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Abstract. We consider stochastic optimization via gradient-based search. Under a stochas
tic approximation framework, we apply a recently developed convergence rate analysis to 
provide a new finite-time error bound for a class of problems with convex differentiable 
structures. For noisy black-box functions, our main result allows us to derive finite-time 
bounds in the setting where the gradients are estimated via finite-difference estimators, 
including those based on randomized directions such as the simultaneous perturbation sto
chastic approximation algorithm. In particular, the convergence rate analysis sheds light 
on when it may be advantageous to use such randomized gradient estimates in terms of 
problem dimension and noise levels.

Funding: This work was supported by the Air Force Office of Scientific Research [Grant FA95502010211] 
and the National Science Foundation [Grants IIS-2123684 and CMMI-2027527]. 

Keywords: stochastic approximation • convergence rate • finite-time analysis • finite differences • random directions •
simultaneous perturbation

1. Introduction
Gradient-based algorithms are the most commonly used 
methods for addressing continuous optimization pro
blems with some known (or assumed) smoothness. 
Focusing on the stochastic setting where the gradient is 
estimated with both bias (e.g., finite differences) and 
noise, in this note we use the finite-time analysis intro
duced in Hu et al. (2024) to derive new error bounds on 
the iterates in gradient-based search for a class of pro
blems with convex differentiable structures. Our analysis 
focuses on the standard stochastic approximation (SA) 
algorithm with diminishing step-sizes, which comple
ments recent developments in the machine learning liter
ature (e.g., Duchi et al. 2015, Karimi et al. 2019, Driggs 
et al. 2022, Demidovich et al. 2023) that consider constant 
step-sizes and/or variants of such algorithms. In addi
tion, as contrasted with existing studies, which com
monly assume a bounded gradient estimation error at 
the optimum (see, e.g., Duchi et al. 2015, Bottou et al. 
2018, Chen and Luss 2019, Hu et al. 2021, Demidovich 
et al. 2023, and references therein), our results are based 
on an explicit bias-variance decomposition, where the 
variance of the gradient estimator is allowed to increase 
with the number of algorithm iterations. Such a scenario 
frequently arises in traditional stochastic approximation 

settings (Kushner and Yin 1997), for example, when 
a finite-difference (FD)-based estimator is constructed 
based on a sequence of diminishing perturbation sizes 
(Kiefer and Wolfowitz 1952, Spall 1992).

In the noisy black-box setting where only noisy evalua
tions of the output function are available, the main theoret
ical result is used to compare the finite-time performance 
of traditional Kiefer and Wolfowitz (1952) (KW) algo
rithms and randomized finite-difference gradient-based 
search, such as simultaneous perturbation stochastic ap
proximation (SPSA) of Spall (1992). Specifically, the con
vergence rate analysis enables the characterization of 
finite-time performance of finite-difference-based gradient 
search in terms of problem dimension and noise levels, 
providing guidance on when it might be appropriate to 
use randomized gradients and bridging a gap between 
the asymptotic analysis of Spall (1992) and Kushner and 
Yin (1997) and the “static” gradient bias-variance trade-off 
analysis of Scheinberg (2022) and Berahas et al. (2022).

The remainder of this note is organized as follows. Sec
tion 2 presents the optimization problem setting. The sto
chastic approximation framework and main result are 
presented in Section 3, and Section 4 specializes to the 
black-box setting where finite-difference-based estimates 
are used for the gradient. Section 5 concludes.
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2. Problem Setting
Consider the following optimization problem:

min
u∈Θ

F(u), (1) 

where the feasible region Θ ⊆ Rd is a convex set that is 
either compact or the entire (unbounded) space, that is, 
Θ �Rd. We assume that the objective function F : Rd→

R is smooth and strongly convex, satisfying the regular
ity properties stated below.

Assumption A1 (Differentiability). The function F(u) is 
twice continuously differentiable on Θ.
Assumption A2 (Lipschitz Smoothness). There exists a 
constant M > 0 such that ‖∇uF(u) |u�u1 �∇uF(u) |u�u2‖ ≤

M‖u1� u2‖ for all u1, u2 ∈Θ, where ‖ · ‖ is the Euclidean 
norm.

Assumption A3 (Strong Convexity). Let λ(u) be the smal
lest eigenvalue of the Hessian matrix H(u) :� ∇2

uF(u). There 
exists a constant m > 0 such that λ(u) ≥m for all u ∈Θ.

Assumptions A1–A3 are standard conditions fre
quently adopted when analyzing the convergence rates 
of gradient descent methods (e.g., Ghadimi and Lan 
2012, Bottou et al. 2018, Berahas et al. 2022, Scheinberg 
2022). Note that when Θ is compact, Assumption A2 fol
lows automatically from Assumption A1. Moreover, the 
constant M in Assumption A2 also serves as an upper 
bound on the largest eigenvalue of H(u). We focus on 
the setting where F is a black-box function estimated 
with noise. For example, in a stochastic optimization set
ting, the objective function is often given in the form of 
an expectation, where the value of F(u) may not be com
puted analytically but in general can be estimated by sam
pling from an underlying stochastic/simulation model.

3. Convergence Rate Analysis for 
General Gradient-Based Search

Under the assumptions stated in Section 2, Problem (1) 
has a unique solution u*, which can be found through 
gradient-based search taking the following general form, 
known as stochastic approximation:

uk+1 �ΠΘ(uk� akgk(uk)), (2) 

where gk(uk) is an estimate of the true gradient G(uk) :�

∇uF(u) |u�uk obtained at iteration k, ak > 0 is the step-size, 
and ΠΘ(·) is the projection operator that brings an iterate 
of (2) back into the feasible region Θ whenever it 
becomes infeasible. For the unbounded case Θ �Rd, the 
projection operator should be removed.

Let F k � σ{u1, : : : , uk} be an increasing σ-field gener
ated by the sequence of random iterates {uk} obtained 
up to iteration k. The gradient estimation error gk(uk)�

G(uk) can then be written as the sum of a bias bk :�

E[gk(uk) |F k]�G(uk) and a noise term �k :� gk(uk)�

E[gk(uk) |F k]. Under fairly mild conditions on ak, bk, and 

ek, the sequence {uk} can be shown to converge to u* 

with probability one (e.g., Kushner and Yin 1997). Our 
goal is to characterize the finite-time convergence rate of 
(2) in terms of the gradient estimation bias bk and noise ek. 
Throughout the analysis, for two positive real sequences 
{vk} and {wk}, we write vk � o(wk) if limk→∞vk=wk � 0; 
vk �O(wk) if ∃C > 0 and ∃K > 0 such that vk ≤ Cwk for 
all k ≥ K. We consider standard step-size sequences {ak}

of the form ak � a=kα for constants a>0, α ∈ [0, 1), where 
the case α�0 corresponds to constant step-sizes and other
wise diminishing step-sizes, and impose the following 
conditions on u∗ and the gradient estimation error:

Assumption A4. The optimal solution u* is an interior 
point of Θ.

Assumption A5. There are constants q1 > 0, q2 < α=2, 
and C1, C2 > 0 such that E[‖bk‖

2
] ≤ C1k�2q1 and E[‖�k‖

2
]

≤ C2k2q2 .

Assumption A4 holds trivially for unconstrained pro
blems. Assumption A5 requires the estimation bias to be 
asymptotically negligible, whereas the noise variance 
only has to go to zero when scaled by the step-size ak, 
that is, akE[‖�k‖

2
] → 0 because 2q2 < α. Other than the 

order of the gradient gk noise variance, we do not impose 
any additional assumptions on the measurement noise 
of the underlying function F. For example, the measure
ment noise could be i.i.d., martingale differences, or cor
related in general. Note that the magnitude of the 
constants q1 and q2 can be arbitrarily large. The q1 �∞
case means that there is no estimation bias, whereas q2 �
�∞ corresponds to deterministic gradient estimation.

Assumption A5 differs from most assumptions used 
in existing studies on biased stochastic gradient descent 
(see, e.g., section 4 of Demidovich et al. 2023), which are 
based on bounding the moments of gk with those of the 
true gradient G. This implies that the gradient estimation 
error will either vanish or remain uniformly bounded at 
the optimum, which is generally not satisfied for settings 
where a finite-difference gradient estimator with a 
sequence of diminishing perturbation sizes is employed. 
We now state and prove our main result, which provides 
a finite-time bound on the mean absolute error of the 
gradient descent method (2).

Theorem 1 (Diminishing Step-Sizes). Let Assumptions 
A1–A5 hold and ρ < m be a positive constant. For ak �

a=kα, α ∈ (0, 1), a > 0, if ak is chosen such that ak < min 
{2(m� ρ)=M2, 1=(2ρ)} and (1+Mak)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ρak

p
≤ 2 

∀k ≥ 0, then the sequence {uk} generated by (2) satisfies

E[‖uk � u∗‖] ≤ Ce�ρ
Pk�1

i�1 αi +
2
ffiffiffiffiffiffi
C1
√

ρ
k�q1 +

ffiffiffiffiffiffi
C2
√

ffiffiffi
ρ
√ a

1
2
kkq2

+ o(k�q1) + o(a
1
2
kkq2)

(3) 
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for some constant C > 0. In addition,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[F(uk)� F(u*)]

q

≤ C̄e�ρ
Pk�1

i�1 αi +

ffiffiffiffiffi
M
2

r �
2
ffiffiffiffiffiffi
C1
√

ρ
k�q1

+

ffiffiffiffiffiffi
C2
√

ffiffiffi
ρ
√ a

1
2
kkq2

�

+ o(k�q1) + o(a
1
2
kkq2)

for some constant C̄ > 0.

Proof. Note that Assumption A4 implies that the pro
jection operation in (2) will not have an effect on the 
convergence rate of the algorithm (e.g., Kushner and 
Yin 1997, Hu et al. 2024). The operator ΠΘ will hence
forth be dropped in our analysis without loss of 
generality.

Let hk :� uk � u∗. We can write (2) in terms of hk as 
hk+1 � hk � akG(uk)� ak(gk(uk)�G(uk)): It follows that

‖hk+1‖
2
� ‖hk‖

2
+ a2

k‖G(uk)‖
2
+ a2

k‖gk(uk)�G(uk)‖
2

� 2akhT
kG(uk)� 2akhT

k(gk(uk)�G(uk))

+ 2a2
kGT(uk)(gk(uk)�G(uk)):

Because G(u∗) � 0, by Assumption A1 and the mean value 
theorem, G(uk) �G(u∗) +H(uk)(uk� u∗) �H(uk)hk for 
some uk on the line segment between uk and u∗. Under 
Assumptions A2 and A3, the Rayleigh-Ritz inequality 
(e.g., Rugh 1996) implies that hT

kG(uk) � hT
kH(uk)hk ≥

m‖hk‖
2 and ‖G(uk)‖

2
� hT

kHT(uk)H(uk)hk ≤ M2‖hk‖
2, 

where recall that by Assumption A2, M is an upper bound 
on the largest eigenvalue of H(u). Using these bounds, we 
get that

‖hk+1‖
2
≤ (1� 2mak +M2a2

k)‖hk‖
2
+ a2

k‖gk(uk)�G(uk)‖
2

�2akhT
k (gk(uk)�G(uk)) + 2a2

kGT(uk)(gk(uk)�G(uk)):

Taking conditional expectations on both sides and 
using the fact E[‖gk(uk)�G(uk)‖

2
|F k] � E[‖bk‖

2
|F k]

+E[‖�k‖
2
|F k], then yield

E[‖hk+1‖
2
|F k] ≤ (1� 2mak +M2a2

k)‖hk‖
2

+ a2
kE[‖bk‖

2
|F k] + a2

kE[‖�k‖
2
|F k]

� 2akhT
kbk + 2a2

kGT(uk)bk:

By unconditioning on F k, applying the Cauchy-Schwarz 
inequality and the conditions ak < min{2(m� ρ)=M2, 
1=(2ρ)}, (1+Mak)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ρak

p
≤ 2 for all k, we further 

obtain
E[‖hk+1‖

2
] ≤ (1� 2mak +M2a2

k)E[‖hk‖
2
]

+ 2ak(1+Mak)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖hk‖
2
]

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖bk‖
2
]

q

+ a2
kE[‖bk‖

2
] + a2

kE[‖�k‖
2
]

≤ (1� 2ρak)E[‖hk‖
2
] + 2ak(1+Mak)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖hk‖
2
]

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖bk‖
2
]

q

+ a2
kE[‖bk‖

2
] + a2

kE[‖�k‖
2
]

≤

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ρak

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖hk‖
2
]

q

+ ak
(1+Mak)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ρak

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖bk‖
2
]

q �2

+ a2
kE[‖�k‖

2
]

≤ ((1� ρak)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖hk‖
2
]

q

+ 2ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖bk‖
2
]

q

)
2
+ a2

kE[‖�k‖
2
]

≤ ((1� ρak)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖hk‖
2
]

q

+ 2ak
ffiffiffiffiffiffi
C1

p
k�q1)

2
+ a2

kC2k2q2 , 

where in the penultimate step we have used the inequal
ity 

ffiffiffiffiffiffiffiffiffiffiffi
1� x
√

≤ 1� x=2 for x ∈ [0, 1], and the last inequality 
follows from Assumption A5.

Now consider the sequence of mappings Tk(·), k � 1, 
2, : : : , defined by

T k(x) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

((1� ρak)x+ 2ak
ffiffiffiffiffiffi
C1

p
k�q1)

2
+ a2

kC2k2q2

q

:

It can be readily verified that for each k, T k is a contrac
tion mapping with |T k(x)� T k(y) | ≤ (1� ρak) |x� y | , 
and its unique fixed point x∗k satisfies x∗k ≤ 2(

ffiffiffiffiffiffi
C1
√

=ρ)
k�q1 + (

ffiffiffiffiffiffi
C2
√

=
ffiffiffi
ρ
√
)
ffiffiffiffiak
√ kq2 .

Next, let x1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖h1‖
2
]

q

and consider the sequence 
{xk} generated by xk+1 � T k(xk), k � 1, 2, : : : . By induc

tion, we have 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖hk‖
2
]

q

≤ xk for all k. On the other 
hand, by the contraction property of T k and repeated 
application of the triangle inequality,

|xk+1� x∗k+1 | ≤ |xk+1� x∗k | + |x
∗
k� x∗k+1 |

� |T k(xk)� T k(x∗k) | + |x
∗
k � x∗k+1 |

≤ (1� akρ) |xk� x∗k | + |x
∗
k � x∗k+1 |

≤ (1� akρ) |xk� x∗k�1 |

+ (1� akρ) |x∗k� x∗k�1 | + |x
∗
k� x∗k+1 |

: : :

≤
Yk

i�1
(1� αiρ) |x1� x∗1 |

+
Xk

i�1

Yk

j�i+1
(1� αjρ)

2

4

3

5αiρ
|x∗i+1� x∗i |
αiρ

: (4) 

To finish the proof of the first part, we need the following 
intermediate result, which is a strengthened version of 
lemma 3 in Hu et al. (2024) and whose proof is given in 
the appendix.
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Lemma 1. Let u(i) � s=ip and w(i) �O(1=iq), where s > 0, 
p ∈ (0, 1), q > 0, and w(i) > 0 for all i � 1, 2, : : : . Then

Xk

i�1

Yk

j�i+1
(1� u(j))

2

4

3

5u(i)w(i) �O(k�q):

For the specific form of the step-size ak � a=kα, it can 
be shown that |x∗k � x∗k+1 | �O(k�q1�1) +O(k�α=2+q2�1). 
Using the fact that 

Qk
i�1(1� αiρ) ≤ exp(�ρ

Pk
i�1 αi) and 

applying Lemma 1 to the second term on the right-hand 
side of (4),

|xk+1 � x∗k+1 | ≤ Ce�ρ
Pk

i�1 αi + o(k�q1) + o(a
1
2
kkq2)

for some constant C. Finally, the first result is proved by 

noticing that E[‖uk � u∗‖] ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖hk‖
2
]

q

≤ xk ≤ x∗k + Ce�ρ 
Pk�1

i�1 αi + o(k�q1) + o( ffiffiffiffiak
√ kq2):

To show the second part of the theorem, we note that 
by the Lipschitz smoothness condition A2 and the fact 
that G(u∗) � 0,

F(uk) ≤ F(u∗) +GT(u∗)(uk� u∗) +
M
2 ‖uk� u∗‖2

� F(u∗) +M
2 ‖uk� u∗‖2:

Hence, we obtain 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E[F(uk)� F(u∗)]

p
≤

ffiffiffiffiffiffiffiffiffiffi
M=2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖hk‖
2
]

q

, 
and the desired result immediately follows as a conse
quence of the first part of the theorem. w

Under Assumption A5, because 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖bk‖
2
]

q

≤
ffiffiffiffiffiffi
C1
√

k�q1 

and 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖�k‖
2
]

q

≤
ffiffiffiffiffiffi
C2
√

kq2 , Theorem 1 essentially gives a 
performance bound for (2) in terms of the bounds on the 
gradient estimation bias and variance. When the orders 
of the errors E[‖bk‖

2
] and E[‖�k‖

2
] are uniform in k, the 

result can be stated as E[‖uk� u∗‖] �O(e�ρ
Pk�1

i�1 αi)+

O(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖bk‖
2
]

q

) +O(a1=2
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖�k‖
2
]

q

). This seems to be the 
strongest possible result in this generality and conforms 
to existing work on the (asymptotic) convergence rate of 
SA algorithms. Supposing that the estimator gk(uk) can 
be obtained without bias and with a constant variance 
(i.e., q1 �∞ and q2 � 0), then the performance bound 
diminishes at the rate O(a1=2

k ). On the other hand, if there 
is no estimation noise (i.e., q2 ��∞), then the rate is pri
marily dominated by the order of the estimation bias, 
and the algorithm converges geometrically when the 
exact gradient is used. Another observation from Theo
rem 1 is that the bound in (3) is decreasing in ρ and hence 
can be made small by taking the value of ρ close to m. 
Because m is a lower bound on the smallest eigenvalue of 
the Hessian of F, which roughly measures the degree of 
convexity of the function, faster convergence rates can 
generally be expected for objective functions with stron
ger convex curvatures.

When constant step-sizes are used (i.e., α� 0), and also 
assuming constant gradient estimation bias and vari
ance, a result analogous to Theorem 1 is obtained below.

Corollary 1 (Constant Step-Sizes). Let Assumptions 
A1–A4 hold. Suppose that the conditions on ak in Theorem 
1 hold with ak� a for all k and that Assumption A5 is 
satisfied with q1 � q2 � 0, that is, E[‖bk‖

2
] ≤ C1 and 

E[‖�k‖
2
] ≤ C2. Then the sequence {uk} generated by (2) 

satisfies

E[‖uk� u∗‖] ≤ C(1� aρ)k�1
+

2
ffiffiffiffiffiffi
C1
√

ρ
+

ffiffiffiffiffiffi
C2
√

ffiffiffi
ρ
√ a1

2 

for some constant C > 0. In addition,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E[F(uk)�F(u∗)]

p
≤ C̄(1�aρ)k�1

+

ffiffiffiffiffi
M
2

r �
2
ffiffiffiffiffiffi
C1
√

ρ
+

ffiffiffiffiffiffi
C2
√

ffiffiffi
ρ
√ a1

2

�

for some constant C̄ > 0.

Proof. The proof is almost identical to that of Theorem 
1 with a replacing ak and q1 � q2 � 0. The only differ
ence is that the contraction mapping T k defined in 
Theorem 1 no longer depends on k and reduces to

T (x) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

((1� aρ)x+ 2a
ffiffiffiffiffiffi
C1

p
)
2
+ a2C2

q

, 

with fixed point satisfying x∗ ≤ 2(
ffiffiffiffiffiffi
C1
√

=ρ) + (
ffiffiffiffiffiffi
C2
√

=
ffiffiffi
ρ
√
)
ffiffiffi
a
√

. 
Again, by defining hk � uk � u∗ and letting x1 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖h1‖
2
]

q

and {xk} be generated by xk+1 � T (xk), k � 1, 
2, : : : , we have

|xk+1 � x∗ | � |T (xk)� T (x∗) | ≤ (1� aρ) |xk� x∗ |

≤⋯≤ (1� aρ)k |x1� x∗ | :

Consequently, the first result is proved by noticing 

that 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖hk‖
2
]

q

≤ xk ≤ x∗ + C(1� aρ)k�1 for some con
stant C. The proof of the second result follows the 
analogous proof in Theorem 1. w

4. Finite-Difference-Based Gradient 
Descent Algorithms

We now specialize our analysis to specific gradient descent 
algorithms and discuss their relative advantages/ 
disadvantages based on the performance bound stated 
in Theorem 1. We consider central/symmetric finite- 
difference gradient approximation schemes. Because their 
analysis typically relies on a third-order Taylor series 
expansion of the objective function, condition A1 will thus 
be strengthened to require F(u) to be three-times con
tinuously differentiable. Throughout this section, we let 
∇3

uF(u) be the tensor of F and assume that its elements are 
uniformly bounded on an open neighborhood N (Θ) of Θ. 
Let L :� supu∈N (Θ)max1≤ i, j, k≤d | [∇

3
uF(u)]i, j, k | . We also 

define LG :� supu∈Θmax1≤ i≤d | [G(u)]i | so that a conserva
tive bound on ‖G(uk)‖

2 is given by dL2
G. The perturbation- 
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sizes of the form ck � c=kγ where c>0 and γ ∈ (0, 1) will 
be used in all algorithms, and all (function F) measurement 
noise terms are assumed to have zero means and variances 
uniformly bounded by σ2 > 0. In particular, the constant γ 
in ck determines the orders of the estimation bias and vari
ance in a finite-difference scheme, and its choice depends 
on the step-size parameter α in order to satisfy Assump
tion A5.

4.1. KW Algorithm
In the KW algorithm, a symmetric finite-difference esti
mator for G(uk) takes the following form:

gk, i(uk) �
F(uk + ckei)� F(uk � ckei)

2ck
+
ε+k, i � ε

�
k, i

2ck
,

i � 1, : : : , d, (5) 

where gk, i is the ith component of the gradient estimator, 
ei denotes the unit vector in the ith direction, and ε6k, i are 
the two measurement noise terms when observing F at 
the perturbed vectors uk6ckei. Because the noise terms 
could be correlated, we in general have E[ε+k, i�

ε�k, i |F k] � 0 and E[(ε+k, i� ε
�
k, i)

2
|F k] ≤ 4σ2 for all i � 1, 

: : : , d. Note that each iteration of the KW procedure 
requires 2d measurements of the objective function.

Using Taylor’s theorem, it is then a simple exercise to 
show that E[‖bk‖

2
] ≤ dc4

kL2=36 and E[‖�k‖
2
] ≤ dσ2=c2

k . 
Thus, given the form of ck � c=kγ, Assumption A5 is satis
fied with C1 � dL2c4=36, q1 � 2γ and C2 � dσ2=c2, q2 � γ 
provided that γ < α=2. Consequently, when higher-order 
terms are ignored, the performance bound in (3) becomes

ffiffiffi
d
√

L
3ρ c2

k +

ffiffiffi
d
√
σ
ffiffiffi
ρ
√

a1=2
k
ck
: (6) 

4.2. Random Direction Finite-Difference Algorithm
A random direction method simultaneously varies all 
components of the underlying parameter vector in ran
dom directions, so that the similar effect of the deter
ministic finite-difference scheme can be achieved with 
only two function measurements. The symmetric finite- 
difference version of the gradient estimator is given by

gk(uk) �
F(uk + ckuk)� F(uk � ckuk)

2ck
uk +

ε+k � ε
�
k

2ck
uk,

(7) 

where we take uk to be the standard normal vector with 
independent components and assume that uk is indepen
dent of ε6k .

Through a Taylor series expansion up to the third 
order, the rth element of the bias term equals

bk,r�
c2

k
12E

Xd

i,j,l
uk,iuk,juk,l[∇

3
uF(u+k )+∇

3
uF(u�k )]i,j,luk,r

�
�
�
�
�
F k

2

4

3

5,

(8) 

where u
6

k are on the line segments connecting uk and 
uk 6 ckuk. Under the current assumptions, a direct appli
cation of the Cauchy-Schwarz inequality may lead to a 
bound for |bk, r | that is too loose, because [∇3

uF(u6

k )]i, j, l 
and uk, i’s are not independent. Therefore, we further 
assume that F is four-times differentiable (with uni
formly bounded fourth-order derivatives), so that bk, r 
can be written as

bk, r �
c2

k
6 E

Xd

i, j, l
uk, iuk, juk, l[∇

3
uF(uk)]i, j, luk, r

�
�
�
�
�
F k

2

4

3

5+ o(c2
k):

Thus, because uk is F k-measurable, E[u2
k, i] � 1, and 

E[u4
k, i] � 3 for all i � 1, : : : , d, a bound on |bk, r | can be 

derived as follows:

|bk,r | ≤
c2

kL
6
Xd

i,j, l
|E[uk,iuk,juk,luk,r |F k] | +o(c2

k)

�
c2

kL
6 3

X

i≠r
E[u2

k,ru
2
k,i |F k]+E[u4

k,r |F k]

" #

+o(c2
k)

�
dLc2

k
2 +o(c2

k), 

implying that E[‖bk‖
2
] ≤ d3L2c4

k=4+ o(c4
k).

To calculate an upper bound for E[‖�k‖
2
], we note that

E[‖gk(uk)‖
2
|F k]

� E F(uk + ckuk)� F(uk� ckuk)

2ck

� �2
‖uk‖

2

�
�
�
�
�
F k

" #

+E
(ε+k � ε

�
k )

2

4c2
k
‖uk‖

2

�
�
�
�
�
F k

" #

≤ E F(θk + ckuk)� F(θk� ckuk)

2ck

� �2
‖uk‖

2

�
�
�
�
�
F k

" #

+
σ2

c2
k

E[‖uk‖
2
|F k]: (9) 

A second-order Taylor series expansion yields

F(uk + ckuk)� F(uk � ckuk) � 2ckGT(uk)uk +
c2

k
2 uT

k (H(u
+

k )

�H(u�k ))uk, 

where u
6

k are on the line segments between uk and 
uk6ckuk. Substituting the above into (9) and using the 
Cauchy-Schwarz inequality, we obtain

E[‖gk(uk)‖
2
|F k] ≤ E

h
(GT(uk)uk)

2
‖uk‖

2

+
c2

k
16 (u

T
k (H(u

+

k )�H(u�k ))uk)
2
‖uk‖

2
|F k

i

+E
h ck

2 ‖G(uk)‖ |uT
k (H(u

+

k )

�H(u�k ))uk‖ |uk‖
3
|F k

i
+
σ2

c2
k

E[‖uk‖
2
|F k]:
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By the Rayleigh-Ritz inequality, |uT
k(H(u

+

k )�H(u�k ))uk |

≤ (M�m)‖uk‖
2. In addition, it is straightforward to ver

ify that E[(GT(uk)uk)
2
‖uk‖

2
|F k] � (d+ 2)‖G(uk)‖

2. Thus, 
we can further simplify the above bound to get

E[‖gk(uk)‖
2
|F k] ≤ (d+ 2)‖G(uk)‖

2

+
ck
2 ‖G(uk)‖(M�m)E[‖uk‖

5
|F k]

+
c2

k
16 (M�m)2E[‖uk‖

6
|F k]

+
σ2

c2
k

E[‖uk‖
2
|F k]

� (d+ 2)‖G(uk)‖
2

+
ck
2 (M�m)‖G(uk)‖E[Z5=2]

+
c2

k
16 (M�m)2E[Z3]+

σ2

c2
k

E[Z]

≤ d(d+ 2)L2
G +

ck
2 (M�m)d(d+ 1)(d+ 3)LG

+
c2

k
16 (M�m)2d(d+ 2)(d+ 4) +σ

2

c2
k

d,

(10) 

where we have defined Z � ‖uk‖
2, a chi-square random 

variable with d-degrees of freedom, whose n-th moment 
is E[Zn] � 2nΓ(d=2+ n)=Γ(d=2) with Γ being the gamma 
function. Note that E[‖�k‖

2
|F k] � E[‖gk(uk)‖

2
|F k]�

‖E[gk(uk) |F k]‖
2. It can be shown that the leading term of 

‖E[gk(uk) |F k]‖
2 is ‖G(uk)‖

2, which is smaller than dL2
G. 

Thus, the right-hand side of (10) serves as a reasonable 
upper bound for E[‖�k‖

2
].

Compared with the KW algorithm, it is easy to see 
from (10) that a random direction method inflates the 
gradient variance. Nevertheless, the growth rate of the 
variance is dominated by σ2d=c2

k , the same as that of KW. 
Consequently, Assumption A5 is satisfied with γ < α=2, 
and according to Theorem 1, when only leading terms 
are considered, a performance bound on the random 
direction method is

d3=2L
ρ

c2
k +

ffiffiffi
d
√
σ
ffiffiffi
ρ
√

a1=2
k
ck

: (11) 

4.3. SPSA
The simultaneous perturbation method estimates the 
gradient G(uk) by

gk(uk) �
F(uk + ckDk)� F(uk � ckDk)

2ckDk
+
ε+k � ε

�
k

2ckDk
, (12) 

where Dk � (∆k, 1, : : : , ∆k, d)
T is a zero mean random direc

tion with i.i.d. components.
The most commonly adopted choice of Dk is the sym

metric Bernoulli random direction, that is, P(∆k, i � 1) �
P(∆k, i ��1) � 1=2 for all i � 1, : : : , d. Clearly, because 
∆k, i ∈ {�1, 1}, we have 1=Dk � Dk. So, in this setting, (12) 

becomes a special case of the random direction method 
(7). Consequently, its bias and variance analysis can be 
carried out along the same line as in Section 4.2. In partic
ular, by noting that E[∆k, i∆k, j] � 0 for i ≠ j, and ∆2

k, i � 1 
for all i � 1, : : : , d, it is easy to observe that E[‖bk‖

2
] ≤

d3L2c4
k=4+ o(c4

k).
On the other hand, by noting that ‖Dk‖

2
� d, we obtain 

from (9) that

E[‖gk(uk)‖
2
|F k] ≤ dE

�
F(uk+ckDk)�F(uk�ckDk)

2ck

� �2��
�
�F k

�

+
dσ2

c2
k
: (13) 

Again, by a Taylor series expansion,

F(uk + ckDk)�F(uk� ckDk) � 2ckGT(uk)Dk

+
c2

k
2 DT

k(H(u
+

k )�H(u�k ))Dk, 

where u
6

k are on the line segments between uk and 
uk6ckDk. Substituting the above into (13) and using 
the inequality |DT

k (H(u
�

k )�H(u�k ))Dk | ≤ (M�m)‖Dk‖
2 

� d(M�m) and the fact E[(GT(uk)Dk)
2
|F k] � ‖G(uk)‖

2, 
we finally obtain

E[‖gk(uk)‖
2
|F k] ≤ d‖G(uk)‖

2
+

d2
ffiffiffi
d
√

ck

2 ‖G(uk)‖(M�m)

+
c2

k
16 d3(M�m)2 + dσ2

c2
k

≤ d2L2
G +

d3LG(M�m)
2 ck

+
d3(M�m)2

16 c2
k +

dσ2

c2
k
: (14) 

Finally, by (3), a bound on the performance of SPSA, 
when expressed in terms of its leading terms, is given by

d3=2L
ρ

c2
k +

ffiffiffi
d
√
σ
ffiffiffi
ρ
√

a1=2
k
ck

: (15) 

4.4. Observations
In view of the performance bounds given by (6), (11), 
and (15), we have the following observations: 

(i) Consider the case α � 6γ, that is, both c2
k and 

a1=2
k =ck have the same order O(k�α=3), which yields the 

best convergence rate for a given ak. Suppose that both 
KW and random direction are implemented using the 
same ak and ck, and that the choice of constant c in ck 
does not depend on or vary with σ, which is assumed 
unknown here. Then a comparison of (6) and (11) indi
cates that if the noise level σ is large compared with the 
problem dimension d (i.e., the 

ffiffiffi
d
√
σ=

ffiffiffi
ρ
√ terms in (6) and 

(11) dominate), then using a random direction method 
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will likely result in a significant improvement in algo
rithm efficiency, especially for higher-dimensional pro
blems. On the other hand, when there is no noise or the 
noise variance is very small, the d3=2L=ρ (bias) term in 
the bound (11) dominates, and it is easy to observe that 
a random direction-based algorithm would roughly 
take d3=α ≥ d3 (because α < 1) times the number of itera
tions required by KW in order to achieve the same level 
of accuracy, and this clearly nullifies the benefit of the d- 
fold reduction in the number of function evaluations at 
each iteration. However, there might be some exceptions, 
for example, when the third-order derivatives of F are 
very small (e.g., L�0 for quadratic functions) so that the 
bias terms vanish, or when the mixed third-order partial 
derivatives of F are all zeros, in which case it can be seen 
from (8) that the dependency of the bias terms in (11) and 
(15) on the problem dimension reduces from d3=2 to 

ffiffiffi
d
√

.
The above comparison assumes that no problem- 

specific information is available. When the noise level σ 
either is known or can be reliably estimated, that is, the 
setting examined in Berahas et al. (2022), the constant c 
in the perturbation-size ck can further be optimized 
based on σ, leading to c � (3 ffiffiffi

ρ
√
σ=(2L))1=3a1=6 for KW 

and c � ( ffiffiffiρ√ σ=(2dL))1=3a1=6 for random direction. It is 
not difficult to show that the bounds in (6) and (11) 
then scale respectively as O(d1=2)σ2=3k�α=3 and 
O(d5=6)σ2=3k�α=3; both have the same order of depen
dency on σ. Because d1=2k�α=3 � d5=6(d1=αk)�α=3, this 
means that regardless of the noise level σ, a random 
direction method would require at least d1=α > d (because 
α < 1) times number of iterations in order to attain the 
same level of accuracy as KW. In other words, if the 
perturbation-size in KW is allowed to be chosen optimally 
using knowledge of σ, then the algorithm cannot be outper
formed by a random direction method. This observation is 
consistent with the findings of Scheinberg (2022) and 
Berahas et al. (2022) in the constant step-size setting.

(ii) When 2γ < α < 6γ, that is, c2
k � o(a1=2

k =ck), the 
influence of the problem dimension on the bias will 
eventually damp out as k increases. Thus, assuming 
that the same αk and ck are used, a random direction 
method could be advantageous, especially when the 
noise variance is high.

(iii) When α > 6γ, then the bias term dominates, so 
KW may in general yield superior performance in the 
long run, at least in theory. In particular, when there is no 
estimation noise, our performance bounds indicate that 
the number of iterations required by a random direction- 
based algorithm is more than d3 times that of KW.

(iv) When only leading terms are considered, (11) and 
(15) are identical. Thus, the performance of random direc
tion and SPSA should be similar. However, because of 
the use of different random directions, a comparison of 
(10) and (14) indicates that the dependencies on problem 

dimension in the nonleading terms are d(d+ 2), d(d+ 1)
(d+ 2), and d(d+ 2)(d+ 4) in random direction versus d2 

and d3 in SPSA. This may have a nonnegligible influence 
on the algorithm performance when k is small.

(v) When constant step- and perturbation-sizes are 
used, both c2

k and a1=2
k =ck are of order O(1). This can be 

viewed as a special case of Case (i) with α � γ � 0, 
except that the bounds on gradient variances in (10) 
and (14) may no longer be dominated by dσ2=c2. How
ever, irrespective of the actual dominating terms in (10) 
and (14), the performance bounds for random direction 
and SPSA are always worse (larger) than those given 
by (11) and (15). Therefore, assuming that the condi
tions of Corollary 1 are met, essentially the same con
clusions as in Case (i) above can be made.

5. Conclusions
For a class of problems with convex differentiable struc
tures, we have established a finite-time performance 
bound for gradient descent algorithms under general 
conditions on the gradient estimation errors. The bound 
allows for a detailed characterization of an algorithm’s 
rate of convergence through directly analyzing the bias 
and variance of the gradient estimator when employed in 
an iterative search. Two types of finite-difference-based 
gradient approximation methods, deterministic FD and 
random direction FD, are then studied and compared in 
terms of their efficiency based on the derived bound.

An open question is whether the typical d-fold per- 
iteration reduction in the number of performance evalua
tions of a random direction method will justify the 
potential increase in the number of gradient descent 
iterations. Prior studies on this topic are primarily based 
on asymptotic theory (Spall 1992, Kushner and Yin 1997) 
or by means of one-step bias-variance analysis (Berahas 
et al. 2022, Scheinberg 2022). Our finite-time study allows 
us to compare algorithm performance under different 
parameter settings, providing a more thorough under
standing of this issue. A case of interest is when ak and ck 
take the forms ak � a=kα and ck � c=kγ with α � 6γ. In 
particular, if the selection of c does not depend on the 
noise level σ, then our analysis indicates that the relative 
efficiency of a random direction method is generally con
tingent upon the amount of variability in the measure
ment noise in relation to the problem dimension. On the 
other hand, in the setting where the knowledge of σ can 
be exploited to optimize the choice of c, we obtain the 
negative result that the performance of a deterministic 
FD-based algorithm in general cannot be further im
proved through the use of random direction methods, 
an observation that is in agreement with earlier results 
reported in Scheinberg (2022) and Berahas et al. (2022). 
The essence of the issue is that when compared with 
deterministic FD estimators, existing randomized gradi
ent estimators would lead to an extra d-fold increase in 
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the estimation bias, which plays a major role in the bias- 
variance trade-off.
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Appendix. Proof of Lemma 1
Let u(x) � s=xp, r(x) � 1=xq, and U(x) �

R x
1 u(y)dy for x>0. 

We can find a constant C>0 and an integer N>0 such 
that u(i)<1, w(i) ≤ Ci�q � Cr(i) for all i ≥N, and that 
eU(x)u(x)r(x) and �eU(x)r′(x) are both increasing when 
x ≥N. Thus, we have for all k ≥N that

Xk

i�1

"
Yk

j�i+1
(1� u(j))

#

u(i)w(i)

�
XN�1

i�1

"
Yk

j�i+1
(1� u(j))

#

u(i)w(i) +
Xk

i�N

"
Yk

j�i+1
(1� u(j))

#

u(i)w(i)

�
Yk

j�N
(1� u(j))

XN�1

i�1

"
YN�1

j�i+1
(1� u(j))

#

u(i)w(i) +
Xk

i�N

"
Yk

j�i+1
(1� u(j))

#

u(i)w(i)

≤ e�
Pk

j�N u(j)
�
�
�
�
�

XN�1

i�1

YN�1

j�i+1
(1� u(j))u(i)w(i)

�
�
�
�
�
+
Xk

i�N

"
Yk

j�i+1
(1� u(j))

#

u(i)w(i)

�O(e�
s

1�pk1�p
) +C

Xk

i�N

"
Yk

j�i+1
(1� u(j))

#

u(i)r(i): (A.1) 

The second term on the right-hand side of (A.1) can be 
bounded as follows:

Xk

i�N

"
Yk

j�i+1
(1� u(j))

#

u(i)r(i)

≤
Xk

i�N
e�
Pk

j�i+1 u(j)u(i)r(i)

≤
Xk

i�N
e
�

Z k+1

i+1
u(x)dx

u(i)r(i)

� e�U(k+1)
Xk

i�N
eU(i+1)u(i)r(i)

≤ e
s

1�pe�U(k+1)
Xk

i�N
eU(i)u(i)r(i)

≤ e
s

1�pe�U(k+1)
Z k+1

N
eU(x)u(x)r(x)dx

≤ e
s

1�pe�U(k+1)
�

r(k + 1)eU(k+1) �

Z k+1

N
eU(x)r′(x)dx

�

≤ e
s

1�p(r(k + 1)� (k + 1�N)r′(k + 1))
� O(k�q):

Finally, because p ∈ (0, 1), the proof is hence completed by 
noting that the first term on the right-hand size of (A.1) is 
of order o(k�q). w
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