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Abstract: Nodal Aberration Theory (NAT) was developed to explain the field dependency of
aberration field centers in the image plane of nominally rotationally symmetric optical systems
that have lost their symmetry through misalignments. A new insight into the theory led to
calculating the sigma vectors, which locate the aberration field centers, using the angle between a
real-ray trace of the optical axis ray (OAR) and the normal of the local surface where “local”
refers to the object and image optical spaces of that surface. Here, we detail the sigma vector
calculations for general optical systems and provide an experimental investigation of a misaligned
system with a high-precision customized Cassegrain telescope. In the simulations, a Newtonian
telescope, a Cassegrain telescope, and a three-mirror anastigmat telescope were misaligned
intentionally in ray-tracing software. The sigma vectors were calculated analytically for the
third-order aberrations of astigmatism and coma. Experimentally, the same perturbations were
implemented for the Cassegrain telescope system, and the aberrations were quantified through
interferometric measurements on a grid of field points in the image plane that verified the
analytical derivation and simulations.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Nodal Aberration Theory (NAT) describes and quantifies the aberration properties of nominally
rotationally symmetric optical systems that are misaligned. NAT builds upon H.H. Hopkins’
scalar wave aberration theory [1] and R. Buchroeder’s concept of the shifted aberration field
centers on the image plane for misaligned optical systems [2]. The theory, invented by R.V.
Shack, was developed up to the fifth order by K. P. Thompson and Shack [3–8]. Experimental
investigations of NAT are still in progress. N. Zhao et al. first experimentally demonstrated
field-constant coma for an aplanatic Ritchey-Chretien telescope [9]. Next, the experimental
investigation of binodal astigmatism, which was the aberration field dependence that led to the
discovery of NAT [10], was first experimentally validated for a customized Cassegrain telescope
[11], followed by the validation of the separation of binodal astigmatism induced by mount error
and misalignment [12], and field-linear coma for a Cassegrain telescope [13].

NAT predicts that the aberrations of misaligned optical systems show new field dependency
and nodal behavior (i.e., where an aberration goes to zero), but there are no new aberration types.
The exact locations of the aberration field centers or nodes in the image plane are determined by
a weighted sum of the individual surface contributions in the optical system. For this purpose,
Buchroeder developed a method based on paraxial ray-tracing for perturbations of small tilts and
decenters [2]. Afterward, Thompson et al. put forth a new insight for locating the aberration
field centers based on real-ray-trace data that is valid for any misalignments [14]. In this method,
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sigma vectors to locate the aberration field centers were calculated using the angle between a
real-ray trace of the optical axis ray (OAR) and the normal of the local surface. This angle is
entirely free of how the misalignments are modeled and can be obtained from optical design
software. This approach in NAT provides valuable insight to the optical designers, such as
evaluating the alignment state of an optical system and the fruitfulness of the compensators in
assembly.

Here, we review and detail the calculation of sigma vectors in NAT for a general optical system.
The calculations are verified numerically using ray-tracing software for one, two, and three-mirror
systems. Additional detail is provided for the two-mirror customized Cassegrain telescope design
[15], and experimental investigations were conducted in parallel to the simulations for this system.
The remainder of this paper is organized as follows. Section 2 reviews the computational method
for the sigma vectors. Section 3 provides the theoretical background of NAT, including third-order
aberrations that show nodal behavior in the image plane. The analytical node positions are
verified using numerically calculated nodes in Section 4. Section 5 provides paraxial quantities
for the customized Cassegrain telescope, calculations of surface aberration coe�cients, and a
detailed description of the experimental setup. Section 6 presents the results of sigma vector
calculations for coma and astigmatism and compares the theory and experiments.

2. Sigma vectors

In optical systems with rotational symmetry, the OAR, defined as the ray that connects the center
of the object plane and the center of the aperture stop, coincides with the Mechanical Axis
(MCA), which is used for calculating paraxial and third-order quantities of the optical system. In
that case, the OAR also intersects all centers of curvatures and vertices of the surfaces and the
center of the image plane. In an optical system with symmetry, the incident angle of the OAR at
each surface is always zero; thus, the field displacement vectors are zero.

With misalignments, the intersection point of the OAR and the image plane becomes a new
center of the field. The shift of the MCA from this new field center is called the boresight error.
The boresight error for a two-mirror telescope system whose aperture stop is located at the
primary mirror is shown in Fig. 1(a).

�

Fig. 1. (a) The image plane field coordinates for the aligned and misaligned cases are denoted
by and Hx,y, respectively. The sigma vector is �j, H is the field vector for the unperturbed
system, and HAj is the e�ective field vector after misalignment. (b) Demonstration of N, R,
and S vectors at the jth surface. The line labeled OAR’ represents the optical axis ray after
reflection. CoC, XP, and IMG points represent the center of curvature, exit pupil location,
and image location, respectively.

Furthermore, with misalignments, the center of symmetry for a given aberration contribution
for a perturbed surface, j, shifts to another point in the local image plane, which will also map to
a new aberration center in the final image plane. This field displacement vector is called a sigma
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vector and is denoted by �j [14] (where bold depicts vector). The sigma vector starts at the
intersection point of the OAR and the image plane. In NAT, if a surface is aspheric, two separate
sigma vectors have to be calculated, one originating from the spherical base curve and the second
one originating from the aspheric departure from the spherical surface [14]. Therefore, the sigma
vector consists of two components: one from the spherical contribution and the other from the
aspherical contribution if an asphere is used. Here, a simple conic would fall under an aspherical
contribution.

The spherical contribution of the sigma vector was previously computed by Buchroeder [2].
He developed a method based on paraxial ray trace equations, accounting for surface tip/tilt
parameters. In his method, the OAR is parameterized by u#

OAR (inclination angle at the surface)
and ȳ#

OAR (intersection height at the surface), parameters measured from the MCA. The drawback
of this method was that it could not be easily implemented in a commercial design program
[14,16]. Then, the coordinate-independent method of Thompson et al. was developed that allows
computing the spherical contribution of the sigma vector based on real-ray trace data. The
equation for computing the spherical contribution of the sigma vector of a misaligned surface is
given as [14]

�sph
j = � i

⇤

ij
=

�Nj ⇥
�
Rj ⇥ Sj

�
ij

, (1)

where the subscript j is used to define a subjected surface, i
⇤ is the angle of incidence of the OAR

at the surface, ij is the local angle of incidence of the paraxial chief ray to use for normalization
to image height and Nj, Rj, and Sj are all unit vectors with normalized direction cosines of (X, Y,
Z), (L, M, N), and (SRL, SRM, SRN), respectively. Note that * denotes parameters related to the
OAR. Nj is the normal vector of the object/image plane for the unperturbed system, perpendicular
to the Z-axis. Rj is the normalized direction vector along the incident ray OAR. Sj is the vector
along the surface normal at the intersection of the OAR and the surface. An example of the Nj
Rj, and Sj vectors at a surface were given in Fig. 1(b). Note that the N vector is taken to point
from the local image point towards the local exit pupil.

The aspheric contribution of the sigma vector depends on the intersection height of the OAR
relative to the aspherical vertex and is computed by [14]

�asph
j =

�v
⇤

yj
, (2)

where, �v
⇤ is the aspheric vertex departure of the OAR from the MCA, and yj is the chief ray

height at the surface.
Since NAT is a surface-based theory, the contribution of a specific surface to the net aberration

field is distinguishable and identifiable, and we are currently exploring techniques to achieve
this goal. NAT applies to both reflective and refractive optical systems. For instance, if a lens
is misaligned, that results in both surfaces of that lens being misaligned. Each surface of the
lens is treated separately, but the misalignment values of each surface are understandably tied
together. The final sigma vector has contributions from each surface of the lens. In addition,
asymmetric systems consisting of o�-axis components can be analyzed using the same formalism
as for rotationally symmetric systems discussed. The di�erence is that each component of an
asymmetric system would have some purposeful “misalignment” that describes its position in
space. Furthermore, some concepts from NAT have been borrowed to explain how non-symmetric
optical elements (i.e., freeform) impact the net aberration field, leading to major advances in the
design, fabrication, testing, and assembly of freeform systems [17–19]. The e�ect of the surface
figure errors on the aberrations is also explained by NAT successfully [12,20], but it is not the
focus of this study.
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3. Analytical calculations for the third-order node locations

The general vector form of the wavefront aberration expansion is expressed as

W =
’

j

1’
p

1’
n

1’
m

(Wklm)j(H.H)p(⇢.⇢)n(H.⇢)m, (3)

where H and ⇢ are normalized field and aperture vectors, respectively, and (Wklm)j are the
aberration coe�cients of the surface j. For an optical system without symmetry, with the
inclusion of the sigma vector contribution to the field vector of an unperturbed optical system,
we obtain the new field dependency of aberrations as

HAj = H � �j (4)

where HAj is the e�ective field vector. Rewriting the wave aberration expansion to comprise only
third-order aberrations yields

W =
’

j
W040j(⇢.⇢)2 +

’
j

W131j[(H � �j).⇢](⇢.⇢) +
’

j
W222j[(H � �j).⇢]2

+
’

j
W220Sj[(H � �j).(H � �j)](⇢.⇢) +

’
j

W311j[(H � �j).(H � �j)][(H � �j).⇢]
(5)

where W040, W131, W222, W220, and W311 are the aberration coe�cients that represent third-order
spherical aberration, coma, astigmatism, field curvature, and distortion, respectively.

3.1. Coma node location

In optical systems without symmetry, third-order coma can have up to one node in the image
plane. To compute the coma node location, we first sum the sigma vectors of the individual
surfaces weighted by the corresponding surface aberration contributions for coma given by [5]

A131 =
’

j
(W131,j

sph�j
sph +W131,j

asph�j
asph), (6)

where A131 is an un-normalized vector in the image plane. W131,j
sph and W131,j

asph are spherical
and aspherical aberration contributions of surface j, respectively. �j

sph and �j
asph are spherical

and aspherical sigma vectors contributions of surface j, respectively. If the system-level third-order
coma aberration is non-zero, A131 can be normalized by system-level W131 as

a131 ⌘ A131
W131

. (7)

The a131 vector points to the coma node in the normalized field coordinates. The coma node
locations for aligned and misaligned states are depicted in Fig. 2(a) and Fig. 2(b), respectively.

3.2. Astigmatism nodes locations

In optical systems without symmetry, third-order astigmatism can have up to two nodes in
the image plane. To compute astigmatism node locations, we first sum the sigma vectors of
the individual surfaces weighted by the corresponding surface aberration contributions for
astigmatism to yield the displacement vector A222 given as [5],

A222 =
’

j
(W222,j

sph�j
sph +W222,j

asph�j
asph) , (8)

where W222,j
sph and W222,j

asph are the spherical and aspherical aberration contributions of surface
j, respectively. Similarly, we then form another vector B

2
222 related to the Shack vector product
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�

Fig. 2. Full Field Displays (FFDs) of the third-order coma (Z7/8) for a Cassegrain telescope
and the node locations for (a) an aligned state where a131 is zero, (b) a misaligned state.

[21,22] of the sigma vectors with themselves in a weighted sum given as [5]

B
2
222 =

’
j
(W222,j

sph�j
sph2
+W222,j

asph�j
asph2), (9)

If we consider the system-level astigmatism for the aligned system, W222, to be non-zero, the
normalization of the A222 vector is given as [5]

a222 ⌘ A222
W222

(10)

where a222 is a normalized vector in field coordinates. Similarly, a normalized vector b
2
222 is

composed of the B
2
222 vector divided by W222, and an additional term that is the Shack vector

product of a222 with itself (i.e., a
2
222), given as [5]

b
2
222 ⌘

B
2
222

W222
� a

2
222, (11)

Isolating the astigmatism and field curvature terms from Eq. (5), referencing the medial focal
plane, and integrating Eq. (10) and Eq. (11), astigmatism may be expressed as [5]

W =
1
2

W222[(H � a222)2 + b
2
222]. ⇢2. (12)

This new characteristic field dependence for astigmatism in the optical system can be solved
according to the Shack vector product for locations where the astigmatic terms go to zero for H

as [5]
0 = (H � a222)2 + b

2
222. (13)

The vectors a222, and ±ib222 comprise a vector from the center of the field to the midpoint
between two astigmatic nodes and two vectors pointing from the endpoint of the a222 vector to
the two astigmatic nodes, respectively, illustrated in Fig. 3(b), compared to the one centered node
for an aligned system shown in Fig. 3(a).

As noted above and in earlier work [5,11], the solutions to Eq. (13) correspond to the field
coordinate location of the astigmatism nodes. In this paper, our goal is to determine these same
node locations directly as vector components, which avoid the need for imaginary numbers, thus
simplifying the calculations for simulations and experimental data. To compute astigmatism
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�

Fig. 3. Full Field Displays (FFDs) of third-order astigmatism (Z5/6) for a Cassegrain
telescope and the node locations: (a) for the aligned state (a222 = 0), (b) for a misaligned
state.

node locations in component form, expressions given in Eq. (13) will be rewritten by using
components of vectors as given below,

H = hx0 , y0i a222 =
⌦
ax , ay

↵
b

2
222 =

⌦
bx , by

↵
(14)

Substituting the above expressions into Eq. (13), we get,

0 = (hx0 , y0i �
⌦
ax , ay

↵
)2 +

⌦
bx , by

↵
. (15)

To compute the square operation given in round brackets in Eq. (15), the Shack Vector Product
will be used, resulting in

�
⌦
bx , by

↵
=
⌦
2(x0 � ax)( y0 � ay), ( y0 � ay)2 � ( x0 � ax)2

↵
. (16)

Subsequently, by setting components placed on the right and the left sides of the equation, we
get two equations to solve for x0 and y0,

�bx = 2 (x0 � ax)
�

y0 � ay
�

�by =
�

y0 � ay
�2 � ( x0 � ax)2 .

(17)

Solving the first equation of Eq. (17) for x0, we obtain,

x0 =
�bx

2( y0�ay) + ax . (18)

Equation (18) is then substituted into the second equation in Eq. (17) to get

�by =
⇣
y2

0 � 2y0ay + a2
y

⌘
�
⇣

�bx
2( y0�ay)

⌘2
. (19)

Solving Eq. (19) for y0, we get four solutions below as Eq. (20-21). The two solutions in Eq. (21)
always result in imaginary numbers due to |by | 

q
bx

2 + by
2, regardless of the sign of by. Thus,

the two solutions corresponding to the two nodes in the astigmatism field are given by Eq. (20).

y0 = ay ±
q
�by+

p
bx

2+by
2

p
2

(20)

y0 = ay ±
q
�by�

p
bx

2+by
2

p
2

(21)
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4. Numerical verification of analytical node calculations

The analytical calculation for the location of the nodes of third-order coma and astigmatism in
Section 3 is verified here using features of commercial ray-tracing software for one, two, and
three-mirror systems, each with some misalignment applied to an optical surface. Using a custom
MATLAB code to communicate with ray-tracing software, the optical model’s relevant parameters
required to calculate the node positions are extracted from each system [23]. Then, the analytical
node positions are calculated as described in Section 3. We then use the ray-tracing software to
numerically create a Full Field Display (FFD) that shows the orientation and magnitude of an
aberration over a prescribed full field-of-view (FFOV). The aberration vs. FFOV data created in
the generation of the FFD is used to numerically solve for the location of the aberration nodes.
The analytical location and the numerical location of each node are then compared to verify
the accuracy of the analytical calculation. We demonstrated this process for three systems: a
Newtonian telescope, a Cassegrain telescope, and a three-mirror anastigmat. A system drawing
and the resulting FFDs for coma and astigmatism are shown in Fig. 4. In each FFD, the red
circles indicate the analytical nodes and the red crosses indicate the numerically solved nodes.
There is close agreement between the theory and simulation for all three cases. Note that the
decenter and tilt used in the misalignment for the Cassegrain telescope was a coma-free pivot
point, also correctly predicted by the theory.

Fig. 4. Numerical verification of the analytical node location calculations computed for
(a) a one-mirror Newtonian telescope, (b) a two-mirror Cassegrain telescope, and (c) a
three-mirror anastigmat telescope. Each red cross in the FFDs indicates the location of a
numerically solved node, and the red circles indicate the location of the analytically computed
nodes.

It is important to note that since the analytical calculation is only valid for third-order
aberrations, optical systems with non-negligible contributions of fifth and higher orders of
aberrations are not appropriate to use for numerical verification. The real-ray based FFDs used
to generate the numerical data are ordered agnostic and, thus, show all orders of aberrations.



Research Article Vol. 31, No. 25 / 4 Dec 2023 / Optics Express 42380

System-level specifications for each of the three systems are provided in Appendix A, including
the applied misalignments (Table 10).

5. Example application of sigma vectors for a two-mirror telescope

To further demonstrate the theory’s application in Sections 2 and 3, we look at the two-mirror
Cassegrain telescope more deeply. The system will be misaligned intentionally. We then compute
the node locations analytically and significantly, confirming the findings for the zeros in the
aberration fields experimentally.

5.1. Cassegrain telescope design

A Ø490 mm aperture, F/12.7, high-precision Cassegrain telescope was used for simulations and
was fabricated for the experimental investigation of sigma vectors. The Cassegrain telescope
comprises a parabolic concave primary mirror, set as the aperture stop in design, and a hyperbolic
convex secondary mirror. The telescope is designed to have di�raction-limited performance over
a± 0.11-degree FFOV. The telescope optical prescription is listed in Table 1. The design was
optimized with a reference wavelength of 632.8 nm, matching the experiment’s wavelength.

Table 1. Optical prescription of the Cassegrain telescope.

Surface Surface Type Radius of Curvature
(mm)

Thickness
(mm)

Refract Mode Conic Constant

OBJECT Plane - Infinity Refract 0

PM Conic �1700 �720.575 Reflect �1.000

SM Conic �300 943.887 Reflect �1.737

IMAGE Plane � � Refract 0

5.2. Calculations of the third-order aberration coefficients

This section uses paraxial ray-trace data to calculate the primary and secondary mirrors’ third-
order astigmatism and coma aberration contributions. Using the optical prescription given in
Table 1, the paraxial ray-trace data, which is also used for the sigma vector calculations, is
gathered through the ray-tracing software and is given in Table 2. The third-order aberration
coe�cients were calculated using this paraxial data (Appendix B, Table 11, Table 12, Table 13,
Table 14) and shown in Table 3.

Table 2. Paraxial ray-tracing data for the Cassegrain telescope

Surface y (mm) u (deg.) ȳ (mm) ū (deg.)
EP 245.000000 0 0 0.004363

PM 245.000000 0.288235 0 �0.004363

SM 37.304364 �0.039515 3.144125 0.0253262

IMG 0.006349 �0.039515 27.049246 0.0253262

Table 3. Aberration surface contributions for third-order astigmatism and coma aberrations

Aberration Contr. W222
sph W222

asph W222 W131
sph W131

asph W131

PM (in waves) 1.06233 0 1.06233 �35.08779 0 �35.08779

SM (in waves) �1.61556 1.39900 �0.21656 17.83462 16.59885 34.43347
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5.3. Analytical calculations and simulations

The misalignments given in Table 4 were introduced into the telescope’s secondary mirror, and
the relevant quantities were gathered for the sigma vector calculations. The secondary mirror was
decentered along the X-axis and Y-axis and tilted around the X-axis and Y-axis. The spherical
contributions of the surfaces’ sigma vectors were calculated by Eq. (1). The direction cosines of
the N, R, and S vectors were obtained by NASA Toolkit functions [24]. The computation results
are given in Table 5. The parameters used to compute the aspherical contributions of the sigma
vector are shown in Table 6.

Table 4. Employed perturbation quantities of the

Cassegrain telescope.

Surface XDE (mm) YDE (mm) ADE (deg.) BDE (deg.)

SM �0.250 0.500 �0.245 �0.095

Table 5. Quantities to compute the spherical contribution sigma vectors.

Parameters Units PM (Stop) SM

li mm �1 944.047693

lXP mm 0 �124.144736

X none 0 0

Y none 0 0

Z none 1 �1

L none 0 0.000009

M none 0 0.000942

N none 1 0.999999

SRL none 0 �0.000833

SRM none 0 0.001667

SRN none 1 �0.999998

ī none �0.0043634 0.014845

�x
sph none 0 0.055551

�y
sph none 0 �0.175777

Table 6. Quantities to compute the aspherical contribution sigma vectors.

Parameter Units PM (Stop) SM

�v
⇤
x mm 0 �0.249999

�v
⇤
y mm 0 0.500004

ȳ mm 0 3.144122

�x
asph none 0 �0.079513

�y
asph none 0 0.159028

5.4. Experimental setup

The auto-collimation experimental setup consists of the Cassegrain telescope, a reference flat
mirror, and an interferometer, as demonstrated in Fig. 5(a). A Fizeau phase-shifting interferometer
with an F/10.7 transmission sphere is confocal to the telescope. The Ø800 mm aperture reference
flat mirror with a motorized tip/tilt stage reflects the output light beam from the telescope.
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The interferometer is placed on a five-axis manual stage that is used to align the focus of the
interferometer onto each field point in the image plane. To align the secondary mirror, the
telescope uses a customized, piezo-actuated, five-axis flexure mechanism. This mechanism is
also used for introducing the misalignments into the telescope for this work. A schematic diagram
of the experimental setup for the field measurements is shown in Fig. 5(b).

�

Fig. 5. Experimental setup: (a) Cassegrain telescope placed on the optical table in the
auto-collimation setup configuration. (b) Schematic diagram of the experimental setup for
the measurements. The Z-axis of the interferometer was fixed at the confocal point for the
zero-field measurement, and it was not changed for the field measurements.

5.5. Experimental results and discussion

The misalignments given in Table 4 were introduced into the Cassegrain telescope for generating
the aberrations. Then, the wavefront error (WFE) measurements were performed interferomet-
rically on a 5⇥ 5 grid of field points, given in Table 7. The results of the raw interferometric
measurement data (piston, tip/tilt are removed from the data) are presented in Fig. 6. In Fig. 6,
interferometric data for the corner points were not accurate because of the inner diameter
dimension limit of the primary mirror that caused obscuration for the interferometer beam.
Therefore, the corner points were excluded from the calculations.

Fig. 6. Interferograms of the measurements for the misaligned state of the telescope (@
�= 632.8 nm). The values on each data depict the RMS WFE for the field points.

In the next step, the third-order astigmatism (Z5/6) and coma (Z7/8) terms were extracted
from the WFE data where Z5/6 and Z7/8 designate Zernike Fringe coe�cients. The magnitudes
of the third-order astigmatism and coma terms were calculated by Z5/6 =

q
Z2

5 + Z2
6 and
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Table 7. 5⇥5 grid of field positions on the image plane simulated.

(-0.250°, 0.250°) (-0.125°, 0.250°) (0°, 0.25°) (0.125°, 0.250°) (0.250°, 0.250°)

(-0.250°, 0.125°) (-0.125°, 0.125°) (0°, 0.125°) (0.125°, 0.125°) (0.250°, 0.125°)

(-0.250°, 0°) (-0.125°, 0°) (0°, 0°) (0.125°, 0°) (0.250°, 0°)

(-0.250°, -0.125°) (-0.125°, -0.125°) (0°, -0.125°) (0.125°, -0.125°) (0.250°, -0.125°)

(-0.250°, -0.250°) (-0.125°, -0.250°) (0°, -0.250°) (0.125°, -0.250°) (0.250°, -0.250°)

Z7/8 =
q

Z2
7 + Z2

8 , respectively. The simulated and experimental interferograms are illustrated
in Fig. 7. As seen in Fig. 7(a), one of the third-order astigmatism nodes is located near the
center of the FOV, and the second one is located close to the field point (-0.125, 0.250). As seen
in Fig. 7(b), the third-order coma node is located between the field points (0.125, 0.250) and
(0.125, 0.125). The interferograms obtained experimentally were also compared to the simulated
interferograms in Fig. 7(c) and Fig. 7(d) to verify the specific aberrational behavior of third-order
astigmatism and coma along the FOV.

�

Fig. 7. Measured and simulated interferograms: (a) Experimental interferograms for
third-order astigmatism (Z5/6) and (b) third-order coma (Z7/8) for the customized Cassegrain
telescope. (c) Simulated interferograms for Z5/6 and (d) Z7/8 for the misaligned Cassegrain
telescope.

The node locations were found by fitting the related Zernike Fringe coe�cients, measured from
field rows and columns around the nodes, to the appropriate polynomials concerning the field
dependencies of the aberrations. The coma node location was directly determined as a result of
the polynomial fitting process as the endpoint of the a131 ⇥HFOV vector where HFOV designates
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half field of view (i.e., 0.25-deg). The calculation of the components of the a222 ⇥ HFOV vector
was performed by taking the midpoint of the astigmatism nodes. The results are given in Table 8.

Table 8. Calculated aberration field vectors for the misaligned state of the Cassegrain telescope.

Aberration field vectors
Simulation Experimental

X-comp. Y-comp. X-comp. Y-comp.

(a222 � ib222) ⇥ HFOV �0.1165 0.3030 �0.1046 0.3021

(a222 + ib222) ⇥ HFOV �0.0023 �0.0036 �0.0141 �0.0039

a222 ⇥ HFOV �0.0594 0.1497 �0.0594 0.1491

a131 ⇥ HFOV 0.1257 0.1891 0.1373 0.1811

a222 �0.2376 0.5988 �0.2374 0.5964

a131 0.5028 0.7564 0.5492 0.7244

After obtaining the a222 and a131 aberration field vectors experimentally, Eq. (9), and Eq. (13)
were used to compute the sigma vectors contribution variables. Four equations were used to solve
for �sph

SM,x, �
sph
SM,y, �

asph
SM,x, and �asph

SM,y. Then, the components of the sigma vector contributions
were computed as given in Table 9. The experimental results are consistent with the computed
analytical results presented in Table 9 within 1.63%. Hence, the experimental results validate the
simulations and the analytical calculations predicted by NAT.

Table 9. Comparison of the calculated sigma vectors experimentally and by simulation

Sigma vectors
contributions

Simulation Experimental

X-comp. Y-comp. X-comp. Y-comp.

�SM
sph 0.055551 �0.175776 0.054662 �0.174550

�SM
asph �0.079513 0.159028 �0.080401 0.158988

To investigate the environmental e�ects such as air turbulence, vibration, and temperature on
the stability of the interferometric measurements, a statistical analysis of the measurements was
also carried out by performing multiple measurements on a single field point. In Fig. 8, nine
measurements obtained from the field point [0.125, -0.250] are presented for three parameters

Fig. 8. (a) Statistical analysis of the measurements at the field point (0.125°, -0.250°)
in the misaligned state of the telescope; (b) the deviation from the mean values shows
nine consecutive measurements data for that field point in three di�erent variables (@�=
632.8 nm).
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of Z5/6, Z7/8, and RMS WFE. In Fig. 8(a), the amplitudes of measurements are depicted, and
in Fig. 8(b), deviations from the average value for each measurement are demonstrated. The
standard deviations for the Z5/6, Z7/8, and WFE (RMS) parameters are calculated to be 0.0058�,
0.0029�, and 0.0022�, respectively, which points to the extreme stability of the experimental
setup.

6. Conclusion

In this work, we presented calculations for computing the sigma vectors in NAT, verified those
calculations for one-, two-, and three-mirror telescopes, and experimentally validated the findings
for a two-mirror telescope. The analytical calculations for a general optical system were presented
in the first step. The sigma vectors for three misaligned telescopes were introduced in the
second step using the given mathematical background simulations and analytical calculations.
The simulations were validated experimentally on the Cassegrain telescope, whose secondary
mirror was intentionally misaligned in the equivalent amount as presented in the simulations.
In experiments, interferometric wavefront measurements were performed on twenty-one field
points, and third-order astigmatism and coma were extracted from data to find the locations of the
nodes. The sigma vectors were calculated experimentally after locating the nodes in the image
plane. The simulations and analytical calculations agreed to within 1.63%, which validates the
calculation of the sigma vectors in NAT for the first time.

The accuracy of the measurements was also checked by employing statistical analysis that
confirmed that environmental e�ects did not limit the measurements. The primary source of
error was the manual positioning of locating the interferometer focus on the field points. The
study showed that sigma vectors in NAT are a powerful tool for the alignment of complex modern
telescope systems as they can facilitate and expedite the telescope alignment. Generally, these
telescope systems have large image planes. Field dependency-based di�raction-limited telescope
alignment over the full image plane can be achieved by sigma vectors in a fast and accurate
way. The investigation and experimentation of the inverse problem of utilizing the sigma vector
for telescope alignment in a deterministic computer-aided procedure is an ongoing study and
future standalone contribution. For future studies, new small-size interferometers with motorized
stages can greatly expedite the whole measurement time. Moreover, point spread function
(PSF) decomposition may be additionally used with a suitable experimental setup, extending the
potential applications, such as measuring the telescope’s image quality.

Appendix A: specifications for the systems used for verification in Section 4.

Table 10. Specifications for the systems used for verification in Section 4.

Parameter Units 1-mirror 2-mirror 3-mirror

Focal length mm 100 6196 10340

FFOV deg 2 0.5 1

EPD mm 25 490 2800

F-number � F/4 F/12.6 F/3.7

Perturbed surface � Primary Secondary Secondary

Perturbation
amount

� 100 µm Y-Decenter
0.5° X-Tilt

�377 µm X-Decenter
0.167° X-Tilt

(a coma-free pivot point)

1 mm X-Decenter
0.05° Y-Tilt
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Appendix B: calculating third-order aberration coefficients from paraxial rays.

Table 11. First-order quantities.

Parameter Description Parameter Description

y Marginal ray height at a surface R Radius of curvature of a surface

ȳ Chief ray height at a surface t Thickness after a surface

u Marginal ray angle before a surface k Conic constant of a surface

u0 Marginal ray angle after a surface A Asphere coe�cient of a surface

ū Chief ray angle before a surface lo Distance from a surface to the local object

ū0 Chief ray angle after a surface li Distance from a surface to the local image

n Refractive index before a surface lEP Distance from the surface to the local entrance pupil

n0 Refractive index after a surface lXP Distance from the surface to the local exit pupil

i Marginal ray angle of incidence ; Optical power of a surface

ī Chief ray angle of incidence H Lagrange invariant

Table 12. Paraxial ray-tracing equations.

y at the next surface = y + n0u0 t
n0 i = u + y

R lEP = � ȳ
ū

ȳ at the next surface = ȳ + n0ū0 t
n0 ī = ū + ȳ

R lXP = � ȳ
ū0

n0u0 = n u � y; lo = � y
u H = nūy � nuȳ

n0ū0 = n ū � ȳ; li = � y
u0 ; = (n0�n)

R

Table 13. Third-order coefficients [25].

Spherical coe�cient Aspherical coe�cient

SI,sph = � 1
8 (ni)2

⇣
u0
n0 �

u
n

⌘
y SI,asph = A(n0 � n)y4 + 1

8R3 k(n0 � n)y4

Table 14. Third-order astigmatism and coma contributions.

Third-order astigmatism contributions Third-order coma contributions

W222
sph = 4

⇣
ī
i

⌘2
SI,sph W131

sph = 4
⇣

ī
i

⌘
SI, sph

W222
asph = 4

⇣
ȳ
y

⌘2
SI,asph W131

asph = 4
⇣

ȳ
y

⌘
SI, asph
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