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Abstract. We consider quantile optimization of black-box functions that are estimated
with noise. We propose two new iterative three-timescale local search algorithms. The first
algorithm uses an appropriately modified finite-difference-based gradient estimator that
requires 2d + 1 samples of the black-box function per iteration of the algorithm, where d is
the number of decision variables (dimension of the input vector). For higher-dimensional
problems, this algorithm may not be practical if the black-box function estimates are expen-
sive. The second algorithm employs a simultaneous-perturbation-based gradient estimator
that uses only three samples for each iteration regardless of problem dimension. Under
appropriate conditions, we show the almost sure convergence of both algorithms. In addi-
tion, for the class of strongly convex functions, we further establish their (finite-time) con-
vergence rate through a novel fixed-point argument. Simulation experiments indicate that
the algorithms work well on a variety of test problems and compare well with recently pro-
posed alternative methods.

Funding: This work was supported by the Air Force Office of Scientific Research [Grant FA95502010211]

and the National Science Foundation [Grants CMMI-2027527, 1IS-2123684].
Supplemental Material: The online appendix is available at https://doi.org/10.1287 / opre.2022.0534.

Keywords: black-box optimization « quantile « local search « stochastic approximation  finite differences « simultaneous perturbation

1. Introduction
In black-box settings, only estimates of an output func-
tion are available; that is, there is minimal knowledge
of the underlying system generating the output. Fur-
thermore, the output estimates might also contain ob-
servation noise. For such problems, there is an extensive
literature of algorithms addressing the case where the
performance measure is an expectation, most com-
monly the mean; for example, see Fu (2015) and refer-
ences therein in the context of simulation optimization.
However, in many situations such as many risk man-
agement problems, one is interested in tail behavior of
the output function or the median rather than the mean,
in which case the performance measure of interest is a
quantile, and the objective is quantile optimization.
Black-box optimization (BBO), defined by Audet and
Hare (2017, p. 6) as “the study of design and analysis of
algorithms that assume the objective and/or constraint
functions are given by blackboxes” is a well-developed
field in the deterministic (noiseless) setting. Although
the focus of the algorithms described and analyzed in

their book is derivative-free approaches, Audet and
Hare (2017, p. 6) begin by strongly recommending that
“if gradient information is available, reliable, and ob-
tainable at reasonable cost, then gradient-based meth-
ods should be used.”

In this paper, we consider the stochastic BBO setting
where the goal is to optimize the quantile of a black-
box output random variable. Our main assumption is
that the quantile function is smooth enough so that
gradient-based search will yield locally optimal solu-
tions. Such a smoothness condition is guaranteed when
the output distribution is differentiable (see Equation
(4)), which is common in many engineering applica-
tions, ranging from queueing network optimization
(e.g., Fu and Hill 1997) to traffic simulation (Spall and
Chin 1997, Li et al. 2017) to neural network (NN) train-
ing (e.g., Spall and Cristion 1997, Hong et al. 2010). For
instance, the steady-state waiting time distribution in a
queueing network is usually differentiable with respect
to the service rates of the nodes, whereas in traffic sim-
ulation, the distribution of vehicle travel time on a road
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network is typically a smooth function of traffic signal
timings (e.g., Cao et al. 2014). Nevertheless, because of
the complexity of such problems and/or the lack of
model details (e.g., when a simulation program is coded
using an off-the-shelf commercial package, or knowl-
edge transfer from the builder to the user of a model
is not properly assured), directly estimating gradients
based on exploiting model structure is sometimes diffi-
cult or practically infeasible. Moreover, in certain appli-
cations such as NN controller design for systems with
unknown dynamics (Spall and Chin 1997, Spall and
Cristion 1997), it is not even possible to determine the
gradient of a loss function through direct gradient
techniques. In these circumstances, the underlying sys-
tem model is essentially treated as a black box, and
finite-difference (FD)-based estimates of the gradient are
often used to carry out local search, dating back to the
Kiefer-Wolfowitz stochastic approximation (SA) algo-
rithm (Kiefer and Wolfowitz 1952, Kushner and Clark
1978, Kushner and Yin 1997). However, because the
usual quantile estimator itself is not unbiased, construct-
ing an effective/efficient FD estimator of the quantile
gradient requires far more care than the straightforward
mean-based case. To our knowledge, there are very few
algorithms in general for what could be called quantile
BBO, in contrast to the abundance of local search algo-
rithms for mean performance.

We will be relying on (approximate) quantile gradi-
ent estimates based only on output function samples.
To be specific, let Y(6) denote the output random vari-
able and 6 € ® C R the set of input decision variables,
which we will refer to henceforth as the (input) param-
eter vector, which can include both distributional and
structural parameters, meaning that the elements of 0
may affect the black-box function both directly and via
the input distributions. The usual optimization prob-
lem is of the form mingee E[Y(0)], whereas we con-
sider the optimization problem

min 4,(0), M

where the quantile function g,,(0) is defined by
P(Y(6) < 4,(0)) =, ¢ <(0,1).

Because ¢ is fixed throughout this paper, its depen-
dence will be dropped henceforth to simplify notation;
that is, the quantile will simply be denoted by () or
sometimes just 4.

Under appropriate smoothness conditions on q(9),
solving (1) essentially becomes equivalent to finding
the zero of the gradient Vq(0), so a gradient-based itera-
tive local search algorithm would take the general form

Ors1 = Ok — axV q(6y), )

where V4(-) denotes an estimator of the quantile gradi-
ent, which is the key element in defining the algorithm.

A straightforward symmetric finite-difference (SD) esti-
mator for the quantile gradient would take the follow-
ing form:
Vigloy =10t =90 =ce) ;4 5 3
2c

where V; denotes the ith component of the gradient
estimator, ¢; denotes the unit vector in the ith direction,
and ¢ > 0. This is essentially the approach taken by Kib-
zun and Matveev (2012). Note that one could also con-
sider one-sided (forward or backward) FD estimators.
However, one challenge that is apparent in the estima-
tor (3) is that unlike in the mean case, the two differ-
ence terms in the numerator of the quantile finite-
difference gradient are not themselves unbiased, only
consistent, which means that the iteration sample size
would eventually have to increase to infinity to guar-
antee convergence. Furthermore, each iteration would
require calculation of § using order statistics, which
may be computationally impractical. Our alternative
approach is to use two additional iterative updates for
q(0) and Vq(0) based on the following result.

Assuming that the output function Y(6) is a continu-
ous random variable with cumulative distribution func-
tion (c.d.f.) F and probability density function (p.d.f.) f,
we make use of the following relationship (Fu et al.
2009):

VoF(y; 0) |y:q
fl@0)
The simplest way to use this would be to solve for the

zero of the numerator and use the SD estimator analo-
gous to (3) for the c.d f. gradient (e.g., Song et al. 2023):

VQQ(G) =— (4)

KY(6 +ce;) < qf —HY(0 —cer) < g}
2c ’
i=1,...,d, (5

ViF(q; 0) =

where I{-} denotes the indicator function, in which case
(2) becomes a two-timescale SA algorithm:

Ors1 = Ok + ax Vo F(qi; 61), (6)

Gr+1 = G+ Y (@ — {Y(0k) < qi}), )

where (7) is a recursive quantile estimator replacing the
classical sample quantile based on order statistics (see
Section 2), and to make the algorithmic convergent, the
perturbation c in (5) would also need to go to zero as
k — co. However, empirical results indicate that this
approach may not work well in practice, especially
when the quantile level ¢ is close to one (or zero), in
which case the two indicator terms in (5) will simulta-
neously take the value one (or zero) with high probabil-
ity. As a result, a large number of iterations need to be
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performed in order to obtain a meaningful (nonzero)
estimate of the c.d.f. gradient. Moreover, because (5)
provides an estimate for only the direction of the quan-
tile gradient, not its magnitude, the approach may not
be useful in other related applications such as robust-
ness assessment and quantile sensitivity analysis.

The algorithms we propose in this work follow the
general structure of (6) and (7); however, our goal is to
estimate the “real” quantile gradient (4) rather than just
VoF(y;0)|y=; in the numerator. As in (5), each step of
our proposed SD-based estimator requires 24+ 1 func-
tion evaluations. When the number of decision variables
is large, the SD estimator may become computationally
impractical, so we introduce a second algorithm based
on using a simultaneous-perturbation (SP) gradient esti-
mator along the lines of Spall (1992), which uses only
three function evaluations at each iteration, independent
of input parameter dimension. Both the SD and SP esti-
mators require significant adjustments to handle the
quantile setting.

As alluded to earlier, the literature on quantile optimi-
zation in the stochastic BBO setting is very sparse, and
we now review the most closely related work. The work
most closely related to ours is Kibzun and Matveev
(2012), cited earlier, which proposes a stochastic quasi-
gradient (QG) algorithm for convex quantile objectives
by estimating quantile gradients via a “traditional” sym-
metric difference approximation. Also relevant to the
BBO setting are the derivative-free methods using the
Bayesian optimization approach, for example, Wang
et al. (2021) and Sabater et al. (2021), which employ a
surrogate model to approximate the response surface of
the unknown quantile function. Lastly, the multitimes-
cale SA procedure developed in Hu et al. (2022) has the
same structure proposed in our work, but the algorithm
cannot be applied in the BBO setting, because it relies on
the availability of direct gradients (e.g., through techni-
ques such as perturbation analysis or the likelihood ratio
method) that are not available in a black-box setting, as
knowledge of the underlying system is needed to derive
the gradient estimators, whereas our algorithms use
only the black-box function outputs.

Some other related work, albeit much less relevant to
our BBO setting, is algorithms that rely on knowledge
of the output distribution. These include the mathemat-
ical programming approaches presented in Kibzun and
Kurbakovskiy (1991), Kibzun et al. (2013), and Vasiléva
and Kan (2015), and the scenario optimization method
of Zamar et al. (2017). For differentiable problems, there
are also approaches that use gradient information, such
as Kim and Powell (2011), who propose a recursive gra-
dient algorithm for a special class of heavy-tailed distri-
butions that admits the interchange of the derivative
and quantile function.

Under appropriate conditions, we analyze the bias and
variance of the proposed quantile gradient estimators

and establish the almost sure local convergence of
the two FD-based algorithms—SD quantile optimiza-
tion (SDQO) and SP quantile optimization (SPQO)—for
general multimodal problems. Most importantly, for
the class of problems with strongly convex objective
functions, we are able to analyze the (finite-time) con-
vergence rate of the algorithms by introducing a novel
fixed-point argument. The key idea is to bound the algo-
rithm’s estimation errors through the composition of a
sequence of suitably constructed contraction mappings,
so that the convergence rates of quantile/gradient esti-
mates can be characterized in detail by inspecting the
solutions to a collection of fixed-point equations. As far
as we are aware, these are the first quantile BBO algo-
rithms with both guaranteed convergence and a known
rate of convergence. Although the convergence rate of
single-timescale SA is well understood in the literature
(cf., e.g., Fabian 1968, Spall 1992, Kushner and Yin 1997,
Borkar 2008), the rate analysis for multitimescale SA
algorithms has been a long-standing open research chal-
lenge. The only existing results seem to be Konda and
Tsitsiklis (2004) and Mokkadem and Pelletier (2006) for
two-timescale SA algorithms. Our algorithms operate
on three timescales, and the convergence rate study of
such SA algorithms has not been addressed. Moreover,
the fixed-point argument presented in this work is by
no means limited to the analysis of these algorithms,
but provides a new general approach that can poten-
tially be applied to address the convergence rate issues
of other multitimescale SA algorithms.

In sum, we view our work as making the following
research contributions:

e We introduce new FD-based local search algo-
rithms, SDQO and SPQO, for optimizing a black-box
quantile function, prove their convergence, and charac-
terize their convergence rate.

o In terms of theory, the convergence rate analysis is
the first such result for a three-timescale SA algorithm,
and the fixed-point argument used in the analysis is a
new general approach that can be applied to other mul-
titimescale SA algorithms.

e In terms of practice, SPQO is particularly well
suited to high-dimensional problems, because the num-
ber of black-box evaluations per iteration is independent
of the number of decision variables (optimization input
parameters).

e Lastly, the new algorithms provide a practical
complement to existing global optimization algorithms
that primarily use metamodeling/surrogate functions
for BBO.

The rest of this paper is organized as follows. Section 2
begins with an intuitive motivation for the two FD-based
black-box quantile gradient estimators and then presents
the SD/SP estimators, along with their correspond-
ing optimization algorithms SDPO and SPQO, with a
detailed discussion of the proposed simultaneous-
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perturbation estimator. The convergence and conver-
gence rate analyses of the algorithms are provided in
Sections 3 and 4, respectively. In Section 5, simulation
experiments are used to illustrate and test the perfor-
mance of the algorithms, and Section 6 provides some
conclusions and future research.

2. New FD-Based Quantile
BBO Algorithms

We begin with an intuitive informal derivation of the
general form of an FD gradient estimator, which will
then be specialized to the SD and SP gradient estima-
tors, to be analyzed more rigorously. To simplify the
discussion (and notation) here, we consider the case
where 0 is a scalar (d =1), so we seek to estimate the
derivative ¢’(0), in which (4) can be viewed as the ratio
of two derivatives:

9>F(q;0)

q'(0) = " 9E@;0) defining d;F(q; 0) = 9iF(x; 0)|x=,

where d; denotes the derivative w.r.t. the ith argument
and the latter definition is for notational convenience.
When enough is known about the system to develop
direct derivative estimators for d; and o5, that is, the set-
ting considered in Hu et al. (2022), a natural approach to
estimate 4’(6) would be to solve the equivalent root-
finding problem:

q'(0)d1F(q;0) + d2F(q;0) = 0. 8

Assuming that direct derivative estimators are not
available, it turns out that a straightforward extension
to using FD estimates of each of these derivatives not
only would be computationally burdensome but could
also lead to numerical difficulties. In particular, as men-
tioned in Section 1, an FD estimator such as (5) for
either d; or d, would frequently yield a value of zero,
in which case the root-finding Equation (8) is not even
well posed. Therefore, we instead motivate an alterna-
tive estimator for approximating the entire left-hand
side of (8) by considering a simple first-order Taylor
series expansion of F in the two arguments:

F* =F(q=Ag;0 = A0O)
=F(q;0) = d1F(q; 0)Aq = d,F(q; 6)A0O,
where we are ignoring higher-order terms for now, but
these arguments will be made more formal shortly.
Taking the difference,
F* —F~ =201F(q;0)Aq + 202F(q; 0)AO
= 2A0191F(q;0)q'(0) + 92F(q; 0)],
where we have taken Ag=4'(6)A0, so solving (F* —
F7)/2A0 =0 is equivalent to the root-finding problem

using direct gradients given above by (8). Noting that
F* =E[I{Y™ < g+¢(0)A6}], where Y= ~ F(;0 = A6),

it thus motivates the two coupled root-finding equa-
tions that must be solved:
—K{Y* <q+q(0)AO}+I{Y < q—q'(0)AO}
E =0,
2A0
©)
E[I{Y(0) < g} = ¢,
(10)
where the second equation is solved via the SA itera-
tion (7), and the first equation will be incorporated into
a new SA iteration to serve as the gradient estimator in
the SA iteration (6).

2.1. SD/SP Quantile Gradient Estimators

We now return to the multidimensional (4 >1) setting
and provide two versions of the FD scheme just
described. Both versions can be viewed as different
implementations of the SA method for numerically
solving the two coupled stochastic root-finding Equa-
tions (9) and (10).

Denote by 6" an optimal solution to (1) and let Oy be
an estimate of 6". Let 0 be fixed, and let g, and Dy be
the current estimates of q(ék) and Vgq(0) |44, - The SD
estimator we propose simultaneously computes new
estimates of the quantile and its gradient as follows:

N R AT
—I{Y(@k +Ck€1) < g+t ckael}

A R AT
+ I{Y(Gk — ckel) < {q;— Cka€1}

Dy = Dk + f_k :
Cr . A T
—H{Y(O +ceq) < 4, +cDyes}
A . AT
+ K{Y(Ok — cxea) < g —cxDyeat
(11)
Gir1 = @+ 7il@ — KY(6y) < Gieh)s (12)

where B, v, > 0 are step-sizes, ¢, > 0 is the perturbation
size, and Y(Oy *cke;) (for i=1,...,d) are output ran-
dom variables obtained by perturbing the ith element
of O; while holding all other components unchanged.
Clearly, each step of (11) requires 2d function evalua-
tions. This, together with Y(6;) needed in (12) for quan-
tile estimation, results in a total of 2d+1 function
evaluations per iteration of the procedure.

The SP estimator, on the other hand, simultaneously
varies all components of the underlying parameter vec-
tor in random directions, so that the same effect of the
SD scheme can be achieved with only three function
evaluations. Compared with the 2d+1 per-iteration
complexity of the SD estimator, this has the potential
to lead to significant savings in computational cost,
especially when the problem dimension is high and/or
black-box function evaluations are expensive. Let 0y, i,
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and Dy denote the respective SP estimates for 6", q(6y),
and Vpq(0)|g=g,. The estimator can be compactly ex-
pressed in the following recursive form:

—I{Y(Qk + CkAk) < gk + CkDZAk}

+ {Y (O — ckAv) < qr — kDL A}
2CkAk

D1 = Dy + By

(13)

Gk+1 = Gk + 7 (@ — H{Y(6r) < qi}), (14)

where Ay =(Ag1,.. .,Ak,d)T is a zero-mean random
direction with ii.d. components, and the division by
the vector Ay is understood to be element-wise.

The above estimators depart significantly from the
usual SD/SP formulations in several different aspects:
(i) unlike (3), they involve the difference quotient of an
indicator function rather than that of the quantile func-
tion whose gradient is sought; (ii) both are iterated,
rather than one-shot (as in (3) and (5)), procedures in
which the gradient estimation is coupled with another
iterative process for estimating the quantile; (iii) in con-
trast to conventional SD/SP, where only the parameter
vector O is varied (see, e.g., (3) and (5)), the quantile
estimate 4§, (respectively (resp.), qx) is randomly per-
turbed in (11) (resp. (13)) at the same time, with the
magnitude of the perturbation being directly affected
by the gradient estimate Dy (resp. D) itself. As we will
see shortly, this last difference further leads to other dif-
ferences in algorithm design and analysis.

We now provide additional validation for why
these estimators work, formalizing the intuitive deri-
vation outlined in the beginning of the section. We
focus on the SP estimator and consider (13) and (14) in
their deterministic forms. The SD estimator works in a
completely analogous way, so most of the arguments
for the SP case also carry over to the SD estimator.
Note that conditional on 6y, gx, Dy, and Ay, the expecta-
tions of the two indicator terms in (13) are given by
F(qk + CkD]];Ak,‘ Ok + cxAy) and F(Qk - CkDEAk; Ok — crAy).
A two-variable third-order Taylor series expansion of
these two functions around (g, O) then yields

—F(qk + CkD]];Ak,' Qk + CkAk) + F(qk — ClezAk; Gk — CkAk)

2CkAk
-2 AI'Dy — 2VTE(gi; 0) | =0, ck A
_ f (qk, Or )k A Dic oF(qr; 0) | 6=0,ck k+O(C%),
2CkAk
(15)

where the big-O notation signifies the order of a term,
which is formally defined in Section 3. Thus, by apply-
ing the key argument of SP theory (i.e., E[Ag /A ;] =0
for all 7 # j) and ignoring the higher-order bias term

O(c2) in (15), it is not difficult to observe that the
expected-value version of (13) (with the difference quo-
tient there replaced by its conditional expectation given
Ok qr, and Dy, but excluding Ay) can be written as

Dis1 = Dy + Bi(—f(gx; Ox)Dx — VoF(qx; 0) | 6=6,).  (16)

Equation (16) is a fixed-point iteration for solving
—f(qx; 6x)D — VoF(q; 6)| 9=0, = 0 for D, which has solu-
tion —VgF(qx; 0)|o=6,/f (qx; Ox) in exactly the same form
as (4) with the true quantile g(0) replaced by its esti-
mate gi. A similar interpretation also applies to (14),
and by noting that E[I{Y(6k) < qi}|6k, qx] = F(qx; k),
the sequence {g;} can be seen to track the unique solu-
tion q(6) to the root-finding problem ¢ — F(g; 6x) = 0.
Consequently, as g tends to g(6y), it is reasonable to
expect that D, will provide a close approximation to the
true gradient Vq(0)|g-=g, .

The preceding developments ignored the fact that
because of the extra perturbations ickDZAk introduced
in (13), the iterate Dy itself is contained in the higher-
order term in (15) (see the proof of Lemma 2); thus, the
sequence {Di} could in fact increase in magnitude to
negate the claimed O(c?) order of the term. This is a
technical issue that does not occur in the usual mean-
based setting, where the perturbation size is solely
determined by ¢y, so that the order of the bias can be
bounded uniformly even without explicitly requiring
the boundedness of the iterates (cf. proof of lemma 1 in
Spall 1992). To address this issue, we instead consider a
slight variant of (13) that replaces ¢, in the difference
quotient by a perturbation size that adapts to the mag-
nitude of Dy. Specifically, let My =max{1,||Dyll/ Vd}
and define ¢y = ¢/M;. We suggest the following modi-
fication of (13):

—I{Y(Qk + EkAk) < g+ EkD]ZAk}
+{Y(6r —crp) < qk — EkD;{Ak}
201 Ay '

Dyy1 = Di + By

(17)

It can be easily seen that (17) serves the same estimation
purpose as (13) in the sense that its “mean flow” (i.e.,
deterministic counterpart), modulo the higher-order
error terms, is identical to (16). Nevertheless, because
|ekDI Ar| < e Vd||Akll, the use of ¢ in (17) prevents the
perturbations in gx from becoming excessively large,
and thus reduces the influence of Dy on the resulting
estimation bias. We show in Section 3.1 that under rea-
sonable conditions, the sequence {D;} generated by (17)
remains bounded, both almost surely and in second-
order moments, which in effect justifies the O(c?) bias of
the proposed estimator.

The constructions of our SD/SP estimators are based
on a symmetric difference scheme. It is possible to
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consider alternative estimators relying on one-sided
difference that use d +1 (resp. two) simulation evalua-
tions per iteration. For example, in the SP case, the dif-
ference quotient in (17) could instead be replaced by
either

—I{Y(6r) < gk + D Ay + H{Y (0 — CA) < i) o
Cr\g
—H{Y(O + crAy) < qrx + EkD;?Ak} + H{Y(6y) < 6]k}
Cklk '

T

Both approaches would lead to the same desired effect
for estimating the quantile gradient but come at the
cost of introducing large biases of order O(cx) com-
pared with the O(c?) bias in (17).

2.2. SA Local Search Algorithms

The quantile optimization algorithms we propose inte-
grate Dy and Dy into the standard gradient descent
method, as presented below, where Ilg(-) denotes a
projection operator that brings an iterate back onto the
parameter space ©® whenever it becomes infeasible.

Algorithm 1 (SDQO) o
Input: initial estimates 4, Do, 0o; sequences {ax}, {8},
b daks

Initialize: iteration counter k « 0;
Loop until a stopping criterion is met:

& = ce/max{L, [[Dyll/Vd}, (18)

G =0+ (@ —H{Y(6y) < 4,
~I{Y (O +rer) < G, +EDJer}
+ H{Y(O —Erer) < §, —&Df e}

ﬁkﬂ :ljk"‘Tk ’
2Ck

—~I{Y(Ox +&req) < g, +xDfea}
+ I{Y(O) — Ereq) < §, — Dl eq}
041 =Tle(Ox — aDy),
ke—k+1; (19)
Note that (19) is a variant of (11), in which the same

substitution as in (17) has been made, that is, with ¢
defined by (18) replacing ¢y in (11).

Algorithm 2 (SPQO)
Input: initial estimates go, Do, Oo; sequences {ax}, {B,},
{yk}/ {Ck}'

Initialize: iteration counter k < 0;
Loop until a stopping criterion is met:

Tk = cx/max{1, ||Dxll/ Vd},
Gee1 = Gk + Vil — {Y(0k) < qi}), (20)

Dk+1
—I{Y(Qk + EkAk) < g+ EkD]ZAk}
+H{Y(0r — cAx) < g — ckD{ A}
= Dict b TN =
(21)
Ors1 = e (0 — axDy), (22)
k—k+1;

Both SDQO and SPQO have a multitimescale structure,
as reflected by the use of distinct step-sizes Yy, fr, and
ay in the recursions. Intuitively speaking, because our
discussion on the convergence behavior of the SP esti-
mator has assumed a fixed value for 0y, the step-size a;
in SPQO should be chosen very small relative to f; and
Yk As a result, when viewed from (21) and (20), the
increment in Oy at each step of (22) is almost negligible
as if the parameter vector 0 were held at a constant
value. On the other hand, because (21) is designed to
iteratively approximate —VgF(qx; 0)|e=0,/f(qk; Ok), the
step-size i should be taken to be the largest to warrant
proper tracking of the ratio as both g, and 0y vary over
time. In the same manner, the three recursions in
SDQO should also be carried out at different speeds,
with their step-sizes satisfying ax = o(y,) and y;, = o(B,).

When the black-box function is given by a computer
simulation program, it is natural to exploit the use
of common random numbers (CRN) (e.g., Law 2013)—
in the same spirit as the use of CRN in, for example,
simultaneous-perturbation stochastic approximation
(SPSA) (Kleinman et al. 1999)—for reducing the vari-
ance in the difference estimates. With a slight abuse of
notation, let Y(Uy; O + Cxe;) be the output random vari-
ables simulated using the same input random number
stream U under the perturbed vectors 0 crECre (i=1,
...,d). The CRN version of SDQO simply works by
replacing Y(Oy *+ &xe;) in (19) with Y(Uy; Oy = Exe;). Like-
wise, a CRN version of SPQO can be easily implemen-
ted by substituting Y(Uy; O = ¢Ax) for Y(O, £CrAg) in
(21). In Section 3.1, we give conditions under which
we show that this CRN approach helps to induce a
positive correlation between the indicator terms and
reduces the estimation variance at each step.

3. Convergence Results

To fix ideas and to avoid unnecessary repetition, we
perform detailed analysis and present results mainly
for the SPQO algorithm. All results obtained for SPQO
can be shown (with appropriate/slight modifications)
to hold for SDQO. We begin by defining (Q, F,P) as
the probability space induced by SPQO, where Q) is the
set of all sample trajectories that could possibly be
observed by executing the algorithm, F is the o-field of
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subsets of Q, and P is a probability measure on F.
We also define Fy = o{Dy, 40, 00, - - ., Dk, G, Ok} as an in-
creasing o-field representing the information available
at iteration k=0,1,.... For a given vector v, let [[t]]
be the Euclidean norm of v, whereas for a matrix A, let
Al be the matrix norm induced by the Euclidean
norm. For any two real-valued functions u(k) and v(k),
we write u(k) =O(v(k)) if lim sup,_, u(k)/v(k) < oo
and u(k) = o(v(k)) if limy_,o u(k)/v(k) =0. We assume
that the parameter space ® is a compact convex set
described by functional constraints and takes the form
O={0ecR: hj(0) <0,j=1,...,m}, where (), j=1,
...,m are continuously differentiable functions with
their gradients satisfying Voh;(0) # 0 whenever 1;(0) =0
(cf., e.g., Kushner and Yin 1997). Such a characteri-
zation is satisfied by many common choices for ©,
including hyperballs, hyperrectangles, and more general
convex polytopes. For notational convenience, through-
out our analysis, we denote I} := I[{Y (0, + ¢xA) < gx + Ck
DZA](}, I =Y (O — cky) < qx — EkD]zAk}/F]t = F(g +
EkD]{Ak; Oy + ¢xAy), and Fk_ = F(qk — EkD,{Ak,' O — CrAy)-

3.1. Strong Convergence

The projection I'lg(-) in (22) ensures the boundedness of
Ok by projecting an iterate onto the compact region ©.
This operation can be defined through adding an extra
correction term Zj to the recursion (see, e.g., Kushner
and Yin 1997, chapter 5), leading to

Ok+1 = O — oDy + i Zy, (23)

where aiZy := Oy — Ok + Dy is the vector with the
shortest Euclidean length needed to bring 0y — a; Dy
back onto ®. In our setting, because ®© is a convex set,
Zy takes values in the convex cone generated by the
inward normals to the surface of ® at the point 01,
thatis, Z; € —C(641), where

CO):={veR":v(0-6) <0, VO B} (24)

is the normal cone to ® at 6. Note that C(6) = {0} when-
ever 0 lies in the interior of ©.

The convergence of SPQO is investigated by follow-
ing an ordinary differential equation (ODE) argument
(e.g., Kushner and Yin 1997, Borkar 2008, Hu et al.
2022). The general idea is to construct interpolations of
the iterates {Dx, gk, O }ro by “stretching” them continu-
ously in time and then capture the long-run behavior of
these interpolations using a set of coupled ODEs. In
particular, our main result is to show that the sequence
{0k} generated by (23) asymptotically approaches the
limiting solution to a projected ODE of the form

O(t) = —Voqu(0) | e=aq +z(t), t=0, (25)

where z(t) € —C(0(t)) is the minimum force (the real
vector with the smallest Euclidean norm) needed to
keep the trajectory 6(t) within the constraint set ©.

We introduce the list of assumptions that will be
used in our analysis.

Assumptions:

A1l. For almost all (qi, Ok) pairs, there exists an open
neighborhood of (qx, Ox), independent of k and w € Q, such
that

() The partial ~ derivatives  3°f(y;0)/dy2, O°f

(y;0)/9yd0", *f(y;0)/06706", and &F(y;0)/060"

907907 all exist and are continuous on the neighborhood

with their elements uniformly bounded in k and w.

(b) The density function f(y, 0) > € for all (y, ) pairs

in the neighborhood for some constant € > 0.

A2. The random directions {Ay} are i.i.d., independent of
Fr. Each Ay has mutually independent components with the
Bernoulli distribution P(Ay; =1) =P(A;=—1)=1/2 for
alli=1,...,d.

A3. The sequences {ax}, {B,}, {y,}, and {ci} satisfy the
following conditions:

@) Bro k>0, ¢ =0, Y320 = 00, Yoo /i < 0o
(b) ¥,>0, 34 lg v =0

(©) ax>0, 3 gax=00;

(d) ax=o(yy), v =0(By).

Assumption Al(a) is consistent with the condition
used in lemma 1 of Spall (1992) but is stated within a
quantile optimization context. It ensures the O(cf) order
of the estimation bias in (21) (see Lemma 2) and is satis-
fied when F is three times continuously differentiable (in
both arguments) with bounded derivatives. Note that
the condition can be weakened to twice differentiability,
in which case the order of the estimation bias would
become O(cy). From the discussion at the end of Section
2, because (21) iteratively approximates a gradient of
the form —VgF(qx; 0)|o=6,/f (qi; Ok), Assumption Al(b)
ensures that the denominator of the ratio is bounded
away from zero, so that the limit of the {D;} sequence
(assuming its existence) does not get arbitrarily large;
see Wang et al. (2021) for a similar assumption. The suit-
ability of Assumption Al(b) has been discussed in Hu
et al. (2022). Specifically, because f(-; -) is continuous and
O is compact, the condition holds trivially when {g;} lies
in a compact set. In practice, this can be guaranteed
by truncating the sequence to a large closed interval
containing the true quantiles g(0) for all 6 € ©. It has
been shown in Hu et al. (2022) that such a truncation
will not have an influence on the convergence behavior
of {qx}. Both Assumptions A2 and A3 are conditions on
the algorithm input parameters. The Bernoulli random
direction is perhaps the most commonly used choice
when implementing SP estimators. Assumption A3 is
also standard in the SA literature (e.g., Kushner and
Clark 1978, Spall 1992, Kushner and Yin 1997). Assump-
tion A3(d) is needed in multitimescale SA methods (cf.,
e.g., Bhatnagar 2005, Borkar 2008, Zhang and Hu 2019,
Hu et al. 2022); it guarantees the three recursions to be
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performed at timescales that are noticeably distinct
from each another (see the discussion at the end of Sec-
tion 2). The condition, when combined with >~ 87 /c?
< oo in Assumption A3(a), implies that Y_;" ;)7 < oo
and >, af < oo.

We begin by stating a result that is essential for char-
acterizing the convergence behavior of the algorithm. It
shows that the gradient estimators constructed through
(21) have finite second-order moments and that the

sequence {Dy} itself remains bounded almost surely for
all k.

Lemma 1. Assume that Assumptzons Al, A2, and A3(a)
hold; then we have (i) sup, E[IDI] < oo; (ii) sup,|[Dxll
< ocow.p.l

Proof. See Section A of the online appendix. O

Lemma 2 below gives an explicit bound on the (con-
ditional) bias introduced by the symmetric SP scheme
used in (21). As a result of Lemma 1, the estimation bias
goes to zero at the rate O(c?), both almost surely and in
expectation.

Lemma 2. Let Assumptions Al, A2, and A3(a) hold, and
define the bias

—IF + 1
bi(qx, D, k) := E —k

F k] + f(qx, Ox) D

+ VoF(qx; Ok).

Then we have that (i) by(qx, Dx, 6x) = O(c?) w.p.1; (ii)
E[|lbx(qx, Dx, 00l = O(c3).

Proof. From Assumption A2, 1/A; = Ay. It follows that

—Li+1; Mk
E m}—k} 2 E[(—L +I)Ax| Fil
M
Zz—kE[( Ff +FO)M Fil.

Let V3F(y; 0) := °F(y;0) /907907 90" be the tensor of
F. Note that the tensor when evaluated at a vector v of
appropriate dimension, denoted by V3 F(y; 0)[v], gives
a matrix. Thus, by a third-order Taylor series expan-
sion of F and F;_ around (g, 0x) and then using A,%,i =
1, E[A,iA,j| Fi] = 0 for all i # j, we obtain

E —IF+1I
2Ci Ay

F k‘| = E[(—f(q; Ox)Af D — VF(qi; 060 Ar)

Av|F+E[Rs(T ¢, 01,0, )Mk Fi
= —f(qx; Ox)Dx — VoF(qx; Ox)
+E[Rs (7}, ¢, 05, 0 YAk | Fi,

where qk , g are on the line segments between g, and
qx = kD] Ay, 6;, O, are on the line segments connect-
ing O and Oy £ A, and Rj is a remainder term whose
absolute value is bounded by

2
C - =
IRs| < fop (@001 + (@ OO DIDE AL

12M2(|A (VoF@{0,)[AdAx]

+ | ALVEF@, 0, ) [AAKD)

4Mz( IN2F(G6,)DF Ay |

+|AVo (@0, )DF A )
2
c =
+ ke (IVofy@ 07 ) (DL A A
4M?

+ Vo £y @ 0)(DE A Axl).

Note that the facts My > 1, |[ecDxl| = cxl|Dill/Mi < cxVd,
and [[Ck Akl < crll Akl = ck\/a ensure that the pairs (7},
Qk) and (7, ,0, ) will all lie within the neighborhood
of (qx, Ok) stated in Assumption Al as cx — 0. Thus,
invoking Assumption Al and part (ii) of Lemma 1, we
arrive at the conclusion that E[||Rs(@},7;,0,,0, )l
| Fi]l = O(c?) w.p.1. This completes the proof of part
(i) of the lemma. Part (i) follows from a simple appli-
cation of Holder’s inequality and the fact that sup,
E[IDkII*] < co (Lemma 1, part (i)). O

We now present the main convergence theorem. In
its most general form, the result implies that the local/
global convergence of the algorithm can be determined
by examining the asymptotic behavior of the ODE (25).
For example, if the ODE has multiple isolated stable
equilibrium points, then the sequence {6} will con-
verge to one of them. A strengthened version of the
result is obtained when the quantile function is strictly
convex, in which case the unique optimal solution 6" to
(1) turns out to be a globally asymptotically stable equi-
librium of (25) (see corollary 1 of Hu et al. 2022), so the
sequence {6} will converge to 8" w.p.1. Because the
proof is similar to the convergence analysis in Hu et al.
(2022), it is included in the online appendix.

Theorem 1. Assume that Conditions Al, A2, and A3
hold. Then the sequence {0y} generated by SPQO con-
verges to some limit set of the ODE (25) w.p.1. In addition,
if the objective function q,(0) is strictly convex on ©, then
the sequence {6y} converges to the unique optimal solution
6" to (1) w.p.1.

Note that as with Lemma 2, it is readily seen that
the SD estimator in (19) also has O(c,%) bias. Using this
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observation, it can be shown, along the same lines as
in the proof of Theorem 1, that the following (same)
convergence result holds for SDQO.

Theorem 2. Assume that Condition Al holds with (qy, 6x)
replaced by (q,, Oy). Then under Assumption A3, the
sequence {0} generated by SDQO converges to some limit
set of the ODE (25) w.p.1. In addition, if the objective func-
tion q,(0) is strictly convex on ©, then the sequence {0}
converges to the unique optimal solution 6" to (1) w.p.1.

As mentioned in Section 3, under the special setting
of simulation optimization, the CRN versions of (19)
and (21) could be used in some cases to improve the
algorithm efficiency. We close this section by providing
conditions that guarantee the variance reduction prop-
erty of this approach. For simplicity, we only state and
prove the result for (21). The variance reduction prop-
erty of (19) is ensured under the same set of conditions
given in Proposition 1 below.

Proposition 1. Denote by fk = I{Y(Uy; O = CkAr) < Gk
= ¢xD]I Ac}. Let Conditions A1, A2, and A3(a) hold. Suppose
that for any given parameter vector 0, the output random vari-
able Y(Uy; 0), when viewed as a function of input random
numbers, is monotone in each argument; that is, Uy; < Uy ;
implies Y(..., Uy -1, Ui, Uy 41,...;0) < Y(...,

uk,l?l/ ul,(,i’
Uk iv1,---;0) forall i or Y(..., Ug i1, Up i, Uk ix1, ... 0) =
Y( s uk,i—l/ u],(,i/ uk,i+1/ s

; 0) for all i. Then we have
Var( 2t he| 2| v (ZEH R, 21,
2y 1) T 201y, i oo
forall kw.p.1.

Proof. The proof relies on an inequality given on pp.
187-188 of Givens and Hoeting (2013), which can be
stated as follows: Let Xj,..., Xy be a sequence of i.i.d.
random variables, and gi(x1,...,%) and go(x1,...,xk)
be two functions that are both monotonically nonde-
creasing (or nonincreasing) in each argument. Then

E[gl(X1/ .. '/Xk)gZ(Xll .. /Xk)]
> E[g1(X1, ..., Xp)]E[g2(X1, ..., Xi)]. (26)
Now fix an i=1,...,d; it is straightforward to show
that
I+ IF+1I7
Var| —2k "7k | A ~ Var| =k 7k (A
ar( 20k Ay, i k']:k> ! (25kAkz w5
1 U
= [E[L | A, FUEL | A, Fi] = ELCT 1A FiLL
ZCkAk/i

Because for fixed gi, Dy, Ay, and 0y, the indicator func-
tions I{- < g = D] A} are nonincreasing and by our

assumption Y(-; 6y = EkAk) are monotone in each argu-
ment, the compositions Ik =H{Y(; 0k =) < qr =Tk
D] A} are also monotone in each argument. Hence,
we have from (26) that E[Ik Ik |Ax, Fi]= E[Ik | Ay, Frl
E[Ik | A, ]-"k] E[LF|Ax, Fil E[L; |Ak, Fi]. This shows

that Var( Ik +Ik Ay, F k) < Var( ’Ak, F k) Finally,
by noticing that

Var| E jk IAk A, F 3
2_k A i ks k k
=Var| E ket A, Fie| | F
% A A y ks Yk k|

the proof is completed by unconditioning on Ay using
the law of total variance. O

Proposition 1 shows that when the simulation output
random variables react monotonically with respect to
the input random numbers, the conditional variance of
the gradient estimator Dy, constructed using CRN is
always no greater than that obtained under indepen-
dent sampling. This monotonicity requirement can be
expected in certain applications such as in the simula-
tion of regenerative processes and queueing systems
(see, e.g., Law 2013). Note that Proposition 1 is a finite-
time result that holds almost surely for every k. This is
different from the work of Kleinman et al. (1999), in
which the same CRN approach has been used in SPSA
and shown to lead to a faster asymptotic convergence
rate than the original SPSA without CRN. Kleinman
et al. (1999), however, consider mean-based simulation
optimization, and a key condition used in deriving
their result, when put into our current context, requires
the two indicator functions I, to be differentiable with
bounded derivatives. So, their result does not directly
carry over to the quantile setting.

4. Convergence Rate Analysis

Again, because SPQO differs from SDQO only in the
perturbation scheme used in constructing gradient esti-
mates (i.e., simultaneous versus element-wise pertur-
bation), we use SPQO as a representative algorithm
and investigate its rate of convergence in detail. A
completely analogous argument, which we omit, yields
essentially the same rate result for SDQO (see Theorem
4 at the end of this section). Our analysis assumes that
the ODE (25) has a unique globally asymptotically sta-
ble equilibrium 6" that lies in the interior of ©. Clearly,
because C(07) = {0}, 0" satisfies Voq,(0)]g=¢ =0, and
according to Theorem 1, the sequence {0;} generated
by (22) converges to 6" w.p.1. The main result for
SPQO is obtained through the repeated application of
a fixed-point argument for characterizing the mean
absolute errors (MAEs) of SA estimates. The novelty of
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the approach resides in the use of a sequence of suitably
designed contraction mappings to quantify the estima-
tion errors accumulated over the iterations. This, in
essence, translates a difficult rate analysis problem into
the simple task of examining the fixed points of a
sequence of contraction mappings. Notice that the three
recursions in SPQO each represent a major category of
SA algorithms, that is, a stochastic rooting finding pro-
cedure (20), a Kiefer-Wolfowitz/SPSA-type algorithm
(21), and a Robbins-Monro-type gradient iteration (22).
We show that these recursions, even when coupled
through different timescales, can all be analyzed using
the proposed fixed-point argument.

The analysis proceeds in three steps. First, we con-
sider the two coupled iterations (20) and (22) and
derive the convergence speed of the quantile recursion
(20) while taking into account the variations in the
value of 6;. Then, we characterize the rate at which the
gradient recursion (21) converges as both g; and 6y
vary over time. Finally, we present the main conver-
gence rate result for (22) and discuss the selection of
algorithm parameters that optimizes the performance
of SPQO. Throughout this section, we focus on stan-
dard step- and perturbation-sizes of the forms «ay =
a/k®, B, =b/kf, y, =r/k’, and ¢, = c/k*, where a, B, y,
1€(0,1)anda, b, r, c > 0. Let g(0) be twice continuously
differentiable with Hessian matrix H(6) := V3g(0). In
addition to the assumptions used in Section 3.1, we also
impose the following regularity conditions:

Assumptions:

B1. For almost all (qy, Ok) pairs, there exist constants
¢, Cs>0such that e < f(y;0k) < Cy for all y in the interval
between g, and q(O).

B2. The output density f(y; 0) is jointly continuous in
both y and 0. There are constants Ly, Lr > 0 such that |f(y1;
6) — f(1230)| < Lillys — yall and [VoF(1; 0) — VoF(y; O)|
< Lellyr — yol| for all 6 € ©.

B3. Let A(0) be the smallest eigenvalue of H(0). There is
a constant o > 0 such that A(0) > o for all O on the line seg-
ment between Oy and 0.

Note that because no knowledge of the bounding
constants ¢ and Cyis required, Condition B1 is accept-
able in many practical situations. For example, when
the simulation outputs themselves are bounded or
truncated to a large interval, it is easy to see from (20)
that {gx} will stay bounded. Thus, the assumption
holds if f(:;-) is continuous on ® and a compact inter-
val that contains {g;} and {7(6)} (see also the remarks
on Assumption Al(b) in Section 3.1). Assumption B2
is roughly a globalized version of Assumption Al(a)
but without requirements on the higher-order deriva-
tives of F. A sufficient condition for Assumption B2 to
hold is that the output distribution F is twice differen-
tiable in both arguments and has bounded derivatives.
Assumption B3, in a sense, is a stronger version of the

strict convexity assumption on 4(6) used in Theorem 1
and is satisfied when g(0) is strongly convex on ©,
which is a condition frequently adopted in the litera-
ture for analyzing the convergence rates of gradient
descent algorithms (e.g., Ghadimi and Lan 2012, Bot-
tou et al. 2018).

The following lemma provides a good estimate for
the weighted sum of a sequence of decreasing functions
of order O(1/k°), s € (0,1). The result will be repeatedly
used in the subsequent analysis.

Lemma 3. Let u(i) = a/i and w(i) = O(1/#), where a>0,
p,s€(0,1),and w(i) >0 foralli=1,2,.... Then

k k
[H (1- ”(i))} u(Bw(i) = Ok™).
=1

j=i+l

1

Proof. See Section C of the online appendix. O

A characterization of the convergence rate for the
mean squared errors of the quantile estimates is given
below; see Section D of the online appendix for a proof.

Lemma 4. Assume Assumptions A1-A3 and Bl hold.
Then the sequence {qi} generated by (20) satisfies

et a0 -0(2) +o(s).

From the discussion in Section 2, the gy iteration (20) is
an SA method for solving a sequence of time-varying
root-finding problems. The O(ay/y,) term above reflects
the influence of the slowest component 6 on the track-
ing ability of the {g;} sequence. In particular, a large
value implies that the underlying input parameter 0y
will change quickly over the iterations, in which case
the step-size Y should decay sufficiently slowly to
ensure that the {g;} sequence could properly follow the
true quantiles {g(0x)}. When 0 is fixed, that is, ay = 0, it
can be seen from the proof of Lemma 4 that the rate of
convergence of {g;} to the true quantile in MAE is of
order O()/;/ 2). Therefore, if (20) is used as a stand-alone
procedure for estimating distribution quantiles, its best
rate of convergence is O(1/ Vk) (e.g., when y, =r/k).
This is consistent but stronger than the classical (weak)
convergence rate result for root-finding SA algorithms.

Based on Lemma 4, we further obtain the following
convergence rate result for the gradient estimates
{Dx}-

Lemma 5. Assume Assumptions A1-A3, B1, and B2 hold.
Then the sequence {Dy} satisfies

\/E[HDk ~Voq(0)]9=0,I°1= 0 (lxk) +0(c)+0 (‘B’z‘> .
V4 Ck

k

Proof. See Section E of the online appendix. O
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The result also has an intuitive explanation. A com-
parison of the results of Lemmas 4 and 5 indicates that
the O(a/y,) term is attributed to the approximation
error of the quantile estimator. Lemma 5 shows that
this error sets a limit on the convergence speed of {D;},
suggesting that the performance of the two coupled SA
recursions is primarily governed by the rate of the
slower component. In the special case when the input
parameter vector is fixed, the O(ay/y,) term vanishes.
Consequently, if (20) and (21) are jointly used as a
means for quantile sensitivity analysis, then the lemma
implies that the convergence rate of the gradient esti-
mates is O(c?) + O(ﬁk / ck) provided that y, = o(B,) (be-
cause of Assumption A3(d)). If in addition the quantile
is also fixed, then (21) alone is in the form of the stan-
dard SPSA algorlthm and the rate result is simply
given by O(ck) + O(ﬁl/ ?/ck). When B < 67, this further
reduces to O(ﬁk /2 /cx), which becomes identical to the
(asymptotic) rate result previously obtained in Spall
(1992), except in the mode of convergence.

Finally, we arrive at the following main convergence
rate result for SPQO.

Theorem 3. If Conditions A1-A3 and B1-B3 hold, then
the sequence {0y} generated by SPQO satisfies

E[16, — 6°][] = o()‘f-j:) +O(ci)+o<f—i<>. 27)

Proof. Define 1, := 6; — 6. We have from (23) that

Vypr = ¥ — ar(Dx — Voq(0) lo=6,) — axVeq(0) | o=6, + axZx
=, —apn — axVeq(0)| o=e, + arZx,
where 1, = Dy — Vgq(0)|g=o,. Because Voq(0)|g-¢- =0,

a Taylor series expansion of Vgq(0)|g=p, around 6
shows that

Vpir = ¥ — it — acHOD Y, + arZy

= (I — H(OR) Py — gy + aZ,

where 0y is on the line segment between 6, and 6". Tak-
ing norms on both sides, using the Rayleigh-Ritz inequal-
ity (cf., e.g., Rugh 1996) and Condition B3, we obtain that
for all k sufficiently large such that ap < 1,

[l < T — axHO) Yl + il + ael Zi
< (1= a0l + aelimgll + | Zill-

It follows that

Elllpy1 11 = @ = ax0)ElIllT + axEllmgll] + axEllIZll)-
(28)

We now derive a bound for E[||Z||]. Because 6" is in
the interior of ©, there is a constant ¢ > 0 such that the

2¢-neighborhood of 0" is contained in ©. Let & =

{llOke1 — 6"
. implies that Zk 0. Using thlS observation, we
obtam that

EIZilIT = ENNZAIEcIP(Ex) + ENZl| EP(ER)
< E[IDl1P(|Oks1 — 671l = 2¢)
< E[IDIP(IOxs1 — Okll = c U |6k — 67l = )

E[||6xs1 — O E[llgll]
< Efp EIO =0l g g ELIID
c «
by Markov’s inequality
2a,E2[||D E

where the first inequality is due to the fact that ||Z|| <
|[Di|| (see the proof of lemma 5 in Hu et al. 2022), and
the last step follows from ||0x1 — Okl < al|Dx — Zi|| <
20ty Dic-

Next, substitute the bound (29) into (28) and com-

bine like terms,

HWMMSQ—%@—ﬂ%@»HWM
202E2[|Dyl]
2{E DA

+ axE[lIn Il +

Note that because 6y — 6" w.p.1 and Vyq(0)|p=e- =0,
the continuity of Vgq(0) indicates that ||Veq(0)|e=g,ll
— 0 w.p.1. This, together with the boundedness of
Voq(0) (because of the compactness of @), shows that
E[lIVeq(0)|=g,ll] = 0 by the dominated convergence
theorem. Thus, we have from Lemma 5 that E[||Dyl|]
< E[|IDx — Voq(0)|o=0,Il1 + E[I[Voq(6)]0=0,]I] — 0. This
then implies the existence of an integer A > 0 such that
0—E[|IDlll/c > 0/2:=7 for all k>N. Consequently,
we get that for all k >

Ellyalll < (1 = B+ aEllng ]
, 202E(IIDdI).
¢

Directly expanding the above inequality from term N
onwards,

k
E[lllll < H(l — a;0)E[ll¢ Il
=N

k
+Z[H(1 0@0)]&15 [,

i= j=itl

k k
+ZLH“‘ >] 2uEIDI]

=N Lj=i+l
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Finally, because [Tt (1 — ;@) = o(k ™), E[|In /] = O(a
/7 +O(c2) + O(BY? /er) (Lemma 5), and o E2[||Dl[] =
O(a) (Lemma 1(i)), a direct application of Lemma 3
leads to the conclusion E[|[,[[] = O(ax/y,)+O(c}) +
O(B*/c). D

In view of Lemma 5, regardless of the choice of a, the
MAE of Dy converges at a rate that is always slower than
ay itself, which results in the long-run behavior of (22)
being dominated by the errors in gradient estimation.
Therefore, in contrast to single-timescale SA, whose rate
is determined by its step-sizes, an interesting observa-
tion from Theorem 3 is that the step-size aj in (22) does
not have a direct effect on the convergence rate of {6y},
but only does so indirectly through the expression for
the convergence rate of the faster component Dy in
Lemma 5.

From Assumption A3(a), both ; and c; should be cho-
sen to satisfy 7+1/2 < < 1. In addition, to improve
the rate in (27), it is clear that @ should be taken large,
which gives the obvious choice a ~1 (note that a €
(, 1)) On the other hand, because k 2 Jey = O(k=B/2=7))
and ¢ = O(k=%"), the O(c?) + O(,Bk /ck) term is optimi-
zed when B = 61, yielding O(c?) = O(,Bk / cr) = O(k27).
Consequently, by equating the terms in (27), we find
that under the above choice of «, f and the constraint
a >y > p (Assumption A3(d)), an upper bound on the
MAEs of {6} diminishes at an optimal rate that can
be made arbitrarily close to O(k~'/4), which is approx-
imately attained when a~1,y=3/4,~3/4, and
T=1/8.

Finally, for the sake of completeness, we conclude by
stating the following rate result we have for SDQO,
implying that the algorithm essentially shares the same
O(k~1/*) best convergence rate bound as SPQO, except
possibly in the constant contained in the big-O notation.

Theorem 4. Assume that the conditions of Theorem 2 and
Assumptions B1-B3 hold but with (g, 0y) replacing (g,
0k) in Assumption Bl. Then the MAEs of the sequence
{6y} generated by SDQO satisfy

ElI6, o1 = 0 () + 0(c + o(%’:)

5. Simulation Experiments

We begin with two simple examples in Section 5.1 to
illustrate the smoothness requirement on the output
distribution. Then, in Sections 5.2 and 5.3, we test the
algorithms by performing some computational experi-
ments on a set of artificially created black-box functions
and a queueing example. In all cases, the performance
of SPQO and SDQO is compared with that of the QG
algorithm and the surrogate-based gTSSO-QML algo-
rithm proposed in Wang et al. (2021). We describe the
latter two algorithms in more detail now. As discussed

in Section 1, QG is a single-timescale SA algorithm that
employs the conventional SD (3) to approximate quan-
tile gradients, where the true quantiles are estimated
by order statistics. Denote by vy > 0 the perturbation
size, and let §(0) stand for the [nz@]th order statistic of
an output sample Y3, ..., Y, ~ F(:; 0) of size ny. The QG
algorithm uses the following update:

Or+1 = o (6k — pDy), (30)

where p, > 0 is the step-size and Dy is the gradient esti-
mate whose ith element is given by

G(Ox1,--, 0k i+ v Opa)")

D= qA((ékl O —Vp ék,d)T)
ki —
’ ka

Here, 0, ; is the ith element of 6, and 0 k,;’s are random
variables uniformly distributed over [0 j— Uk, Ok +
vi] for all j=1,...,d, j#i. Note that this construction
differs from our proposed algorithms in that 2dn; func-
tion evaluations (as opposed to three in SPQO and 24 + 1
in SDQO) are needed at each iteration. Our implementa-
tion of QG is based on the parameter values p, = 1/k,
vp = 1/k%%1, and ny = [k*%%], which are the minimum
required to satisfy the conditions for the convergence of
the algorithm (see theorem 8 of Kibzun and Matveev
2012). The gTSSO-QML algorithm uses a stochastic cok-
riging model to approximate the response surfaces of a
set of quantile functions with progressively increasing
quantile levels and selects new design points by opti-
mizing an expected improvement criterion. Following
Wang et al. (2021), the algorithm parameter values are
determined in our implementation based on a cross-
validation test, and at each step, simulation samples
are adaptively allocated to the selected design points
by using the optimal computing budget allocation
method.

Similar to many other Bayesian optimization ap-
proaches, gTSSO-QML is very computationally de-
manding on high-dimensional problems, so we have
implemented the algorithm on a parallel computing
platform with 164 nodes. Each node has two Intel Xeon
E5-2683v3 processors (with 14 cores each running at
2.0GHz) and 128 GB of memory. The computational
experiments for all other algorithms are performed on a
Window PC with an Intel Core i5 1.8-GHz processor
and 8 GB of memory.

5.1. Necessity of Differentiability for
Convergence

As discussed in Section 3.1, Assumption Al(a) is pri-

marily used to guarantee the typical O(c?) bias order of

the symmetric FD scheme employed in (19) and (21).

The assumption, however, is stronger than necessary
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for the convergence of the algorithms, which we illus-
trate through two examples.
(i) Consider the class of output random variables

Y(6) =|6]'+X, ®@=[-2,2], (31)

where £ €(1,2), and X ~ N(0,1) is the standard normal
random variable. The ¢-quantile of Y(6) can be expressed
in terms of the inverse of the error function erf(z) :=
(2/+/m) ge‘tzdt as 4,(0) = 0]“ + V2erf(2¢ — 1), which
is strictly convex with a unique minimizer 6" = 0. It is
easy to see that the output distribution F(y;0) is conti-
nuously differentiable, but its second-order derivative
&*F(y;0)/3%0 has an infinite discontinuity at 6 =0. This
implies that if the algorithms converge to the optimum,
then {0y} would enter any neighborhood of 0" infinitely
often, within which 9*F(y; 8)/9°6 may become arbitrarily
large. In other words, if the sequence {0} converges to
0", then Assumption Al(a) cannot be true. Nevertheless,
by using a first-order (linear) Taylor approximation of F,"
in the proof of Lemma 2, it can be shown that the biases
of (19) and (21) at 6=0 are in fact of order O(c), which
tends to zero as k — co under Assumption A3(a). There-
fore, both SPQO and SDQO would converge to 6° as a
result of Theorems 1 and 2. Figure 1(a) empirically illus-
trates the convergence behavior of SPQO and SDQO on
this example when ¢ =5/3 and ¢ =0.95, where each
curve plots the sequence of quantile values {q,(0)}
(averaged over 100 independent replication runs) versus
the number of simulation evaluations.

(ii) On the other hand, consider (31) with € € (0,1). In
this case, the first-order derivative dF(y; 0)/d6 contains

Figure 1. Performance of SPQO and SDQO on Problem (31)

©=0.95
1.8 T T T T T T T
—SPQO
175 - = SDQO
om0 | |esssssss Opt|ma|
(0]
=
[ ]
c
kel
©
§ 1.65 oS . . P T P TR R T -
(0]
=
©
o 16 1
Q
o
1.55 1
15 ) ) ) ) ) ) )
2 4 6 8 10 12 14
number of simulation evaluations x10*

an essential discontinuity at 6 =0, which results in an
infinite quantile derivative at 0" (see (4) or the analytical
expression for g,(0) given in case (i) above). Intuitively,
this means that whenever a solution 6; is obtained in
the close vicinity of 0, the large quantile derivative will
quickly steer the search away from the optimum, lead-
ing to possible nonconvergence of the algorithms. Such
a phenomenon can be observed from Figure 1(b), which
shows the typical oscillatory behavior (i.e., going back
and forth between better and worse solutions) of SPQO
and SDQO when ¢ = 1/3. This suggests the necessity of
continuous differentiability of the output distribution
on the convergence of the algorithms.

5.2. Black-Box Test Functions

Six noisy black-box functions are tested, with dimen-
sions varying from 2 to 20. Case 1 contains multiplica-
tive noise but only two decision variables and is
relatively easy to solve. In case 2, the noise also scales
the function, but as the problem dimension increases,
the distribution of the function may become extremely
flat, making its extreme quantiles challenging to esti-
mate. In case 3, on the other hand, the noise is addi-
tive, and under the optimal parameter values, the
quantiles are very distant from the origin, so predict-
ing their values could also be challenging, especially
when the initial estimates are far from the true values.
In case 4, the noise is both multiplicative and additive.
Cases 5 and 6 are relatively low-dimensional multi-
modal problems, and each contains a large number of
local optima.

=0.95
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Notes. (a) £{=5/3; ¢=1/3. Both algorithms are implemented based on the parameter setting ay = 1/k%%, B, =1/k°7*, v, =1/k%7°, and
& p. p g k Vi

op = 1/K015,
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Table 1. Optimal Quantile Values in the 24 Test Scenarios

Normal Cauchy
Case p=0.6 p=0.95 p=0.6 =095
1 10 10 10 10
2 0.25 1.64 0.32 6.31
3 —717.25 —715.86 —717.18 -711.19
4 —49.29 —45.32 —49.08 —34.62
5 0.25 1.64 0.32 6.31
6 0.25 1.64 0.32 6.31

Case 1. Y(0) = (2.6(6% + 03) — 4.80,0,)X + 10, where
e=[-22]

Case 2. Y(0) = (Z?Zl (6; — i)2 + 1)X, where d=10 and
0;eli—1,i+1]fori=1,...,d.

Case 3. Y(O) =X + zi’;l(ei —1)60;, where d =20 and
© =[-20,20".

Case 4. Y(0) =150, (0; — 1’X +15°0 (07 — 1607 +
50;), where d=20 and © = [1,4]d.

Case 5. Y(0) = [-10exp(—0.2y/13°,; dOF) —exp
(%Zflzl cos(16;)) + 11 +e] X, where d=5and © = [ -5, 5]%.

Case 6. Y(0) =157 [0.4 sin?(0.27(0; —0.9)) +0.3
sin?(0.4m(0; — 0.9)) + 0.001(6; — 0‘9)2] + X, where d=5
and © = [-10,10]".

For each test problem, we consider two quantile levels,
¢ =0.6, ¢ = 0.95, and two choices of the (unknown) noise
distribution, X ~ N(0,1) and X ~ Cauchy(0,1), resulting
in 24 total test scenarios. The optimal quantile values in
all scenarios are listed in Table 1. Note that under the
Cauchy noise, neither the mean nor the variance of the
output distribution exists.

In the implementation of SPQO and SDQO, the decay
rates of the parameters are determined from the result
of Section 4, thatis, « =0.99,y =0.75, $=0.74, and 7 =
0.125 (see the discussion at the end of that section). Our
experience indicates that their performance is not very
sensitive to the choice of ay, in that the standard step-
size a = 2/k* seems to work well across a variety of test
cases. The parameters f; and c, resemble those of SPSA,
and we choose them to be of the forms f, = b/(k + RY
and ¢, = ¢/(k+ R)" as suggested in Spall (2003), where R
is set to 10% of the maximum number of iterations
allowed, b = x1(2R)? and ¢ = «,(2R)". This choice main-
tains the respective values of B, and ¢ to be greater than
k1 and «, during the first R iterations. The constants
and «x, are then selected by trial and error, and we
find that values satisfying x, €[0.1,0.9] and 0.005 <
x1/x2 < 0.1 all yield reasonable performance. Note that
from (21) (resp. (19)), the increment (if there is any) in
each component of Dy (resp. Dy) is exactly f, /2¢y (resp.
B/2Ck). So, the lower bound 0.005 on «i/k, prevents
the updates in gradient estimates from becoming too
small. Our numerical results reported here are based on
k1 =0.05 and xp =0.5. The choice of )i, on the other
hand, is most critical to the performance. This is mainly

because of the recursive procedure used for estimating
gk (resp. 4,). As can be observed from (20), each incre-
ment in quantile estimate is bounded in magnitude by
Yk Thus, if a desired (true) quantile is far from the ini-
tial go, then a reasonable estimate of its value would
take an enormously large number of iterations under
the standard choice y, =1/k”, leading to excessively
slow (finite-time) convergence behavior. One way to
address this issue would be to take Y to be of the same
form as fy, so that a nonnegligible gain could be main-
tained in tracking the true quantile values. In our
study, however, we simply take y, = R/k”. The intui-
tive reason is that the large constant R will provide
enough impetus in early iterations to help the iterates
move quickly toward the “correct” quantile range,
whose values can then be further fine-tuned as y;
decreases rapidly with k, because of the large decay
rate y.

It can be verified that the monotonicity condition
assumed in Proposition 1 is satisfied for all test func-
tions. Therefore, in addition to SPQO and SDQO, we
have also implemented their CRN versions, SPQO-CRN
and SDQO-CRN. For each of the respective test cases,
the six algorithms SPQO, SPQO-CRN, SDQO, SDQO-
CRN, QG, and gTSSO-QML are run using the same
computational budget, where the total number of eva-
luations is set to 3 x 10* for case 1, 3 x 10° for cases 24,
and 10° for the multimodal test cases 5 and 6. In SPQO
(as well as SDQO and their CRN versions), the initial
estimates are taken to be Dy = (0,...,0)" and go =0. The
initial 6y is uniformly generated from © for all algo-
rithms. Each algorithm is then independently repeated
40 times, and the numerical results (averaged over 40
runs) obtained in the respective test cases are presented
in Tables 2 and 3, which show the means and standard
errors of the true quantile function values at the final
solutions found by the six comparison algorithms. In
each row of the tables, the result that is closest to the
true optimal value is shown in bold (in the case of a tie,
the one with a smaller standard error is highlighted).
The convergence behavior of SPQO, SDQO, QG, and
gTSSO-QML is also illustrated in Figures 2—4, which
plot the true quantile values at the current estimated
solutions as functions of the numbers of function eva-
luations consumed.

Our comparison results indicate that SPQO (SPQO-
CRN) has the most consistency on test cases 1-4. The
final results obtained by SDQO are close to those of
SPQO. However, as the figures clearly show, the con-
vergence behavior of SDQO (in terms of the number of
function evaluations) becomes slower as the problem
dimension increases. For example, in cases 3 and 4,
because SDQO uses 41 function evaluations per itera-
tion, its total number of iterations is more than 13 times
smaller than that of SPQO, resulting in inferior perfor-
mance within the allowed budget. As expected, it can
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Table 2. Performance on Test Functions for Normally Distributed Noise

Case SPQO SPQO-CRN SDQO SDQO-CRN QG gTSSO-QML

©=0.6
1 10.06 (8.0e-3) 10.04 (7.8e-3) 10.06 (1.0e-2) 10.04 (7.0e-3) 10.11 (1.3e-2) 10.01 (7.3e-4)
2 0.30 (2.7¢-3) 0.28 (1.0e-3) 0.55 (1.3e-2) 0.43 (1.6e-2) 0.39 (1.4e-2) 0.33 (1.7e-2)
3 —717.24 (3.3e-4) —717.24 (7.2e-4) —717.22 (1.4e-3) —717.25 (1.9e-4) —717.23 (6.7e-4) ~168.00 (2.71)
4 ~49.22 (1.8¢-3) ~49.19 (8.3e-4) —49.16 (5.0e-3) —49.25 (3.7e-3) ~49.17 (7.1e-3) —48.60 (3.9¢-2)
5 1.13 (4.4e-2) 1.05 (3.2e-2) 1.28 (3.8¢-2) 1.18 (2.5¢-2) 151 (3.7e-2) 0.62 (4.1e-2)
6 0.50 (1.4e-2) 0.52 (1.4e-2) 0.57 (1.6e-2) 0.54 (1.4e-2) 0.54 (1.2¢-2) 0.36 (5.1e-3)

=095
1 10.07 (6.6e-3) 10.09 (1.0e-2) 10.04 (5.3e-3) 10.02 (4.0e-3) 10.22 (2.9¢-2) 10.00 (6.0e-6)
2 1.65 (3.3¢-4) 1.64 (6.0e-6) 1.68 (2.3¢-3) 1.65 (4.6e-5) 1.66 (9.5¢-4) 1.69 (3.0e-3)
3 —715.85 (5.6e-5) —715.86 (5.1e-6) —715.82 (1.6e-3) —715.85 (1.7e-4) —715.82 (1.8e-3) ~174.96 (3.59)
4 —45.22 (1.5e-3) —4521 (6.8¢-4) —45.13 (9.6e-3) —45.31 (9.5e-4) —45.05 (1.3e-2) —44.41 (4.7e-2)
5 4.85 (4.0e-1) 5.31 (3.3e-1) 6.43 (3.0e-1) 5.17 (2.9e-1) 8.52 (1.9e-1) 4.10 (2.6e-1)
6 1.91 (1.4e-2) 1.91 (1.6e-2) 1.94 (1.4e-2) 1.93 (1.3e-2) 1.93 (1.5e-2) 1.76 (6.3¢-3)

Note. Performance based on 40 independent runs (standard errors in parentheses).

be seen from the tables that SPQO-CRN and SDQO-
CRN generally outperform their original versions and
yield smaller standard errors in almost all test cases,
indicating their consistent performance over repeated
runs.

The performance of QG is comparable to SPQO
under the normal noise setting. In particular, because
QG is based on order statistics, the algorithm does not
require the specification of an initial estimate and is less
susceptible to the magnitude/location of the optimal
quantile. This could be beneficial in extreme circum-
stances such as case 3, especially when the true quantile
happens to be very far away from its initial guessed
value in a recursive procedure like SPQO. We see from
Figure 3 that in case 3, QG quickly identifies the correct
quantile range in the first few iterations and shows
a very fast initial improvement. However, because of
the increasing sample size required at each step, the
parameter update in QG is carried out at a frequency

that becomes much lower as search progresses, which
results in sluggish performance in the long run. From
Table 2, we observe that the mean results found by
SPQO are closer to the true optimal values than those
obtained by QG.

Under the Cauchy noise, QG shows a significant per-
formance degradation. We believe that this is owing to
the heavy tail feature of the Cauchy distribution, which
makes its high-level quantiles more difficult to estimate
than the normal distribution. Therefore, for an order
statistic-based estimator, a reliable quantile approxima-
tion can only be obtained after a large amount of simu-
lation observations have been collected. This issue is
especially manifested on cases 1, 2, and 4, where in
each problem the standard Cauchy input distribution
is further stretched by a large factor. We observe that at
the ¢ = 0.95 quantile level, QG may fail to locate a near-
optimal solution within the prescribed simulation bud-
get. SPQO instead estimates quantiles and gradients by

Table 3. Performance on Test Functions for Cauchy Distributed Noise

Case SPQO SPQO-CRN SDQO SDQO-CRN QG gTSSO-QML

©=0.6
1 10.06 (9.4e-3) 10.03 (6.6e-3) 10.07 (1.3e-2) 10.03 (6.3¢-3) 10.11 (1.3e-2) 10.00 (8.7e-4)
2 0.37 (3.2e-3) 0.33 (4.8e-4) 0.55 (1.9e-2) 0.36 (5.0e-3) 0.47 (1.5e-2) 0.37 (4.5e-3)
3 —717.16 (8.5e-4) —717.17 (2.9e-5) —717.08 (5.5e-3) —717.17 (1.3e-4) —717.15 (1.1e-3) —165.34 (2.52)
4 —48.99 (2.9e-3) —48.98 (1.3e-3) —48.75 (1.8e-2) —49.03 (4.6e-3) —48.87 (1.2e-2) —48.20 (4.4e-2)
5 1.64 (4.6e-2) 1.34 (4.4e-2) 1.76 (5.7e-2) 1.31 (5.5e-2) 1.97 (5.0e-2) 0.83 (5.8¢-2)
6 0.60 (1.3e-2) 0.56 (1.2e-2) 0.61 (1.6e-2) 0.60 (1.4e-2) 0.63 (1.3e-2) 0.43 (5.6e-3)

»=095
1 10.03 (6.4e-3) 10.00 (5.3e-4) 10.04 (7.9¢-3) 10.01 (1.6e-3) 120.03 (18.00) 10.00 (3.6e-5)
2 6.48 (8.6e-3) 6.31 (9.1e-5) 8.15 (3.5e-1) 6.32 (1.4e-3) 48.05 (1.25) 6.67 (2.2e-2)
3 —711.17 (9.2e-4) —711.19 (2.2e-5) —709.24 (1.9¢-1) —710.60 (7.0e-2) —703.94 (3.8e-1) —160.79 (3.06)
4 —33.80 (3.9¢-2) —34.20 (1.0e-2) —30.16 (1.9¢-1) —33.92 (1.0e-1) ~19.54 (1.06) —32.10 (1.1e-1)
5 23.96 (2.99) 8.21 (9.0e-1) 32.11 (2.99) 16.69 (1.30) 36.74 (1.30) 14.64 (1.23)
6 6.58 (1.6e-2) 6.58 (1.7e-2) 6.64 (1.4e-2) 6.61 (1.6e-2) 6.72 (1.2e-2) 6.43 (6.5e-3)

Note. Performance based on 40 independent runs (standard errors in parentheses).
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Figure 2. Performance of SPQO, SDQO, QG, and gTSSO-QML on Test Cases 1 and 2
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Figure 3. Performance of SPQO, SDQO, QG, and gTSSO-QML on Test Cases 3 and 4
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Figure 4. Performance of SPQO, SDQO, QG, and gTSSO-QML on Test Cases 5 and 6
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averaging all simulation data collected in past itera-
tions. Thus, it works equally well under the Cauchy
noise setting and shows significantly faster conver-
gence behavior than QG.

Functions 5 and 6 are highly multimodal, which
makes it very difficult for a gradient-based algorithm to
escape local optima. On these test functions, SPQO,
SDQO, and QG may quickly get stuck at a local opti-
mum and stop making improvement even during the
early search phase (see Figure 4). The gTSSO-QML algo-
rithm, instead, shows more robustness in dealing with
local optima and yields much superior performance
compared with other algorithms. However, note from
Figure 3 that the algorithm is not as efficient on test cases
3 and 4. We conjecture that this is primarily caused by
the high dimensionality of these functions so that a close
approximation of the true response curve might require
a large amount of data that exceeds the given budget. In
addition, because each step of gTSSO-QML involves an
expensive optimization procedure, the algorithm could
be very time-consuming to run on high-dimensional
problems. For example, the average running time of
gTSSO-QML for solving case 3 on the parallel platform
is more than eight hours. In contrast, the execution time
of a single run of SPQO on a Windows PC is under five
seconds. The above comparison suggests that our pro-
posed algorithms, particularly SPQO, are best suited to
high-dimensional differentiable problems that contain
few local optimal solutions, whereas gTSSO-QML is bet-
ter adapted to the optimization of complex multimodal
objective functions with relatively small numbers of
decision variables.

To provide an illustration of the convergence rate
results given in Theorems 3 and 4, Figure 5 shows the
log-log plots of the empirical MAEs of SPQO and SDQO
estimates (averaged over 100 independent replication
runs) versus the number of algorithm iterations for cases
14 when ¢ = 0.6, where in case 1, we have performed a
more extensive experiment by setting the number of
algorithm iterations to 10°. Because of space limitation,
the results for the ¢ = 0.95 case are reported in Section F
of the online appendix. Note that because cases 5 and
6 are highly multimodal problems, whereas our rate
results are established assuming a unique (global) mini-
mizer, we have not provided the rate plots for cases 5
and 6. From the figure, we can see that the observed
rates of convergence generally conform well to the theo-
retical results, but in some cases the rates are much faster
than the theoretical rate O(k~1/#). We conjecture that this
is primarily due to the influence of the initial transience,
because the algorithm parameters are tuned to yield
good finite-time performance when k is small.

5.3. A Queueing Example
We consider a first-come, first-served single-server queue
with parameterized service rate 11(0) = 1/076 + A, where

v € R is a fixed positive vector and A is the arrival rate.
Denoting by Y(0) the steady-state waiting time in the sys-
tem and by g,,(0) the corresponding ¢-quantile of Y, the
objective is to determine an optimal parameter vector 0"
that minimizes the weighted cost of waiting and service
given by

Y(0) = c19,(0) +c2(0 — 8)TA(6 - 9), (32)

where ¢1, ¢, > 0 are cost coefficients, 9 € R? is a nominal
vector, and A € R is a positive definite matrix; these
are all assumed known. The cost function (32) reflects
the trade-off between decreasing 0 to increase the ser-
vice rate (and hence reduce the waiting time quantile)
and choosing 0 to make the quadratic penalty term
small.

Because of the cost-of-service penalty term, optimiz-
ing (32) becomes finding the zeros of Vy(0) = 0 rather
than Vg,(0) = 0, where

Vy(0) = c1Vq,(0) +2c2A(0 — 9).

Consequently, the three algorithms SPQO, SDQO, and
QG are adjusted accordingly to solve this slightly mod-
ified root-finding problem. All other steps of the algo-
rithms remain intact. For the simulation experiments,
we take ii.d. exponentially distributed interarrival
times and service times, that is, an M/M/1 queue,
with ®=[1,20]*, A=1, v=(0.1,0.2,0.3,0.4)", ¢c; =0.1,
2 =0.02, 9 =(7,89,10)",

10 2 1 2

2 9 2 4
A= ,

1 2 8 0

2 4 0 7

and consider two cases: ¢ = 0.5 and ¢ = 0.95.

All algorithms except gTSSO-QML are implemented
using the same parameter settings as for the black-box
test functions in Section 5.2, and the total number of
simulation evaluations is set to 1,800. The gTSSO-QML
algorithm requires an initial set of design points and
additional simulation samples to initialize the kriging
model. In our implementation, we set the number of
initial design points to 16 and allocate 20 observations
to each point to compute its sample quantile. Thus, a
total of 320 simulation evaluations are used during the
initialization step.

The steady-state waiting time is approximated by the
waiting time of the 1,000th customer. Each algorithm is
independently repeated 40 times. The simulation results
(means and standard errors based on 40 independent
runs of each algorithm) obtained on the two test cases are
presented in Table 4. For the purpose of comparing with
the true optimum, we note that by basic queueing theory,
the steady-state waiting time of an M/M/1 queue is
exponentially distributed with parameter 1(6) — A, so
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Figure 5. Convergence Rates of the Empirical MAEs of SPQO and SDQO on Cases 14, ¢ = 0.6
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Table 4. Performance on the Queueing Example

@=0.50 »=095

Optimal cost 0.62 2.66

SPQO 0.70 (1.2e-2) 2.78 (1.9¢-2)
SPQO-CRN 0.67 (8.5e-3) 2.75 (1.5e-2)
SDQO 0.72 (1.6e-2) 2.80 (2.0e-2)
SDQO-CRN 0.73 (2.2e-2) 2.78 (1.7e-2)
QG 1.17 (6.6e-2) 3.57 (1.0e-1)
gTSSO-QML 0.87 (2.8¢-2) 3.19 (3.7¢-2)

Note. Performance based on 40 independent runs (standard errors in
parentheses).

the cost function can be calculated in closed form in
terms of 0 as y(6) =c; In(1 — @)v"0 + (0 — 9)" A(6 —
9), which attains its minimum at 6" =9 +;LIn(1 — @)
A~'v. In Figure 6, we also plot the true objective function
values (averaged over 40 runs) obtained by SPQO,
SDQO, QG, and gTSSO-QML as a function of the num-
ber of simulation evaluations. The convergence behavior
of the empirical MAEs (averaged over 100 independent
runs, in log-log scale) of SPQO and SDQO is shown in
Figure 7.

The conclusions are generally consistent with the
results for the black-box test functions 14 in Section 5.2,
with SPQO (SPQO-CRN) showing the best perfor-
mance. SPQO and SDQO outperform QG by a large
margin in terms of both mean performance and consis-
tency (standard error). In particular, the large sample
size required by QG results in only eight iterations being
carried out under the limited budget, whereas the num-
bers of iterations for SPQO (SPQO-CRN) and SDQO
(SDQO-CRN) are 600 and 200, respectively. Moreover,
because QG computes new quantile estimates at each
iteration independently of past values, the observations
collected in previous iterations are discarded, causing
inefficient use of simulation data. In contrast, SPQO and

SDQO allow the quantile/gradient estimates to be con-
structed incrementally based on all historical simulation
data, and this in turn offers superior finite-sample per-
formance under a limited simulation budget. Note that
because this is a unimodal problem and gTSSO-QML
does not exploit gradient information, it is not as effi-
cient as SPQO/SDQO. However, the algorithm still out-
performs QG, and its performance may be further
improved through a more careful tuning of algorithm
parameters.

6. Conclusions

For solving quantile optimization problems in the set-
ting of noisy black-box functions, we have proposed
two new three-timescale gradient-based SA algorithms.
For this quantile BBO setting, there are very few exist-
ing algorithms, so these algorithms represent a meth-
odological contribution to the BBO literature. These
algorithms can also be applied to (stochastic) simula-
tion optimization problems where direct gradient esti-
mators based on techniques such as perturbation
analysis or the likelihood ratio method, which rely on
knowledge of the underlying model, are not readily
available or are difficult to implement, so the algo-
rithms also advance the state of the art in simulation
optimization. The SPQO algorithm is especially prom-
ising for high-dimensional problems, requiring only
three function evaluations per iterative update. Com-
pared with methods relying on order statistics, the
algorithms proposed here have the potential to achieve
substantial computational savings. Variants of the algo-
rithms using CRN offer the opportunity for further
reductions in the variance of the gradient estimator and
hence faster convergence of the algorithms in the simu-
lation optimization setting.

Figure 6. Performance of SPQO, SDQO, QG, and gTSSO-QML on the Queueing Example
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Figure 7. Convergence Rates of the Empirical MAEs of SPQO and SDQO on the Queueing Example
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Under the assumption of differentiability of the quan-
tile function and other appropriate conditions, we have
analyzed the bias effect of the proposed gradient estima-
tion scheme and established the local convergence of the
resultant algorithms. More importantly, through a novel
fixed-point argument, we have also provided detailed
characterizations of the convergence rates of the quantile
and quantile gradient estimators. These results extend
existing work in the single-timescale setting and indicate
that an upper bound on the MAEs of the algorithms
diminishes at the optimal rate O(k~/#). Simulation ex-
periments indicate that the algorithms perform well,
and, in particular, SPQO is very promising for solving
high-dimensional problems, in terms of the sample size
required to achieve reasonable performance.

Future avenues of potential research building on the
results here include (i) developing and analyzing other
multitimescale algorithms for quantile BBO, such as the
two-timescale version alluded to in Section 1, for com-
parison; (ii) applying the fixed-point approach to study
the convergence rate of other multitimescale SA algo-
rithms (or even single-timescale SA algorithms, as in Hu
and Fu (2024)); (iii) investigating a more systematic way
of tuning the step-size parameters needed to implement
multitimescale SA algorithms; and (iv) designing a more
comprehensive computational/experimental study to
characterize when the multitimescale approach is most
effective.
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