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Abstract. We consider stochastic optimization via gradient-based search. Under a stochas-
tic approximation framework, we apply a recently developed convergence rate analysis to
provide a new finite-time error bound for a class of problems with convex differentiable
structures. For noisy black-box functions, our main result allows us to derive finite-time
bounds in the setting where the gradients are estimated via finite-difference estimators,
including those based on randomized directions such as the simultaneous perturbation sto-

chastic approximation algorithm. In particular, the convergence rate analysis sheds light
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on when it may be advantageous to use such randomized gradient estimates in terms of
problem dimension and noise levels.
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1. Introduction

Gradient-based algorithms are the most commonly used
methods for addressing continuous optimization pro-
blems with some known (or assumed) smoothness.
Focusing on the stochastic setting where the gradient is
estimated with both bias (e.g., finite differences) and
noise, in this note we use the finite-time analysis intro-
duced in Hu et al. (2024) to derive new error bounds on
the iterates in gradient-based search for a class of pro-
blems with convex differentiable structures. Our analysis
focuses on the standard stochastic approximation (SA)
algorithm with diminishing step-sizes, which comple-
ments recent developments in the machine learning liter-
ature (e.g., Duchi et al. 2015, Karimi et al. 2019, Driggs
et al. 2022, Demidovich et al. 2023) that consider constant
step-sizes and/or variants of such algorithms. In addi-
tion, as contrasted with existing studies, which com-
monly assume a bounded gradient estimation error at
the optimum (see, e.g., Duchi et al. 2015, Bottou et al.
2018, Chen and Luss 2019, Hu et al. 2021, Demidovich
et al. 2023, and references therein), our results are based
on an explicit bias-variance decomposition, where the
variance of the gradient estimator is allowed to increase
with the number of algorithm iterations. Such a scenario
frequently arises in traditional stochastic approximation

settings (Kushner and Yin 1997), for example, when
a finite-difference (FD)-based estimator is constructed
based on a sequence of diminishing perturbation sizes
(Kiefer and Wolfowitz 1952, Spall 1992).

In the noisy black-box setting where only noisy evalua-
tions of the output function are available, the main theoret-
ical result is used to compare the finite-time performance
of traditional Kiefer and Wolfowitz (1952) (KW) algo-
rithms and randomized finite-difference gradient-based
search, such as simultaneous perturbation stochastic ap-
proximation (SPSA) of Spall (1992). Specifically, the con-
vergence rate analysis enables the characterization of
finite-time performance of finite-difference-based gradient
search in terms of problem dimension and noise levels,
providing guidance on when it might be appropriate to
use randomized gradients and bridging a gap between
the asymptotic analysis of Spall (1992) and Kushner and
Yin (1997) and the “static” gradient bias-variance trade-off
analysis of Scheinberg (2022) and Berahas et al. (2022).

The remainder of this note is organized as follows. Sec-
tion 2 presents the optimization problem setting. The sto-
chastic approximation framework and main result are
presented in Section 3, and Section 4 specializes to the
black-box setting where finite-difference-based estimates
are used for the gradient. Section 5 concludes.
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2. Problem Setting

Consider the following optimization problem:

min F(0), M

where the feasible region ® C R? is a convex set that is
either compact or the entire (unbounded) space, that is,
© = R". We assume that the objective function F : R? —
R is smooth and strongly convex, satisfying the regular-
ity properties stated below.

Assumption A1 (Differentiability). The function F(0) is
twice continuously differentiable on ©.

Assumption A2 (Lipschitz Smoothness). There exists a
constant M > 0 such that ||[VeF(0)|e=e, — VoF(0)|e=s,|| <
M||6, — 0| for all 01,0, € ®, where ||-|| is the Euclidean
norm.

Assumption A3 (Strong Convexity). Let A(0) be the smal-
lest eigenvalue of the Hessian matrix H(6) := V%,F (0). There
exists a constant m > 0 such that A(6) > m for all 6 € ©.

Assumptions Al-A3 are standard conditions fre-
quently adopted when analyzing the convergence rates
of gradient descent methods (e.g., Ghadimi and Lan
2012, Bottou et al. 2018, Berahas et al. 2022, Scheinberg
2022). Note that when @ is compact, Assumption A2 fol-
lows automatically from Assumption Al. Moreover, the
constant M in Assumption A2 also serves as an upper
bound on the largest eigenvalue of H(0). We focus on
the setting where F is a black-box function estimated
with noise. For example, in a stochastic optimization set-
ting, the objective function is often given in the form of
an expectation, where the value of F(0) may not be com-
puted analytically but in general can be estimated by sam-
pling from an underlying stochastic/simulation model.

3. Convergence Rate Analysis for

General Gradient-Based Search
Under the assumptions stated in Section 2, Problem (1)
has a unique solution 6", which can be found through
gradient-based search taking the following general form,
known as stochastic approximation:

Or1 = To(0 — akgk(ﬂk))/ 2)

where g, (0;) is an estimate of the true gradient G(6y) :=
VoF(0)|p=g, Obtained at iteration k, ax > 0 is the step-size,
and Ig(-) is the projection operator that brings an iterate
of (2) back into the feasible region © whenever it
becomes infeasible. For the unbounded case © = R*, the
projection operator should be removed.

Let Fx=0{04,...,0r} be an increasing o-field gener-
ated by the sequence of random iterates {0} obtained
up to iteration k. The gradient estimation error g, (6y) —
G(0y) can then be written as the sum of a bias by :=
E[g,(0)|Fi] — G(6) and a noise term ey := g, (0x)—
E[g,.(6x)| F]. Under fairly mild conditions on ay, by, and

€1, the sequence {6} can be shown to converge to 6
with probability one (e.g., Kushner and Yin 1997). Our
goal is to characterize the finite-time convergence rate of
(2) in terms of the gradient estimation bias by and noise €.
Throughout the analysis, for two positive real sequences
{vx} and {wy}, we write vy = o(wy) if limy_eovy/wy = 0;
v = O(wy) if 3C >0 and 3K > 0 such that vy < Cwy for
all k> K. We consider standard step-size sequences {ay}
of the form a; = a/k* for constants a>0, @ € [0, 1), where
the case a = 0 corresponds to constant step-sizes and other-
wise diminishing step-sizes, and impose the following
conditions on 6" and the gradient estimation error:

Assumption A4. The optimal solution @ is an interior
point of ©.

Assumption A5. There are constants q; >0, qp < a/Z
and Cy,Cy > 0 such that E[||be||*] < Cik=2" and E[||ex]’]
< Cszth_

Assumption A4 holds trivially for unconstrained pro-
blems. Assumption A5 requires the estimation bias to be
asymptotically negligible, whereas the noise variance
only has to go to zero when scaled by the step-size 4y,
that is, acE[||ex|*] — 0 because 2g, < a. Other than the
order of the gradient g; noise variance, we do not impose
any additional assumptions on the measurement noise
of the underlying function F. For example, the measure-
ment noise could be i.i.d., martingale differences, or cor-
related in general. Note that the magnitude of the
constants g; and g, can be arbitrarily large. The g1 = oo
case means that there is no estimation bias, whereas g, =
—oo corresponds to deterministic gradient estimation.

Assumption A5 differs from most assumptions used
in existing studies on biased stochastic gradient descent
(see, e.g., section 4 of Demidovich et al. 2023), which are
based on bounding the moments of g with those of the
true gradient G. This implies that the gradient estimation
error will either vanish or remain uniformly bounded at
the optimum, which is generally not satisfied for settings
where a finite-difference gradient estimator with a
sequence of diminishing perturbation sizes is employed.
We now state and prove our main result, which provides
a finite-time bound on the mean absolute error of the
gradient descent method (2).

Theorem 1 (Diminishing Step-Sizes). Let Assumptions
A1-A5 hold and p < m be a positive constant. For a; =
a/k*, a€(0,1), a > 0, if ay is chosen such that a; < min
{20m - p)/M2,1/(2p)} and (1+May)//T—2pa; <2
Vk >0, then the sequence {0y} generated by (2) satisfies
E[l|6x — 67]]] < R \/_ \/\?

k Kh quz

+o(k ™) + o(aquz)

®)



Downloaded from informs.org by [96.224.208.187] on 08 March 2024, at 12:19 . For personal use only, all rights reserved.

Hu and Fu: Finite-Time Convergence Rate of Stochastic Approximation
Operations Research, Articles in Advance, pp. 1-8, © 2024 INFORMS

for some constant C > 0. In addition,

VEIF(00) — F(0)] < Go it i @(@w

VG, 1 ) B 1
+——a2k” | +o(k™) + o(a2k™)
\/p k k

for some constant C > 0.

Proof. Note that Assumption A4 implies that the pro-
jection operation in (2) will not have an effect on the
convergence rate of the algorithm (e.g., Kushner and
Yin 1997, Hu et al. 2024). The operator Ilg will hence-
forth be dropped in our analysis without loss of
generality.

Let n, := 0 — 6". We can write (2) in terms of 1y as
MNier1 = M — 4 G(0;) — ak(gk(ﬂk) — G(6y)). It follows that

sl = [l + a2l G(O)I + aZllg, () — GOy I
— 20 G(0x) — 2axm;, (84 (0k) — G(6y))

+2a;G" (05)(g,.(0x) — G(6y)).

Because G(6°) = 0, by Assumption Al and the mean value
theorem, G(6y) = G(0") + H(0)(0; — 0°) = H(0;)n, for
some 0y on the line segment between 6y and 6". Under
Assumptions A2 and A3, the Rayleigh-Ritz inequality
(eg., Rugh 1996) 1mphes that 0! G(6y) = 0] H(0;)n; >
miel and [GOIF = nlH (O)H(0)m; < M2y P,
where recall that by Assumption A2, M is an upper bound
on the largest eigenvalue of H(8). Using these bounds, we
get that

IMeall® < (1 —2mag + M?a2) ||l + a2l (6x) — G(6;)|

—2a,0 (8,(0k) — G(01)) + 20, G" (0x)(g,. (k) — G(6y)).

Taking conditional expectations on both s1des and
using the fact E[llgx(8x) — G(00)I*| Fi] = E[llbil*| ]
+E[llexl*| 7], then yield

Elllal1 7] < (1= 2mag + M2a) |
+ aE[loi*| Fid + aZElllexl*| 7]

— Zuanbk + ZaiGT(Gk)bk.

By unconditioning on F, applying the Cauchy-Schwarz
inequality and the conditions a; < min{2(m — p)/M?,
1/(2p)}, (1 +May)/+\/1—2pay < 2 for all k, we further

obtain
ElllmelP] < (1 — 2may + M*a2)E[||n ]

+2ay (1 + Ma)\/ Ellmel*1/ ELlID& ]

+ azE[[[bxl ] + azE[lexl ]

< (1= 2pa)E[|lmel*] + 2ax(1 + May)/ Elllny ]

VEUBIP + 2ElbyIP] + E (el ]
(mm (1+Mak \/M)Z
+ aZE[llexlP]

< (1 - pa)/Elllmgl) + 2 EQIbAIPD? + Ellexl ]

Elllmg ]+ 2a¢7/Crkm)? + a2Cok2%,

(1 — pa)

where in the penultimate step we have used the inequal-
ity V1 —x < 1—x/2 for x € [0,1], and the last inequality
follows from Assumption A5.
Now consider the sequence of mappings 7x(:), k=1,
., defined by

Ti(x) = \/((1 — pa)x + 2/ Crk— )2 + Q%CkaqZ.
It can be readily verified that for each k, 7 is a contrac-
tion mapping with |7(x) — Tx(y)| < (1 — pag)|x —y|,
and its unique fixed point x} satisfies x; < 2(+/C1/p)

K0+ (VCa/ DN

Next, let x;y =/E [||n1||2] and consider the sequence
{xr} generated by x41 = Tx(xx), k=1,2,.... By induc-

E[|m:][*] < x¢ for all k. On the other

hand, by the contraction property of 7 and repeated
application of the triangle inequality,

tion, we have

< X — x| + |3 — x4
= | Ti(xx) —
< (1 —ap) | — x| + | — x5,
< (1 —ap) e — x4 |

+ (1= axp) | = x| + | = x|

|xk+l - x12+1 |

T + 2 — % |

k
< [Ja-ap)lx —x
i=1

i=1 | j=i+1

+Z[H(1 cgp)}ap'”1 il. 4)

To finish the proof of the first part, we need the following
intermediate result, which is a strengthened version of
lemma 3 in Hu et al. (2024) and whose proof is given in
the appendix.
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Lemma 1. Let u(i) = s/ and w(i) = O(1/i7), where s > 0,
pe(0,1),g>0,and w(i) >0 foralli=1,2,.... Then
k

i=1

k
[T @ —uG) |u@wi) = Ok™).

j=i+l

For the specific form of the step-size ay =a/k“, it can
be shown that |x; —x}, | =O(k™n~1)+ Ok /2*0-1),
Using the fact that [T, (1 — aip) < exp(—p>_~, a;) and
applying Lemma 1 to the second term on the right-hand
side of (4),

ot — x| < CePint Qg (k) 4 o(a@k™)
for some constant C. Finally, the first result is proved by
noticing that E[||0, — 67||] <
Zl 1+ o(k™M) + o({/ak™).

To show the second part of the theorem, we note that
by the Lipschitz smoothness condition A2 and the fact
that G(6") =0,

ElllmgllP] < x¢ < x; +Ce P

F(Bx) < F(6)+ G (6)(0 — ") + 10 — 01

o M o
= F(0)+ 16 — 0"

Hence, we obtain /E[F(6,) — F(6")] < +/M/2\/E[||lnll*],
and the desired result immediately follows as a conse-
quence of the first part of the theorem. O

< \/_k q
and \/E[|lex|[*] < YC2k®, Theorem 1 essentially gives a

performance bound for (2) in terms of the bounds on the
gradient estimation bias and variance. When the orders

Under Assumption A5, because 4/ E [1bxlI?]

of the errors E[||bk|[*] and E[||ex|]*] are uniform in k, the
k-1
result can be stated as E[||6x — 6||] = O(e’PZizl i)t

O(\/E[lIbl[*]) + O(a,"*\/ Elllex*]). This seems to be the

strongest possible result in this generality and conforms
to existing work on the (asymptotic) convergence rate of
SA algorithms. Supposing that the estimator g, (6) can
be obtained without bias and with a constant variance
(ie, g1 =00 and g =0), then the performance bound

diminishes at the rate O(al/ 2) On the other hand, if there
is no estimation noise (i.e., go = —o0), then the rate is pri-
marily dominated by the order of the estimation bias,
and the algorithm converges geometrically when the
exact gradient is used. Another observation from Theo-
rem 1 is that the bound in (3) is decreasing in p and hence
can be made small by taking the value of p close to m.
Because 1 is a lower bound on the smallest eigenvalue of
the Hessian of F, which roughly measures the degree of
convexity of the function, faster convergence rates can
generally be expected for objective functions with stron-
ger convex curvatures.

When constant step-sizes are used (i.e., & = 0), and also
assuming constant gradient estimation bias and vari-
ance, a result analogous to Theorem 1 is obtained below.

Corollary 1 (Constant Step-Sizes). Let Assumptions
A1-A4 hold. Suppose that the conditions on ay in Theorem
1 hold with ax=a for all k and that Assumption A5 is
satisfied with g =g, =0, that is, E[||bl*] < C; and
E[llexll’] < Co. Then the sequence {0} generated by (2)
satisfies
E[|16x — 0] < C(1 —ap)" 26 VG,
P NP

for some constant C > 0. In addition,

E[F(00) — F(07)] <C(1—ap) "+ \f (2\;35 VG, )

p

for some constant C > 0.

Proof. The proof is almost identical to that of Theorem
1 with a replacing ax and g1 = o = 0. The only differ-
ence is that the contraction mapping 7 defined in
Theorem 1 no longer depends on k and reduces to

T(x) = /(1 - ap)x +20/C1 +a2C,

with fixed point satisfying x* < 2(v/C1/p) + (VC2/+/p)Va.
Again, by defining ;=0 -0 and letting x; =

=T(x), k=1,

E[||n; "] and {x;} be generated by x;,;
2,...,wehave

X1 = 7| = |7 () = T()| < (1 —ap)lx — x|
<< (1—ap)|ag —x7].
Consequently, the first result is proved by noticing

that /E[[lm Pl < x¢ < x*+C(1 — ap)k_1 for some con-

stant C. The proof of the second result follows the
analogous proof in Theorem 1. O

4. Finite-Difference-Based Gradient

Descent Algorithms
We now specialize our analysis to specific gradient descent
algorithms and discuss their relative advantages/
disadvantages based on the performance bound stated
in Theorem 1. We consider central/symmetric finite-
difference gradient approximation schemes. Because their
analysis typically relies on a third-order Taylor series
expansion of the objective function, condition A1 will thus
be strengthened to require F(0) to be three-times con-
tinuously differentiable. Throughout this section, we let
Vgl—" (0) be the tensor of F and assume that its elements are
uniformly bounded on an open neighborhood N(©) of ®.
Let L:= SUP ge v (@) MaX1 <4, j, k<d|[V F(ﬂ)], s k|- We also
define L := sup0€@max1 <i<d|[G(0)];] so that a conserva-
tive bound on ||G(0)||* is given by dLZ. The perturbation-
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sizes of the form ¢, = ¢/k” where ¢>0 and y € (0,1) will
be used in all algorithms, and all (function F) measurement
noise terms are assumed to have zero means and variances
uniformly bounded by 0 > 0. In particular, the constant
in ¢, determines the orders of the estimation bias and vari-
ance in a finite-difference scheme, and its choice depends
on the step-size parameter « in order to satisfy Assump-
tion A5.

4.1. KW Algorithm
In the KW algorithm, a symmetric finite-difference esti-
mator for G(0) takes the following form:

F(O0y + cre;) — F(0r — cie;) N €= €k
2Ck 2Ck
i=1,...,d, 5)

Sk,i(0r) =

7

where gy ; is the ith component of the gradient estimator,
e; denotes the unit vector in the ith direction, and ¢, are
the two measurement noise terms when observing F at
the perturbed vectors 0 *cye;. Because the noise terms
could be correlated, we in general have E[ef,—
er | Fil =0 and E[(ef; — er )21 Fi] < 40? for all i=1
.,d. Note that each iterahon of the KW procedure
requires 2d measurements of the objective function.
Using Taylor’s theorem it is then a snnple exercise to
show that E[|[by|[*] < dctL?/36 and E[|lexl’] < do?/c3.
Thus, given the form of ¢, = ¢/k”, Assumption A5 is satis-
fied with C; = dL%c*/36, g1 =2y and C; =do?/c?, g2 =y
provided that y < /2. Consequently, when higher-order
terms are ignored, the performance bound in (3) becomes

\/_Lz \/_0111/2

3p k \/ﬁ Cx . (6)

4.2. Random Direction Finite-Difference Algorithm
A random direction method simultaneously varies all
components of the underlying parameter vector in ran-
dom directions, so that the similar effect of the deter-
ministic finite-difference scheme can be achieved with
only two function measurements. The symmetric finite-
difference version of the gradient estimator is given by

— F(0; — Ck”k)u N
2Ck k 2Ck

F(ﬂk + ckuk) 6; — 8];

gk(ek) = Uy,

@)

where we take u; to be the standard normal vector with
independent components and assume that # is indepen-
dentof ¢ .

Through a Taylor series expansion up to the third
order, the rth element of the bias term equals

2
Z%%WWHﬂﬂﬁﬁmWM
isj,1

Fr

7

®)

where 5,? are on the line segments connecting 6 and
0y = ciug. Under the current assumptions, a direct appli-
cation of the Cauchy-Schwarz inequality may lead to a
bound for |by ,| that is too loose, because [V ,,F(Bk )Miji
and uy;’s are not independent. Therefore, we further
assume that F is four-times differentiable (with uni-
formly bounded fourth-order derivatives), so that by ,
can be written as

Frl + O(C%).

irj,1

2 [
by, = ng {Z g i, it 1[VGF(OK)]; it

Thus, because 0, is F-measurable,
E[”%,i] =3 foralli=1,
derived as follows:

E[ug,]=1, and
.,d, a bound on |l ,| can be

2
1% <_Z|E[uk1uk]uklukr|]:k]| +o(cf)
ij,l

2
[3215 uf, rukllfk]+E[uk,|]-'k]] +o(c?)
i#r
2

= % + O(Ck)/
implying that E[|[b|*] < d®L2c} /4 + o(cﬁ)
To calculate an upper bound for E[|lex|l*], we note that

Ellg (017 | 7]
_r [(F(Ok + ) — F(O — Ckuk)>2“uk”2 ]_-k]
fk]

2Ck
fk]
2
<E l <F(9k + cxug) — F(Or — ckuk)> el
— Eluel* | F).- )
Ck

2
4c

(ef — &)
+E lullukﬂ2

ZCk

A second-order Taylor series expansion yields

2
PO+ cuang) — F(Ox — ciug) = 20,G" (B + L uf (H(B])

— H(0,.))uy,
where 5,? are on the line segments between 0 and
0 £ cruy. Substituting the above into (9) and using the
Cauchy-Schwarz inequality, we obtain
Elllg, (001 | ] < E[(GT(Gk)uk)zllukll2
(uk(H(Ok) H(0 i)’ [l | F

+44mwmdm@)

— H(O0 )l | el Fi +— Elljegl*] Fil-
k
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By the Raylelgh -Ritz inequality, |u} (H (0,) — H(0, )uy|
< (M — m)|jug|*. In addition, it is stralghtforward to ver-
ify that E[(G" (Oi)ux)’ luxl*| Fi] = (d + 2)|G(B)II*. Thus,
we can further simplify the above bound to get
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where we have defined Z = ||u|]*, a chi-square random
variable with d-degrees of freedom, whose n-th moment
is E[Z"] =2"T'(d/2 + n) /T(d/2) with T being the gamma
function. Note that E[|lexl/*|F«] = E[||gk(0k)||2|]-"k]—
IE[g(0x) | F 1]II2. It can be shown that the leading term of
||1:"[gk(0k)|5’-'k]||2 is ||G(6y)|]*, which is smaller than dL%.
Thus, the right-hand side of (10) serves as a reasonable

upper bound for Elllexll].

Compared with the KW algorithm, it is easy to see
from (10) that a random direction method inflates the
gradient variance. Nevertheless, the growth rate of the
variance is dominated by 0°d/c?, the same as that of KW.
Consequently, Assumption A5 is satisfied withy < a/2,
and according to Theorem 1, when only leading terms
are considered, a performance bound on the random
direction method is

d3/2L \/_Ual/z )
P i+ P oo

4.3. SPSA

The simultaneous perturbation method estimates the

gradient G(60y) by

F(Ok + CkAk) — F(ﬂk — CkAk) . E; — EI:
20, A 2c, Ay’

where A = (Agq, ..., Ak/d)T is a zero mean random direc-
tion with i.i.d. components.

The most commonly adopted choice of Ay is the sym-
metric Bernoulli random direction, that is, P(Ar;=1) =
P(Axi=-1)=1/2 for all i=1,...,d. Clearly, because
Ay i € {—1,1}, we have 1/A; = Ay. So, in this setting, (12)

8i(0k) = (12)

becomes a special case of the random direction method
(7). Consequently, its bias and variance analysis can be
carried out along the same line as in Section 4.2. In partic-
ular, by noting that E[Ay ;A ;] =0 for i # j, and Ai/ =1
forall i=1,...,d, it is easy to observe that E[|Ibel*] <
L2t /4 + o(c}).

On the other hand, by noting that lAkI? = d, we obtain
from (9) that
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Again, by a Taylor series expansion,
F(6) + ckAy) — F(6 — ceAy) = 26:G (B Ay
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where E,f are on the line segments between 6; and
0 £cAg. Substituting the above into (13) and usm§
the inequality |A; (H(0, ) — H(0, ))Ax| < (M — m)||Ak|
= d(M —m) and the fact E[(G"(0)Ax)* | Fi] = IG(6K)IF,
we finally obtain
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Finally, by (3), a bound on the performance of SPSA,
when expressed in terms of its leading terms, is given by

2L, \/_oal/z
- . (15)
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4.4. Observations
In view of the performance bounds given by (6), (11),
and (15), we have the following observations:

(i) Consider the case a =6y, that is, both c,% and

11,1/ 2 /cx have the same order O(k~*/%), which yields the
best convergence rate for a given a;. Suppose that both
KW and random direction are implemented using the
same a; and ¢, and that the choice of constant ¢ in ¢
does not depend on or vary with o, which is assumed
unknown here. Then a comparison of (6) and (11) indi-
cates that if the noise level o is large compared with the

problem dimension d (i.e., the Vdo /+/p terms in (6) and
(11) dominate), then using a random direction method
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will likely result in a significant improvement in algo-
rithm efficiency, especially for higher-dimensional pro-
blems. On the other hand, when there is no noise or the
noise variance is very small, the d*?L/p (bias) term in
the bound (11) dominates, and it is easy to observe that
a random direction-based algorithm would roughly
take d%/% > d° (because a < 1) times the number of itera-
tions required by KW in order to achieve the same level
of accuracy, and this clearly nullifies the benefit of the d-
fold reduction in the number of function evaluations at
each iteration. However, there might be some exceptions,
for example, when the third-order derivatives of F are
very small (e.g., L =0 for quadratic functions) so that the
bias terms vanish, or when the mixed third-order partial
derivatives of F are all zeros, in which case it can be seen
from (8) that the dependency of the bias terms in (11) and

(15) on the problem dimension reduces from %2 to Vd.
The above comparison assumes that no problem-
specific information is available. When the noise level o
either is known or can be reliably estimated, that is, the
setting examined in Berahas et al. (2022), the constant ¢
in the perturbation-size ¢, can further be optimized

based on ¢, leading to ¢ = (34/po/ (2L))%aV/6 for KW

and c = (y/po/ (2dL))?4V/¢ for random direction. It is
not difficult to show that the bounds in (6) and (11)
then scale respectively as O(d'/?)0%%k=*/* and
O(d°/0)g?/3k=4/3; both have the same order of depen-
dency on o. Because d'/2k=%/3=d5/5(d"/2k)"/%, this
means that regardless of the noise level o, a random
direction method would require at least d'/* > d (because
a < 1) times number of iterations in order to attain the
same level of accuracy as KW. In other words, if the
perturbation-size in KW is allowed to be chosen optimally
using knowledge of o, then the algorithm cannot be outper-
formed by a random direction method. This observation is
consistent with the findings of Scheinberg (2022) and
Berahas et al. (2022) in the constant step-size setting.

(ii) When 2y < a < 6y, that is, ¢ :o(ai/ %/cy), the
influence of the problem dimension on the bias will
eventually damp out as k increases. Thus, assuming
that the same a; and ¢, are used, a random direction
method could be advantageous, especially when the
noise variance is high.

(iii) When a > 6y, then the bias term dominates, so
KW may in general yield superior performance in the
long run, at least in theory. In particular, when there is no
estimation noise, our performance bounds indicate that
the number of iterations required by a random direction-
based algorithm is more than d° times that of KW.

(iv) When only leading terms are considered, (11) and
(15) are identical. Thus, the performance of random direc-
tion and SPSA should be similar. However, because of
the use of different random directions, a comparison of
(10) and (14) indicates that the dependencies on problem

dimension in the nonleading terms are d(d +2), d(d + 1)
(d +2), and d(d + 2)(d + 4) in random direction versus d”
and d° in SPSA. This may have a nonnegligible influence
on the algorithm performance when k is small.

(v) When constant step- and perturbation-sizes are
used, both cf and ai/ 2 /cx are of order O(1). This can be
viewed as a special case of Case (i) with a =y =0,
except that the bounds on gradient variances in (10)
and (14) may no longer be dominated by do?/c?. How-
ever, irrespective of the actual dominating terms in (10)
and (14), the performance bounds for random direction
and SPSA are always worse (larger) than those given
by (11) and (15). Therefore, assuming that the condi-
tions of Corollary 1 are met, essentially the same con-
clusions as in Case (i) above can be made.

5. Conclusions

For a class of problems with convex differentiable struc-
tures, we have established a finite-time performance
bound for gradient descent algorithms under general
conditions on the gradient estimation errors. The bound
allows for a detailed characterization of an algorithm’s
rate of convergence through directly analyzing the bias
and variance of the gradient estimator when employed in
an iterative search. Two types of finite-difference-based
gradient approximation methods, deterministic FD and
random direction FD, are then studied and compared in
terms of their efficiency based on the derived bound.

An open question is whether the typical d-fold per-
iteration reduction in the number of performance evalua-
tions of a random direction method will justify the
potential increase in the number of gradient descent
iterations. Prior studies on this topic are primarily based
on asymptotic theory (Spall 1992, Kushner and Yin 1997)
or by means of one-step bias-variance analysis (Berahas
etal. 2022, Scheinberg 2022). Our finite-time study allows
us to compare algorithm performance under different
parameter settings, providing a more thorough under-
standing of this issue. A case of interest is when a; and ¢
take the forms a; =a/k* and cx = c/k’ with a =6y. In
particular, if the selection of ¢ does not depend on the
noise level o, then our analysis indicates that the relative
efficiency of a random direction method is generally con-
tingent upon the amount of variability in the measure-
ment noise in relation to the problem dimension. On the
other hand, in the setting where the knowledge of ¢ can
be exploited to optimize the choice of ¢, we obtain the
negative result that the performance of a deterministic
FD-based algorithm in general cannot be further im-
proved through the use of random direction methods,
an observation that is in agreement with earlier results
reported in Scheinberg (2022) and Berahas et al. (2022).
The essence of the issue is that when compared with
deterministic FD estimators, existing randomized gradi-
ent estimators would lead to an extra d-fold increase in
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the estimation bias, which plays a major role in the bias-
variance trade-off.
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Appendix. Proof of Lemma 1

Let u(x)=s/x",r(x)=1/x1, and U(x) = ffu(y)dy for x>0.
We can find a constant C>0 and an integer N>0 such
that u(i)<1, w(@)<Ci"7=Cr(i) for all i>N, and that
U@y (x)r(x) and —eU™r’(x) are both increasing when
x > N. Thus, we have for all k> N that

1

k k
[ [Ta- u(j))} u(iw(i)
i=1 | j=i+1
N

—1 k k k
= [ ITa- u(i))} u(iyw(i) +» { ITa- u(j))} u(iw(i)

i=1 | j=i+1 i=N | j=i+1
k N-1[ N-1 k k
=[Ja-un)_ [ [Ta- u(;‘))} u(@yw(i) + { [T~ u(/'))} u(iyuw(i)
j=N i=1 j=i+1 i=N |j=i+1
k L IN-1IN-1 k k
<o 2N 1D ST = u@)utiyot)| +> { IJa- u(]'))} u(iyw(i)
i=1 j=i+1 i=N | j=i+1
k k
= O(e’ﬁkn,}') + CZ { H 1- u(j))} u(i)r(i). (A1)
i=N | j=i+1

The second term on the right-hand side of (A.1) can be
bounded as follows:

k k
> { I[a- u(]’))} u(iyr(i)
i=N

j=i+l

k .
Z(;Zf:m “Ou(iyr(i)

<
i=N
k+1
k_— / U (x)dx
<> e Jin u(i)r(i)
i=N

k
— efu(k+1)zeu(i+l)u(i)r(i)
i=N
_ k
< eﬁe’u(k“)ZeU(’)u(i)r(i)
i=N
k+1
< et UkHD) / MOy (x)r(x)dx
N

k+1
< T Ulk+D) (r(k +1)etD — / eu(")r’(X)dx)
N

<eti(r(k+1) — (k+1— Ny (k+1)
= O(k™).

Finally, because p € (0,1), the proof is hence completed by
noting that the first term on the right-hand size of (A.1) is
of order o(k™7). O
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