaries. Specifically,

we trained models that accept an initial summary

sentence s and the evidence annotated by the work-

ers as the input, and then predict which spans in

s were deleted by the annotator to in their submit-

ted version s′. We applied this model to the sum-

mary sentences submitted by annotators to predict

unsupported spans in them. We fine-tuned Flan-

T5 XL (Chung et al., 2022) for this task. We di-

vided the set of document-summary pairs annotated

by our primary workers into two halves, trained a

model on each half, and used it to predict the unsup-

ported spans in the other half. We used one of these

models for prediction on the remaining document-

summary pairs submitted by other workers. Us-

ing these model predictions, we selected around

20% of the total summary sentences most likely

to contain unsupported spans, and flagged them

for verification. This included about 15% of the

sentences annotated by primary workers and 45%

of sentences annotated by other workers, which

aligns with our manual inspection of quality of the

workers’ annotations. We then designed a slightly

modified interface for the verification task, where

summary sentences have highlights showing po-

tentially unsupported content, and the workers can

select additional evidence or edit the summary as

before. After incorporating the changes made in

this verification round, we arrived at the final ver-

sion of the annotated corpus.

3 Task Definitions

We derived labeled datasets for tasks using the col-

lected annotations. The resulting benchmark con-

sists of the following 8 tasks:

Extractive Summarization (EXT): Given the full

document as input, extract all important sentences

that it contains. We define the ideal “reference” ex-

tractive summary as the set of all source sentences

marked as evidence for the summary.

Abstractive Summarization (ABS): Generate a

multi-sentence summary of the source document

by not just simply selecting important content, but

also rephrasing it for succinctness and coherence.

The ground truth is the full-length summary created

after the annotators’ edits.

Factuality Classification (FAC): Predict if a sum-

mary sentence is factually correct and sufficiently

supported by the information present in the source.

We create labeled data by assigning non-factual

and factual labels to the before and after versions

of each edited summary sentence, with the marked

evidence as source context fed in the input.

Fixing Factuality (FIX): Given a factually incor-

rect summary sentence, edit it to make it factually

correct, with reference to the source text. We cre-

ate annotations using pre-edited summary sentence

and the marked evidence as the input, and the post-

edited sentence as the target.

Topic-based Summarization (TOPIC): Given the

source article and a topic, the task is to generate a

summary for a given topic from a source article. We

use Wikipedia section headers as topics and select

summary sentences from our labeled dataset that

have evidence from a single section only. These

sentences act as target summaries, while the full

document and section header serve as input.

Multi-sentence Compression (COMP): Given a

cluster of sentences from the source document, gen-

erate a single sentence summary that incorporates

information from all of them. We create labeled

data for this by using each summary sentence as a

target and its marked evidence as the input.

Evidence Extraction (EVEXT): Given a source

document and a summary sentence, identify a min-

imal set of source sentences which collectively pro-

vide supporting evidence for all facts present in

that summary sentence. The labeled data consists

of each summary sentence and the full source doc-

ument as input, and the evidence links marked by

annotators as the ground truth.

Unsupported Span Prediction (UNSUP): Given

a summary sentence and a set of sentences from

the source providing evidence, predict spans in the

summary which are not supported by the evidence.

To create labeled data, we select those summary
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Domain Count

Biographies 1514

Schools 150

Disasters 145

Domain Count

Companies 97

Landmarks 50

Newspapers 32

Table 1: Number of annotated documents in various

domain splits of our benchmark. Total 1988 documents

across all domains.

sentences where annotators only made deletions

(no additions or replacements). The input is the pre-

edit summary sentence and the marked evidence,

and the gold target is the set of spans that were

deleted from the summary by annotators.

4 Dataset Overview and Statistics

The USB is a benchmark comprising 6 different

domains with a varying number of instances in

each (Table 1). We use a 40:20:40 split for train,

validation and test set size for each domain, ex-

cept the landmarks and newspapers domains due

to small size. Articles from these two domains are

kept as challenging test sets to measure the out-

of-domain generalization. Length distributions of

source documents and their summaries are shown

in Figure 3 in the Appendix. Both exhibit long-tail

distributions with lengthy sequences — about 32%

of source documents have more than 2000 words

and 10% of summaries have more than 200 words.

We also find that 27% of summary sentences cor-

respond to 4 or more marked evidence sentences

(Figure 3 in the Appendix). This suggests a high de-

gree of abstractiveness, because information needs

to be combined from many source sentences and

expressed in a single sentence. Annotators deleted

about 22% of the words on average from the initial

summary presented to them, while adding about

2% new words.

5 Benchmarking Different Models

We run a suite of models on all tasks in our bench-

mark and present the results in Table 2. For this set

of experiments, we use the consolidated train, vali-

dation and test splits, which are a union of the cor-

responding splits from all domains. For tasks that

involve generation of summaries, we use Rouge

score (Lin, 2004) as the metric. We show geomet-

ric mean of the 1,2, and L variants for succinctness

(Table 2). One exception is the Fixing Factuality

task for which we use exact match as the metric.

For Unsupported Span Prediction, we measure the

F1 score based on BIO tagging format (Sang and

Buchholz, 2000). For the remaining tasks we use

standard binary classification metrics.

For the classification/span prediction tasks in our

benchmark, we fine-tune Roberta-Large (Liu et al.

2019; Table 2). We recast these as seq2seq tasks

and fine-tune variants of T5 models on each of the

8 tasks. We include the original (Raffel et al., 2020)

and the instruction-tuned Flan version (Chung

et al., 2022). T5 Large outperforms Roberta-Large

on all the classification/span prediction tasks. Flan-

T5 Large performs similarly to T5 Large, though

achieves notable gains on Unsupported Span Pre-

diction. Flan-T5 XL consistently improves perfor-

mance over larger models on almost all tasks, sug-

gesting model size helps (Table 2). We also train

a multi-task variant of Flan-T5-XL (on all tasks

jointly). This mostly retains similar performance

as a dedicated XL model trained only on that task,

except for Evidence Extraction and Unsupported

Span Prediction (Table 2).

We run large language models including publicly

released models (for research purposes) such as

Llama (Touvron et al., 2023) and Vicuna (Chiang

et al., 2023), and closed models such as OpenAI’s

gpt-3.5-turbo5, i.e., ChatGPT. For tasks where the

full document is fed as input, we use 4 examples

for few-shot prompting owing to limitations in the

maximum feasible sequence length for these mod-

els, while for the rest we use 16 examples (for

details, see the Appendix). ChatGPT consistently

outperformed Vicuna-13B and Llama-13B on all

tasks except Fixing Factuality. This is because for

the Fixing Factuality task, ChatGPT almost always

adds new unnecessary information to the summary,

even after prompting it to not do that. Compared to

ChatGPT, finetuned models perform better on ev-

ery task. The performance difference is largest for

factuality-based tasks such as Unsupported Span

Prediction, Evidence Extraction, and Fixing Factu-

ality. ChatGPT does comparatively well on tasks

that involve generating summaries.

Since automatic metrics for measuring summary

quality like ROUGE (Lin, 2004) do not necessar-

ily mirror human preference (Cohan and Goharian,

2016), we conducted human evaluation of the gen-

erated summaries in the COMP, ABS and TOPIC

tasks. We collect ratings for summaries generated

by Flan-T5 and ChatGPT for 50 randomly selected

documents from the test set, using a questionnaire

(see the Appendix for more details). We found that

5
We used the frozen version codenamed gpt-3.5-turbo-0301
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Model COMP EVEXT EXT FAC FIX ABS TOPIC UNSUP

Metric→ Rouge F1 AUC AUC ExactMatch Rouge Rouge F1

Fine-tuned models

RoBERTa-Large - 71.01 84.06 92.69 - - - 49.21

T5-Large 41.97 77.22 87.00 94.89 31.26 33.44 23.81 51.71

Flan-T5-Large 43.23 77.71 87.99 95.15 32.94 32.05 23.62 58.57

Flan-T5-XL 44.87 79.23 87.81 95.30 35.10 32.69 24.26 64.94

Flan-T5-XL (multitask) 44.32 76.64 86.44 95.38 36.71 31.83 23.46 58.51

Few-shot prompted LLMs

Llama-13B 28.12 5.56 52.90 49.34 8.20 5.51 2.47 0.63

Vicuna-13B 31.35 6.65 52.76 55.28 4.28 5.56 2.84 1.47

GPT-3.5-turbo 33.21 26.78 61.63 60.81 3.29 29.77 14.59 7.80

Table 2: Performance of models on different tasks evaluated on the full test dataset. Tasks: COMP: Multi-sentence

Compression EVEXT: Evidence Extraction FAC: Factuality Classification FIX: Fixing Factuality ABS: Abstractive

Summarization (of full document) EXT: Extractive Summarization TOPIC: Topic-based Summarization UNSUP:

Unsupported Span Prediction

on average, ChatGPT’s summaries are mostly pre-

ferred over Flan-T5-XL model’s summaries for all

3 summary generation tasks in terms of relevance

and factuality (Table 3). This suggests that while

fine-tuned models produce summaries closer to the

ground truth in the dataset (thus achieving high

ROUGE), humans may find the summaries of few-

shot prompted LLMs better. For example, in the

Topic-based summarization task, while Flan-T5-

XL produces summaries with an average length of

46.3 words, ChatGPT generates summaries with an

average length of 110.2 words. The ground truth

summaries for that task are 36.9 words long on

average, which is more closely matched by Flan-

T5-XL, but the much longer summaries of Chat-

GPT are considered better by human annotators as

reflected in the human ratings (Table 3).

For the Fixing Factuality (FIX) task, we compare

the fixed summaries generated by Flan-T5-XL and

ChatGPT, asking which of them (i) remove more

factual errors; (ii) mistakenly remove more cor-

rect information; (iii) add more new information;

to the initially provided incorrect summary. We

found that while ChatGPT removes more factual

errors from summaries than Flan-T5, it often does

so by removing lots of (even factual) information

altogether, and replacing it with new content to ef-

fectively make a new different summary (Table 3).

6 Out-Of-Domain Performance on Tasks

We next evaluate the performance of fine-tuned

models when tested on a domain different from

what they were trained on. Our benchmark has

training data from 4 domains (i.e. excluding land-

marks and newspapers), with different amounts of

labeled data for each. To control for training set

size, we randomly subsample annotated documents

for each domain to isolate 40, 19, and 38 docu-

ments for train, validation and test splits. These

sizes of the splits were chosen to match the smallest

of the 4 domains i.e. companies (Table 1).

We train and evaluate Flan-T5 Large models

on different domains and plot average scores for

all tasks training and test domain pair in Figure 2.

Models trained on the same domain as the test do-

main perform best or negligibly close to it. But

across test domains, the best out-of-domain trained

model has < 15% performance drop compared to

this, showing respectable average out-of-domain

performance. Going by the in-domain performance

of models trained on equal amounts of data, the

biographies domain is the easiest and the disasters

domain is the most difficult. One distinction be-

tween the disasters domain and others which might

explain its difficulty is that it deals with summariz-

ing an event rather than an entity.

For each task in our benchmark, we investigate

whether having access to a large training dataset

(irrespective of domain) is more important than

having training data from the test domain. We use

the test splits of 3 domains (companies, disasters,

and schools), and on each of them we evaluate 3

different models trained on: (1) The training split

of the same domain; (2) The training split of the
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Abstractive Summarization (ABS)

Question Flan-T5 GPT-3.5-turbo

Which of the following summaries is better in terms of effectively summarizing the given

full content?

36.4% 39.7%

Which of the following summaries is more factual, accurately representing the information

presented in the given full content?

33.8% 33.1%

Multi-sentence Compression(COMP)

Question Flan-T5 GPT-3.5-turbo

Which of the two summaries covers more information touching upon all the highlighted

sentences?

27.6% 50.0%

Which of the following summaries is more factual, accurately representing the information

presented in the document?

21.1% 38.8%

Topic-based Summarization(TOPIC)

Question Flan-T5 GPT-3.5-turbo

Which of the two summaries is better in terms of effectively summarizing the given topic? 10.0% 85.3%

Which of the two summaries is more related to and exclusive to the given topic? 11.3% 77.3%

Fixing Factuality(FIX)

Question Flan-T5 GPT-3.5-turbo

Which of the two summaries removes more contradictory/unsupported information from the

incorrect summary, in reference to the context?

18.0% 38.0%

Which of the two summaries removes more correct information (which is actually well-

supported by the context) from the incorrect summary?

3.0% 24.0%

Which of the two summaries adds more new facts compared to the incorrect summary? 2.0% 67.0%

Table 3: Win rate for model outputs along different aspects as indicated in human evaluation for different tasks

Training Domain COMP EVEXT EXT FAC FIX ABS TOPIC UNSUP

Metric→ Rouge F1 AUC AUC ExactMatch Rouge Rouge F1

Companies

Companies 30.02 61.61 66.36 90.10 11.76 19.30 18.51 7.41

Biographies -1.83 +2.07 +2.22 -2.80 -5.88 -3.19 -3.62 -7.41

Biographies (full) +0.67 +6.42 +16.57 +3.84 +20.59 +0.40 -2.92 +46.85

Disasters

Disasters 31.69 52.89 77.89 77.67 3.03 21.68 16.95 5.80

Biographies -2.75 +7.15 -9.84 +6.91 -1.01 -5.31 -1.54 -5.80

Biographies (full) -2.09 +12.52 +6.36 +12.55 +15.15 +0.45 +0.78 +40.22

Schools

Schools 38.63 62.72 73.92 88.89 3.19 28.89 25.04 2.70

Biographies -2.09 -0.24 -0.72 -1.84 +2.13 -8.45 -5.67 +0.12

Biographies (full) +0.69 +5.20 +10.60 +3.44 +26.60 -4.88 -4.51 +37.98

Table 4: Out-Of-Domain evaluation of fine-tuned Flan-T5-Large models. In each section of the table, we evaluate

3 variants - A) Model trained on the test domain (Companies, Disasters & Schools), B) Model trained on the

Biographies domain (training sets of A and B are subsampled to have equal number of datapoints: train-40,

validation-19, test-38), and C) Model variant trained on the full biographies dataset with 607 datapoints for training.

Factuality related tasks benefit greatly from an abundance of training data, even if it’s not from the target domain.

biographies domain, and; (3) The full training split

of the biographies domain (before subsampling)

which contains 607 annotated documents. Training

on equivalent amounts of data from the test domain

and biographies domain leads to comparable or

worse performance of the latter (Table 4).

However, training on the full train set of the

biographies domain achieves much higher perfor-
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Figure 2: Average cross-domain model performance (us-

ing Flan-T5-Large) on benchmark tasks. All domains

are subsampled to use equal number of annotated docu-

ments (train–40, validation–19, test–38).

mance on many tasks, despite the domain shift (Ta-

ble 4). Gains are most visible on the Unsupported

Span Prediction and Fixing Factuality tasks. By

contrast, for tasks requiring summary generation,

using the large biographies training set often does

worse than using the 15× smaller in-domain train

set. This might happen because domain-specific

knowledge is required to learn the style of sum-

maries to generate for a given domain. On the

other hand, factuality related tasks tend to be more

objective (e.g., judging factual correctness), and so

model skills are transferrable across domains.

7 Comparison with Heuristic Annotations

For some tasks in our benchmark, past works have

used heuristics to create large labeled training data

sets as an alternative to collecting manual anno-

tations (Chen and Bansal, 2018; Kryściński et al.,

2020; Balachandran et al., 2022). We use such

proposed heuristics to train models and compare

them with models trained on high-quality, human

annotated data. We conduct experiments on the

Evidence Extraction, Factuality Classification and

Fixing Factuality tasks. Because the primary ad-

vantage of heuristic-generated training sets is their

size, we also assess how smaller human-labeled

training sets fare in comparison.

For the Evidence Extraction task, we use lexical

overlap as a proxy to derive “reference” evidence

alignments. For example, we select the source

sentence with the highest ROUGE-L score with a

summary sentence as its evidence, as outlined in

Chen and Bansal (2018). We also create a training

set variant where entity overlap is used instead of

Evidence Extraction

F1

SuperPAL (Ernst et al., 2021) 53.8

ROUGE (Chen and Bansal, 2018) 40.9

Entity overlap 47.0

Human annotations 100% (N=765) 77.7

Human annotations 5% 70.9

Factuality Classification

AUC

FactEdit (Balachandran et al., 2022) 74.6

FactCC (Kryściński et al., 2020) 68.9

Human annotations 100% 95.1

Human annotations 5% 90.4

Fix factuality

Exact Match

FactEdit (Balachandran et al., 2022) 1.0

FactCC (Kryściński et al., 2020) 0.8

Human annotations 100% 32.9

Human annotations 5% 11.2

Table 5: Comparing use of human annotations vs heuris-

tic annotations for finetuning Flan-T5 Large models.

We also report performance when finetuning on 5% of

the training set with human annotations.

ROUGE-L to derive references. Finally, we use

SuperPAL (Ernst et al., 2021) as an out-of-the-box

solution to predict evidence labels for our dataset’s

summaries, and then use them for model training.

To train models to detect or fix factual errors, we

artificially introduce errors into summaries to be

used as exemplars. We do this via transformations

such as swapping entities, numbers, pronouns, in-

troducing negation, and so on, inspired by prior

work (Kryściński et al., 2020). To generate diverse

errors and hallucinations, we follow Balachandran

et al. (2022); we mask parts of the summary out

and then use a language model to infill these with

(mostly unsupported) information.

We train models for 3 tasks on both heuristically-

generated and manually annotated training datasets,

and evaluate them on clean human-labeled test sets.

Training on human-annotated data performs better

than all heuristic-based alternatives across all tasks

(Table 5). Next, we train models on subsets of the

manually annotated datasets with varying sizes and

compare their performance on the test sets; this

shows how even a little human-annotated data can

outperform large amounts of heuristic-generated

data for different tasks. For each of the three tasks,

the performance achieved using only 5% of the hu-
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man annotated training set, still outperforms the

heuristically labeled full training set (Table 5). This

highlights the value in collecting manual annota-

tions, even if in small quantities, over using heuris-

tics to generate training data labels.

8 Related Work

The tasks in our benchmark have been studied in

prior work to varying degrees. The greatest amount

of attention has gone to the tasks of extractive sum-

marization (Wong et al., 2008; Kågebäck et al.,

2014; Zhang et al., 2016; Nallapati et al., 2017),

and abstractive summarization (Liu and Lapata,

2019; Zhang et al., 2020; Raffel et al., 2020; Lewis

et al., 2020; Goyal et al., 2022). There exist plenty

of datasets for abstractive summarization (Narayan

et al., 2018; See et al., 2017; Kim et al., 2019; Wang

and Ling, 2016). However, many of them were

created heuristically, with “targets” being automat-

ically extracted via rules from documents pulled

from the web. This can lead to poor quality ref-

erence summaries (Bommasani and Cardie, 2020;

Krishna et al., 2022), and training on them can

yield models prone to generating hallucinations

(Nan et al., 2021; Ji et al., 2022). By contrast, we

use manual annotation to ensure that summaries

are fully supported by sources, resulting in a high

quality abstractive summarization dataset.

Past works for predicting factual correctness of

summaries incorporate question-answering models

and natural language inference methods (Scialom

et al., 2021; Fabbri et al., 2022; Goyal and Durrett,

2021), or use synthetically introduced factual er-

rors (Kryściński et al., 2020) to train models. In

contrast, the USB benchmark introduces a high-

quality manually annotated dataset for predicting

factual correctness. For the task of editing sum-

maries to fix factual errors, datasets with both syn-

thetic and model-generated errors have been cre-

ated (Balachandran et al., 2022; Liu et al., 2022).

The task of unsupported span prediction is akin

to detecting hallucinated content in generated sum-

maries, and to the best of our knowledge, no labeled

dataset exists for this task.

For extracting evidence for a summary, past

works have used lexical overlap based heuris-

tics (Chen and Bansal, 2018; Lebanoff et al., 2019).

A manually annotated dataset for the task was in-

troduced by Ernst et al. (2021), albeit our work

provides a substantially larger manually annotated

dataset. Similarly, for multi-sentence compres-

sion we introduce a much larger manually labeled

dataset than prior works (Slobodkin et al., 2022).

Prior research has mostly approached topic based

summarization by adopting a predefined set of top-

ics (Krishna and Srinivasan, 2018; Akhtar et al.,

2017; Hayashi et al., 2021). However, we did not

restrict the set of topics in our dataset, resulting in

a long tail of (potentially challenging) rare topics.

9 Conclusion

We introduced the USB benchmark comprising

tasks to measure model performance across dif-

ferent text summarization sub-tasks. We showed

that fine-tuned smaller models outperform few-shot

prompting of much larger LLMs by a large margin

on tasks related to appraising the factuality of sum-

maries. We studied how fine-tuned summarization

models perform on out-of-domain data, and identi-

fied several tasks where the training dataset size is

more important than its domain.

Finally, we showed that rather than training mod-

els on large volumes of heuristically labeled data,

one can get better performance by creating a much

smaller (≈ 20× smaller) manually labeled training

set instead. The resultant USB benchmark permits

the training of models for useful tasks such as ex-

tracting evidence for a summary, correcting factual

errors in it, and generating summaries focused on

specific topics. Our hope is that this benchmark

spurs further research on these tasks and will serve

as a barometer for progress in them.
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11 Limitations

Despite efforts to collect a diverse dataset, the

benchmark used in this study may still exhibit cer-

tain biases. The sampling process and the selection

of Wikipedia articles as the primary data source

could introduce inherent biases, potentially affect-

ing the generalizability of the results. These biases

may stem from the specific domains or topics cov-

ered in the dataset, as well as the way in which

8834



Wikipedia articles are written and formatted. The

dataset’s reliance on Wikipedia articles as the pri-

mary source of data might not adequately represent

the nuances and challenges encountered in differ-

ent domains or sources. One prominent example

is conversations which are frequently used in sum-

marization research but are not represented in the

benchmark. Similarly, a model’s ability to detect er-

rors/hallucinations in summaries in the benchmark

may not necessarily reflect its ability to detect er-

rors more broadly in summaries generated by a

variety of models.

While the benchmark dataset was annotated by

human annotators, it is important to acknowledge

the possibility of annotation errors or inconsisten-

cies. Despite efforts to ensure high-quality annota-

tions, the presence of errors should be taken into

account when interpreting the results. Human anno-

tation is subjective by nature, and different annota-

tors may have varying interpretations in some situa-

tions, e.g., deciding whether a fact in the summary

requires explicit evidence or should be presumed

as common knowledge.

12 Ethics Statement

Potential biases: When selecting the pool of an-

notators on Amazon Mechanical Turk (AMT) for

creating the dataset, we required their location to be

the United States. This was done since the US has

a very large population of native English speakers,

which can help in getting high quality annotations.

However, this geographical restriction can also lead

to biases in the annotation process. For example,

it would affect what’s considered common knowl-

edge when assessing evidence for summaries. An

annotator from the United States would likely con-

sider a person’s birth in Los Angeles as evidence

of them being from California, because they know

Los Angeles is in that state. However, if it were

some other city and state in a country unfamiliar to

them, they may not make a similar inference.

Compensation for annotators: For the initial

qualification task, workers were paid 2 USD. After

selecting the qualified workers, for the main an-

notation task workers were paid 2 to 3 USD per

document-summary pair, depending on the num-

ber of sentences in the summary and the domain

where it came from (we observed that some do-

mains were more difficult). For the second round

for verification, we paid annotators between 0.3 to

1.0 USD depending on the number of sentences in

the summary which were flagged for verification,

which can be as low as 1 sentence. The creation of

the entire dataset costed about 6000 USD includ-

ing platform fees paid to AMT and server hosting

costs.

Use of proprietary LLMs: We included the GPT-

3.5-turbo large-language-model from OpenAI in

our experiments since it has demonstrated excellent

performance on diverse NLP tasks in zero-shot and

few-shot settings. Unfortunately, OpenAI could

discontinue hosting the model in future at which

point it may not be possible to reproduce its re-

sults on the tasks proposed in this work. For this

reason we have also included results with public

open-source LLMs like Llama and Vicuna, as these

models are publicly available and hence their re-

sults can always be reproduced.
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A Appendix

A.1 Sample datapoints for different tasks

We show a sample labeled datapoint for each task

from the validation set of USB in Figure 5 and

Figure 6.

A.2 Instructions used in model inputs

We list the instructions used in the inputs to Flan-T5

models in Table 6, Llama-13B in Table 7, Vicuna-

13B in Table 8, and GPT-3.5-turbo in Table 9.

A.3 Implementation details for models

In this section we outline the architectures, and

input/output formatting used for different models

used in our experiments. Additionally, we report

the hyperparameters used during training and infer-

ence for each model in Table 10.

Roberta For the Factuality Classification task,

we feed in the evidence and summary separated

by the SEP token into a standard classifier setup,

which applies a linear layer with sigmoid activa-

tion on top of the CLS embedding. For Evidence

Extraction, we use the same architecture and input

individual pairs of a summary sentence with each

source sentence to make a prediction for each of

them. For the Extractive Summarization task, we

use a hierarchical architecture identical to the one

described as BERT-LSTM in Krishna et al. (2021),

except that we use a Roberta encoder instead of

BERT. For Unsupported Span Prediction, we frame

it as a sequence tagging problem where the given

summary sentence and evidence are passed through

Roberta and a linear layer with sigmoid predicts

whether each token is supported or not. The con-

secutive positive predictions are concatenated to

turn them into spans.

T5/Flan-T5 We preface each input with an in-

struction for the task to be done, followed by the

text from the source/summary to be input. We

frame the Evidence Extraction and Extractive Sum-

marization tasks as a sequence of Yes/No predic-

tions for each sentence in the source. Each source

sentence in the input is prefixed by an enumer-

ated sentence id (e.g. SENT34), and the ground

truth target is the sequence of all sentence ids, with

a Yes/No following each according to it’s posi-

tive/negative label (e.g. “SENT0 Yes SENT1 No

SENT2 No...”). Similarly, for Factuality Classifi-

cation, the target is a single Yes/No based on the

label. During inference, we measure the probabili-

ties of generated Yes/No tokens which allows us to

measure AUC scores too. For Unsupported Span

Prediction, we generated the ground truth target by

surrounding the unsupported spans in the summary

with begin-span and end-span tags.

Llama/Vicuna For Llama and Vicuna we use

the exact same input formatting. Compared to the

Flan-T5 data formatting, we use a different set of

instructions for these models, after trying out plau-

sible variants for each task on the validation set.

We provide 4 different instances as few-shot ex-

amples following the instruction in each datapoint

for each task. The few-shot examples are chosen

by sampling from the training set without replace-

ment. Due to limitations in sequence length, we

only use a maximum of 2048 tokens for the few-

shot examples. For the tasks which require the full

document in the input (i.e. ABS, EXT, EVEXT,

TOPIC), we use 4 examples with each having a

maximum of 512 tokens. For the remaining tasks,

we use 16 examples each with a maximum length

of 128 tokens. The few-shot examples are sampled

(without replacement) from the training set while

creating the prompt for each datapoint in the test

set. Since these are decoder-only models which

essentially generate plausible completions of the

input string, we preface each output with a word

(e.g. “SUMMARY:”, “LABELS:”) in the few-shot

examples and at the end of the prompt to trigger

the generation of the required summary/labels.

GPT-3.5-turbo The formatting of input and out-

put is exactly the same as for Llama/Vicuna for all

tasks except Evidence Extraction and Extractive

Summarization. For these two tasks, we found that

this model performed much better if we prompted it

to generate the source sentence ids which should be

assigned the positive label, instead of generating a

Yes/No prediction for each source sentence. So we

changed the output formatting in our few-shot ex-

amples accordingly. For this model too, we choose

a different set of instructions for the tasks by exper-

imenting with different options on the validation

set.

A.4 Human evaluation of model outputs

It is well-acknowledged that ROUGE (Lin, 2004)

is an imperfect automatic metric to assess sum-

mary quality, and may not accurately reflect human

preferences (Nenkova, 2006; Cohan and Goharian,
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2016; Goyal et al., 2022). Hence, we also con-

ducted human evaluation for some tasks, where

we show summaries generated by the best fine-

tuned model (Flan-T5-XL) and the best fewshot-

prompted LLM (GPT-3.5-turbo) and ask annotators

to choose the better one along different dimensions

(Table 3).

For the tasks of Abstractive Summarization

(ABS), Multi-sentence Compression (COMP), and

Topic-based Summarization (TOPIC), we collected

annotations for 50 pairs of summaries, with 3 an-

notators rating each pair. For these 3 tasks, we

did not screen workers based on qualification tasks

since evaluating overall summary quality is a sub-

jective task and it is better to have a diverse opinion

from a large population, rather than a small set of

manually selected people.

Evaluating model outputs for the Fixing Factual-

ity (FIX) task is a more difficult but objective job.

The increased difficulty comes from the need to

carefully note the edits made by the models on the

original incorrect summary and then decide on the

factual validity and necessity of each edit. So we

screened annotators via a qualification task on Me-

chanical Turk and selected 2 annotators to conduct

the human evaluation for this specific task. Each

pair of model outputs was rated by both annotators.
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Figure 3: Distribution of number of words in the source and the summary, and the number of source sentences

marked as evidence per summary sentence.

Task Instruction

Multi-sentence Compression (COMP) Summarize the following content in a single line.

Abstractive Summarization (ABS) Summarize the following content.

Fixing Factuality (FIX) Rewrite the given summary of the content to make it

factually correct.

Unsupported Span Prediction (UNSUP) Annotate parts of the summary which are not sup-

ported by evidence from the content.

Topic-based Summarization (TOPIC) Summarize the given content for the following topic.

Factuality Classification (FAC) Is there sufficient evidence for the summary in the

content?

Extractive Summarization (EXT) For each sentence, predict if it is important.

Evidence Extraction (EVEXT) For each sentence in the content, predict if it provides

any evidence for the claim.

Table 6: Instructions used in inputs to Flan-T5 models

Figure 4: Screenshot of the interface used for collecting annotations. The summary is shown on the left and the

source on the right. Entities in the active summary line are highlighted to help find evidence quickly. A scratchpad

is provided where users can keep track of the parts of the summary for which evidence has been marked.
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Task Instruction

Multi-sentence Compression (COMP) Write a one-line summary of the content shown be-

low.

Evidence Extraction (EVEXT) Go over each sentence in the content, and decide

if it supports the claim or not. Answer in Yes for

a sentence if it supports the claim, and answer No

otherwise.

Factuality Classification (FAC) Is there sufficient evidence for the summary in the

content?

Fixing Factuality (FIX) Rewrite the given summary of the content to make it

factually correct.

Abstractive Summarization (ABS) Write a concise summary of the following paragraph

Topic-based Summarization (TOPIC) Summarize the given content for the following topic.

Extractive Summarization (EXT) For each sentence in the given content, label it as

Yes if it is noteworthy enough to be included in a

summary, or No otherwise.

Unsupported Span Prediction (UNSUP) Regenerate the given summary, while surrounding

those parts which do not have any supporting evi-

dence in the content using [] and [/] tags

Table 7: Instructions used in inputs to the Llama-13B model

Task Instruction

Multi-sentence Compression (COMP) Write a single sentence summarizing the important

points in the given content.

Evidence Extraction (EVEXT) Predict which sentences in the given content can be

used to infer facts in the claim.

Factuality Classification (FAC) Decide if the following summary is consistent with

the corresponding content. Note that consistency

means all information in the summary is supported

by the content. Explain your reasoning step by step

then answer (yes or no) the question

Fixing Factuality (FIX) Rewrite the following summary to make it factually

accurate

Abstractive Summarization (ABS) Draft a summary for the given document.

Topic-based Summarization (TOPIC) Generate a summary of the given content covering

the given topic.

Extractive Summarization (EXT) For each sentence, predict if it is important.

Unsupported Span Prediction (UNSUP) Annotate parts of the summary which are not sup-

ported by evidence from the content

Table 8: Instructions used in inputs to the Vicuna-13B model
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Task Instruction

Multi-sentence Compression (COMP) Summarize the following content in a single line.

Evidence Extraction (EVEXT) Below is a claim along with its corresponding content.

Identify and list all the sentences within the content

that partially or entirely support the claim.

Factuality Classification (FAC) Decide if the following summary is consistent with

the corresponding content. Note that consistency

means all information in the summary is supported

by the content. Answer yes or no.

Fixing Factuality (FIX) The summary might be incorrect. How would you

rewrite it to make it factually accurate? Make as little

changes as possible. Do not add any new information

to the summary.

Abstractive Summarization (ABS) Draft a summary for the given document.

Topic-based Summarization (TOPIC) Create a short summary of the given content that

touches upon information which fall under the speci-

fied topic.

Extractive Summarization (EXT) For the task of extractive summarization, list all the

SENTs of the content which would be included in its

summary.

Unsupported Span Prediction (UNSUP) Go over the given summary carefully, and regenerate

it while surrounding any parts which are not sup-

ported by the content using [] and [/] tags

Table 9: Instructions used in inputs to the GPT-3.5-turbo model

Model Task Learning rate Batch Size Max input length Max output length

Roberta-Large FAC 1e-5 32 512 -

Roberta-Large EXT 1e-5 32 128×128ψ -

Roberta-Large EVEXT 2e-5 2048 128 -

Roberta-Large UNSUP 2e-5 32 512 -

T5-Large (All) 5e-5 32 8192 768

FlanT5-Large (All) 5e-5 32 8192 768

FlanT5-XL (All) 5e-5 64 1536 512

Llama-13B (All) - - 6144 512

Vicuna-13B (All) - - 6144 512

GPT-3.5-turbo (All) - - Variableφ Variableφ

Table 10: Hyperparameters used for training and inference with different models. ψ: 128 sentences each with

maximum of 128 tokens fed into a hierarchical model. φ: GPT-3.5-turbo has a relatively small limit of 4096 tokens

including both the input (with few-shot examples) and the output, and so we truncate the input on a per-task basis to

leave token budget equal to the maximum output length in the train split for that task.
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Evidence Extraction

Accuracy AUC F1 Precision Recall

SuperPAL (Ernst et al., 2021) 98.1 95.8 53.8 82.1 40.0

ROUGE (Chen and Bansal, 2018) 95.9 88.5 40.9 33.7 52.1

Entity overlap 95.7 92.5 47.0 35.6 69.4

Human annotations 100% (N=765) 98.8 99.0 77.7 77.0 78.4

Human annotations 20% 98.7 98.4 74.7 78.9 70.8

Human annotations 10% 98.5 98.1 72.4 73.0 71.8

Human annotations 5% 98.4 97.7 70.9 70.8 70.9

Factuality Classification

Accuracy AUC F1 Precision Recall

FactEdit (Balachandran et al., 2022) 55.7 74.6 29.4 72.6 18.4

FactCC (Kryściński et al., 2020) 52.9 68.9 20.1 66.3 11.8

Human annotations 100% 88.1 95.1 87.5 92.3 83.2

Human annotations 20% 86.7 93.9 86.1 90.6 82.0

Human annotations 10% 83.4 91.8 81.6 91.7 73.5

Human annotations 5% 82.6 90.4 82.5 83.2 81.7

Fix factuality

Exact Match Rouge-1 Rouge-2 Rouge-L

FactEdit (Balachandran et al., 2022) 1.0 81.6 73.0 81.0

FactCC (Kryściński et al., 2020) 0.8 81.9 73.6 81.4

Human annotations 100% 32.9 91.9 86.5 91.4

Human annotations 20% 28.8 90.3 84.3 89.8

Human annotations 10% 15.3 85.7 78.5 85.1

Human annotations 5% 11.2 83.9 76.1 83.3

Table 11: Comparision between using human annotations vs heuristic annotations for training models—Flan-T5-

Large. We also report performance when finetuning on smaller fractions of the training set with human annotations.

8843



AbstracƟve 
SummarizaƟon 
(ABS) 

INPUT DOCUMENT: 
D'Vauntes Smith-Rivera 
High school career 
Smith-Rivera started high school at North Central High School in Indianapolis, 
and led his team to a state championship in his sophomore year. 
He transferred to the basketball specialty Oak Hill Academy in Virginia for his 
senior year, and he helped lead the team to the 2012 naƟonal championship 
He was recruited by Xavier, UCLA, Louisville, Memphis, NC State, and 
Georgetown. 
… 

TARGET D'Vauntes Smith-Rivera is a professional basketball player who last played for 
Koroivos of the Greek Basket League. 
He played high school basketball for North Central in Indianapolis and Oak 
Hill Academy in Virginia. 
… 

MulƟ-sentence 
Compression 
(COMP) 

INPUT SOURCE SENTENCES: 
Odenkirk was hired as a writer at "Saturday Night Live" in 1987 and worked 
there through 1991. 
Odenkirk's friendship with Ben SƟller, with whom he briefly shared an office 
at "SNL", would lead to his being hired for the cast of "The Ben SƟller Show" 
in 1992. 
Working as both a writer and actor on the show, he created and starred in 
the memorable sketch "Manson Lassie", and helped the show win an Emmy 
Award for wriƟng. 

TARGET From the late 1980s to 1990s, Odenkirk wrote for television shows "Saturday 
Night Live" and "The Ben SƟller Show", winning an Emmy Award for wriƟng. 

ExtracƟve 
SummarizaƟon 
(EXT) 

INPUT DOCUMENT: 
SENT0: D'Vauntes Smith-Rivera 
SENT1: High school career 
SENT2: Smith-Rivera started high school at North Central High School in 
Indianapolis, and led his team to a state championship in his sophomore year. 
SENT3: He transferred to the basketball specialty Oak Hill Academy in Virginia 
for his senior year, and he helped lead the team to the 2012 naƟonal 
championship. 
SENT4: He was recruited by Xavier, UCLA, Louisville, Memphis, NC State, and 
Georgetown. 
… 

TARGET SENT0 SENT2 SENT4… 

Topic-based 
SummarizaƟon 
(TOPIC) 

INPUT DOCUMENT: 
Arkema S.A. 
Arkema was created when French oil major Total restructured its chemicals 
business. 
The restructuring was a gradual process that began many years earlier: 
… 
TOPIC NAME: OrganizaƟon 

TARGET Arkema is organized into three business segments: CoaƟng SoluƟons, 
Industrial Chemicals, and Performance Products. 

Figure 5: Sample input-output pairs for different tasks from the validation set of USB
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Factuality 
ClassificaƟon 
(FAC) 

INPUT EVIDENCE:  
In 2014 YG also expanded into the beauty industry with the creaƟon of its cosmeƟcs brand 
Moonshot. 
YG Plus Inc., previously named Phoenix Holdings Inc., is a publicly traded media and 
adverƟsing company acquired by YG Entertainment in November 2014. 
SUMMARY:  
In addiƟon, the company operates a number of subsidiary ventures under a separate public 
traded company, YG Plus, which includes a clothing line, a golf management agency, and a 
cosmeƟcs brand. 

TARGET Incorrect 

Unsupported Span 
PredicƟon 
(UNSUP) 

INPUT EVIDENCE:  
David MarƟn McIntosh 
McIntosh was born in Oakland, California, the son of Jean Marie (Slough), a judge, and 
Norman McIntosh. 
He graduated with a B.A. (cum laude) in 1980, and later received a J.D. from University of 
Chicago Law School in 1983. 
… 
Incumbent Democrat U.S. Congressman Philip Sharp of Indiana's 2nd congressional district 
decided to reƟre. 
McIntosh decided to run and won the Republican primary with a plurality of 43% in a four 
candidate field. 
In the general elecƟon, he defeated DemocraƟc Secretary of State of Indiana Joe HogseƩ 
54%-46%. 
SUMMARY: David MarƟn McIntosh (born June 8, 1958) is an American aƩorney and 
Republican Party poliƟcian who served as the U.S. representaƟve for Indiana's 2nd 
congressional district from 1995 to 2001. 

TARGET David MarƟn McIntosh ( born June 8 , 1958 ) is an American aƩorney and Republican Party 
poliƟcian who served as the U.S. representaƟve for Indiana 's 2nd congressional district from 
1995 to 2001 . 

Fixing Factuality 
(FIX) 

INPUT EVIDENCE:  
In 2009, Jordan returned to the F1 scene as a pundit for BBC Sport F1 coverage alongside 
Jake Humphrey (who was later replaced by Suzi Perry) and David Coulthard. 
In March 2016 he was announced as Channel 4's lead analyst for C4F1. 
SUMMARY:  
He was the chief analyst for Formula One coverage on the BBC from 2009 to 2015 before 
joining Channel 4 aŌer BBC pulled out in 2016. 

TARGET He was the a pundit for Formula One coverage on the BBC from 2009 before joining Channel 
4 in 2016. 

Evidence ExtracƟon 
(EVEXT) 

INPUT DOCUMENT: 
SENT0: 2012 Istanbul rally to commemorate the Khojaly massacre 
SENT1:  "JusƟce for Khojaly" campaign. 
SENT2: "JusƟce for Khojaly", or "JFK" for short, is an InternaƟonal Awareness Campaign, 
iniƟated on 8 May 2008 under the moƩo of "JusƟce for Khojaly, Freedom for Karabakh". 
… 
SENT6: Around 200,000 parƟcipants for the 20th anniversary remembrance of the Khojaly 
Massacre vicƟms, dozens of youth and student organizaƟons, public unions, Turkish 
organizaƟons and movements parƟcipated in the rally. 
… 
SENT17: Various slogans included, "We are all from Khojaly", "Stop Armenian aggression", 
"Do not forget Turkic people genocide by Armenian gangs in southern Azerbaijan", "One 
naƟon, two countries, JusƟce for Khojaly!", and "Stop Armenian lies". 
… 
 
SUMMARY: 
The demonstraƟon with slogan "We are all from Khojaly" had around 200,000 parƟcipants. 

TARGET SENT6 SENT17 

Figure 6: Sample input-output pairs for different tasks from the validation set of USB
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