
Systems & Control Letters 187 (2024) 105782

0167-6911/© 2024 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

AQ-learning algorithm forMarkov decision processes with continuous state
spaces✩

Jiaqiao Hu a, Xiangyu Yang b,∗, Jian-Qiang Hu c, Yijie Peng d
a Department of Applied Mathematics & Statistics, State University of New York, Stony Brook, NY 11794-3600, USA
b School of Management, Shandong University, Jinan 250100, China
c School of Management, Fudan University, Shanghai 200433, China
d Guanghua School of Management, Peking University, Beijing 100871, China

A R T I C L E I N F O

Keywords:
Stochastic optimal control
Optimization algorithms
Markov processes
Statistical learning

A B S T R A C T

We propose an online algorithm for solving a class of continuous-state Markov decision processes. The
algorithm combines classical Q-learning with an asynchronous averaging procedure, which allows Q-function
estimates at sampled state–action pairs to be adaptively updated based on observations collected along a
single sample trajectory. These estimates are then used to iteratively construct an interpolation-based function
approximator of the Q-function. We prove the convergence of the algorithm and provide numerical results to
illustrate its performance.

1. Introduction

Markov decision processes (MDPs) provide an important framework
to study sequential decision making problems arising in a variety of
disciplines. However, when modeled as MDPs, due to the size and
complexity of many practical problems, it is often not feasible to ex-
plicitly specify some of the model parameters (e.g., transition dynamics
and random rewards). This has led to the development of model-free
reinforcement learning (RL) techniques [1–5] that aim to approximate
optimal solutions by using knowledge gained from simulation samples
or system trajectories. Arguably one of the most popular and suc-
cessful RL techniques is Q-learning [6]. The method can be viewed
as a simulation-based approach for solving the well-known Bellman’s
equation and forms the foundation for many other algorithms in the
field; see, e.g., [1,7–9] and references therein. Since classical Q-learning
maintains a lookup table to store function estimates and requires all
state–action pairs to be visited infinitely often, the applications of the
method and its extensions are mostly centered around problems with
finite state spaces.

In this paper, we propose a generalization of Q-learning for solv-
ing a class of infinite-horizon discounted MDPs with continuous state

✩ The work of Jiaqiao Hu was supported by the U.S. National Science Foundation under grant CMMI-2027527. The work of Xiangyu Yang was supported in
part by the major project of National Natural Science Foundation of China (NSFC) under Grant 72293582, in part by the China Postdoctoral Science Foundation
under Grant 2023M732054, in part by the Shandong Provincial Natural Science Foundation under Grant ZR2023QG159, and in part by the Shandong Postdoctoral
Science Foundation under Grant SDCX-RS-202303004. The work of Jian-Qiang Hu was supported by National Natural Science Foundation of China (NSFC) under
Grants 72033003 and 71720107003. The work of Yijie Peng was supported by National Natural Science Foundation of China (NSFC) under Grants 72250065,
72022001, and 71901003.
∗ Corresponding author.
E-mail addresses: jiaqiao.hu.1@stonybrook.edu (J. Hu), yangxiangyu@email.sdu.edu.cn (X. Yang), hujq@fudan.edu.cn (J.-Q. Hu), pengyijie@pku.edu.cn

(Y. Peng).

spaces but small (finite) action spaces. Such problems are sometimes
termed ‘‘discrete decision processes’’ and arise frequently in industrial
applications such as inventory control, optimal machine maintenance,
financial derivative pricing, and many others; see, e.g., [10]. Our
algorithm replaces the table-based representation of the Q-function
with an interpolation-based function approximator. In particular, to
achieve the desired transition from a (discrete) finite to an uncountable
state space setting (where the probability of revisiting a previously
encountered state is typically zero), the construction of the function
approximator is coupled with a technique adapted from the simulation
optimization literature called the shrinking ball method [11]. Such a
technique allows the algorithm to learn the Q-value at a generated
state–action pair by averaging estimates obtained at all other pairs
that are close to it, avoiding the need for expending a significant
amount of simulation effort at every visited state–action pair. These
Q-value estimates are then retained at each step and used online in
an interpolation-based strategy to update the function approximator.
Under appropriate conditions, we show that the sequence of function
approximators converges uniformly to the optimal Q-function with
probability one.

https://doi.org/10.1016/j.sysconle.2024.105782
Received 4 July 2022; Received in revised form 31 May 2023; Accepted 20 March 2024

https://www.elsevier.com/locate/sysconle
https://www.elsevier.com/locate/sysconle
mailto:jiaqiao.hu.1@stonybrook.edu
mailto:yangxiangyu@email.sdu.edu.cn
mailto:hujq@fudan.edu.cn
mailto:pengyijie@pku.edu.cn
https://doi.org/10.1016/j.sysconle.2024.105782

Systems & Control Letters 187 (2024) 105782

2

J. Hu et al.

Perhaps the most studied value function approaches for solving
continuous-state MDPs are the fitted value and Q-iterations [8,12–16].
These methods are typically off-line and use a pre-selected batch of
transition samples under a supervised learning framework to compute
an approximation to the value/Q-function. An online alternative is the
soft-state aggregation method of [17], which maps the state space into
a small number of clusters. The method generalizes the usual state
aggregation in the sense that each visited state can belong to multiple
clusters with certain clustering probabilities. Another online method is
the interpolation-based Q-learning proposed in [18], which considers
function approximators that locally interpolate Q-value estimates ob-
tained on a given set of basis points. Melo and Ribeiro [19] also study a
version of Q-learning based on linear function approximation and show
the (local) convergence of the algorithm under the geometric ergodicity
assumption on the underlying Markov chain. Of particular relevance
to our work is the nearest neighbor regression method of [20], which
estimates the Q-value at a given state–action pair using observations
that lie in its neighborhood, a strategy that is very similar to our
proposed shrinking ball method. Their approach uses a finite-state
discretization of the original MDP and updates the Q-values over the
discretized space all at once in a roughly synchronous manner.

We remark that with the exception of [19], all aforementioned
approaches resort to some forms of state space discretization, whereas
our algorithm is discretization-free and asynchronously approximates
the Q-function based on a single sample trajectory. In addition, the
convergence analysis of existing approaches are almost all based on
the non-expansiveness property of the function approximator. Our
approach, on the other hand, does not require the approximator to
be a non-expansion and thus allows the use of more flexible function
approximation tools.

The rest of this paper is structured as follows. We present the pro-
posed algorithm in Section 2 and analyze its convergence in Section 3.
A simple illustrative example is provided in Section 4. We conclude the
paper in Section 5.

2. Q-learning for continuous-state MDPs

We consider an infinite-horizon discounted MDP model (𝑆,𝐴, 𝑝, 𝑅,
𝛽), where the state space 𝑆 is a compact connected subset of ℜ𝑑 , the
action space 𝐴 is a finite set, 𝑝(𝑠′|𝑠, 𝑎), 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴 is a Markov
transition density, 𝑅(⋅, ⋅) ∶ 𝑆 × 𝐴 → ℜ+ ∪ {0} is a non-negative reward
function, and 𝛽 ∈ (0, 1) is the discount factor. For simplicity, we assume
that all actions 𝑎 ∈ 𝐴 are admissible at all states 𝑠 ∈ 𝑆.

Denote by 𝛱 the set of stationary deterministic Markovian policies,
where each 𝜋 ∈ 𝛱 is a mapping from 𝑆 to 𝐴 with 𝜋(𝑠) signifying
the action taken at state 𝑠. Let 𝑠𝑡 be the state of the system at time
𝑡 and 𝑎𝑡 be the action applied at 𝑠𝑡. For an initial state 𝑠0 = 𝑠,
the value function associated with a policy 𝜋 is given by 𝑉 𝜋 (𝑠) ∶=

𝐸
[∑∞

𝑡=0 𝛽
𝑡𝑅(𝑠𝑡, 𝜋(𝑠𝑡))|𝑠0 = 𝑠

]
. The goal is to find an optimal policy

𝜋∗ ∈ 𝛱 that attains the supremum of 𝑉 𝜋 , i.e.,

𝑉 ∗(𝑠) ∶= 𝑉 𝜋∗ (𝑠) = sup
𝜋∈𝛱

𝑉 𝜋 (𝑠)

for all initial states 𝑠 ∈ 𝑆.
It is well-known that under mild assumptions, the optimal value

function exists and is given by the unique solution to the Bellman’s
equation, which, when stated in terms of the Q-function 𝑄∗(𝑠, 𝑎) ∶=

𝑅(𝑠, 𝑎) + 𝛽 ∫
𝑆
𝑉 ∗(𝑠′)𝑝(𝑠′|𝑠, 𝑎)𝑑𝑠′, can be put in the following equivalent

form:

𝑄∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛽 ∫𝑆 max
𝑏∈𝐴

𝑄∗(𝑠′, 𝑏)𝑝(𝑠′|𝑠, 𝑎)𝑑𝑠′. (1)

In a model-free setting, the transition density 𝑝 and/or the reward
𝑅 are unknown. RL algorithms such as Q-learning (when 𝑆 is finite)
often work with a randomized (learning) policy 𝜋𝑡(𝑠, 𝑎), 𝑎 ∈ 𝐴 and in-
crementally compute an approximate solution to (1) based on transition
samples generated from 𝜋𝑡. Such a policy can be viewed as an action

selection distribution that specifies the chance of taking an action 𝑎 ∈

𝐴 at time 𝑡 when state 𝑠 is encountered. Throughout the paper, we
consider the case where the reward takes the form of an expectation
𝑅(𝑠𝑡, 𝑎𝑡) = 𝐸[𝑟(𝑠𝑡, 𝑎𝑡, 𝜔𝑡)], which cannot be evaluated exactly. Instead,
only the sample reward 𝑟(𝑠𝑡, 𝑎𝑡, 𝜔𝑡) is available, where 𝜔𝑡’s are i.i.d.
random vectors taking values from some common set.

2.1. Algorithm description

Our algorithm aims at approximating the solution to (1) by using a
sequence of function approximators. In particular, for each 𝑎 ∈ 𝐴, we
let Q𝑡(⋅, 𝑎) be the function approximator of 𝑄

∗(⋅, 𝑎) constructed at time 𝑡
and 𝑄𝑡(𝑠𝑡, 𝑎𝑡) be the (point) estimate of 𝑄

∗(𝑠𝑡, 𝑎𝑡) at the state–action pair
(𝑠𝑡, 𝑎𝑡) obtained at time 𝑡. Denote by 𝛬𝑡 the collection of all state–action
pairs visited up to time 𝑡. Let 𝐵(𝑠, 𝑟) be an open ball centered at 𝑠 with
radius 𝑟 > 0 and {𝑟𝑡} be the radiuses of a sequence of shrinking balls.
For two state–action pairs (𝑠𝑙 , 𝑎𝑙) and (𝑠𝑡, 𝑎𝑡) visited at distinct times
𝑙 < 𝑡, we use

𝐼𝑡(𝑠𝑙 , 𝑎𝑙) =

{
1 if 𝑠𝑡 ∈ 𝐵(𝑠𝑙 , 𝑟𝑡) and 𝑎𝑡 = 𝑎𝑙;
0 otherwise

to indicate whether the pair (𝑠𝑡, 𝑎𝑡) lies in the vicinity of (𝑠𝑙 , 𝑎𝑙). The
detailed algorithmic steps are then presented below.
Q-learning for Continuous-State MDPs

Step 0: Select a policy {𝜋𝑡}, an initial state 𝑠0, learning rates 𝛼𝑡(𝑠, 𝑎) ∈
(0, 1) ∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐴, and ∀𝑡, shrinking ball radiuses {𝑟𝑡}, and a
sequence of positive indices {𝑖𝑡}. Set Q0(𝑠, 𝑎) = 0 ∀ 𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐴.
Set 𝛬0 = ∅ and the iteration counter 𝑡 = 0.

Step 1: Select an action 𝑎𝑡 ∼ 𝜋𝑡(𝑠𝑡, 𝑎), observe the next state 𝑠𝑡+1 ∼

𝑝(𝑠|𝑠𝑡, 𝑎𝑡), and obtain the random reward 𝑟(𝑠𝑡, 𝑎𝑡, 𝜔𝑡). Set 𝛬𝑡+1 =

𝛬𝑡 ∪ {(𝑠𝑡, 𝑎𝑡)}.

Step 2: Compute an estimate of 𝑄∗(𝑠𝑡, 𝑎𝑡) at (𝑠𝑡, 𝑎𝑡) as

𝑄𝑡(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡, 𝜔𝑡) + 𝛽max
𝑏∈𝐴

Q𝑡(𝑠𝑡+1, 𝑏); (2)

For each previously visited state–action pair (𝑠𝑙 , 𝑎𝑙) ∈ 𝛬𝑡, update
the point estimate as

𝑄𝑡(𝑠𝑙 , 𝑎𝑙) = (1 − 𝛼𝑡(𝑠𝑙 , 𝑎𝑙)𝐼𝑡(𝑠𝑙 , 𝑎𝑙))𝑄𝑡−1(𝑠𝑙 , 𝑎𝑙)

+ 𝛼𝑡(𝑠𝑙 , 𝑎𝑙)𝐼𝑡(𝑠𝑙 , 𝑎𝑙)𝑄𝑡(𝑠𝑡, 𝑎𝑡). (3)

Step 3: If 𝑎𝑡 = 𝑎, then update Q𝑡(⋅, 𝑎) to obtain a new approximator
Q𝑡+1(⋅, 𝑎) that interpolates the data

{(
(𝑠′, 𝑎′), 𝑄𝑡(𝑠

′, 𝑎′)
)
∶ (𝑠′, 𝑎′) ∈

𝛬𝑖𝑡
, 𝑎′ = 𝑎

}
. Set 𝑡 = 𝑡 + 1 and go to Step 1.

The algorithm requires a separate function approximator for every
action 𝑎 ∈ 𝐴. These are primarily used as predictors to predict the
Q-values at unsampled locations. At each iteration 𝑡, a point estimate
of 𝑄∗(𝑠𝑡, 𝑎𝑡) at the current state–action pair (𝑠𝑡, 𝑎𝑡) is formed in (2)
based on the predicted value at the sampled next state. This step is
essentially a simulation-based version of (1) with the approximators
Q𝑡(⋅, 𝑏) replacing 𝑄∗(⋅, 𝑏). To estimate the integral involved in (1),
in Eq. (3) of Step 2, we have used an improved version of the shrink ball
method proposed in [11] for solving noisy optimization problems. The
key idea is not to allocate a large amount of simulation replications to
each visited state–action pair, but to resort to a form of asynchronous
recursion, so that the estimate at a given pair can be continuously
updated by averaging the performance at all other pairs that lie within
a certain distance from it. In particular, for each (𝑠𝑙 , 𝑎𝑙) generated prior
to time 𝑡, if 𝑎𝑡 = 𝑎𝑙 and 𝑠𝑡 falls in the 𝐵(𝑥𝑙 , 𝑟𝑡) neighborhood of 𝑠𝑙,
then the current estimate 𝑄𝑡−1(𝑠𝑙 , 𝑎𝑙) is adjusted in (3) by taking into
account the new information 𝑄𝑡(𝑠𝑡, 𝑎𝑡). The hope is that the simulation
noises (due to the uncertainties in the random rewards and transitions)
will average out as the number of iterations increases, whereas the bias

Systems & Control Letters 187 (2024) 105782

3

J. Hu et al.

(due to the difference between the Q-values at two different pairs) can
be eliminated by gradually sending the radius 𝑟𝑡 to zero.

Since (3) is an asynchronous procedure, the Q-value estimates at
sampled pairs are updated at different frequencies. In particular, the
estimates at pairs generated in more recent iterations tend to be up-
dated less frequently, and hence are less reliable than those obtained
at pairs sampled in early iterations. Consequently, the construction of
the function approximator Q𝑡+1 at Step 3 is only based on data at
pairs collected prior to a certain time 𝑖𝑡 < 𝑡. In Section 3, we provide
sufficient conditions on the increasing rate of 𝑖𝑡 to ensure that estimates
at all pairs in 𝛬𝑖𝑡

are updated sufficiently often to yield reasonable
Q-value estimates.

Note that in a finite state space setting, each ball 𝐵(𝑠𝑙 , 𝑟𝑡) will only
contain the state 𝑠𝑙 itself when the radius 𝑟𝑡 becomes sufficiently small.
Thus, if the approximator Q𝑡 is replaced with a full state–action table,
then the two Eqs. (2) and (3), when combined, turn out to be identical
to the classical Q-learning method. From this viewpoint, the algorithm
can be regarded as a natural generalization of Q-learning for solving
continuous-state MDPs.

3. Convergence analysis

Define 𝜎-fields ℱ̃𝑡 = 𝜎{𝑠0, 𝑎0, 𝜔0,… , 𝑠𝑡, 𝑎𝑡, 𝜔𝑡} and ℱ𝑡 = 𝜎

{𝑠0, 𝑎0, 𝜔0, 𝑠1, 𝑎1, 𝜔1,… , 𝑠𝑡, 𝑎𝑡}. For a state–action pair (𝑠𝑙 , 𝑎𝑙) visited at
iteration 𝑙 < 𝑡, we let 𝑁𝑡(𝑠𝑙 , 𝑎𝑙) =

∑𝑡

𝑗=𝑙+1 𝐼𝑗 (𝑠𝑙 , 𝑎𝑙), indicating the number
of times the neighborhoods 𝐵(𝑠𝑙 , 𝑟𝑗) ∩ {𝑎𝑗 = 𝑎𝑙} of (𝑠𝑙 , 𝑎𝑙) have been
visited between times 𝑙 + 1 and 𝑡. We also let 𝛬𝑡(𝑎) = {𝑠′ ∶ (𝑠′, 𝑎′) ∈

𝛬𝑡, 𝑎
′ = 𝑎} be the set of states sampled up to 𝑡 at which action 𝑎 is taken.

For two states 𝑠, 𝑠′ ∈ 𝑆, their Euclidean distance is denoted by 𝑑(𝑠, 𝑠′),
and for a set of states 𝐶 ⊂ 𝑆, the distance between 𝑠 and 𝐶 is given by
𝑑(𝑠, 𝐶) ∶= inf 𝑠′∈𝐶 𝑑(𝑠, 𝑠′). For two sequences of real numbers {𝑢𝑡} and
{𝑣𝑡}, we say that 𝑢𝑡 = 𝛺(𝑣𝑡) if there exist constants 𝑐, 𝐾 > 0 such that
𝑢𝑡 ≥ 𝑐𝑣𝑡 for all 𝑡 ≥ 𝐾. Finally, to simplify the analysis, we assume that
the learning rate is a function of 𝑁𝑡(𝑠𝑙 , 𝑎𝑙), i.e., 𝛼𝑡(𝑠𝑙 , 𝑎𝑙) = 𝑓 (𝑁𝑡(𝑠𝑙 , 𝑎𝑙))

for some function 𝑓 . We impose the following regularity conditions on
the MDP model and algorithm parameters:
Assumptions:

A1. 𝑅𝑚𝑎𝑥 ∶= sup𝑠,𝑎,𝜔 𝑟(𝑠, 𝑎, 𝜔) < ∞ and there exists a constant 𝐾𝑅 < ∞

such that |𝑅(𝑠, 𝑎) − 𝑅(𝑠′, 𝑎)| ≤ 𝐾𝑅𝑑(𝑠, 𝑠
′) ∀ 𝑎 ∈ 𝐴.

A2. For each 𝑎 ∈ 𝐴, the transition density 𝑝(𝑠′|𝑠, 𝑎) is continuous in both
𝑠′ and 𝑠, and 𝑝(𝑠′|𝑠, 𝑎) > 0 ∀ 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴. In addition,
|𝑝(𝑠′′|𝑠, 𝑎) − 𝑝(𝑠′′|𝑠′, 𝑎)| ≤ 𝐾𝑝(𝑠

′′)𝑑(𝑠, 𝑠′) ∀ 𝑠, 𝑠′, 𝑠′′ ∈ 𝑆, 𝑎 ∈ 𝐴, and
𝐾𝑝 ∶= ∫

𝑆
𝐾𝑝(𝑠)𝑑𝑠 < ∞.

A3. For each 𝑎 ∈ 𝐴, Q𝑡(𝑠, 𝑎)’s are Lipschitz continuous with their Lipschitz
constants uniformly bounded by 𝐿(𝑎) < ∞ w.p.1.

A4. 𝑓 (𝑖) ∈ (0, 1) ∀ 𝑖,
∑∞

𝑖=1 𝑓 (𝑖) = ∞, and
∑∞

𝑖=1 𝑓
2(𝑖) < ∞.

A5. 𝑖𝑡 = ⌊𝑡𝛾1⌋ for 𝛾1 ∈ (0, 1), where ⌊⋅⌋ is the rounding operator.

A6. The shrinking ball radius is non-increasing in 𝑡 and satisfies 𝑟𝑡 =

𝛺(𝑡−𝛾2) for some constant 𝛾2 ∈ (0,
1

2𝑑
).

A7. There exists a constant 𝛾3 > 0 with 𝛾3 + 𝛾2𝑑 <
1

2
such that the action

selection probability satisfies inf 𝑠∈𝑆 𝜋𝑡(𝑠, 𝑎) = 𝛺(𝑡−𝛾3) ∀ 𝑎 ∈ 𝐴 w.p.1.

We briefly comment on these assumptions. A1 and A2 guarantee
that the Q-function is sufficiently smooth, which in turn justifies the use
of the shrinking ball method. A3 requires the function approximators
to be globally Lipschitz. Intuitively, this allows an easy quantification
of their prediction errors at unvisited state–action pairs. Note that this
condition does not require any prior knowledge about the Lipschitz
constants and is weaker than the typical non-expansiveness assumption
used in the existing literature. A4−A6 are conditions on the algorithm

input parameters. A7 suggests the learning policy should be persistently
exploratory so that every action will be sampled with a strictly positive
probability at each visited state. The degree of exploration may decay
with time, which permits policies that are greedy in the limit [21]. In
fact, the condition, together with A2, ensures that the Markov chain
under the learning policy is Harris recurrent (e.g., [22]).

We begin by stating a number of preliminary results (Lemmas 1–4)
that will be used in our convergence analysis. The first result shows
that for an MDP characterized by A1 and A2, the optimal Q-function
is Lipschitz continuous. In our subsequent analysis, we will denote its
associated Lipschitz constant by 𝐿𝑄.

Lemma 1. If Assumptions A1 and A2 hold, then for every fixed 𝑎 ∈ 𝐴, the
optimal Q-function 𝑄∗(𝑠, 𝑎) is Lipschitz continuous with Lipschitz constant
𝐿𝑄 ∶= 𝐾𝑅 +

𝛽𝐾𝑝𝑅𝑚𝑎𝑥

1−𝛽
.

Proof. Fix an 𝑎 ∈ 𝐴 and write (1) as 𝑄∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) +

𝛽 ∫
𝑆
𝑉 ∗(𝑠′)𝑝(𝑠′|𝑠, 𝑎)𝑑𝑠′. By A1, it is easy to see that 𝑉 ∗(𝑠) ≤ 𝑅𝑚𝑎𝑥

1−𝛽
, ∀ 𝑠 ∈

𝑆. Consequently, for any two states 𝑠, 𝑠′ ∈ 𝑆, it follows from A1 and
A2 that

|𝑄∗(𝑠, 𝑎) −𝑄∗(𝑠′, 𝑎)| ≤ |𝑅(𝑠, 𝑎) − 𝑅(𝑠′, 𝑎)|

+ 𝛽 ∫𝑆 𝑉 ∗(𝑠′′)|𝑝(𝑠′′|𝑠, 𝑎) − 𝑝(𝑠′′|𝑠′, 𝑎)|𝑑𝑠′′

≤ 𝐾𝑅𝑑(𝑠, 𝑠
′) +

𝛽𝑅𝑚𝑎𝑥

1 − 𝛽 ∫𝑆 𝐾𝑝(𝑠
′′)𝑑(𝑠, 𝑠′)𝑑𝑠′′

=
(
𝐾𝑅 +

𝛽𝐾𝑝𝑅𝑚𝑎𝑥

1 − 𝛽

)
𝑑(𝑠, 𝑠′),

which shows the Lipschitz continuity of 𝑄∗(𝑠, 𝑎).

The following result implies that as the number of iterations 𝑡 → ∞,
the shrinking ball neighborhoods of all state–action pairs sampled prior
to time 𝑖𝑡 will all be visited infinitely often (i.o).

Lemma 2. If A2, A5, A6, and A7 hold, then for any state–action pair
(𝑠𝑙 , 𝑎𝑙) ∈ 𝛬𝑖𝑡

, 𝑃 (lim𝑡→∞ 𝑁𝑡(𝑠𝑙 , 𝑎𝑙) = ∞) = 1.

Proof. By A2, since 𝑆 is compact and 𝑝(𝑠′|𝑠, 𝑎) is continuous in both 𝑠′

and 𝑠, from the extreme value theorem, 𝑝(𝑠′|𝑠, 𝑎) attains its minimum
for each 𝑎 ∈ 𝐴. In addition, because 𝑝(𝑠′|𝑠, 𝑎) > 0 ∀ 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴 and
𝐴 is finite, we must have that 𝛿 ∶= min𝑎∈𝐴 inf 𝑠,𝑠′∈𝑆 𝑝(𝑠′|𝑠, 𝑎) > 0. It thus
follows from A6 that 𝑃 (𝑠𝑡 ∈ 𝐵(𝑠𝑙 , 𝑟𝑡)|𝑠𝑡−1 = 𝑠, 𝑎) = ∫

𝐵(𝑠𝑙 ,𝑟𝑡)
𝑝(𝑠′|𝑠, 𝑎)𝑑𝑠′ ≥

𝛿𝑐𝐵𝑡
−𝛾2𝑑 for some constant 𝑐𝐵 > 0 when 𝑡 is sufficiently large. On the

other hand, by A7, there exist constants 𝑐𝜋 > 0, 𝐾 > 0 such that
inf 𝑠 𝜋𝑡(𝑠, 𝑎) ≥ 𝑐𝜋

𝑡𝛾3
for all 𝑡 ≥ 𝐾. Let 𝜌𝑡 > 0 satisfy 𝜌𝑡 ≤ (𝑡−𝑖𝑡)𝛿𝑐𝐵𝑐𝜋 𝑡

−(𝛾2𝑑+𝛾3)

and 𝐼{⋅} be the indicator function. We have for a sufficiently large 𝑡 that

𝑃 (𝑁𝑡(𝑠𝑙 , 𝑎𝑙) ≤ 𝜌𝑡)

= 𝑃
(𝑡∑

𝑖=𝑙+1

𝐼{𝑠𝑖 ∈ 𝐵(𝑠𝑙 , 𝑟𝑖) ∩ 𝑎𝑖 = 𝑎𝑙} ≤ 𝜌𝑡
)

≤ 𝑃
(𝑡∑

𝑖=𝑖𝑡+1

𝐼{𝑠𝑖 ∈ 𝐵(𝑠𝑙 , 𝑟𝑖) ∩ 𝑎𝑖 = 𝑎𝑙} ≤ 𝜌𝑡
)

= 𝑃
(𝑡∑

𝑖=𝑖𝑡+1

𝐼{𝑠𝑖 ∉ 𝐵(𝑠𝑙 , 𝑟𝑖) ∪ 𝑎𝑖 ≠ 𝑎𝑙} ≥ 𝑡 − 𝑖𝑡 − 𝜌𝑡
)

= 𝑃
(
𝑒
𝜆
∑𝑡

𝑖=𝑖𝑡+1
𝐼{𝑠𝑖∉𝐵(𝑠𝑙 ,𝑟𝑖)∪𝑎𝑖≠𝑎𝑙} ≥ 𝑒𝜆(𝑡−𝑖𝑡−𝜌𝑡)

)
(4)

for any given constant 𝜆 > 0, where the inequality above is due to the
fact that 𝑙 ≤ 𝑖𝑡. Next, by applying Markov’s inequality and noticing that
the shrinking ball radius is non-increasing (A6), we obtain the following
bound on (4):

(4) ≤ 𝑒−𝜆(𝑡−𝑖𝑡−𝜌𝑡)𝐸
[
𝑒
𝜆
∑𝑡

𝑖=𝑖𝑡+1
𝐼{𝑠𝑖∉𝐵(𝑠𝑙 ,𝑟𝑖)∪𝑎𝑖≠𝑎𝑙}]

≤ 𝑒−𝜆(𝑡−𝑖𝑡−𝜌𝑡)𝐸
[
𝑒
𝜆
∑𝑡

𝑖=𝑖𝑡+1
𝐼{𝑠𝑖∉𝐵(𝑠𝑙 ,𝑟𝑡)∪𝑎𝑖≠𝑎𝑙}]. (5)

Systems & Control Letters 187 (2024) 105782

4

J. Hu et al.

Note that

𝐸
[
𝑒𝜆𝐼{𝑠𝑖∉𝐵(𝑠𝑙 ,𝑟𝑡)∪𝑎𝑖≠𝑎𝑙}|ℱ̃𝑖−1

]

= (𝑒𝜆 − 1)[1 − 𝑃 (𝑠𝑖 ∈ 𝐵(𝑠𝑙 , 𝑟𝑡) ∩ 𝑎𝑖 = 𝑎𝑙)|ℱ̃𝑖−1] + 1

= (𝑒𝜆 − 1)[1 − 𝑃 (𝑎𝑖 = 𝑎𝑙|𝑠𝑖 ∈ 𝐵(𝑠𝑙 , 𝑟𝑡), ℱ̃𝑖−1)

× 𝑃 (𝑠𝑖 ∈ 𝐵(𝑠𝑙 , 𝑟𝑡)|ℱ̃𝑖−1)] + 1

≤ (𝑒𝜆 − 1)
[
1 − 𝛿𝑐𝐵𝑐𝜋 𝑡

−𝛾2𝑑 𝑖−𝛾3
]
+ 1, (6)

where the inequality follows because inf 𝑠 𝜋𝑖(𝑠, 𝑎) ≥ 𝑐𝜋

𝑖𝛾3
and 𝑃 (𝑠𝑖 ∈

𝐵(𝑠𝑙 , 𝑟𝑡)|ℱ̃𝑡−1) ≥ 𝛿𝑐𝐵𝑡
−𝛾2𝑑 . Thus, the expectation in (5) can be bounded

through a repeated application of (6) as follows:

𝐸
[
𝑒
𝜆
∑𝑡

𝑖=𝑖𝑡+1
𝐼{𝑠𝑖∉𝐵(𝑠𝑙 ,𝑟𝑡)∪𝑎𝑖≠𝑎𝑙}]

= 𝐸

[
𝐸
[
𝑒𝜆𝐼{𝑠𝑡∉𝐵(𝑠𝑙 ,𝑟𝑡)∪𝑎𝑡≠𝑎𝑙}|ℱ̃𝑡−1

]

× 𝑒
𝜆
∑𝑡−1

𝑖=𝑖𝑡+1
𝐼{𝑠𝑖∉𝐵(𝑠𝑙 ,𝑟𝑡)∪𝑎𝑖≠𝑎𝑙}]

≤ (
(𝑒𝜆 − 1)

[
1 − 𝛿𝑐𝐵𝑐𝜋 𝑡

−𝛾2𝑑 𝑡−𝛾3
]
+ 1

)

× 𝐸
[
𝑒
𝜆
∑𝑡−1

𝑖=𝑖𝑡+1
𝐼{𝑠𝑖∉𝐵(𝑠𝑙 ,𝑟𝑡)∪𝑎𝑖≠𝑎𝑙}]

⋯

≤
𝑡∏

𝑖=𝑖𝑡+1

[
(𝑒𝜆 − 1)(1 − 𝛿𝑐𝐵𝑐𝜋 𝑡

−𝛾2𝑑 𝑖−𝛾3) + 1
]

= exp
(𝑡∑

𝑖=𝑖𝑡+1

ln
[
(𝑒𝜆 − 1)(1 − 𝛿𝑐𝐵𝑐𝜋 𝑡

−𝛾2𝑑 𝑖−𝛾3) + 1
])

≤ exp
(
(𝑒𝜆 − 1)

[
𝑡 − 𝑖𝑡 − 𝛿𝑐𝐵𝑐𝜋 𝑡

−𝛾2𝑑
𝑡∑

𝑖=𝑖𝑡+1

𝑖−𝛾3
])

≤ exp
(
(𝑒𝜆 − 1)

[
𝑡 − 𝑖𝑡 − 𝛿𝑐𝐵𝑐𝜋 𝑡

−𝛾2𝑑 (𝑡 − 𝑖𝑡)𝑡
−𝛾3

])

= exp
(
(𝑒𝜆 − 1)(𝑡 − 𝑖𝑡)

[
1 − 𝛿𝑐𝐵𝑐𝜋 𝑡

−(𝛾3+𝛾2𝑑)
])
,

where the second last inequality follows from the fact that ln(1+𝑥) ≤ 𝑥

for 𝑥 ≥ 0. Substituting the above into (5) and optimizing the bound

with respect to 𝜆, we get 𝑃 (𝑁𝑡(𝑠𝑙 , 𝑎𝑙) ≤ 𝜌𝑡) ≤ 𝑒
𝑡

(
1−

𝑡𝑡 +ln
𝑡𝑡
)
, where

we have defined 𝑡 ∶= (𝑡 − 𝑖𝑡)
[
1 − 𝛿𝑐𝐵𝑐𝜋 𝑡

−(𝛾3+𝛾2𝑑)
]
and 𝑡 = 𝑡 − 𝑖𝑡 − 𝜌𝑡.

Since 𝜌𝑡 ≤ (𝑡 − 𝑖𝑡)𝛿𝑐𝐵𝑐𝜋 𝑡
−(𝛾2𝑑+𝛾3), it is clear that 0 <

𝑡𝑡
≤ 1. Thus, by

applying the inequality ln 𝑥 ≤ (𝑥−1)−
1

2
(𝑥−1)2 for 𝑥 ∈ (0, 1], we obtain

𝑃 (𝑁𝑡(𝑠𝑙 , 𝑎𝑙) ≤ 𝜌𝑡) ≤ 𝑒
−

(𝑡−𝑡)
2

2𝑡 . Next, setting 𝑒
−

(𝑡−𝑡)
2

2𝑡 =
1

𝑡2
and solving

for 𝜌𝑡, we get 𝜌𝑡 = (𝑡 − 𝑖𝑡)𝛿𝑐𝐵𝑐𝜋 𝑡
−(𝛾2𝑑+𝛾3) − 2 ln 𝑡 − 2

√
𝑡 ln 𝑡 + ln2 𝑡. This

shows that
∑∞

𝑡=𝑙+1 𝑃 (𝑁𝑡(𝑥𝑙 , 𝑎𝑙) ≤ 𝜌𝑡) ≤ ∑∞
𝑡=𝑙+1

1

𝑡2
< ∞, which indicates

that 𝑃 ({𝑁𝑡(𝑥𝑙 , 𝑎𝑙) ≤ 𝜌𝑡} 𝑖.𝑜.) = 0 by applying Borel–Cantelli lemma.
Finally, from A5, A6, and A7, it is not hard to observe that 𝜌𝑡 → ∞

as 𝑡 → ∞. This completes the proof of the lemma.

Next, we show that for each fixed 𝑎 ∈ 𝐴, the collection of states in
𝛬𝑖𝑡

(𝑎) visited up to time 𝑖𝑡 will become dense in 𝑆 as 𝑡 → ∞.

Lemma 3. If Assumptions A2, A5, and A7 hold, then for every action
𝑎 ∈ 𝐴, 𝑃

(
lim𝑡→∞ sup𝑠∈𝑆 𝑑(𝑠, 𝛬𝑖𝑡

(𝑎)) = 0
)
= 1.

Proof. Let 𝜀 > 0 be a positive constant. The set ∪𝑠∈𝑆𝐵(𝑠,
𝜀

2
) forms an

open cover of 𝑆. Since 𝑆 is compact, there exists a finite collection
of states {𝑣1,… , 𝑣𝑛} such that 𝑆 ⊆ ∪𝑛

𝑗=1
𝐵(𝑣𝑗 ,

𝜀

2
). By A2 and A7, we

can find a finite 𝐾 > 0 and constants 𝑐𝐵 > 0 and 𝑐𝜋 > 0 such that
𝑃 (𝑠𝑡 ∈ 𝐵(𝑣𝑗 , 𝜀∕2)|𝑠𝑡−1 = 𝑠, 𝑎) ≥ 𝛿𝑐𝐵(𝜀∕2)

𝑑 and inf 𝑠 𝜋𝑡(𝑠, 𝑎) ≥ 𝑐𝜋

𝑡𝛾3
for all

𝑡 ≥ 𝐾, where 𝛿 = min𝑎∈𝐴 inf 𝑠,𝑠′∈𝑆 𝑝(𝑠′|𝑠, 𝑎). It follows that when 𝑡 is
large,

𝑃
(
sup
𝑠

𝑑(𝑠, 𝛬𝑖𝑡
(𝑎)) > 𝜀

)
= 𝑃

(
∃𝑠′ ∈ 𝑆, 𝑑(𝑠′, 𝛬𝑖𝑡

(𝑎)) > 𝜀
)

= 𝑃
(
∃𝑠′ ∈ 𝑆, 𝐵(𝑠′, 𝜀) ∩ 𝛬𝑖𝑡

(𝑎) = ∅
)

≤ 𝑃
(
∃𝑗 = 1,… , 𝑛, 𝐵(𝑣𝑗 , 𝜀∕2) ∩ 𝛬𝑖𝑡

(𝑎) = ∅
)

≤
𝑛∑

𝑗=1

𝑃

(
𝐵(𝑣𝑗 , 𝜀∕2) ∩ 𝛬𝑖𝑡

(𝑎) = ∅
)

=

𝑛∑

𝑗=1

𝑃

[(
𝑠0 ∉ 𝐵(𝑣𝑗 , 𝜀∕2) ∪ 𝑎0 ≠ 𝑎

)
∩ ...∩

(
𝑠𝑖𝑡

∉ 𝐵(𝑣𝑗 , 𝜀∕2) ∪ 𝑎𝑖𝑡
≠ 𝑎

)]

=

𝑛∑

𝑗=1

[
1 − 𝑃

(
𝑠𝑖𝑡

∈ 𝐵(𝑣𝑗 , 𝜀∕2) ∩ 𝑎𝑖𝑡
= 𝑎

|||𝑠𝑖𝑡−1

∉ 𝐵(𝑣𝑗 , 𝜀∕2) ∪ 𝑎𝑖𝑡−1
≠ 𝑎,…

)]

× 𝑃

((
𝑠𝑖𝑡−1

∉ 𝐵(𝑣𝑗 , 𝜀∕2) ∪ 𝑎𝑖𝑡−1
≠ 𝑎

)
∩ ...∩

(
𝑠0 ∉ 𝐵(𝑣𝑗 , 𝜀∕2) ∪ 𝑎0 ≠ 𝑎

))

≤
𝑛∑

𝑗=1

[
1 − 𝛿𝑐𝐵𝑐𝜋 (𝜀∕2)

𝑑 𝑖
−𝛾3
𝑡

]

× 𝑃

((
𝑠𝑖𝑡−1

∉ 𝐵(𝑣𝑗 , 𝜀∕2) ∪ 𝑎𝑖𝑡−1
≠ 𝑎

)
∩ ...∩

(
𝑠0 ∉ 𝐵(𝑣𝑗 , 𝜀∕2) ∪ 𝑎0 ≠ 𝑎

))

…

≤
𝑛∑

𝑗=1

𝑖𝑡∏

𝑖=𝐾+1

[
1 − 𝛿𝑐𝐵𝑐𝜋(𝜀∕2)

𝑑 𝑖−𝛾3
]

=

𝑛∑

𝑗=1

exp
(𝑖𝑡∑

𝑖=𝐾+1

ln
(
1 − 𝛿𝑐𝐵𝑐𝜋 (𝜀∕2)

𝑑 𝑖−𝛾3
))

≤
𝑛∑

𝑗=1

exp
(
−𝛿𝑐𝐵𝑐𝜋 (𝜀∕2)

𝑑

𝑖𝑡∑

𝑖=𝐾+1

𝑖−𝛾3
)

≤ 𝑛 exp
(
−𝛿𝑐𝐵𝑐𝜋 (𝜀∕2)

𝑑 (𝑖𝑡 −𝐾)𝑖
−𝛾3
𝑡

)
.

Since 𝑖𝑡 = ⌊𝑡𝛾1⌋, 𝛾1 ∈ (0, 1) (A5) and 0 < 𝛾3 < 1∕2 (A7), it can be verified
that

∑∞
𝑡=1 𝑃

(
sup𝑠 𝑑(𝑠, 𝛬𝑖𝑡

(𝑎)) > 𝜀
)

< ∞. It thus follows from Borel–
Cantelli lemma that 𝑃

(
{sup𝑠 𝑑(𝑠, 𝛬𝑖𝑡

(𝑎)) > 𝜀} 𝑖.𝑜.
)
= 0, and because 𝜀

is arbitrary, we must have 𝑃
(
lim𝑡→∞ sup𝑠∈𝑆 𝑑(𝑠, 𝛬𝑖𝑡

(𝑎)) = 0
)
= 1.

Lemma 4 below states that both the point estimate 𝑄𝑡 and the
function approximator Q𝑡 constructed at Steps 2 and 3 of the algorithm
remain bounded at all time.

Lemma 4. If A1 and A3 hold, then max(𝑠,𝑎)∈𝛬𝑡+1
𝑄𝑡(𝑠, 𝑎) and

sup𝑠∈𝑆 max𝑎∈𝐴 Q𝑡(𝑠, 𝑎) are bounded for all 𝑡 w.p.1.

Proof. Define 𝐷𝑡 = max(𝑠,𝑎)∈𝛬𝑡+1
|𝑄𝑡(𝑠, 𝑎)|, and let 𝐷 be the diameter of

𝑆. It is clear from A3 that for any states 𝑠, 𝑠′ ∈ 𝑆, w.p.1, |Q𝑡(𝑠, 𝑎)| ≤
|Q𝑡(𝑠

′, 𝑎)| + 𝐿𝐷, where 𝐿 ∶= max𝑎∈𝐴 𝐿(𝑎) < ∞. In addition, since
Q𝑡(𝑠, 𝑎) interpolates

{(
(𝑠′, 𝑎′), 𝑄𝑡−1(𝑠

′, 𝑎′)
)

∶ (𝑠′, 𝑎′) ∈ 𝛬𝑖𝑡−1
, 𝑎′ = 𝑎

}

and max(𝑠,𝑎)∈𝛬𝑖𝑡−1
|𝑄𝑡−1(𝑠, 𝑎)| ≤ max(𝑠,𝑎)∈𝛬𝑡

|𝑄𝑡−1(𝑠, 𝑎)| = 𝐷𝑡−1, we have
sup𝑠∈𝑆 max𝑎 |Q𝑡(𝑠, 𝑎)| ≤ 𝐷𝑡−1 + 𝐿𝐷. Therefore, the point estimate ob-
tained from (2) satisfies |𝑄𝑡(𝑠𝑡, 𝑎𝑡)| ≤ 𝑅𝑚𝑎𝑥+𝛽(𝐷𝑡−1+𝐿𝐷), and from (3),
this further indicates that |𝑄𝑡(𝑠𝑙 , 𝑎𝑙)| ≤ max

{
𝐷𝑡−1, 𝑅𝑚𝑎𝑥 + 𝛽(𝐷𝑡−1 +𝐿𝐷)

}

for all (𝑠𝑙 , 𝑎𝑙) ∈ 𝛬𝑡. Taking together, we have

𝐷𝑡 ≤ max
{
𝐷𝑡−1, 𝑅𝑚𝑎𝑥 + 𝛽(𝐷𝑡−1 + 𝐿𝐷)

}
. (7)

Note that by construction, Q0(𝑠, 𝑎) = 0 for all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴. It is thus
obvious from (2) that 𝐷0 ≤ 𝑅𝑚𝑎𝑥 ≤ 𝑅𝑚𝑎𝑥+𝛽𝐿𝐷

1−𝛽
, and a simple inductive

argument using (7) shows that 𝐷𝑡 ≤ 𝑅𝑚𝑎𝑥+𝛽𝐿𝐷

1−𝛽
for all 𝑡. Furthermore,

we also obtain sup𝑠∈𝑆 max𝑎 |Q𝑡(𝑠, 𝑎)| ≤ 𝐷𝑡−1 + 𝐿𝐷 ≤ 𝑅𝑚𝑎𝑥+𝛽𝐿𝐷

1−𝛽
+ 𝐿𝐷 =

𝑅𝑚𝑎𝑥+𝐿𝐷

1−𝛽
for all 𝑡.

Our main result is to show the uniform convergence of the se-
quence {Q𝑡} to the optimal Q-function. Since Q𝑡 is constructed using
estimates 𝑄𝑡−1 obtained for pairs in 𝛬𝑖𝑡−1

, we proceed by studying the
convergence properties of the iterates produced by (3). For notational
convenience, we define 𝜖𝑡(𝑠𝑙 , 𝑎𝑙) = 𝑄𝑡(𝑠𝑙 , 𝑎𝑙)−𝑄

∗(𝑠𝑙 , 𝑎𝑙) and let 𝜂𝑡(𝑠𝑙 , 𝑎𝑙) =

Systems & Control Letters 187 (2024) 105782

5

J. Hu et al.

𝛼𝑡(𝑠𝑙 , 𝑎𝑙)𝐼𝑡(𝑠𝑙 , 𝑎𝑙). Then, subtracting both sides of (3) by 𝑄∗(𝑠𝑙 , 𝑎𝑙), we
obtain the following recursion:

𝜖𝑡(𝑠𝑙 , 𝑎𝑙) = (1 − 𝜂𝑡(𝑠𝑙 , 𝑎𝑙))𝜖𝑡−1(𝑠𝑙 , 𝑎𝑙) + 𝜂𝑡(𝑠𝑙 , 𝑎𝑙)

×
[
𝑟(𝑠𝑡, 𝑎𝑡, 𝜔𝑡) + 𝛽max

𝑏
Q𝑡(𝑠𝑡+1, 𝑏) −𝑄∗(𝑠𝑙 , 𝑎𝑙)

]

= (1 − 𝜂𝑡(𝑠𝑙 , 𝑎𝑙))𝜖𝑡−1(𝑠𝑙 , 𝑎𝑙)

+ 𝜂𝑡(𝑠𝑙 , 𝑎𝑙)
(
𝐵𝑡(𝑠𝑙 , 𝑎𝑙) +𝑊𝑡(𝑠𝑡, 𝑎𝑡) +𝐻𝑡(𝑠𝑡+1)

)
, (8)

where 𝐵𝑡(𝑠𝑙 , 𝑎𝑙) ∶= 𝑄∗(𝑠𝑡, 𝑎𝑙) −𝑄∗(𝑠𝑙 , 𝑎𝑙) is the bias caused by the use of
the shrinking ball strategy, 𝑊𝑡(𝑠𝑡, 𝑎𝑡) ∶= 𝑟(𝑠𝑡, 𝑎𝑡, 𝜔𝑡) + 𝛽max𝑏 𝑄

∗(𝑠𝑡+1, 𝑏) −

𝑄∗(𝑠𝑡, 𝑎𝑡) is a noise term, and 𝐻𝑡(𝑠𝑡+1) = 𝛽max𝑏 Q𝑡(𝑠𝑡+1, 𝑏) −

𝛽max𝑏 𝑄
∗(𝑠𝑡+1, 𝑏) is the approximation error of Q𝑡. An expansion of (8)

then yields

𝜖𝑡(𝑠𝑙 , 𝑎𝑙) = 𝑈𝜖(𝑡 ∶ 𝑙) + 𝑈𝐵(𝑡 ∶ 𝑙) + 𝑈𝑊 (𝑡 ∶ 𝑙) + 𝑈𝐻 (𝑡 ∶ 𝑙), (9)

where we have defined

𝑈𝜖(𝑡 ∶ 𝑙) ∶=
[𝑡∏

𝑖=𝑙+1

(1 − 𝜂𝑖(𝑠𝑙 , 𝑎𝑙))
]
𝜖𝑙(𝑠𝑙 , 𝑎𝑙), (10)

𝑈𝐵(𝑡 ∶ 𝑙) ∶=

𝑡∑

𝑖=𝑙+1

[𝑡∏

𝑗=𝑖+1

(1 − 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙))
]
𝜂𝑖(𝑠𝑙 , 𝑎𝑙)𝐵𝑖(𝑠𝑙 , 𝑎𝑙), (11)

𝑈𝑊 (𝑡 ∶ 𝑙) ∶=

𝑡∑

𝑖=𝑙+1

[𝑡∏

𝑗=𝑖+1

(1 − 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙))
]
𝜂𝑖(𝑠𝑙 , 𝑎𝑙)𝑊𝑖(𝑠𝑖, 𝑎𝑖), (12)

𝑈𝐻 (𝑡 ∶ 𝑙) ∶=

𝑡∑

𝑖=𝑙+1

[𝑡∏

𝑗=𝑖+1

(1 − 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙))
]
𝜂𝑖(𝑠𝑙 , 𝑎𝑙)𝐻𝑖(𝑠𝑖+1). (13)

The convergence properties of terms (10)−(12) are given in Lemmas 5,
7, and 8, respectively.

As shown in the following lemma, the influence of the initial point
estimation error 𝜖𝑙(𝑠𝑙 , 𝑎𝑙) = 𝑄𝑙(𝑠𝑙 , 𝑎𝑙) − 𝑄∗(𝑠𝑙 , 𝑎𝑙) at the state–action
pair (𝑠𝑙 , 𝑎𝑙) sampled at time 𝑙 will become negligible as the number of
iterations increases.

Lemma 5. If conditions A1−A7 hold, then for any state–action pair
(𝑠𝑙 , 𝑎𝑙) ∈ 𝛬𝑖𝑡

, 𝑈𝜖(𝑡 ∶ 𝑙) → 0 as 𝑡 → ∞ w.p.1.

Proof. From the proof of Lemma 4, it is obvious that |𝜖𝑙(𝑠𝑙 , 𝑎𝑙)| ≤
2𝑅𝑚𝑎𝑥+𝛽𝐿𝐷

1−𝛽
. We have

|𝑈𝜖(𝑡 ∶ 𝑙)| =
[𝑡∏

𝑖=𝑙+1

(1 − 𝜂𝑖(𝑠𝑙 , 𝑎𝑙))
]
|𝜖𝑙(𝑠𝑙 , 𝑎𝑙)|

= exp
(𝑡∑

𝑖=𝑙+1

ln(1 − 𝜂𝑖(𝑠𝑙 , 𝑎𝑙))
)
|𝜖𝑙(𝑠𝑙 , 𝑎𝑙)|

≤ exp
(
−

𝑡∑

𝑖=𝑙+1

𝜂𝑖(𝑠𝑙 , 𝑎𝑙)
)2𝑅𝑚𝑎𝑥 + 𝛽𝐿𝐷

1 − 𝛽
.

By the definition of 𝜂𝑖(𝑠𝑙 , 𝑎𝑙), we obtain
∑𝑡

𝑖=𝑙+1 𝜂𝑖(𝑠𝑙 , 𝑎𝑙) =
∑𝑡

𝑖=𝑙+1 𝛼𝑖(𝑠𝑙 , 𝑎𝑙)𝐼𝑖(𝑠𝑙 , 𝑎𝑙) =
∑𝑡

𝑖=𝑙+1 𝑓 (𝑁𝑖(𝑠𝑙 , 𝑎𝑙))𝐼𝑖(𝑠𝑙 , 𝑎𝑙) =
∑𝑁𝑡(𝑠𝑙 ,𝑎𝑙)

𝑗=1
𝑓 (𝑗).

We know from Lemma 2 that 𝑁𝑡(𝑠𝑙 , 𝑎𝑙) → ∞ w.p.1. This, together with
the condition

∑∞
𝑗=1 𝑓 (𝑗) = ∞ (A4), implies that |𝑈𝜖(𝑡 ∶ 𝑙)| → 0 as 𝑡 → ∞

w.p.1.

The analysis of the terms (11) and (12) relies on the following in-
termediate result, whose proof follows from a straightforward inductive
argument and is hence omitted.

Lemma 6. For a given integer 𝑙 > 0,
∑𝑡

𝑖=𝑙+1

[∏𝑡

𝑗=𝑖+1(1−𝜂𝑗 (𝑠, 𝑎))
]
𝜂𝑖(𝑠, 𝑎) ≤

1 for all 𝑡 > 𝑙.

Next regarding term (11), we have the following result, indicating
that as the sequence of shrinking ball radiuses decreases, the cumu-
lative effect of the estimation bias at a sampled pair arising from
averaging points within its neighborhoods vanishes.

Lemma 7. If conditions A1−A7 hold, then for any state–action pair
(𝑠𝑙 , 𝑎𝑙) ∈ 𝛬𝑖𝑡

, 𝑈𝐵(𝑡 ∶ 𝑙) → 0 as 𝑡 → ∞ w.p.1.

Proof. By Lemma 1, we have

𝐼𝑖(𝑠𝑙 , 𝑎𝑙)|𝐵𝑖(𝑠𝑙 , 𝑎𝑙)| = 𝐼𝑖(𝑠𝑙 , 𝑎𝑙)|𝑄∗(𝑠𝑖, 𝑎𝑙) −𝑄∗(𝑠𝑙 , 𝑎𝑙)|
≤ 𝐿𝑄𝑑(𝑠𝑖, 𝑠𝑙)𝐼𝑖(𝑠𝑙 , 𝑎𝑙) ≤ 𝐿𝑄𝑟𝑖,

which tends to zero as 𝑖 → ∞ by condition A5. Therefore, for any 𝜀 > 0,
there exists some 𝑁 > 0 such that 𝐼𝑖(𝑠𝑙 , 𝑎𝑙)|𝐵𝑖(𝑠𝑙 , 𝑎𝑙)| ≤ 𝜀∕2 for all 𝑖 > 𝑁 .
We thus obtain for a sufficiently large 𝑡 that w.p.1,

|𝑈𝐵(𝑡 ∶ 𝑙)| =
𝑡∑

𝑖=𝑙+1

[𝑡∏

𝑗=𝑖+1

(1 − 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙))
]
𝜂𝑖(𝑠𝑙 , 𝑎𝑙)|𝐵𝑖(𝑠𝑙 , 𝑎𝑙)|

=

𝑁∑

𝑖=𝑙+1

[𝑡∏

𝑗=𝑖+1

(1 − 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙))
]
𝜂𝑖(𝑠𝑙 , 𝑎𝑙)|𝐵𝑖(𝑠𝑙 , 𝑎𝑙)|

+

𝑡∑

𝑖=𝑁+1

[𝑡∏

𝑗=𝑖+1

(1 − 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙))
]
𝜂𝑖(𝑠𝑙 , 𝑎𝑙)|𝐵𝑖(𝑠𝑙 , 𝑎𝑙)|

≤
𝑁∑

𝑖=𝑙+1

[𝑡∏

𝑗=𝑖+1

(1 − 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙))
]
𝜂𝑖(𝑠𝑙 , 𝑎𝑙)|𝐵𝑖(𝑠𝑙 , 𝑎𝑙)|

+
𝜀

2

𝑡∑

𝑖=𝑁+1

[𝑡∏

𝑗=𝑖+1

(1 − 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙))
]
𝜂𝑖(𝑠𝑙 , 𝑎𝑙)

≤
𝑁∑

𝑖=𝑙+1

[𝑡∏

𝑗=𝑖+1

(1 − 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙))
]
𝜂𝑖(𝑠𝑙 , 𝑎𝑙)|𝐵𝑖(𝑠𝑙 , 𝑎𝑙)| +

𝜀

2

≤
𝑁∑

𝑖=𝑙+1

[𝑡∏

𝑗=𝑖+1

(1 − 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙))
]
|𝐵𝑖(𝑠𝑙 , 𝑎𝑙)| +

𝜀

2
, (14)

where the second inequality follows from Lemma 6 and the last step
follows because 0 ≤ 𝜂𝑖(𝑠𝑙 , 𝑎𝑙) < 1. Next, using the inequality

∏𝑡

𝑗=𝑖+1(1 −

𝑥𝑗) ≤ 𝑒
−
∑𝑡

𝑗=𝑖+1
𝑥𝑗 for all 𝑥𝑗 ∈ [0, 1) and noting that |𝐵𝑖(𝑠𝑙 , 𝑎𝑙)| =

|𝑄∗(𝑠𝑖, 𝑎𝑙) −𝑄∗(𝑠𝑙 , 𝑎𝑙)| ≤ 2𝑅𝑚𝑎𝑥

1−𝛽
, it can be seen that (14) is bounded by

(14) ≤
𝑁∑

𝑖=𝑙+1

exp
(
−

𝑡∑

𝑗=𝑖+1

𝜂𝑗 (𝑠𝑙 , 𝑎𝑙)
)
|𝐵𝑖(𝑠𝑙 , 𝑎𝑙)| +

𝜀

2

≤ (𝑁 − 𝑙)
2𝑅𝑚𝑎𝑥

1 − 𝛽
𝑒
−
∑𝑡

𝑗=𝑁+1
𝜂𝑗 (𝑠𝑙 ,𝑎𝑙) +

𝜀

2
.

Since
∑𝑡

𝑗=𝑁+1 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙) =
∑𝑡

𝑗=𝑁+1 𝛼𝑗 (𝑠𝑙 , 𝑎𝑙)𝐼𝑗 (𝑠𝑙 , 𝑎𝑙) =∑𝑡

𝑗=𝑁+1 𝑓 (𝑁𝑗 (𝑠𝑙 , 𝑎𝑙))𝐼𝑗 (𝑠𝑙 , 𝑎𝑙), we know from Lemma 2 and condition A4

that
∑𝑡

𝑗=𝑁+1 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙) → ∞ as 𝑡 → ∞. This in turn implies that (𝑁 −

𝑙)
2𝑅𝑚𝑎𝑥

1−𝛽
𝑒
−
∑𝑡

𝑗=𝑁+1
𝜂𝑗 (𝑠𝑙 ,𝑎𝑙) can be made smaller than 𝜀∕2 for 𝑡 sufficiently

large. Finally, because 𝜀 is arbitrary, we have 𝑈𝐵(𝑡 ∶ 𝑙) → 0 as 𝑡 → ∞

w.p.1.

On the other hand, because the shrinking ball neighborhoods of
each sample state–action pair are visited i.o. as 𝑡 → ∞ (see Lemma 2),
the estimation noise will be averaged out over the course of the
iterations. This intuition is formalized in the result below.

Lemma 8. If Assumptions A1−A7 hold, then for every (𝑠𝑙 , 𝑎𝑙) ∈ 𝛬𝑖𝑡
,

𝑈𝑊 (𝑡 ∶ 𝑙) → 0 as 𝑡 → ∞ w.p.1.

Proof. Recall that 𝑊𝑡(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡, 𝜔𝑡)+𝛽max𝑏 𝑄
∗(𝑠𝑡+1, 𝑏)−𝑄∗(𝑠𝑡, 𝑎𝑡).

We consider the sequence𝑀𝑡 ∶=
∑𝑡

𝑖=𝑙+1 𝜂𝑖(𝑠𝑙 , 𝑎𝑙)𝑊𝑖(𝑠𝑖, 𝑎𝑖). Since 𝜂𝑡(𝑠𝑙 , 𝑎𝑙)
is ℱ𝑡-measurable and 𝐸[𝑊𝑡(𝑠𝑡, 𝑎𝑡)|ℱ𝑡] = 0, we have

𝐸[𝑀𝑡|ℱ𝑡] =

𝑡−1∑

𝑖=𝑙+1

𝜂𝑖(𝑠𝑙 , 𝑎𝑙)𝑊𝑖(𝑠𝑖, 𝑎𝑖)

+ 𝜂𝑡(𝑠𝑙 , 𝑎𝑙)𝐸[𝑊𝑡(𝑠𝑡, 𝑎𝑡)|ℱ𝑡]

= 𝑀𝑡−1.

In addition, 𝐸[𝑀2
𝑡
] = 𝐸

[(∑𝑡

𝑖=𝑙+1 𝜂𝑖(𝑠𝑙 , 𝑎𝑙)𝑊𝑖(𝑠𝑖, 𝑎𝑖)
)2]

= 𝐸
[∑𝑡

𝑖=𝑙+1

𝜂2
𝑖
(𝑠𝑙 , 𝑎𝑙)𝑊

2
𝑖
(𝑠𝑖, 𝑎𝑖)

]
because the cross terms 𝐸[𝜂𝑖(𝑠𝑙 , 𝑎𝑙)𝜂𝑗 (𝑠𝑙 , 𝑎𝑙)

Systems & Control Letters 187 (2024) 105782

6

J. Hu et al.

𝑊𝑖(𝑠𝑖, 𝑎𝑖)𝑊𝑗 (𝑠𝑗 , 𝑎𝑗)] = 𝐸[𝜂𝑖(𝑠𝑙 , 𝑎𝑙)𝜂𝑗 (𝑠𝑙 , 𝑎𝑙)𝑊𝑖(𝑠𝑖, 𝑎𝑖)𝐸[𝑊𝑗 (𝑠𝑗 , 𝑎𝑗)|ℱ𝑗]] = 0,

∀ 𝑖 < 𝑗. Under A1, we have |𝑊𝑡(𝑠, 𝑎)| ≤ 𝑅𝑚𝑎𝑥 + (𝛽 + 1)
𝑅𝑚𝑎𝑥

1−𝛽
=

2𝑅𝑚𝑎𝑥

1−𝛽
. It follows that 𝐸[𝑀2

𝑡
] ≤ (

2𝑅𝑚𝑎𝑥

1−𝛽
)2𝐸[

∑𝑡

𝑖=𝑙+1 𝜂
2
𝑖
(𝑠𝑙 , 𝑎𝑙)] = (

2𝑅𝑚𝑎𝑥

1−𝛽
)2

𝐸[
∑𝑁𝑡(𝑠𝑙 ,𝑎𝑙)

𝑗=1
𝑓 2(𝑗)] < ∞ due to the condition

∑∞
𝑖=1 𝑓

2(𝑖) < ∞ (A4).

Consequently, {𝑀𝑡} is an 𝐿2-bounded martingale and converges to a
finite random variable 𝑀∞ w.p.1. Next, we note that

𝑈𝑊 (𝑡 ∶ 𝑙) =

𝑡∑

𝑖=𝑙+1

[𝑡∏

𝑗=𝑖+1

(1 − 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙))
]
𝜂𝑖(𝑠𝑙 , 𝑎𝑙)𝑊𝑖(𝑠𝑖, 𝑎𝑖)

=

𝑡∏

𝑗=𝑙+1

(1 − 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙))

×

𝑡∑

𝑖=𝑙+1

1
∏𝑖

𝑗=𝑙+1(1 − 𝜂𝑗 (𝑠𝑙 , 𝑎𝑙))
𝜂𝑖(𝑠𝑙 , 𝑎𝑙)𝑊𝑖(𝑠𝑖, 𝑎𝑖)

=
1

𝑏𝑡

𝑡∑

𝑖=𝑙+1

𝑏𝑖𝜂𝑖(𝑠𝑙 , 𝑎𝑙)𝑊𝑖(𝑠𝑖, 𝑎𝑖),

where 𝑏𝑖 ∶=
1∏𝑖

𝑗=𝑙+1
(1−𝜂𝑗 (𝑠𝑙 ,𝑎𝑙))

. Clearly, 0 < 𝑏𝑖 ≤ 𝑏𝑖+1 and due to Lemma 2,

𝑏𝑡 → ∞ as 𝑡 → ∞ w.p.1. Using the fact that 𝑀𝑡 → 𝑀∞ w.p.1 and
applying Kronecker’s lemma (e.g., [23]) in a path-wise manner, we
finally obtain 𝑈𝑊 (𝑡 ∶ 𝑙) → 0 w.p.1 as required.

Finally, we arrive at the following main convergence theorem.

Theorem 1. Suppose all conditions A1−A7 are satisfied. Then

lim
𝑡→∞

sup
𝑠∈𝑆

max
𝑎∈𝐴

|Q𝑡(𝑠, 𝑎) −𝑄∗(𝑠, 𝑎)| = 0 w.p.1.

Proof. In the proof of Lemma 4, we have shown that sup𝑠∈𝑆
max𝑎 |Q𝑡(𝑠, 𝑎)| ≤ 𝑅𝑚𝑎𝑥+𝐿𝐷

1−𝛽
. Thus, it is easy to see that sup𝑠∈𝑆 max𝑎∈𝐴

|Q𝑡(𝑠, 𝑎) −𝑄∗(𝑠, 𝑎)| ≤ 2𝑅𝑚𝑎𝑥+𝐿𝐷

1−𝛽
for all 𝑡 ≥ 0.

Let 𝜉 ∈ (0, 1 − 𝛽) be a given constant. We proceed by using
an idea similar to that of [24]. In particular, suppose there exist a
constant 𝐺 and time 𝜏𝑘 ≥ 0 (with 𝜏0 ∶= 0) satisfying sup𝑠∈𝑆 max𝑎
|Q𝑡(𝑠, 𝑎) −𝑄∗(𝑠, 𝑎)| ≤ 𝐺 for all 𝑡 ≥ 𝜏𝑘. Then we show there must be an-
other time 𝜏𝑘+1 ≥ 𝜏𝑘 such that sup𝑠∈𝑆 max𝑎 |Q𝑡(𝑠, 𝑎) −𝑄∗(𝑠, 𝑎)| ≤ (𝛽+𝜉)𝐺

for all 𝑡 ≥ 𝜏𝑘+1. Since 𝛽+𝜉 < 1, this guarantees the convergence of sup𝑠∈𝑆
max𝑎∈𝐴 |Q𝑡(𝑠, 𝑎) −𝑄∗(𝑠, 𝑎)| to zero.

Let 𝑟 =
𝜉𝐺

4(𝐿+𝐿𝑄)
and define 𝛺𝑎 = {lim𝑡→∞ sup𝑠 𝑑(𝑠, 𝛬𝑖𝑡

(𝑎)) = 0}, 𝑎 ∈

𝐴. For every 𝜔 ∈ ∩𝑎∈𝐴𝛺𝑎, there exists some 𝜏′ such that 𝑆 ⊆

∪𝑠∈𝛬𝑖
𝜏′
(𝑎)𝐵(𝑠, 𝑟) for all 𝑎 ∈ 𝐴. Take 𝜏 = max{𝜏′, 𝜏𝑘}. Clearly 𝑆 ⊆

∪𝑠∈𝛬𝑖𝜏
(𝑎)𝐵(𝑠, 𝑟) for all 𝑎 ∈ 𝐴.

For each state–action pair (𝑠, 𝑎) ∈ 𝛬𝑖𝜏
, we let 𝜖𝑡(𝑠, 𝑎) = 𝑄𝑡(𝑠, 𝑎) −

𝑄∗(𝑠, 𝑎) and consider the recursion

𝜖𝑡(𝑠, 𝑎) = (1 − 𝜂𝑡(𝑠, 𝑎))𝜖𝑡−1(𝑠, 𝑎) + 𝜂𝑡(𝑠, 𝑎)
[
𝑟(𝑠𝑡, 𝑎𝑡, 𝜔𝑡)

+ 𝛽max
𝑏

Q𝑡(𝑠𝑡+1, 𝑏) −𝑄∗(𝑠, 𝑎)
]
, ∀ 𝑡 ≥ 𝜏 + 1.

As in (9), this can be written as

𝜖𝑡(𝑠, 𝑎) = 𝑈𝜖(𝑡 ∶ 𝜏) + 𝑈𝐵(𝑡 ∶ 𝜏) + 𝑈𝑊 (𝑡 ∶ 𝜏) + 𝑈𝐻 (𝑡 ∶ 𝜏),

where 𝑈𝜖(𝑡 ∶ 𝜏), 𝑈𝐵(𝑡 ∶ 𝜏), 𝑈𝑊 (𝑡 ∶ 𝜏), and 𝑈𝐻 (𝑡 ∶ 𝜏) are defined
respectively in the same way as in (10), (11), (12), and (13) with (𝑠, 𝑎)

replacing (𝑠𝑙 , 𝑎𝑙).
Note that by our hypothesis for all 𝑖 > 𝜏 ≥ 𝜏𝑘,

|𝐻𝑖(𝑠𝑖+1)| ≤ 𝛽max
𝑏

|𝑄𝑖(𝑠𝑖+1, 𝑏) −𝑄∗(𝑠𝑖+1, 𝑏)|

≤ 𝛽 sup
𝑠∈𝑆

max
𝑏

|𝑄𝑖(𝑠, 𝑏) −𝑄∗(𝑠, 𝑏)| ≤ 𝛽𝐺.

In addition, since
∑𝑡

𝑖=𝜏+1

[∏𝑡

𝑗=𝑖+1(1 − 𝜂𝑗 (𝑠, 𝑎))
]
𝜂𝑖(𝑠, 𝑎) ≤ 1 for all 𝑡 ≥

𝜏 + 1 by Lemma 6, we have |𝑈𝐻 (𝑡 ∶ 𝜏)| = ∑𝑡

𝑖=𝜏+1

[∏𝑡

𝑗=𝑖+1(1 − 𝜂𝑗 (𝑠, 𝑎))
]

𝜂𝑖(𝑠, 𝑎)|𝐻𝑖(𝑠𝑖+1)| ≤ 𝛽𝐺. Consequently, |𝜖𝑡(𝑠, 𝑎)| ≤ |𝑈𝜖(𝑡 ∶ 𝜏)|+|𝑈𝐵(𝑡 ∶ 𝜏)|+
|𝑈𝑊 (𝑡 ∶ 𝜏)| + 𝛽𝐺, ∀ 𝑡 ≥ 𝜏 + 1. We further let 𝛺𝜖 ∶= {𝑈𝜖(𝑡 ∶ 𝜏) → 0},
𝛺𝐵 ∶= {𝑈𝐵(𝑡 ∶ 𝜏) → 0}, and 𝛺𝑊 ∶= {𝑈𝑊 (𝑡 ∶ 𝜏) → 0}. Since

the number of state–action pairs in 𝛬𝑖𝜏
is finite, on each sample path

𝜔 ∈ ∩𝑎∈𝐴𝛺𝑎 ∩ 𝛺𝜖 ∩ 𝛺𝐵 ∩ 𝛺𝑊 , there exists a 𝜏𝑘+1 > 𝜏 such that
|𝜖𝑡(𝑠, 𝑎)| ≤ 𝜉

4
𝐺 +

𝜉

4
𝐺 +

𝜉

4
𝐺 + 𝛽𝐺 = (𝛽 +

3

4
𝜉)𝐺, ∀ (𝑠, 𝑎) ∈ 𝛬𝑖𝜏

, ∀ 𝑡 ≥ 𝜏𝑘+1.
Next, for any 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴, let 𝑠𝑎 = argmin𝑠′∈𝛬𝑖𝜏

(𝑎) 𝑑(𝑠, 𝑠
′).

Because 𝑆 ⊆ ∪𝑠′∈𝛬𝑖𝜏
(𝑎)𝐵(𝑠

′, 𝑟), we have 𝑑(𝑠, 𝑠𝑎) ≤ 𝑟. It thus follows that
for all 𝑡 > 𝜏𝑘+1,

|Q𝑡(𝑠, 𝑎) −𝑄∗(𝑠, 𝑎)| ≤ |Q𝑡(𝑠, 𝑎) −Q𝑡(𝑠𝑎, 𝑎)|
+ |Q𝑡(𝑠𝑎, 𝑎) −𝑄∗(𝑠𝑎, 𝑎)| + |𝑄∗(𝑠𝑎, 𝑎) −𝑄∗(𝑠, 𝑎)|
≤ (𝐿 + 𝐿𝑄)𝑑(𝑠, 𝑠𝑎) + |𝑄𝑡−1(𝑠𝑎, 𝑎) −𝑄∗(𝑠𝑎, 𝑎)|

≤ (𝐿 + 𝐿𝑄)
𝜉𝐺

4(𝐿 + 𝐿𝑄)
+ (𝛽 +

3

4
𝜉)𝐺

= (𝛽 + 𝜉)𝐺,

where in the second step above we have used the fact that
Q𝑡(𝑠𝑎, 𝑎) = 𝑄𝑡−1(𝑠𝑎, 𝑎) because Q𝑡 is constructed by interpolating{(

(𝑠′, 𝑎′), 𝑄𝑡−1(𝑠
′, 𝑎′)

)
∶ (𝑠′, 𝑎′) ∈ 𝛬𝑖𝑡

, 𝑎′ = 𝑎
}
, which contains(

(𝑠𝑎, 𝑎), 𝑄𝑡−1(𝑠𝑎, 𝑎)
)
. In view of Lemmas 3, 5, 7, and 8, we have that

𝑃 (∩𝑎∈𝐴𝛺𝑎 ∩ 𝛺𝜖 ∩ 𝛺𝐵 ∩ 𝛺𝑊) = 1. This leads us to conclude that
sup𝑠∈𝑆 max𝑎 |Q𝑡(𝑠, 𝑎) −𝑄∗(𝑠, 𝑎)| ≤ (𝛽 + 𝜉)𝐺 for all 𝑡 > 𝜏𝑘+1, w.p.1.

4. An illustrative example

We consider a four-dimensional inventory control problem with lost
sales and zero order lead time. There are four types of commodities
stored separately in four warehouses with respective capacities 𝑖,
𝑖 = 1, 2, 3, 4. At each time 𝑡 = 0, 1,…, the four inventory levels
(𝑠1

𝑡
, 𝑠2

𝑡
, 𝑠3

𝑡
, 𝑠4

𝑡
) are reviewed, a decision 𝑎𝑡 ∈ {0, 1, 2, 3, 4} is then made

whether to replenish inventory 𝑖 (0 means ‘‘do nothing’’), and the
demands 𝑑1

𝑡
, 𝑑2

𝑡
, 𝑑3

𝑡
and 𝑑4

𝑡
for the four commodities are realized. For

the 𝑖th commodity, let 𝑐𝑖 be the per unit order cost, ℎ𝑖 be the per
period per unit inventory holding cost, and 𝑝𝑖 be the per period per unit
penalty cost for unsatisfied demands. The transition functions for the
inventory levels are given by 𝑠𝑖

𝑡+1
=
(
𝑠𝑖
𝑡
+(𝑖−𝑠𝑖

𝑡
)𝐼{𝑎𝑡 = 𝑖}−𝑑𝑖

𝑡

)+
, where

𝑥+ = max{𝑥, 0}. The goal is to minimize the expectation of the total
discounted costs, which comprise order, holding, and penalty costs,
i.e.,

∑∞
𝑡=0 𝛽

𝑡
[∑4

𝑖=1 𝑐𝑖(𝑖 − 𝑠𝑖
𝑡
)𝐼{𝑎𝑡 = 𝑖} + ℎ𝑖

(
𝑠𝑖
𝑡
+ (𝑖 − 𝑠𝑖

𝑡
)𝐼{𝑎𝑡 = 𝑖} − 𝑑𝑖

𝑡

)+
+

𝑝𝑖
(
𝑑𝑖
𝑡
−𝑠𝑖

𝑡
−(𝑖−𝑠

𝑖
𝑡
)𝐼{𝑎𝑡 = 𝑖}

)+]
for all initial inventory levels (𝑠1

0
, 𝑠2

0
, 𝑠3

0
, 𝑠4

0
).

In our computational experiments, we set 1 = 2 = 3 = 4 = 1,
𝑐1 = 0.5, ℎ1 = 1.5, 𝑝1 = 1.5, 𝑐2 = 1, ℎ2 = 1, 𝑝2 = 2, 𝑐3 = 0.2, ℎ3 = 0.5, 𝑝3 =

1, 𝑐4 = 0.4, ℎ4 = 0.1, 𝑝4 = 0.5, 𝛽 = 0.9. The demands 𝑑1
𝑡
, 𝑑2

𝑡
, 𝑑3

𝑡
and 𝑑4

𝑡

are assumed to be i.i.d. uniformly distributed between 0 and 1.
The proposed Q-learning (QL) algorithm is implemented with the

following parameter values: 𝛾1 = 0.98, learning rate 𝛼𝑡(𝑠𝑙) = 𝑁𝑡(𝑠𝑙)
−0.501,

shrinking ball radius 𝑟𝑡 = ln(100)∕ ln(100+𝑡). The function approximator
is constructed using the stochastic kriging method with a Matérn kernel
(see, e.g., [25,26]), and the learning policy is taken to be an 𝜖-greedy
policy with 𝜖 = 0.1 (i.e., choose the action that minimizes the current
Q𝑡 with probability 1 − 𝜖 and select a random action with probability
𝜖). The initial state is taken to be (1, 1, 1, 1).

In addition to QL, we have also applied four other methods: a
discretization-based value iteration (DVI) algorithm, a non-parametric
version of the fitted Q-iteration (FQI) algorithm presented in Chapter
3.4.3 of [8], the soft-state aggregation method of [17] (QL-SSA), and
the nearest-neighbor Q-learning method (QL-NN) proposed in [20]. DVI
is just the standard VI applied to a discrete version of the problem,
obtained by discretizing the state space using a grid size of 0.1 along
each dimension and then replacing the demand distributions with
discrete uniform distributions over {0.1𝑘 ∶ 𝑘 = 0, 1,… , 10}. This results
in a discrete-state MDP, whose transition probabilities can be computed
from the state transition functions. FQI requires transition samples to
be generated and stored beforehand. In our implementation, we have
used a set of 512 states, which are selected by using the Sobol sequence
on the four-dimensional state space (cf., e.g., Chapter 5 of [27]). Each
of the 512 states is repeatedly simulated 150 times (with 30 transition
samples per action) and the updated Q-value at each state–action pair

Systems & Control Letters 187 (2024) 105782

7

J. Hu et al.

Table 1
Weighted relative errors of comparison algorithms, means and standard errors (in
parentheses) based on 30 independent replications.

QL FQI QL-SSA QL-NN

1.71% (7.8e−4) 4.93% (1.3e−3) 8.02% (5.1e−4) 3.80% (1.5e−3)

Fig. 1. Weighted Relative Errors of QL, QL-SSA, and QL-NN.

is obtained as the average of the 30 samples to reduce uncertainty.
These Q-values are then used in the stochastic kriging method with a
Matérn kernel to fit an approximation of the Q-function. The number of
iterations for FQI is set to 100. Unlike FQI, QL-SSA is an asynchronous
method that uses the transition samples generated from a learning pol-
icy to iteratively estimate the Q-function values at a given set of clusters
(aggregate states). In the experiments, those clusters are taken to be the
set of 512 states used in FQI, and each encountered state 𝑠 belongs to

the 𝑖th cluster with probability 𝑃𝑆𝑆𝐴(𝑖|𝑠) =
exp(−‖𝑠−𝑖‖2∕0.001)∑
𝑗 exp(−‖𝑠−𝑗‖2∕0.001)

. The Q-

function estimator is then constructed in the form of a weighted sum∑
𝑖 𝑃𝑆𝑆𝐴(𝑖|𝑠)𝑄̂(𝑖, 𝑎) for all (𝑠, 𝑎), where 𝑄̂(𝑖, 𝑎) is an estimate of the Q-

value at each cluster-action pair. The implementation of QL-NN is based
on the same set of 512 discretized states. QL-NN differs from QL-SSA
in that it updates the Q-values at the clusters in a roughly synchronous
manner (i.e., after all neighborhoods of the discretized states are vis-
ited). The Q-values at neighboring states are then estimated at each step
using a weighted sum, where the weighting function is taken to be a

(truncated) Gaussian-type kernel 𝑃𝑁𝑁 (𝑖|𝑠) = exp(−‖𝑠−𝑖‖2∕2ℎ2)𝐼{‖𝑠−𝑖‖≤ℎ}∑
𝑗 exp(−‖𝑠−𝑗‖2∕2ℎ2)𝐼{‖𝑠−𝑗‖≤ℎ}

(see Appendix C in [20]) with the bandwidth parameter ℎ set to ℎ = 1.7

in our experiments. The learning policy and all other parameters in QL-
SSA and QL-NN are taken to be the same as in QL, and to allow for a
fair comparison with FQI, the numbers of iterations of QL, QL-SSA, and
QL-NN are all set to 512×150 = 76800, which corresponds to the number
of transition samples used by FQI.

Note that since a fine discretization is used, the solution returned by
DVI provides a close approximation to the optimal value function, and
hence can be used as a benchmark to gauge the performance of other
comparison algorithms. In particular, we use the performance measure
∑

𝑠∈𝑆𝐷
𝜇∗(𝑠)

|𝑉 (𝑠)−𝑉 ∗
𝐷
(𝑠)|

|𝑉 ∗
𝐷
(𝑠)| to signify the weighted relative error of a value

function 𝑉 , where 𝑆𝐷 and 𝑉 ∗
𝐷
are the state space and the optimal

value function of the discrete-state MDP solved by DVI, and 𝜇∗ is the
steady state distribution of the chain under the optimal policy. Table 1
shows the weighted relative errors of the value function approximations
obtained by the four comparison algorithms upon termination. In Fig. 1,
we also plotted the weighted relative errors (averaged over 30 runs)
of all online methods (QL, QL-SSA, and QL-NN) as a function of the
number of algorithm iterations (note that FQI is a one-shot approach
that computes the value function estimate using the available samples
all at once).

From the results, we see that QL yields the smallest weighted rela-
tive error and significantly outperforms QL-SSA and QL-NN. Compared
with QL and FQI, the benefits of QL-SSA and QL-NN lie in their
computation and memory efficiencies, as they work with a constant
number of aggregate states at each step and do not require storage of
the transition/historical data needed by QL and FQI. However, the use
of the weighted average in the Q-function approximator may entail a
large estimation bias, resulting in slow convergence. The performances
of QL-SSA and QL-NN may be improved by finding good clustering
probabilities tailored to the problem (e.g., using the adaptive proce-
dure outlined in [17]) and/or fine-tuning the value of the bandwidth
parameter ℎ.

5. Conclusions

In this paper, we have proposed a Q-learning algorithm for solving
continuous-state MDPs in a model-free setting. The algorithm uses a
function approximator, in lieu of a tabular representation, to interpo-
late the historical data collected from a given learning policy. Unlike
existing methods, the algorithm does not require the approximator to
be a non-expansion and hence allows the use of more flexible function
approximation tools. Another feature of the algorithm is that it employs
an asynchronous averaging technique, which enables the construction
of Q-value estimates to be conducted along a single sample trajectory.
This further distinguishes the algorithm from many other approaches
studied in the literature, which often resort to some forms of state-space
discretization. We have analyzed the algorithm and shown the strong
uniform convergence of the sequence of function approximators to the
optimal Q-function. A simple inventory control example has also been
provided to numerically illustrate the algorithm. An important line of
future research will be to carry out a finite-time performance analysis,
e.g., developing probability bounds along the lines of [20], to gain some
insight into the computational complexity of the algorithm in relation
to the problem size.

CRediT authorship contribution statement

Jiaqiao Hu: Conceptualization, Methodology, Writing – original
draft. Xiangyu Yang: Software, Validation, Visualization, Writing –
review & editing. Jian-Qiang Hu: Methodology, Resources, Writing –
review & editing. Yijie Peng: Conceptualization, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] D.P. Bertsekas, J.N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific,
Belmont, MA, 1996.

[2] H. Chang, J. Hu, M. Fu, S. Marcus, Simulation-based algorithms for Markov
decision processes, second ed., Springer, NY, 2013.

[3] A. Gosavi, Reinforcement learning: A tutorial survey and recent advances,
INFORMS J. Comput. 21 (2) (2009) 178–192.

[4] W.B. Powell, Approximate Dynamic Programming: Solving the curses of
dimensionality, Wiley-Interscience, NJ, USA, 2007.

[5] R. Sutton, A. Barto, Reinforcement Learning:An Introduction, MIT Press, 1998.
[6] C.J.C.H. Watkins, Learning from Delayed Rewards (Phd Thesis), Cambridge

University, 1989.
[7] S. Bhatnagar, K.M. Babu, New algorithms of the Q-learning type, Automatica 44

(4) (2008) 1111–1119.

http://refhub.elsevier.com/S0167-6911(24)00070-7/sb1
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb1
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb1
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb2
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb2
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb2
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb3
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb3
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb3
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb4
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb4
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb4
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb5
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb6
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb6
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb6
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb7
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb7
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb7

Systems & Control Letters 187 (2024) 105782

8

J. Hu et al.

[8] L. Busoniu, R. Babuska, B. De Schutter, D. Ernst, Reinforcement Learning and
Dynamic Programming using Function Approximators, vol. 39, CRC Press, 2010.

[9] J. Hu, H.S. Chang, Approximate stochastic annealing for online control of infinite
horizon Markov decision processes, Automatica 48 (9) (2012) 2182—2188.

[10] J. Rust, Chapter 51 structural estimation of markov decision processes, in:
Handbook of Econometrics, vol. 4, Elsevier, 1994, pp. 3081–3143.

[11] S. Baumert, R.L. Smith, Pure Random Search for Noisy Objective Functions,
Technical Report 01-03, University of Michigan, 2002.

[12] A. Antos, R. Munos, C. Szepesvári, Fitted Q-iteration in continuous action-space
MDPs, in: Advances in Neural Information Processing Systems, MIT Press, 2008,
pp. 9–16.

[13] D. Ernst, P. Geurts, L. Wehenkel, Tree-based batch mode reinforcement learning,
J. Mach. Learn. Res. 6 (2005) 503–556.

[14] G.J. Gordon, Stable function approximation in dynamic programming, in: Pro-
ceedings of the 20th International Conference on Machine Learning, 1995, pp.
261–268.

[15] T. Horiuchi, Fuzzy interpolation-based Q-learning with continuous states and
actions, in: Proceedings of IEEE International Conference on Fuzzy Systems,
1996.

[16] M. Riedmiller, Neural fitted Q-iteration—first experiences with a data efficient
neural reinforcement learning method, in: Proceedings 16th European Conference
on Machine Learning, 2005, pp. 317–328.

[17] S. Singh, T. Jaakkola, M. Jordan, Reinforcement learning with soft state ag-
gregation, in: G. Tesauro, D. Touretzky, T. Leen (Eds.), in: Advances in Neural
Information Processing Systems, vol. 7, MIT Press, 1995, pp. 361–368.

[18] C. Szepesvári, W.D. Smart, Interpolation-based Q-learning, in: Proceedings of the
21st International Conference on Machine Learning, 2004, pp. 791–798.

[19] F.S. Melo, M.I. Ribeiro, Convergence of Q-learning with linear function
approximation, in: 2007 European Control Conference, ECC, 2007, pp.
2671–2678.

[20] D. Shah, Q. Xie, Q-learning with nearest neighbors, in: Advances in Neural
Information Processing Systems, Curran Associates, Inc., 2018, pp. 3111–3121.

[21] S. Singh, T. Jaakkola, M.L. Littman, Convergence results for single-step on-policy
reinforcement-learning algorithms, Mach. Learn. 38 (3) (2000) p.287–308.

[22] S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer-
Verlag, London, 1993.

[23] A.N. Shiryaev, Probability, second ed., Springer-Verlag, New York, USA, 1996.
[24] J.N. Tsitsiklis, Asynchronous stochastic approximation and Q-learning, Mach.

Learn. 16 (1994) 185–202.
[25] M.L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, Springer

Science & Business Media, 1999.
[26] B. Ankenman, B.L. Nelson, J. Staum, Stochastic kriging for simulation

metamodeling, Oper. Res. 58 (2) (2010) 371–382.
[27] P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer,

2004.

http://refhub.elsevier.com/S0167-6911(24)00070-7/sb8
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb8
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb8
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb9
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb9
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb9
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb10
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb10
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb10
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb11
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb11
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb11
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb12
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb12
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb12
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb12
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb12
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb13
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb13
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb13
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb14
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb14
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb14
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb14
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb14
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb15
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb15
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb15
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb15
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb15
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb16
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb16
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb16
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb16
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb16
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb17
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb17
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb17
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb17
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb17
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb18
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb18
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb18
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb19
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb19
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb19
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb19
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb19
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb20
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb20
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb20
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb21
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb21
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb21
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb22
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb22
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb22
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb23
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb24
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb24
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb24
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb25
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb25
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb25
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb26
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb26
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb26
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb27
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb27
http://refhub.elsevier.com/S0167-6911(24)00070-7/sb27

	A Q-learning algorithm for Markov decision processes with continuous state spaces
	Introduction
	Q-Learning for Continuous-State MDPs
	Algorithm Description

	Convergence Analysis
	An Illustrative Example
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

