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Abstract. We consider quantile optimization of black-box functions that are estimated 
with noise. We propose two new iterative three-timescale local search algorithms. The first 
algorithm uses an appropriately modified finite-difference-based gradient estimator that 
requires 2d+ 1 samples of the black-box function per iteration of the algorithm, where d is 
the number of decision variables (dimension of the input vector). For higher-dimensional 
problems, this algorithm may not be practical if the black-box function estimates are expen
sive. The second algorithm employs a simultaneous-perturbation-based gradient estimator 
that uses only three samples for each iteration regardless of problem dimension. Under 
appropriate conditions, we show the almost sure convergence of both algorithms. In addi
tion, for the class of strongly convex functions, we further establish their (finite-time) con
vergence rate through a novel fixed-point argument. Simulation experiments indicate that 
the algorithms work well on a variety of test problems and compare well with recently pro
posed alternative methods.
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1. Introduction
In black-box settings, only estimates of an output func
tion are available; that is, there is minimal knowledge 
of the underlying system generating the output. Fur
thermore, the output estimates might also contain ob
servation noise. For such problems, there is an extensive 
literature of algorithms addressing the case where the 
performance measure is an expectation, most com
monly the mean; for example, see Fu (2015) and refer
ences therein in the context of simulation optimization. 
However, in many situations such as many risk man
agement problems, one is interested in tail behavior of 
the output function or the median rather than the mean, 
in which case the performance measure of interest is a 
quantile, and the objective is quantile optimization.

Black-box optimization (BBO), defined by Audet and 
Hare (2017, p. 6) as “the study of design and analysis of 
algorithms that assume the objective and/or constraint 
functions are given by blackboxes” is a well-developed 
field in the deterministic (noiseless) setting. Although 
the focus of the algorithms described and analyzed in 

their book is derivative-free approaches, Audet and 
Hare (2017, p. 6) begin by strongly recommending that 
“if gradient information is available, reliable, and ob
tainable at reasonable cost, then gradient-based meth
ods should be used.”

In this paper, we consider the stochastic BBO setting 
where the goal is to optimize the quantile of a black- 
box output random variable. Our main assumption is 
that the quantile function is smooth enough so that 
gradient-based search will yield locally optimal solu
tions. Such a smoothness condition is guaranteed when 
the output distribution is differentiable (see Equation 
(4)), which is common in many engineering applica
tions, ranging from queueing network optimization 
(e.g., Fu and Hill 1997) to traffic simulation (Spall and 
Chin 1997, Li et al. 2017) to neural network (NN) train
ing (e.g., Spall and Cristion 1997, Hong et al. 2010). For 
instance, the steady-state waiting time distribution in a 
queueing network is usually differentiable with respect 
to the service rates of the nodes, whereas in traffic sim
ulation, the distribution of vehicle travel time on a road 
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network is typically a smooth function of traffic signal 
timings (e.g., Cao et al. 2014). Nevertheless, because of 
the complexity of such problems and/or the lack of 
model details (e.g., when a simulation program is coded 
using an off-the-shelf commercial package, or knowl
edge transfer from the builder to the user of a model 
is not properly assured), directly estimating gradients 
based on exploiting model structure is sometimes diffi
cult or practically infeasible. Moreover, in certain appli
cations such as NN controller design for systems with 
unknown dynamics (Spall and Chin 1997, Spall and 
Cristion 1997), it is not even possible to determine the 
gradient of a loss function through direct gradient 
techniques. In these circumstances, the underlying sys
tem model is essentially treated as a black box, and 
finite-difference (FD)-based estimates of the gradient are 
often used to carry out local search, dating back to the 
Kiefer-Wolfowitz stochastic approximation (SA) algo
rithm (Kiefer and Wolfowitz 1952, Kushner and Clark 
1978, Kushner and Yin 1997). However, because the 
usual quantile estimator itself is not unbiased, construct
ing an effective/efficient FD estimator of the quantile 
gradient requires far more care than the straightforward 
mean-based case. To our knowledge, there are very few 
algorithms in general for what could be called quantile 
BBO, in contrast to the abundance of local search algo
rithms for mean performance.

We will be relying on (approximate) quantile gradi
ent estimates based only on output function samples. 
To be specific, let Y(θ) denote the output random vari
able and θ ∈Θ ⊆ Rd the set of input decision variables, 
which we will refer to henceforth as the (input) param
eter vector, which can include both distributional and 
structural parameters, meaning that the elements of θ 
may affect the black-box function both directly and via 
the input distributions. The usual optimization prob
lem is of the form minθ∈Θ E[Y(θ)], whereas we con
sider the optimization problem

min
θ∈Θ

qφ(θ), (1) 

where the quantile function qφ(θ) is defined by

P(Y(θ) ≤ qφ(θ)) � φ, φ ∈ (0, 1):

Because φ is fixed throughout this paper, its depen
dence will be dropped henceforth to simplify notation; 
that is, the quantile will simply be denoted by q(θ) or 
sometimes just q.

Under appropriate smoothness conditions on q(θ), 
solving (1) essentially becomes equivalent to finding 
the zero of the gradient ∇q(θ), so a gradient-based itera
tive local search algorithm would take the general form

θk+1 � θk � αk∇̂ q(θk), (2) 

where ∇̂q(·) denotes an estimator of the quantile gradi
ent, which is the key element in defining the algorithm. 

A straightforward symmetric finite-difference (SD) esti
mator for the quantile gradient would take the follow
ing form:

∇̂i q(θ) � q̂(θ+ cei)� q̂(θ� cei)

2c
, i � 1, : : : , d, (3) 

where ∇̂i denotes the ith component of the gradient 
estimator, ei denotes the unit vector in the ith direction, 
and c>0. This is essentially the approach taken by Kib
zun and Matveev (2012). Note that one could also con
sider one-sided (forward or backward) FD estimators. 
However, one challenge that is apparent in the estima
tor (3) is that unlike in the mean case, the two differ
ence terms in the numerator of the quantile finite- 
difference gradient are not themselves unbiased, only 
consistent, which means that the iteration sample size 
would eventually have to increase to infinity to guar
antee convergence. Furthermore, each iteration would 
require calculation of q̂ using order statistics, which 
may be computationally impractical. Our alternative 
approach is to use two additional iterative updates for 
q(θ) and ∇q(θ) based on the following result.

Assuming that the output function Y(θ) is a continu
ous random variable with cumulative distribution func
tion (c.d.f.) F and probability density function (p.d.f.) f, 
we make use of the following relationship (Fu et al. 
2009):

∇θq(θ) ��
∇θF(y;θ) |y�q

f (q;θ)
: (4) 

The simplest way to use this would be to solve for the 
zero of the numerator and use the SD estimator analo
gous to (3) for the c.d.f. gradient (e.g., Song et al. 2023):

∇̂iF(q;θ) �
I{Y(θ + cei) ≤ q}� I{Y(θ� cei) ≤ q}

2c
,

i � 1, : : : , d, (5) 

where I{·} denotes the indicator function, in which case 
(2) becomes a two-timescale SA algorithm:

θk+1 � θk + αk∇̂θ F(qk;θk), (6) 

qk+1 � qk + γk(φ� I{Y(θk) ≤ qk}), (7) 

where (7) is a recursive quantile estimator replacing the 
classical sample quantile based on order statistics (see 
Section 2), and to make the algorithmic convergent, the 
perturbation c in (5) would also need to go to zero as 
k→∞. However, empirical results indicate that this 
approach may not work well in practice, especially 
when the quantile level φ is close to one (or zero), in 
which case the two indicator terms in (5) will simulta
neously take the value one (or zero) with high probabil
ity. As a result, a large number of iterations need to be 
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performed in order to obtain a meaningful (nonzero) 
estimate of the c.d.f. gradient. Moreover, because (5) 
provides an estimate for only the direction of the quan
tile gradient, not its magnitude, the approach may not 
be useful in other related applications such as robust
ness assessment and quantile sensitivity analysis.

The algorithms we propose in this work follow the 
general structure of (6) and (7); however, our goal is to 
estimate the “real” quantile gradient (4) rather than just 
∇θF(y;θ) | y�q in the numerator. As in (5), each step of 
our proposed SD-based estimator requires 2d+1 func
tion evaluations. When the number of decision variables 
is large, the SD estimator may become computationally 
impractical, so we introduce a second algorithm based 
on using a simultaneous-perturbation (SP) gradient esti
mator along the lines of Spall (1992), which uses only 
three function evaluations at each iteration, independent 
of input parameter dimension. Both the SD and SP esti
mators require significant adjustments to handle the 
quantile setting.

As alluded to earlier, the literature on quantile optimi
zation in the stochastic BBO setting is very sparse, and 
we now review the most closely related work. The work 
most closely related to ours is Kibzun and Matveev 
(2012), cited earlier, which proposes a stochastic quasi
gradient (QG) algorithm for convex quantile objectives 
by estimating quantile gradients via a “traditional” sym
metric difference approximation. Also relevant to the 
BBO setting are the derivative-free methods using the 
Bayesian optimization approach, for example, Wang 
et al. (2021) and Sabater et al. (2021), which employ a 
surrogate model to approximate the response surface of 
the unknown quantile function. Lastly, the multitimes
cale SA procedure developed in Hu et al. (2022) has the 
same structure proposed in our work, but the algorithm 
cannot be applied in the BBO setting, because it relies on 
the availability of direct gradients (e.g., through techni
ques such as perturbation analysis or the likelihood ratio 
method) that are not available in a black-box setting, as 
knowledge of the underlying system is needed to derive 
the gradient estimators, whereas our algorithms use 
only the black-box function outputs.

Some other related work, albeit much less relevant to 
our BBO setting, is algorithms that rely on knowledge 
of the output distribution. These include the mathemat
ical programming approaches presented in Kibzun and 
Kurbakovskiy (1991), Kibzun et al. (2013), and Vasiléva 
and Kan (2015), and the scenario optimization method 
of Zamar et al. (2017). For differentiable problems, there 
are also approaches that use gradient information, such 
as Kim and Powell (2011), who propose a recursive gra
dient algorithm for a special class of heavy-tailed distri
butions that admits the interchange of the derivative 
and quantile function.

Under appropriate conditions, we analyze the bias and 
variance of the proposed quantile gradient estimators 

and establish the almost sure local convergence of 
the two FD-based algorithms—SD quantile optimiza
tion (SDQO) and SP quantile optimization (SPQO)—for 
general multimodal problems. Most importantly, for 
the class of problems with strongly convex objective 
functions, we are able to analyze the (finite-time) con
vergence rate of the algorithms by introducing a novel 
fixed-point argument. The key idea is to bound the algo
rithm’s estimation errors through the composition of a 
sequence of suitably constructed contraction mappings, 
so that the convergence rates of quantile/gradient esti
mates can be characterized in detail by inspecting the 
solutions to a collection of fixed-point equations. As far 
as we are aware, these are the first quantile BBO algo
rithms with both guaranteed convergence and a known 
rate of convergence. Although the convergence rate of 
single-timescale SA is well understood in the literature 
(cf., e.g., Fabian 1968, Spall 1992, Kushner and Yin 1997, 
Borkar 2008), the rate analysis for multitimescale SA 
algorithms has been a long-standing open research chal
lenge. The only existing results seem to be Konda and 
Tsitsiklis (2004) and Mokkadem and Pelletier (2006) for 
two-timescale SA algorithms. Our algorithms operate 
on three timescales, and the convergence rate study of 
such SA algorithms has not been addressed. Moreover, 
the fixed-point argument presented in this work is by 
no means limited to the analysis of these algorithms, 
but provides a new general approach that can poten
tially be applied to address the convergence rate issues 
of other multitimescale SA algorithms.

In sum, we view our work as making the following 
research contributions: 
• We introduce new FD-based local search algo

rithms, SDQO and SPQO, for optimizing a black-box 
quantile function, prove their convergence, and charac
terize their convergence rate.
• In terms of theory, the convergence rate analysis is 

the first such result for a three-timescale SA algorithm, 
and the fixed-point argument used in the analysis is a 
new general approach that can be applied to other mul
titimescale SA algorithms.
• In terms of practice, SPQO is particularly well 

suited to high-dimensional problems, because the num
ber of black-box evaluations per iteration is independent 
of the number of decision variables (optimization input 
parameters).
• Lastly, the new algorithms provide a practical 

complement to existing global optimization algorithms 
that primarily use metamodeling/surrogate functions 
for BBO.

The rest of this paper is organized as follows. Section 2
begins with an intuitive motivation for the two FD-based 
black-box quantile gradient estimators and then presents 
the SD/SP estimators, along with their correspond
ing optimization algorithms SDPO and SPQO, with a 
detailed discussion of the proposed simultaneous- 
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perturbation estimator. The convergence and conver
gence rate analyses of the algorithms are provided in 
Sections 3 and 4, respectively. In Section 5, simulation 
experiments are used to illustrate and test the perfor
mance of the algorithms, and Section 6 provides some 
conclusions and future research.

2. New FD-Based Quantile 
BBO Algorithms

We begin with an intuitive informal derivation of the 
general form of an FD gradient estimator, which will 
then be specialized to the SD and SP gradient estima
tors, to be analyzed more rigorously. To simplify the 
discussion (and notation) here, we consider the case 
where θ is a scalar (d� 1), so we seek to estimate the 
derivative q′(θ), in which (4) can be viewed as the ratio 
of two derivatives:

q′(θ) ��∂2F(q;θ)

∂1F(q;θ)
, defining ∂iF(q;θ) ≡ ∂iF(x;θ) |x�q, 

where ∂i denotes the derivative w.r.t. the ith argument 
and the latter definition is for notational convenience. 
When enough is known about the system to develop 
direct derivative estimators for ∂1 and ∂2, that is, the set
ting considered in Hu et al. (2022), a natural approach to 
estimate q′(θ) would be to solve the equivalent root- 
finding problem:

q′(θ)∂1F(q;θ) + ∂2F(q;θ) � 0: (8) 

Assuming that direct derivative estimators are not 
available, it turns out that a straightforward extension 
to using FD estimates of each of these derivatives not 
only would be computationally burdensome but could 
also lead to numerical difficulties. In particular, as men
tioned in Section 1, an FD estimator such as (5) for 
either ∂1 or ∂2 would frequently yield a value of zero, 
in which case the root-finding Equation (8) is not even 
well posed. Therefore, we instead motivate an alterna
tive estimator for approximating the entire left-hand 
side of (8) by considering a simple first-order Taylor 
series expansion of F in the two arguments:

F6 ≡ F(q 6 ∆q;θ6 ∆θ)

� F(q;θ)6∂1F(q;θ)∆q 6∂2F(q;θ)∆θ, 

where we are ignoring higher-order terms for now, but 
these arguments will be made more formal shortly. 
Taking the difference,

F+� F� � 2∂1F(q;θ)∆q+ 2∂2F(q;θ)∆θ

� 2∆θ[∂1F(q;θ)q′(θ) + ∂2F(q;θ)], 

where we have taken ∆q � q′(θ)∆θ, so solving (F+�
F�)=2∆θ � 0 is equivalent to the root-finding problem 
using direct gradients given above by (8). Noting that 
F6 � E[I{Y6 ≤ q+ q′(θ)∆θ}], where Y6 ~ F(·;θ6 ∆θ), 

it thus motivates the two coupled root-finding equa
tions that must be solved:

E �I{Y+ ≤ q+ q′(θ)∆θ}+ I{Y� ≤ q� q′(θ)∆θ}
2∆θ

� �

� 0,

(9) 
E[I{Y(θ) ≤ q}] �φ,

(10) 

where the second equation is solved via the SA itera
tion (7), and the first equation will be incorporated into 
a new SA iteration to serve as the gradient estimator in 
the SA iteration (6).

2.1. SD/SP Quantile Gradient Estimators
We now return to the multidimensional (d >1) setting 
and provide two versions of the FD scheme just 
described. Both versions can be viewed as different 
implementations of the SA method for numerically 
solving the two coupled stochastic root-finding Equa
tions (9) and (10).

Denote by θ∗ an optimal solution to (1) and let θ̂k be 
an estimate of θ∗. Let θ̂k be fixed, and let q̂k and D̂k be 
the current estimates of q(θ̂k) and ∇θq(θ) |θ�θ̂k

. The SD 
estimator we propose simultaneously computes new 
estimates of the quantile and its gradient as follows:

D̂k+1 � D̂k +
βk
2ck

�I{Y(θ̂k + cke1) ≤ q̂k + ckD̂T
k e1}

+ I{Y(θ̂k� cke1) ≤ q̂k� ckD̂T
k e1}

⋮
�I{Y(θ̂k + cked) ≤ q̂k + ckD̂T

k ed}

+ I{Y(θ̂k� cked) ≤ q̂k� ckD̂T
k ed}

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

(11) 

q̂k+1 � q̂k + γk(φ� I{Y(θ̂k) ≤ q̂k}), (12) 

where βk, γk > 0 are step-sizes, ck > 0 is the perturbation 
size, and Y(θ̂k 6 ckei) (for i � 1, : : : , d) are output ran
dom variables obtained by perturbing the ith element 
of θ̂k while holding all other components unchanged. 
Clearly, each step of (11) requires 2d function evalua
tions. This, together with Y(θ̂k) needed in (12) for quan
tile estimation, results in a total of 2d+ 1 function 
evaluations per iteration of the procedure.

The SP estimator, on the other hand, simultaneously 
varies all components of the underlying parameter vec
tor in random directions, so that the same effect of the 
SD scheme can be achieved with only three function 
evaluations. Compared with the 2d+ 1 per-iteration 
complexity of the SD estimator, this has the potential 
to lead to significant savings in computational cost, 
especially when the problem dimension is high and/or 
black-box function evaluations are expensive. Let θk, qk, 
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and Dk denote the respective SP estimates for θ∗, q(θk), 
and ∇θq(θ) |θ�θk . The estimator can be compactly ex
pressed in the following recursive form:

Dk+1 �Dk + βk

�I{Y(θk + ck∆k) ≤ qk + ckDT
k ∆k}

+ I{Y(θk� ck∆k) ≤ qk� ckDT
k ∆k}

2ck∆k

2

6
6
6
4

3

7
7
7
5

(13) 

qk+1 � qk + γk(φ� I{Y(θk) ≤ qk}), (14) 

where ∆k � (∆k, 1, : : : , ∆k, d)
T is a zero-mean random 

direction with i.i.d. components, and the division by 
the vector ∆k is understood to be element-wise.

The above estimators depart significantly from the 
usual SD/SP formulations in several different aspects: 
(i) unlike (3), they involve the difference quotient of an 
indicator function rather than that of the quantile func
tion whose gradient is sought; (ii) both are iterated, 
rather than one-shot (as in (3) and (5)), procedures in 
which the gradient estimation is coupled with another 
iterative process for estimating the quantile; (iii) in con
trast to conventional SD/SP, where only the parameter 
vector θ is varied (see, e.g., (3) and (5)), the quantile 
estimate q̂k (respectively (resp.), qk) is randomly per
turbed in (11) (resp. (13)) at the same time, with the 
magnitude of the perturbation being directly affected 
by the gradient estimate D̂k (resp. Dk) itself. As we will 
see shortly, this last difference further leads to other dif
ferences in algorithm design and analysis.

We now provide additional validation for why 
these estimators work, formalizing the intuitive deri
vation outlined in the beginning of the section. We 
focus on the SP estimator and consider (13) and (14) in 
their deterministic forms. The SD estimator works in a 
completely analogous way, so most of the arguments 
for the SP case also carry over to the SD estimator. 
Note that conditional on θk, qk, Dk, and ∆k, the expecta
tions of the two indicator terms in (13) are given by 
F(qk + ckDT

k ∆k;θk + ck∆k) and F(qk � ckDT
k ∆k;θk� ck∆k). 

A two-variable third-order Taylor series expansion of 
these two functions around (qk,θk) then yields

�F(qk + ckDT
k ∆k;θk + ck∆k) + F(qk� ckDT

k ∆k;θk� ck∆k)

2ck∆k

�
�2f (qk,θk)ck∆T

k Dk� 2∇T
θF(qk;θ) |θ�θk ck∆k

2ck∆k
+O(c2

k),

(15) 

where the big-O notation signifies the order of a term, 
which is formally defined in Section 3. Thus, by apply
ing the key argument of SP theory (i.e., E[∆k, i=∆k, j] � 0 
for all i ≠ j) and ignoring the higher-order bias term 

O(c2
k) in (15), it is not difficult to observe that the 

expected-value version of (13) (with the difference quo
tient there replaced by its conditional expectation given 
θk, qk, and Dk, but excluding ∆k) can be written as

Dk+1 �Dk + βk(�f (qk;θk)Dk�∇θF(qk;θ) |θ�θk): (16) 

Equation (16) is a fixed-point iteration for solving 
�f (qk;θk)D�∇θF(qk;θ) |θ�θk � 0 for D, which has solu
tion �∇θF(qk;θ) |θ�θk=f (qk;θk) in exactly the same form 
as (4) with the true quantile q(θk) replaced by its esti
mate qk. A similar interpretation also applies to (14), 
and by noting that E[I{Y(θk) ≤ qk} |θk, qk] � F(qk;θk), 
the sequence {qk} can be seen to track the unique solu
tion q(θk) to the root-finding problem φ� F(q;θk) � 0. 
Consequently, as qk tends to q(θk), it is reasonable to 
expect that Dk will provide a close approximation to the 
true gradient ∇θq(θ) |θ�θk .

The preceding developments ignored the fact that 
because of the extra perturbations 6ckDT

k ∆k introduced 
in (13), the iterate Dk itself is contained in the higher- 
order term in (15) (see the proof of Lemma 2); thus, the 
sequence {Dk} could in fact increase in magnitude to 
negate the claimed O(c2

k) order of the term. This is a 
technical issue that does not occur in the usual mean- 
based setting, where the perturbation size is solely 
determined by ck, so that the order of the bias can be 
bounded uniformly even without explicitly requiring 
the boundedness of the iterates (cf. proof of lemma 1 in 
Spall 1992). To address this issue, we instead consider a 
slight variant of (13) that replaces ck in the difference 
quotient by a perturbation size that adapts to the mag
nitude of Dk. Specifically, let Mk �max{1, ‖Dk‖=

ffiffiffi
d
√
}

and define ck � ck=Mk. We suggest the following modi
fication of (13):

Dk+1 �Dk + βk

�I{Y(θk + ck∆k) ≤ qk + ckDT
k ∆k}

+ I{Y(θk � ck∆k) ≤ qk� ckDT
k ∆k}

2ck∆k

2

6
6
6
4

3

7
7
7
5
:

(17) 

It can be easily seen that (17) serves the same estimation 
purpose as (13) in the sense that its “mean flow” (i.e., 
deterministic counterpart), modulo the higher-order 
error terms, is identical to (16). Nevertheless, because 
|ckDT

k ∆k | ≤ ck
ffiffiffi
d
√
‖∆k‖, the use of ck in (17) prevents the 

perturbations in qk from becoming excessively large, 
and thus reduces the influence of Dk on the resulting 
estimation bias. We show in Section 3.1 that under rea
sonable conditions, the sequence {Dk} generated by (17) 
remains bounded, both almost surely and in second- 
order moments, which in effect justifies the O(c2

k) bias of 
the proposed estimator.

The constructions of our SD/SP estimators are based 
on a symmetric difference scheme. It is possible to 
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consider alternative estimators relying on one-sided 
difference that use d+ 1 (resp. two) simulation evalua
tions per iteration. For example, in the SP case, the dif
ference quotient in (17) could instead be replaced by 
either

�I{Y(θk) ≤ qk + ckDT
k ∆k} + I{Y(θk � ck∆k) ≤ qk}

ck∆k
or

�I{Y(θk + ck∆k) ≤ qk + ckDT
k ∆k} + I{Y(θk) ≤ qk}

ck∆k
:

Both approaches would lead to the same desired effect 
for estimating the quantile gradient but come at the 
cost of introducing large biases of order O(ck) com
pared with the O(c2

k) bias in (17).

2.2. SA Local Search Algorithms
The quantile optimization algorithms we propose inte
grate D̂k and Dk into the standard gradient descent 
method, as presented below, where ΠΘ(·) denotes a 
projection operator that brings an iterate back onto the 
parameter space Θ whenever it becomes infeasible.

Algorithm 1 (SDQO)
Input: initial estimates q̂0, D̂0, θ̂0; sequences {αk}, {βk}, 
{γk}, {ck};
Initialize: iteration counter k← 0;
Loop until a stopping criterion is met:

c̃k � ck=max{1, ‖D̂k‖=
ffiffiffi
d
√
}, (18) 

q̂k+1 � q̂k+γk(φ� I{Y(θ̂k) ≤ q̂k}),

D̂k+1 � D̂k+
βk
2c̃k

�I{Y(θ̂k+ c̃ke1) ≤ q̂k+ c̃kDT
k e1}

+ I{Y(θ̂k� c̃ke1) ≤ q̂k� c̃kDT
k e1}

⋮
�I{Y(θ̂k+ c̃ked) ≤ q̂k+ c̃kDT

k ed}

+ I{Y(θ̂k� c̃ked) ≤ q̂k� c̃kDT
k ed}

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

,

θ̂k+1 �ΠΘ(θ̂k�αkD̂k),

k← k+1; (19) 

Note that (19) is a variant of (11), in which the same 
substitution as in (17) has been made, that is, with c̃k 
defined by (18) replacing ck in (11).

Algorithm 2 (SPQO)
Input: initial estimates q0, D0, θ0; sequences {αk}, {βk}, 
{γk}, {ck}.
Initialize: iteration counter k← 0;
Loop until a stopping criterion is met:

ck � ck=max{1, ‖Dk‖=
ffiffiffi
d
√
}, 

qk+1 � qk + γk(φ� I{Y(θk) ≤ qk}), (20) 

Dk+1

� Dk + βk

�I{Y(θk + ck∆k) ≤ qk + ckDT
k ∆k}

+ I{Y(θk � ck∆k) ≤ qk � ckDT
k ∆k}

2ck∆k

2

6
6
6
4

3

7
7
7
5

,

(21) 

θk+1 � ΠΘ(θk � αkDk), (22) 

k← k + 1;

Both SDQO and SPQO have a multitimescale structure, 
as reflected by the use of distinct step-sizes γk, βk, and 
αk in the recursions. Intuitively speaking, because our 
discussion on the convergence behavior of the SP esti
mator has assumed a fixed value for θk, the step-size αk 
in SPQO should be chosen very small relative to βk and 
γk. As a result, when viewed from (21) and (20), the 
increment in θk at each step of (22) is almost negligible 
as if the parameter vector θk were held at a constant 
value. On the other hand, because (21) is designed to 
iteratively approximate �∇θF(qk;θ) |θ�θk=f (qk;θk), the 
step-size βk should be taken to be the largest to warrant 
proper tracking of the ratio as both qk and θk vary over 
time. In the same manner, the three recursions in 
SDQO should also be carried out at different speeds, 
with their step-sizes satisfying αk � o(γk) and γk � o(βk).

When the black-box function is given by a computer 
simulation program, it is natural to exploit the use 
of common random numbers (CRN) (e.g., Law 2013)— 
in the same spirit as the use of CRN in, for example, 
simultaneous-perturbation stochastic approximation 
(SPSA) (Kleinman et al. 1999)—for reducing the vari
ance in the difference estimates. With a slight abuse of 
notation, let Y(Uk; θ̂k 6 c̃kei) be the output random vari
ables simulated using the same input random number 
stream Uk under the perturbed vectors θ̂k 6 c̃kei (i � 1, 
: : : , d). The CRN version of SDQO simply works by 
replacing Y(θ̂k 6 c̃kei) in (19) with Y(Uk; θ̂k 6 c̃kei). Like
wise, a CRN version of SPQO can be easily implemen
ted by substituting Y(Uk;θk 6 ck∆k) for Y(θk 6 ck∆k) in 
(21). In Section 3.1, we give conditions under which 
we show that this CRN approach helps to induce a 
positive correlation between the indicator terms and 
reduces the estimation variance at each step.

3. Convergence Results
To fix ideas and to avoid unnecessary repetition, we 
perform detailed analysis and present results mainly 
for the SPQO algorithm. All results obtained for SPQO 
can be shown (with appropriate/slight modifications) 
to hold for SDQO. We begin by defining (Ω,F , P) as 
the probability space induced by SPQO, where Ω is the 
set of all sample trajectories that could possibly be 
observed by executing the algorithm, F is the σ-field of 
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subsets of Ω, and P is a probability measure on F . 
We also define F k � σ{D0, q0,θ0, : : : , Dk, qk,θk} as an in
creasing σ-field representing the information available 
at iteration k � 0, 1, : : : : For a given vector v, let ‖v‖
be the Euclidean norm of v, whereas for a matrix A, let 
‖A‖ be the matrix norm induced by the Euclidean 
norm. For any two real-valued functions u(k) and v(k), 
we write u(k) �O(v(k)) if lim supk→∞ u(k)=v(k) < ∞
and u(k) � o(v(k)) if limk→∞ u(k)=v(k) � 0. We assume 
that the parameter space Θ is a compact convex set 
described by functional constraints and takes the form 
Θ � {θ ∈Rd : hj(θ) ≤ 0, j � 1, : : : , m}, where hj(·), j � 1, 
: : : , m are continuously differentiable functions with 
their gradients satisfying ∇θhj(θ)≠ 0 whenever hj(θ) � 0 
(cf., e.g., Kushner and Yin 1997). Such a characteri
zation is satisfied by many common choices for Θ, 
including hyperballs, hyperrectangles, and more general 
convex polytopes. For notational convenience, through
out our analysis, we denote I+k :� I{Y(θk + ck∆k) ≤ qk + ck 
DT

k ∆k}, I�k :� I{Y(θk� ck∆k) ≤ qk� ckDT
k ∆k}, F+k :� F(qk+

ckDT
k ∆k;θk + ck∆k), and F�k :� F(qk� ckDT

k ∆k;θk� ck∆k).

3.1. Strong Convergence
The projection ΠΘ(·) in (22) ensures the boundedness of 
θk by projecting an iterate onto the compact region Θ. 
This operation can be defined through adding an extra 
correction term Zk to the recursion (see, e.g., Kushner 
and Yin 1997, chapter 5), leading to

θk+1 � θk � αkDk +αkZk, (23) 

where αkZk :� θk+1 �θk + αkDk is the vector with the 
shortest Euclidean length needed to bring θk� αkDk 
back onto Θ. In our setting, because Θ is a convex set, 
Zk takes values in the convex cone generated by the 
inward normals to the surface of Θ at the point θk+1, 
that is, Zk ∈�C(θk+1), where

C(θ) :� {ν ∈ Rd : νT(θ̃�θ) ≤ 0, ∀θ̃ ∈Θ} (24) 

is the normal cone to Θ at θ. Note that C(θ) � {0}when
ever θ lies in the interior of Θ.

The convergence of SPQO is investigated by follow
ing an ordinary differential equation (ODE) argument 
(e.g., Kushner and Yin 1997, Borkar 2008, Hu et al. 
2022). The general idea is to construct interpolations of 
the iterates {Dk , qk ,θk}

∞
k�0 by “stretching” them continu

ously in time and then capture the long-run behavior of 
these interpolations using a set of coupled ODEs. In 
particular, our main result is to show that the sequence 
{θk} generated by (23) asymptotically approaches the 
limiting solution to a projected ODE of the form

θ̇(t) ��∇θqφ(θ) |θ�θ(t) + z(t), t ≥ 0, (25) 

where z(t) ∈�C(θ(t)) is the minimum force (the real 
vector with the smallest Euclidean norm) needed to 
keep the trajectory θ(t)within the constraint set Θ.

We introduce the list of assumptions that will be 
used in our analysis.

Assumptions:
A1. For almost all (qk,θk) pairs, there exists an open 

neighborhood of (qk,θk), independent of k and ω ∈Ω, such 
that 

(a) The partial derivatives ∂
2f (y;θ)=∂y2, ∂2f 

(y;θ)=∂y∂θT, ∂2f (y;θ)=∂θT∂θT, and ∂3F(y;θ)=∂θT 

∂θT∂θT all exist and are continuous on the neighborhood 
with their elements uniformly bounded in k and ω.

(b) The density function f (y,θ) ≥ ɛ for all (y,θ) pairs 
in the neighborhood for some constant ɛ > 0.
A2. The random directions {∆k} are i.i.d., independent of 

F k. Each ∆k has mutually independent components with the 
Bernoulli distribution P(∆k, i � 1) � P(∆k, i ��1) � 1=2 for 
all i � 1, : : : , d.

A3. The sequences {αk}, {βk}, {γk}, and {ck} satisfy the 
following conditions: 

(a) βk, ck > 0, ck→ 0,
P∞

k�0 βk �∞,
P∞

k�0 β
2
k=c2

k < ∞;
(b) γk > 0,

P∞
k�0 γk �∞;

(c) αk > 0,
P∞

k�0 αk �∞;
(d) αk � o(γk), γk � o(βk):

Assumption A1(a) is consistent with the condition 
used in lemma 1 of Spall (1992) but is stated within a 
quantile optimization context. It ensures the O(c2

k) order 
of the estimation bias in (21) (see Lemma 2) and is satis
fied when F is three times continuously differentiable (in 
both arguments) with bounded derivatives. Note that 
the condition can be weakened to twice differentiability, 
in which case the order of the estimation bias would 
become O(ck). From the discussion at the end of Section 
2, because (21) iteratively approximates a gradient of 
the form �∇θF(qk;θ) |θ�θk=f (qk;θk), Assumption A1(b) 
ensures that the denominator of the ratio is bounded 
away from zero, so that the limit of the {Dk} sequence 
(assuming its existence) does not get arbitrarily large; 
see Wang et al. (2021) for a similar assumption. The suit
ability of Assumption A1(b) has been discussed in Hu 
et al. (2022). Specifically, because f (·; ·) is continuous and 
Θ is compact, the condition holds trivially when {qk} lies 
in a compact set. In practice, this can be guaranteed 
by truncating the sequence to a large closed interval 
containing the true quantiles q(θ) for all θ ∈Θ. It has 
been shown in Hu et al. (2022) that such a truncation 
will not have an influence on the convergence behavior 
of {qk}. Both Assumptions A2 and A3 are conditions on 
the algorithm input parameters. The Bernoulli random 
direction is perhaps the most commonly used choice 
when implementing SP estimators. Assumption A3 is 
also standard in the SA literature (e.g., Kushner and 
Clark 1978, Spall 1992, Kushner and Yin 1997). Assump
tion A3(d) is needed in multitimescale SA methods (cf., 
e.g., Bhatnagar 2005, Borkar 2008, Zhang and Hu 2019, 
Hu et al. 2022); it guarantees the three recursions to be 
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performed at timescales that are noticeably distinct 
from each another (see the discussion at the end of Sec
tion 2). The condition, when combined with 

P∞
k�0 β

2
k=c2

k 
< ∞ in Assumption A3(a), implies that 

P∞
k�0 γ

2
k < ∞

and 
P∞

k�0 α
2
k < ∞.

We begin by stating a result that is essential for char
acterizing the convergence behavior of the algorithm. It 
shows that the gradient estimators constructed through 
(21) have finite second-order moments and that the 
sequence {Dk} itself remains bounded almost surely for 
all k.

Lemma 1. Assume that Assumptions A1, A2, and A3(a) 
hold; then we have (i) supk E[‖Dk‖

2
] < ∞; (ii) supk‖Dk‖

< ∞ w.p.1.

Proof. See Section A of the online appendix. w

Lemma 2 below gives an explicit bound on the (con
ditional) bias introduced by the symmetric SP scheme 
used in (21). As a result of Lemma 1, the estimation bias 
goes to zero at the rate O(c2

k), both almost surely and in 
expectation.

Lemma 2. Let Assumptions A1, A2, and A3(a) hold, and 
define the bias

bk(qk, Dk,θk) :� E
�I+k + I�k

2ck∆k

�
�
�
�
�
F k

" #

+ f (qk,θk)Dk

+ ∇θF(qk;θk):

Then we have that (i) bk(qk, Dk,θk) �O(c2
k) w.p.1; (ii) 

E[‖bk(qk, Dk,θk)‖] �O(c2
k):

Proof. From Assumption A2, 1=∆k � ∆k. It follows that

E
�I+k + I�k

2ck∆k

�
�
�
�
�
F k

" #

�
Mk
2ck

E[(�I+k + I�k )∆k |F k]

�
Mk
2ck

E[(�F+k + F�k )∆k |F k]:

Let ∇3
θF(y;θ) :� ∂3F(y;θ)=∂θT∂θT∂θT be the tensor of 

F. Note that the tensor when evaluated at a vector v of 
appropriate dimension, denoted by ∇3

θF(y;θ)[v], gives 
a matrix. Thus, by a third-order Taylor series expan
sion of F+k and F�k around (qk,θk) and then using ∆2

k, i �

1, E[∆k, i∆k, j |F k] � 0 for all i ≠ j, we obtain

E
�I+k + I�k

2ck∆k

�
�
�
�
�
F k

" #

� E[(�f (qk;θk)∆
T
k Dk�∇

T
θF(qk;θk)∆k)

∆k |F k] +E[R3(q+k ,q�k ,θ+k ,θ�k )∆k |F k]

��f (qk;θk)Dk�∇θF(qk;θk)

+E[R3(q+k ,q�k ,θ+k ,θ�k )∆k |F k], 

where q+k , q�k are on the line segments between qk and 
qk 6 ckDT

k ∆k, θ+k , θ�k are on the line segments connect
ing θk and θk 6 ck∆k, and R3 is a remainder term whose 
absolute value is bounded by

|R3 | ≤
c2

k
12M2

k
( | fyy(q+k ;θ

+

k ) | + | fyy(q�k ;θ
�

k ) | ) |D
T
k ∆k |

3

+
c2

k
12M2

k
( |∆T

k∇
3
θF(q

+
k ;θ

+

k )[∆k]∆k |

+ |∆T
k∇

3
θF(q

�
k ;θ

�

k )[∆k]∆k | )

+
c2

k
4M2

k
( |∆T

k∇
2
θ f (q+k ;θ

+

k )D
T
k ∆k∆k |

+ |∆T
k∇

2
θ f (q�k ;θ

�

k )D
T
k ∆k∆k | )

+
c2

k
4M2

k
( |∇T

θ fy(q+k ;θ
+

k )(D
T
k ∆k)

2
∆k |

+ |∇T
θ fy(q�k ;θ

�

k )(D
T
k ∆k)

2
∆k | ):

Note that the facts Mk ≥ 1, ‖ckDk‖ � ck‖Dk‖=Mk ≤ ck
ffiffiffi
d
√

, 
and ‖ck∆k‖ ≤ ck‖∆k‖ � ck

ffiffiffi
d
√

ensure that the pairs (q+k , 
θ
+

k ) and (q�k ,θ�k ) will all lie within the neighborhood 
of (qk,θk) stated in Assumption A1 as ck→ 0. Thus, 
invoking Assumption A1 and part (ii) of Lemma 1, we 
arrive at the conclusion that E[‖R3(q+k , q�k ,θ+k ,θ�k )∆k‖

|F k] �O(c2
k) w.p.1. This completes the proof of part 

(i) of the lemma. Part (ii) follows from a simple appli
cation of Hölder’s inequality and the fact that supk 
E[‖Dk‖

2
] < ∞ (Lemma 1, part (i)). w

We now present the main convergence theorem. In 
its most general form, the result implies that the local/ 
global convergence of the algorithm can be determined 
by examining the asymptotic behavior of the ODE (25). 
For example, if the ODE has multiple isolated stable 
equilibrium points, then the sequence {θk} will con
verge to one of them. A strengthened version of the 
result is obtained when the quantile function is strictly 
convex, in which case the unique optimal solution θ∗ to 
(1) turns out to be a globally asymptotically stable equi
librium of (25) (see corollary 1 of Hu et al. 2022), so the 
sequence {θk} will converge to θ∗ w.p.1. Because the 
proof is similar to the convergence analysis in Hu et al. 
(2022), it is included in the online appendix.

Theorem 1. Assume that Conditions A1, A2, and A3 
hold. Then the sequence {θk} generated by SPQO con
verges to some limit set of the ODE (25) w.p.1. In addition, 
if the objective function qφ(θ) is strictly convex on Θ, then 
the sequence {θk} converges to the unique optimal solution 
θ∗ to (1) w.p.1.

Note that as with Lemma 2, it is readily seen that 
the SD estimator in (19) also has O(c2

k) bias. Using this 
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observation, it can be shown, along the same lines as 
in the proof of Theorem 1, that the following (same) 
convergence result holds for SDQO.

Theorem 2. Assume that Condition A1 holds with (qk,θk)

replaced by (q̂k, θ̂k). Then under Assumption A3, the 
sequence {θ̂k} generated by SDQO converges to some limit 
set of the ODE (25) w.p.1. In addition, if the objective func
tion qφ(θ) is strictly convex on Θ, then the sequence {θ̂k}

converges to the unique optimal solution θ∗ to (1) w.p.1.

As mentioned in Section 3, under the special setting 
of simulation optimization, the CRN versions of (19) 
and (21) could be used in some cases to improve the 
algorithm efficiency. We close this section by providing 
conditions that guarantee the variance reduction prop
erty of this approach. For simplicity, we only state and 
prove the result for (21). The variance reduction prop
erty of (19) is ensured under the same set of conditions 
given in Proposition 1 below.

Proposition 1. Denote by Î 6

k :� I{Y(Uk;θk 6 ck∆k) ≤ qk 
6 ckDT

k ∆k}. Let Conditions A1, A2, and A3(a) hold. Suppose 
that for any given parameter vector θ, the output random vari
able Y(Uk;θ), when viewed as a function of input random 
numbers, is monotone in each argument; that is, Uk, i ≤ U′k, i 
implies Y(: : : , Uk, i�1, Uk, i, Uk, i+1, : : : ;θ) ≤ Y(: : : , Uk, i�1, U′k, i, 
Uk, i+1, : : : ;θ) for all i or Y(: : : , Uk, i�1, Uk, i, Uk, i+1, : : : ;θ) ≥
Y(: : : , Uk, i�1, U′k, i, Uk, i+1, : : : ;θ) for all i. Then we have

Var �Î+k + Î�k
2ck∆k, i

�
�
�
�
�
F k

 !

≤ Var
�I+k + I�k
2ck∆k, i

�
�
�
�
�
F k

 !

, i � 1, : : : , d, 

for all k w.p.1.

Proof. The proof relies on an inequality given on pp. 
187–188 of Givens and Hoeting (2013), which can be 
stated as follows: Let X1, : : : , Xk be a sequence of i.i.d. 
random variables, and g1(x1, : : : , xk) and g2(x1, : : : , xk)

be two functions that are both monotonically nonde
creasing (or nonincreasing) in each argument. Then

E[g1(X1, : : : , Xk)g2(X1, : : : , Xk)]

≥ E[g1(X1, : : : , Xk)]E[g2(X1, : : : , Xk)]: (26) 

Now fix an i � 1, : : : , d; it is straightforward to show 
that

Var �Î+k + Î�k
2ck∆k, i

�
�
�
�
�
∆k,F k

 !

�Var
�I+k + I�k
2ck∆k, i

�
�
�
�
�
∆k,F k

 !

�
1

2c2
k∆2

k, i
[E[I+k |∆k,F k]E[I�k |∆k,F k]�E[Î+k Î�k |∆k,F k]]:

Because for fixed qk, Dk, ∆k, and θk, the indicator func
tions I{· ≤ qk 6 ckDT

k ∆k} are nonincreasing and by our 

assumption Y(·;θk 6 ck∆k) are monotone in each argu
ment, the compositions Î 6

k � I{Y(·;θk 6 ck∆k) ≤ qk 6 ck 
DT

k ∆k} are also monotone in each argument. Hence, 
we have from (26) that E[Î+k Î�k |∆k, F k] ≥ E[Î+k |∆k,F k]

E[Î�k |∆k, F k] � E[I+k |∆k, F k]E[I�k |∆k, F k]. This shows 
that Var

�
�Î+k +Î�k
2ck∆k, i

�
�
�∆k,F k

�
≤ Var

�
�I+k +I�k
2ck∆k, i

�
�
�∆k,F k

�
: Finally, 

by noticing that

Var E �Î+k + Î�k
2ck∆k, i

�
�
�
�
�
∆k,F k

" #�
�
�
�
�
F k

 !

� Var E
�I+k + I�k
2ck∆k, i

�
�
�
�
�
∆k,F k

" #�
�
�
�
�
F k

 !

, 

the proof is completed by unconditioning on ∆k using 
the law of total variance. w

Proposition 1 shows that when the simulation output 
random variables react monotonically with respect to 
the input random numbers, the conditional variance of 
the gradient estimator Dk+1 constructed using CRN is 
always no greater than that obtained under indepen
dent sampling. This monotonicity requirement can be 
expected in certain applications such as in the simula
tion of regenerative processes and queueing systems 
(see, e.g., Law 2013). Note that Proposition 1 is a finite- 
time result that holds almost surely for every k. This is 
different from the work of Kleinman et al. (1999), in 
which the same CRN approach has been used in SPSA 
and shown to lead to a faster asymptotic convergence 
rate than the original SPSA without CRN. Kleinman 
et al. (1999), however, consider mean-based simulation 
optimization, and a key condition used in deriving 
their result, when put into our current context, requires 
the two indicator functions Î 6

k to be differentiable with 
bounded derivatives. So, their result does not directly 
carry over to the quantile setting.

4. Convergence Rate Analysis
Again, because SPQO differs from SDQO only in the 
perturbation scheme used in constructing gradient esti
mates (i.e., simultaneous versus element-wise pertur
bation), we use SPQO as a representative algorithm 
and investigate its rate of convergence in detail. A 
completely analogous argument, which we omit, yields 
essentially the same rate result for SDQO (see Theorem 
4 at the end of this section). Our analysis assumes that 
the ODE (25) has a unique globally asymptotically sta
ble equilibrium θ∗ that lies in the interior of Θ. Clearly, 
because C(θ∗) � {0}, θ∗ satisfies ∇θqφ(θ) |θ�θ∗ � 0, and 
according to Theorem 1, the sequence {θk} generated 
by (22) converges to θ∗ w.p.1. The main result for 
SPQO is obtained through the repeated application of 
a fixed-point argument for characterizing the mean 
absolute errors (MAEs) of SA estimates. The novelty of 
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the approach resides in the use of a sequence of suitably 
designed contraction mappings to quantify the estima
tion errors accumulated over the iterations. This, in 
essence, translates a difficult rate analysis problem into 
the simple task of examining the fixed points of a 
sequence of contraction mappings. Notice that the three 
recursions in SPQO each represent a major category of 
SA algorithms, that is, a stochastic rooting finding pro
cedure (20), a Kiefer-Wolfowitz/SPSA-type algorithm 
(21), and a Robbins-Monro-type gradient iteration (22). 
We show that these recursions, even when coupled 
through different timescales, can all be analyzed using 
the proposed fixed-point argument.

The analysis proceeds in three steps. First, we con
sider the two coupled iterations (20) and (22) and 
derive the convergence speed of the quantile recursion 
(20) while taking into account the variations in the 
value of θk. Then, we characterize the rate at which the 
gradient recursion (21) converges as both qk and θk 
vary over time. Finally, we present the main conver
gence rate result for (22) and discuss the selection of 
algorithm parameters that optimizes the performance 
of SPQO. Throughout this section, we focus on stan
dard step- and perturbation-sizes of the forms αk �

a=kα, βk � b=kβ, γk � r=kγ, and ck � c=kτ, where α, β, γ, 
τ ∈ (0, 1) and a, b, r, c > 0. Let q(θ) be twice continuously 
differentiable with Hessian matrix H(θ) :� ∇2

θq(θ). In 
addition to the assumptions used in Section 3.1, we also 
impose the following regularity conditions:

Assumptions:
B1. For almost all (qk,θk) pairs, there exist constants 

ε, Cf > 0 such that ε ≤ f (y;θk) ≤ Cf for all y in the interval 
between qk and q(θk).

B2. The output density f (y;θ) is jointly continuous in 
both y and θ. There are constants Lf , LF > 0 such that | f (y1;

θ)� f (y2;θ) | ≤ Lf ‖y1� y2‖ and ‖∇θF(y1;θ)�∇θF(y2;θ)‖
≤ LF‖y1� y2‖ for all θ ∈Θ.

B3. Let λ(θ) be the smallest eigenvalue of H(θ). There is 
a constant ϱ > 0 such that λ(θ) ≥ ϱ for all θ on the line seg
ment between θk and θ∗.

Note that because no knowledge of the bounding 
constants ε and Cf is required, Condition B1 is accept
able in many practical situations. For example, when 
the simulation outputs themselves are bounded or 
truncated to a large interval, it is easy to see from (20) 
that {qk} will stay bounded. Thus, the assumption 
holds if f (·; ·) is continuous on Θ and a compact inter
val that contains {qk} and {q(θk)} (see also the remarks 
on Assumption A1(b) in Section 3.1). Assumption B2 
is roughly a globalized version of Assumption A1(a) 
but without requirements on the higher-order deriva
tives of F. A sufficient condition for Assumption B2 to 
hold is that the output distribution F is twice differen
tiable in both arguments and has bounded derivatives. 
Assumption B3, in a sense, is a stronger version of the 

strict convexity assumption on q(θ) used in Theorem 1
and is satisfied when q(θ) is strongly convex on Θ, 
which is a condition frequently adopted in the litera
ture for analyzing the convergence rates of gradient 
descent algorithms (e.g., Ghadimi and Lan 2012, Bot
tou et al. 2018).

The following lemma provides a good estimate for 
the weighted sum of a sequence of decreasing functions 
of order O(1=ks), s ∈ (0, 1). The result will be repeatedly 
used in the subsequent analysis.

Lemma 3. Let u(i) � a=ip and w(i) �O(1=is), where a>0, 
p, s ∈ (0, 1), and w(i)>0 for all i � 1, 2, : : : . Then

Xk

i�1

Yk

j�i+1
(1� u(j))

2

4

3

5u(i)w(i) �O(k�s):

Proof. See Section C of the online appendix. w

A characterization of the convergence rate for the 
mean squared errors of the quantile estimates is given 
below; see Section D of the online appendix for a proof.

Lemma 4. Assume Assumptions A1–A3 and B1 hold. 
Then the sequence {qk} generated by (20) satisfies

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[(qk � q(θk))
2
]

q

�O αk
γk

� �

+O γ
1
2
k

� �
:

From the discussion in Section 2, the qk iteration (20) is 
an SA method for solving a sequence of time-varying 
root-finding problems. The O(αk=γk) term above reflects 
the influence of the slowest component θk on the track
ing ability of the {qk} sequence. In particular, a large αk 
value implies that the underlying input parameter θk 
will change quickly over the iterations, in which case 
the step-size γk should decay sufficiently slowly to 
ensure that the {qk} sequence could properly follow the 
true quantiles {q(θk)}. When θk is fixed, that is, αk � 0, it 
can be seen from the proof of Lemma 4 that the rate of 
convergence of {qk} to the true quantile in MAE is of 
order O(γ1=2

k ). Therefore, if (20) is used as a stand-alone 
procedure for estimating distribution quantiles, its best 
rate of convergence is O(1=

ffiffiffi
k
√
) (e.g., when γk � r=k). 

This is consistent but stronger than the classical (weak) 
convergence rate result for root-finding SA algorithms.

Based on Lemma 4, we further obtain the following 
convergence rate result for the gradient estimates 
{Dk}.

Lemma 5. Assume Assumptions A1–A3, B1, and B2 hold. 
Then the sequence {Dk} satisfies
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[‖Dk�∇θq(θ) |θ�θk‖
2
]

q

�O αk

γk

� �

+O(c2
k) +O

β
1
2
k

ck

 !

:

Proof. See Section E of the online appendix. w
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The result also has an intuitive explanation. A com
parison of the results of Lemmas 4 and 5 indicates that 
the O(αk=γk) term is attributed to the approximation 
error of the quantile estimator. Lemma 5 shows that 
this error sets a limit on the convergence speed of {Dk}, 
suggesting that the performance of the two coupled SA 
recursions is primarily governed by the rate of the 
slower component. In the special case when the input 
parameter vector is fixed, the O(αk=γk) term vanishes. 
Consequently, if (20) and (21) are jointly used as a 
means for quantile sensitivity analysis, then the lemma 
implies that the convergence rate of the gradient esti
mates is O(c2

k) +O(β1=2
k =ck) provided that γk � o(βk) (be

cause of Assumption A3(d)). If in addition the quantile 
is also fixed, then (21) alone is in the form of the stan
dard SPSA algorithm, and the rate result is simply 
given by O(c2

k) +O(β1=2
k =ck). When β ≤ 6τ, this further 

reduces to O(β1=2
k =ck), which becomes identical to the 

(asymptotic) rate result previously obtained in Spall 
(1992), except in the mode of convergence.

Finally, we arrive at the following main convergence 
rate result for SPQO.

Theorem 3. If Conditions A1–A3 and B1–B3 hold, then 
the sequence {θk} generated by SPQO satisfies

E[‖θk�θ
∗‖] �O αk

γk

� �

+O(c2
k) +O

β
1
2
k

ck

 !

: (27) 

Proof. Define ψk :� θk �θ
∗. We have from (23) that

ψk+1 �ψk�αk(Dk�∇θq(θ) |θ�θk)�αk∇θq(θ) |θ�θk +αkZk

�ψk�αkηk�αk∇θq(θ) |θ�θk +αkZk, 

where ηk �Dk�∇θq(θ) |θ�θk . Because ∇θq(θ) |θ�θ∗ � 0, 
a Taylor series expansion of ∇θq(θ) |θ�θk around θ∗
shows that

ψk+1 � ψk� αkηk� αkH(θk)ψk +αkZk

� (I� αkH(θk))ψk� αkηk + αkZk, 

where θk is on the line segment between θk and θ∗. Tak
ing norms on both sides, using the Rayleigh-Ritz inequal
ity (cf., e.g., Rugh 1996) and Condition B3, we obtain that 
for all k sufficiently large such that αkϱ < 1,

‖ψk+1‖ ≤ ‖(I� αkH(θk))ψk‖ +αk‖ηk‖ + αk‖Zk‖

≤ (1�αkϱ)‖ψk‖ + αk‖ηk‖ + αk‖Zk‖:

It follows that

E[‖ψk+1‖] ≤ (1� αkϱ)E[‖ψk‖] + αkE[‖ηk‖] + αkE[‖Zk‖]:

(28) 

We now derive a bound for E[‖Zk‖]. Because θ∗ is in 
the interior of Θ, there is a constant ς > 0 such that the 

2ς-neighborhood of θ∗ is contained in Θ. Let Ek �
{‖θk+1 �θ

∗‖ ≥ 2ς}. Note that by (24), the occurrence of 
Ec

k implies that Zk�0. Using this observation, we 
obtain that

E[‖Zk‖] � E[‖Zk‖ |Ek]P(Ek) +E[‖Zk‖ |E
c
k]P(E

c
k)

≤ E[‖Dk‖]P(‖θk+1 �θ
∗‖ ≥ 2ς)

≤ E[‖Dk‖]P(‖θk+1 �θk‖ ≥ ς ∪ ‖θk�θ
∗‖ ≥ ς)

≤ E[‖Dk‖]
E[‖θk+1 �θk‖]

ς
+E[‖Dk‖]

E[‖ψk‖]

ς

by Markov’s inequality

≤
2αkE2[‖Dk‖]

ς
+E[‖Dk‖]

E[‖ψk‖]

ς
, (29) 

where the first inequality is due to the fact that ‖Zk‖ ≤

‖Dk‖ (see the proof of lemma 5 in Hu et al. 2022), and 
the last step follows from ‖θk+1�θk‖ ≤ αk‖Dk �Zk‖ ≤

2αk‖Dk‖.
Next, substitute the bound (29) into (28) and com

bine like terms,

E[‖ψk+1‖] ≤ 1� αk ϱ �
E[‖Dk‖]

ς

� �� �

E[‖ψk‖]

+ αkE[‖ηk‖] +
2α2

kE2[‖Dk‖]

ς
:

Note that because θk→ θ
∗ w.p.1 and ∇θq(θ) |θ�θ∗ � 0, 

the continuity of ∇θq(θ) indicates that ‖∇θq(θ) |θ�θk‖

→ 0 w.p.1. This, together with the boundedness of 
∇θq(θ) (because of the compactness of Θ), shows that 
E[‖∇θq(θ) |θ�θk‖] → 0 by the dominated convergence 
theorem. Thus, we have from Lemma 5 that E[‖Dk‖]

≤ E[‖Dk�∇θq(θ) |θ�θk‖] +E[‖∇θq(θ) |θ�θk‖] → 0. This 
then implies the existence of an integer N > 0 such that 
ϱ�E[‖Dk‖]=ς ≥ ϱ=2 :� ϱ for all k ≥N . Consequently, 
we get that for all k ≥N

E[‖ψk+1‖] ≤ (1� αkϱ)E[‖ψk‖] +αkE[‖ηk‖]

+
2α2

kE2[‖Dk‖]

ς
:

Directly expanding the above inequality from term N 

onwards,

E[‖ψk‖] ≤
Yk

i�N
(1� αiϱ)E[‖ψN ‖]

+
Xk

i�N

"
Yk

j�i+1
(1� αjϱ)

#

αiE[‖ηi‖]

+
Xk

i�N

"
Yk

j�i+1
(1� αjϱ)

#

αi
2αiE2[‖Di‖]

ς
:
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Finally, because 
Qk

i�N (1� αiϱ) � o(k�1), E[‖ηk‖] �O(αk 

=γk) +O(c2
k) +O(β1=2

k =ck) (Lemma 5), and αkE2[‖Dk‖] �

O(αk) (Lemma 1(i)), a direct application of Lemma 3
leads to the conclusion E[‖ψk‖] �O(αk=γk) +O(c2

k) +

O(β1=2
k =ck). w

In view of Lemma 5, regardless of the choice of αk, the 
MAE of Dk converges at a rate that is always slower than 
αk itself, which results in the long-run behavior of (22) 
being dominated by the errors in gradient estimation. 
Therefore, in contrast to single-timescale SA, whose rate 
is determined by its step-sizes, an interesting observa
tion from Theorem 3 is that the step-size αk in (22) does 
not have a direct effect on the convergence rate of {θk}, 
but only does so indirectly through the expression for 
the convergence rate of the faster component Dk in 
Lemma 5.

From Assumption A3(a), both βk and ck should be cho
sen to satisfy τ+ 1=2 < β ≤ 1. In addition, to improve 
the rate in (27), it is clear that α should be taken large, 
which gives the obvious choice α ≈ 1 (note that α ∈
(0, 1)). On the other hand, because β1=2

k =ck �O(k�(β=2�τ))

and c2
k �O(k�2τ), the O(c2

k) +O(β1=2
k =ck) term is optimi

zed when β � 6τ, yielding O(c2
k) �O(β1=2

k =ck) �O(k�2τ). 
Consequently, by equating the terms in (27), we find 
that under the above choice of α, β and the constraint 
α > γ > β (Assumption A3(d)), an upper bound on the 
MAEs of {θk} diminishes at an optimal rate that can 
be made arbitrarily close to O(k�1=4), which is approx
imately attained when α ≈ 1, γ � 3=4, β ≈ 3=4, and 
τ � 1=8.

Finally, for the sake of completeness, we conclude by 
stating the following rate result we have for SDQO, 
implying that the algorithm essentially shares the same 
O(k�1=4) best convergence rate bound as SPQO, except 
possibly in the constant contained in the big-O notation.

Theorem 4. Assume that the conditions of Theorem 2 and 
Assumptions B1–B3 hold but with (q̂k, θ̂k) replacing (qk, 
θk) in Assumption B1. Then the MAEs of the sequence 
{θ̂k} generated by SDQO satisfy

E[‖θ̂k�θ
∗‖] �O αk

γk

� �

+O(c2
k) +O

β
1
2
k

ck

 !

:

5. Simulation Experiments
We begin with two simple examples in Section 5.1 to 
illustrate the smoothness requirement on the output 
distribution. Then, in Sections 5.2 and 5.3, we test the 
algorithms by performing some computational experi
ments on a set of artificially created black-box functions 
and a queueing example. In all cases, the performance 
of SPQO and SDQO is compared with that of the QG 
algorithm and the surrogate-based gTSSO-QML algo
rithm proposed in Wang et al. (2021). We describe the 
latter two algorithms in more detail now. As discussed 

in Section 1, QG is a single-timescale SA algorithm that 
employs the conventional SD (3) to approximate quan
tile gradients, where the true quantiles are estimated 
by order statistics. Denote by υk > 0 the perturbation 
size, and let q̂(θ) stand for the ⌈nkφ⌉th order statistic of 
an output sample Y1, : : : , Ynk ~ F(·;θ) of size nk. The QG 
algorithm uses the following update:

θk+1 �ΠΘ(θk� ρkD̃k), (30) 

where ρk > 0 is the step-size and D̃k is the gradient esti
mate whose ith element is given by

D̃k, i �

q̂((θ̃k, 1, : : : ,θk, i + υk, : : : , θ̃k, d)
T
)

� q̂((θ̃k, 1, : : : ,θk, i� υk, : : : , θ̃k, d)
T
)

2υk
, i � 1, : : : , d:

Here, θk, i is the ith element of θk and θ̃k, j’s are random 
variables uniformly distributed over [θk, j� υk,θk, j +

υk] for all j � 1, : : : , d, j ≠ i. Note that this construction 
differs from our proposed algorithms in that 2dnk func
tion evaluations (as opposed to three in SPQO and 2d+ 1 
in SDQO) are needed at each iteration. Our implementa
tion of QG is based on the parameter values ρk � 1=k, 
υk � 1=k0:501, and nk � ⌈k2:003⌉, which are the minimum 
required to satisfy the conditions for the convergence of 
the algorithm (see theorem 8 of Kibzun and Matveev 
2012). The gTSSO-QML algorithm uses a stochastic cok
riging model to approximate the response surfaces of a 
set of quantile functions with progressively increasing 
quantile levels and selects new design points by opti
mizing an expected improvement criterion. Following 
Wang et al. (2021), the algorithm parameter values are 
determined in our implementation based on a cross- 
validation test, and at each step, simulation samples 
are adaptively allocated to the selected design points 
by using the optimal computing budget allocation 
method.

Similar to many other Bayesian optimization ap
proaches, gTSSO-QML is very computationally de
manding on high-dimensional problems, so we have 
implemented the algorithm on a parallel computing 
platform with 164 nodes. Each node has two Intel Xeon 
E5-2683v3 processors (with 14 cores each running at 
2.0 GHz) and 128 GB of memory. The computational 
experiments for all other algorithms are performed on a 
Window PC with an Intel Core i5 1.8-GHz processor 
and 8 GB of memory.

5.1. Necessity of Differentiability for 
Convergence

As discussed in Section 3.1, Assumption A1(a) is pri
marily used to guarantee the typical O(c2

k) bias order of 
the symmetric FD scheme employed in (19) and (21). 
The assumption, however, is stronger than necessary 
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for the convergence of the algorithms, which we illus
trate through two examples. 

(i) Consider the class of output random variables

Y(θ) � |θ | ℓ + X, Θ � [�2, 2], (31) 

where ℓ ∈ (1, 2), and X ~ N(0, 1) is the standard normal 
random variable. The φ-quantile of Y(θ) can be expressed 
in terms of the inverse of the error function erf(z) :�
(2=

ffiffiffiffi
π
√
)
R z

0 e�t2 dt as qφ(θ) � |θ | ℓ +
ffiffiffi
2
√

erf�1
(2φ� 1), which 

is strictly convex with a unique minimizer θ∗ � 0. It is 
easy to see that the output distribution F(y;θ) is conti
nuously differentiable, but its second-order derivative 
∂

2F(y;θ)=∂2θ has an infinite discontinuity at θ�0. This 
implies that if the algorithms converge to the optimum, 
then {θk} would enter any neighborhood of θ∗ infinitely 
often, within which ∂2F(y;θ)=∂2θ may become arbitrarily 
large. In other words, if the sequence {θk} converges to 
θ∗, then Assumption A1(a) cannot be true. Nevertheless, 
by using a first-order (linear) Taylor approximation of F6

k 
in the proof of Lemma 2, it can be shown that the biases 
of (19) and (21) at θ�0 are in fact of order O(ck), which 
tends to zero as k→∞ under Assumption A3(a). There
fore, both SPQO and SDQO would converge to θ∗ as a 
result of Theorems 1 and 2. Figure 1(a) empirically illus
trates the convergence behavior of SPQO and SDQO on 
this example when ℓ � 5=3 and φ � 0:95, where each 
curve plots the sequence of quantile values {qφ(θk)}

(averaged over 100 independent replication runs) versus 
the number of simulation evaluations.

(ii) On the other hand, consider (31) with ℓ ∈ (0, 1). In 
this case, the first-order derivative ∂F(y;θ)=∂θ contains 

an essential discontinuity at θ�0, which results in an 
infinite quantile derivative at θ∗ (see (4) or the analytical 
expression for qφ(θ) given in case (i) above). Intuitively, 
this means that whenever a solution θk is obtained in 
the close vicinity of θ∗, the large quantile derivative will 
quickly steer the search away from the optimum, lead
ing to possible nonconvergence of the algorithms. Such 
a phenomenon can be observed from Figure 1(b), which 
shows the typical oscillatory behavior (i.e., going back 
and forth between better and worse solutions) of SPQO 
and SDQO when ℓ � 1=3. This suggests the necessity of 
continuous differentiability of the output distribution 
on the convergence of the algorithms.

5.2. Black-Box Test Functions
Six noisy black-box functions are tested, with dimen
sions varying from 2 to 20. Case 1 contains multiplica
tive noise but only two decision variables and is 
relatively easy to solve. In case 2, the noise also scales 
the function, but as the problem dimension increases, 
the distribution of the function may become extremely 
flat, making its extreme quantiles challenging to esti
mate. In case 3, on the other hand, the noise is addi
tive, and under the optimal parameter values, the 
quantiles are very distant from the origin, so predict
ing their values could also be challenging, especially 
when the initial estimates are far from the true values. 
In case 4, the noise is both multiplicative and additive. 
Cases 5 and 6 are relatively low-dimensional multi
modal problems, and each contains a large number of 
local optima. 

Figure 1. Performance of SPQO and SDQO on Problem (31) 
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Notes. (a) ℓ � 5=3; (b) ℓ � 1=3. Both algorithms are implemented based on the parameter setting αk � 1=k0:99, βk � 1=k0:74, γk � 1=k0:75, and 
ck � 1=k0:125.
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Case 1. Y(θ) � (2:6(θ2
1 +θ

2
2)� 4:8θ1θ2)X+ 10, where 

Θ � [�2, 2]2.
Case 2. Y(θ) � (

Pd
i�1 (θi� i)2 + 1)X, where d�10 and 

θi ∈ [i� 1, i+ 1] for i � 1, : : : , d.
Case 3. Y(θ) � X+

Pd
i�1(θi � i)θi, where d�20 and 

Θ � [�20, 20]d.
Case 4. Y(θ) � 1

d
Pd

i�1 (θi � 1)2X+ 1
d
Pd

i�1(θ
4
i � 16θ2

i +

5θi), where d�20 and Θ � [1, 4]d.
Case 5. Y(θ) �

�
�10 exp

�
� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d
P

i�1

q

dθ2
i
�
� exp 

� 1
d
Pd

i�1 cos(πθi)
�
+ 11+ e

�
X, where d�5 and Θ � [�5, 5]d.

Case 6. Y(θ) � 1
d
Pd

i�1[0:4 sin2(0:2π(θi� 0:9)) + 0:3 
sin2(0:4π(θi� 0:9)) + 0:001(θi� 0:9)2] +X, where d�5 
and Θ � [�10, 10]d.

For each test problem, we consider two quantile levels, 
φ � 0:6, φ � 0:95, and two choices of the (unknown) noise 
distribution, X ~ N(0, 1) and X ~ Cauchy(0, 1), resulting 
in 24 total test scenarios. The optimal quantile values in 
all scenarios are listed in Table 1. Note that under the 
Cauchy noise, neither the mean nor the variance of the 
output distribution exists.

In the implementation of SPQO and SDQO, the decay 
rates of the parameters are determined from the result 
of Section 4, that is, α � 0:99, γ � 0:75, β � 0:74, and τ �
0:125 (see the discussion at the end of that section). Our 
experience indicates that their performance is not very 
sensitive to the choice of αk, in that the standard step- 
size αk � 2=kα seems to work well across a variety of test 
cases. The parameters βk and ck resemble those of SPSA, 
and we choose them to be of the forms βk � b=(k+R)β 
and ck � c=(k+R)τ as suggested in Spall (2003), where R 
is set to 10% of the maximum number of iterations 
allowed, b � κ1(2R)β and c � κ2(2R)τ. This choice main
tains the respective values of βk and ck to be greater than 
κ1 and κ2 during the first R iterations. The constants κ1 
and κ2 are then selected by trial and error, and we 
find that values satisfying κ2 ∈ [0:1, 0:9] and 0:005 ≤
κ1=κ2 ≤ 0:1 all yield reasonable performance. Note that 
from (21) (resp. (19)), the increment (if there is any) in 
each component of Dk (resp. D̂k) is exactly βk=2ck (resp. 
βk=2c̃k). So, the lower bound 0.005 on κ1=κ2 prevents 
the updates in gradient estimates from becoming too 
small. Our numerical results reported here are based on 
κ1 � 0:05 and κ2 � 0:5. The choice of γk, on the other 
hand, is most critical to the performance. This is mainly 

because of the recursive procedure used for estimating 
qk (resp. q̂k). As can be observed from (20), each incre
ment in quantile estimate is bounded in magnitude by 
γk. Thus, if a desired (true) quantile is far from the ini
tial q0, then a reasonable estimate of its value would 
take an enormously large number of iterations under 
the standard choice γk � 1=kγ, leading to excessively 
slow (finite-time) convergence behavior. One way to 
address this issue would be to take γk to be of the same 
form as βk, so that a nonnegligible gain could be main
tained in tracking the true quantile values. In our 
study, however, we simply take γk � R=kγ. The intui
tive reason is that the large constant R will provide 
enough impetus in early iterations to help the iterates 
move quickly toward the “correct” quantile range, 
whose values can then be further fine-tuned as γk 
decreases rapidly with k, because of the large decay 
rate γ.

It can be verified that the monotonicity condition 
assumed in Proposition 1 is satisfied for all test func
tions. Therefore, in addition to SPQO and SDQO, we 
have also implemented their CRN versions, SPQO-CRN 
and SDQO-CRN. For each of the respective test cases, 
the six algorithms SPQO, SPQO-CRN, SDQO, SDQO- 
CRN, QG, and gTSSO-QML are run using the same 
computational budget, where the total number of eva
luations is set to 3 × 104 for case 1, 3 × 105 for cases 2–4, 
and 106 for the multimodal test cases 5 and 6. In SPQO 
(as well as SDQO and their CRN versions), the initial 
estimates are taken to be D0 � (0, : : : , 0)T and q0 � 0. The 
initial θ0 is uniformly generated from Θ for all algo
rithms. Each algorithm is then independently repeated 
40 times, and the numerical results (averaged over 40 
runs) obtained in the respective test cases are presented 
in Tables 2 and 3, which show the means and standard 
errors of the true quantile function values at the final 
solutions found by the six comparison algorithms. In 
each row of the tables, the result that is closest to the 
true optimal value is shown in bold (in the case of a tie, 
the one with a smaller standard error is highlighted). 
The convergence behavior of SPQO, SDQO, QG, and 
gTSSO-QML is also illustrated in Figures 2–4, which 
plot the true quantile values at the current estimated 
solutions as functions of the numbers of function eva
luations consumed.

Our comparison results indicate that SPQO (SPQO- 
CRN) has the most consistency on test cases 1–4. The 
final results obtained by SDQO are close to those of 
SPQO. However, as the figures clearly show, the con
vergence behavior of SDQO (in terms of the number of 
function evaluations) becomes slower as the problem 
dimension increases. For example, in cases 3 and 4, 
because SDQO uses 41 function evaluations per itera
tion, its total number of iterations is more than 13 times 
smaller than that of SPQO, resulting in inferior perfor
mance within the allowed budget. As expected, it can 

Table 1. Optimal Quantile Values in the 24 Test Scenarios

Case

Normal Cauchy

φ � 0:6 φ � 0:95 φ � 0:6 φ � 0:95

1 10 10 10 10
2 0.25 1.64 0.32 6.31
3 �717.25 �715.86 �717.18 �711.19
4 �49.29 �45.32 �49.08 �34.62
5 0.25 1.64 0.32 6.31
6 0.25 1.64 0.32 6.31
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be seen from the tables that SPQO-CRN and SDQO- 
CRN generally outperform their original versions and 
yield smaller standard errors in almost all test cases, 
indicating their consistent performance over repeated 
runs.

The performance of QG is comparable to SPQO 
under the normal noise setting. In particular, because 
QG is based on order statistics, the algorithm does not 
require the specification of an initial estimate and is less 
susceptible to the magnitude/location of the optimal 
quantile. This could be beneficial in extreme circum
stances such as case 3, especially when the true quantile 
happens to be very far away from its initial guessed 
value in a recursive procedure like SPQO. We see from 
Figure 3 that in case 3, QG quickly identifies the correct 
quantile range in the first few iterations and shows 
a very fast initial improvement. However, because of 
the increasing sample size required at each step, the 
parameter update in QG is carried out at a frequency 

that becomes much lower as search progresses, which 
results in sluggish performance in the long run. From 
Table 2, we observe that the mean results found by 
SPQO are closer to the true optimal values than those 
obtained by QG.

Under the Cauchy noise, QG shows a significant per
formance degradation. We believe that this is owing to 
the heavy tail feature of the Cauchy distribution, which 
makes its high-level quantiles more difficult to estimate 
than the normal distribution. Therefore, for an order 
statistic-based estimator, a reliable quantile approxima
tion can only be obtained after a large amount of simu
lation observations have been collected. This issue is 
especially manifested on cases 1, 2, and 4, where in 
each problem the standard Cauchy input distribution 
is further stretched by a large factor. We observe that at 
the φ � 0:95 quantile level, QG may fail to locate a near- 
optimal solution within the prescribed simulation bud
get. SPQO instead estimates quantiles and gradients by 

Table 2. Performance on Test Functions for Normally Distributed Noise

Case SPQO SPQO-CRN SDQO SDQO-CRN QG gTSSO-QML

φ � 0:6
1 10.06 (8.0e-3) 10.04 (7.8e-3) 10.06 (1.0e-2) 10.04 (7.0e-3) 10.11 (1.3e-2) 10.01 (7.3e-4)
2 0.30 (2.7e-3) 0.28 (1.0e-3) 0.55 (1.3e-2) 0.43 (1.6e-2) 0.39 (1.4e-2) 0.33 (1.7e-2)
3 �717.24 (3.3e-4) �717.24 (7.2e-4) �717.22 (1.4e-3) 2717.25 (1.9e-4) �717.23 (6.7e-4) �168.00 (2.71)
4 �49.22 (1.8e-3) �49.19 (8.3e-4) �49.16 (5.0e-3) 249.25 (3.7e-3) �49.17 (7.1e-3) �48.60 (3.9e-2)
5 1.13 (4.4e-2) 1.05 (3.2e-2) 1.28 (3.8e-2) 1.18 (2.5e-2) 1.51 (3.7e-2) 0.62 (4.1e-2)
6 0.50 (1.4e-2) 0.52 (1.4e-2) 0.57 (1.6e-2) 0.54 (1.4e-2) 0.54 (1.2e-2) 0.36 (5.1e-3)

φ � 0:95
1 10.07 (6.6e-3) 10.09 (1.0e-2) 10.04 (5.3e-3) 10.02 (4.0e-3) 10.22 (2.9e-2) 10.00 (6.0e-6)
2 1.65 (3.3e-4) 1.64 (6.0e-6) 1.68 (2.3e-3) 1.65 (4.6e-5) 1.66 (9.5e-4) 1.69 (3.0e-3)
3 �715.85 (5.6e-5) 2715.86 (5.1e-6) �715.82 (1.6e-3) �715.85 (1.7e-4) �715.82 (1.8e-3) �174.96 (3.59)
4 �45.22 (1.5e-3) �45.21 (6.8e-4) �45.13 (9.6e-3) 245.31 (9.5e-4) �45.05 (1.3e-2) �44.41 (4.7e-2)
5 4.85 (4.0e-1) 5.31 (3.3e-1) 6.43 (3.0e-1) 5.17 (2.9e-1) 8.52 (1.9e-1) 4.10 (2.6e-1)
6 1.91 (1.4e-2) 1.91 (1.6e-2) 1.94 (1.4e-2) 1.93 (1.3e-2) 1.93 (1.5e-2) 1.76 (6.3e-3)

Note. Performance based on 40 independent runs (standard errors in parentheses).

Table 3. Performance on Test Functions for Cauchy Distributed Noise

Case SPQO SPQO-CRN SDQO SDQO-CRN QG gTSSO-QML

φ � 0:6
1 10.06 (9.4e-3) 10.03 (6.6e-3) 10.07 (1.3e-2) 10.03 (6.3e-3) 10.11 (1.3e-2) 10.00 (8.7e-4)
2 0.37 (3.2e-3) 0.33 (4.8e-4) 0.55 (1.9e-2) 0.36 (5.0e-3) 0.47 (1.5e-2) 0.37 (4.5e-3)
3 �717.16 (8.5e-4) 2717.17 (2.9e-5) �717.08 (5.5e-3) �717.17 (1.3e-4) �717.15 (1.1e-3) �165.34 (2.52)
4 �48.99 (2.9e-3) �48.98 (1.3e-3) �48.75 (1.8e-2) 249.03 (4.6e-3) �48.87 (1.2e-2) �48.20 (4.4e-2)
5 1.64 (4.6e-2) 1.34 (4.4e-2) 1.76 (5.7e-2) 1.31 (5.5e-2) 1.97 (5.0e-2) 0.83 (5.8e-2)
6 0.60 (1.3e-2) 0.56 (1.2e-2) 0.61 (1.6e-2) 0.60 (1.4e-2) 0.63 (1.3e-2) 0.43 (5.6e-3)

φ � 0:95
1 10.03 (6.4e-3) 10.00 (5.3e-4) 10.04 (7.9e-3) 10.01 (1.6e-3) 120.03 (18.00) 10.00 (3.6e-5)
2 6.48 (8.6e-3) 6.31 (9.1e-5) 8.15 (3.5e-1) 6.32 (1.4e-3) 48.05 (1.25) 6.67 (2.2e-2)
3 �711.17 (9.2e-4) 2711.19 (2.2e-5) �709.24 (1.9e-1) �710.60 (7.0e-2) �703.94 (3.8e-1) �160.79 (3.06)
4 �33.80 (3.9e-2) 234.20 (1.0e-2) �30.16 (1.9e-1) �33.92 (1.0e-1) �19.54 (1.06) �32.10 (1.1e-1)
5 23.96 (2.99) 8.21 (9.0e-1) 32.11 (2.99) 16.69 (1.30) 36.74 (1.30) 14.64 (1.23)
6 6.58 (1.6e-2) 6.58 (1.7e-2) 6.64 (1.4e-2) 6.61 (1.6e-2) 6.72 (1.2e-2) 6.43 (6.5e-3)

Note. Performance based on 40 independent runs (standard errors in parentheses).
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Figure 2. Performance of SPQO, SDQO, QG, and gTSSO-QML on Test Cases 1 and 2 
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Figure 3. Performance of SPQO, SDQO, QG, and gTSSO-QML on Test Cases 3 and 4 
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Figure 4. Performance of SPQO, SDQO, QG, and gTSSO-QML on Test Cases 5 and 6 
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averaging all simulation data collected in past itera
tions. Thus, it works equally well under the Cauchy 
noise setting and shows significantly faster conver
gence behavior than QG.

Functions 5 and 6 are highly multimodal, which 
makes it very difficult for a gradient-based algorithm to 
escape local optima. On these test functions, SPQO, 
SDQO, and QG may quickly get stuck at a local opti
mum and stop making improvement even during the 
early search phase (see Figure 4). The gTSSO-QML algo
rithm, instead, shows more robustness in dealing with 
local optima and yields much superior performance 
compared with other algorithms. However, note from 
Figure 3 that the algorithm is not as efficient on test cases 
3 and 4. We conjecture that this is primarily caused by 
the high dimensionality of these functions so that a close 
approximation of the true response curve might require 
a large amount of data that exceeds the given budget. In 
addition, because each step of gTSSO-QML involves an 
expensive optimization procedure, the algorithm could 
be very time-consuming to run on high-dimensional 
problems. For example, the average running time of 
gTSSO-QML for solving case 3 on the parallel platform 
is more than eight hours. In contrast, the execution time 
of a single run of SPQO on a Windows PC is under five 
seconds. The above comparison suggests that our pro
posed algorithms, particularly SPQO, are best suited to 
high-dimensional differentiable problems that contain 
few local optimal solutions, whereas gTSSO-QML is bet
ter adapted to the optimization of complex multimodal 
objective functions with relatively small numbers of 
decision variables.

To provide an illustration of the convergence rate 
results given in Theorems 3 and 4, Figure 5 shows the 
log-log plots of the empirical MAEs of SPQO and SDQO 
estimates (averaged over 100 independent replication 
runs) versus the number of algorithm iterations for cases 
1–4 when φ � 0:6, where in case 1, we have performed a 
more extensive experiment by setting the number of 
algorithm iterations to 105. Because of space limitation, 
the results for the φ � 0:95 case are reported in Section F 
of the online appendix. Note that because cases 5 and 
6 are highly multimodal problems, whereas our rate 
results are established assuming a unique (global) mini
mizer, we have not provided the rate plots for cases 5 
and 6. From the figure, we can see that the observed 
rates of convergence generally conform well to the theo
retical results, but in some cases the rates are much faster 
than the theoretical rate O(k�1=4). We conjecture that this 
is primarily due to the influence of the initial transience, 
because the algorithm parameters are tuned to yield 
good finite-time performance when k is small.

5.3. A Queueing Example
We consider a first-come, first-served single-server queue 
with parameterized service rate µ(θ) � 1=vTθ+λ, where 

v ∈Rd is a fixed positive vector and λ is the arrival rate. 
Denoting by Y(θ) the steady-state waiting time in the sys
tem and by qφ(θ) the corresponding φ-quantile of Y, the 
objective is to determine an optimal parameter vector θ∗
that minimizes the weighted cost of waiting and service 
given by

y(θ) � c1qφ(θ) + c2(θ�ϑ)
TA(θ�ϑ), (32) 

where c1, c2 > 0 are cost coefficients, ϑ ∈Rd is a nominal 
vector, and A ∈Rd×d is a positive definite matrix; these 
are all assumed known. The cost function (32) reflects 
the trade-off between decreasing θ to increase the ser
vice rate (and hence reduce the waiting time quantile) 
and choosing θ to make the quadratic penalty term 
small.

Because of the cost-of-service penalty term, optimiz
ing (32) becomes finding the zeros of ∇y(θ) � 0 rather 
than ∇qφ(θ) � 0, where

∇y(θ) � c1∇qφ(θ) + 2c2A(θ�ϑ):

Consequently, the three algorithms SPQO, SDQO, and 
QG are adjusted accordingly to solve this slightly mod
ified root-finding problem. All other steps of the algo
rithms remain intact. For the simulation experiments, 
we take i.i.d. exponentially distributed interarrival 
times and service times, that is, an M/M/1 queue, 
with Θ � [1, 20]4, λ�1, v � (0:1, 0:2, 0:3, 0:4)T, c1 � 0:1, 
c2 � 0:02, ϑ � (7, 8, 9, 10)T,

A �

10 2 1 2
2 9 2 4
1 2 8 0
2 4 0 7

0

B
B
B
@

1

C
C
C
A

, 

and consider two cases: φ � 0:5 and φ � 0:95.
All algorithms except gTSSO-QML are implemented 

using the same parameter settings as for the black-box 
test functions in Section 5.2, and the total number of 
simulation evaluations is set to 1,800. The gTSSO-QML 
algorithm requires an initial set of design points and 
additional simulation samples to initialize the kriging 
model. In our implementation, we set the number of 
initial design points to 16 and allocate 20 observations 
to each point to compute its sample quantile. Thus, a 
total of 320 simulation evaluations are used during the 
initialization step.

The steady-state waiting time is approximated by the 
waiting time of the 1,000th customer. Each algorithm is 
independently repeated 40 times. The simulation results 
(means and standard errors based on 40 independent 
runs of each algorithm) obtained on the two test cases are 
presented in Table 4. For the purpose of comparing with 
the true optimum, we note that by basic queueing theory, 
the steady-state waiting time of an M/M/1 queue is 
exponentially distributed with parameter µ(θ)�λ, so 
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Figure 5. Convergence Rates of the Empirical MAEs of SPQO and SDQO on Cases 1–4, φ � 0:6 
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the cost function can be calculated in closed form in 
terms of θ as y(θ) � c1 ln(1�φ)vTθ+ c2(θ�ϑ)

TA(θ�
ϑ), which attains its minimum at θ∗ � ϑ+ c1

2c2
ln(1�φ)

A�1v. In Figure 6, we also plot the true objective function 
values (averaged over 40 runs) obtained by SPQO, 
SDQO, QG, and gTSSO-QML as a function of the num
ber of simulation evaluations. The convergence behavior 
of the empirical MAEs (averaged over 100 independent 
runs, in log-log scale) of SPQO and SDQO is shown in 
Figure 7.

The conclusions are generally consistent with the 
results for the black-box test functions 1–4 in Section 5.2, 
with SPQO (SPQO-CRN) showing the best perfor
mance. SPQO and SDQO outperform QG by a large 
margin in terms of both mean performance and consis
tency (standard error). In particular, the large sample 
size required by QG results in only eight iterations being 
carried out under the limited budget, whereas the num
bers of iterations for SPQO (SPQO-CRN) and SDQO 
(SDQO-CRN) are 600 and 200, respectively. Moreover, 
because QG computes new quantile estimates at each 
iteration independently of past values, the observations 
collected in previous iterations are discarded, causing 
inefficient use of simulation data. In contrast, SPQO and 

SDQO allow the quantile/gradient estimates to be con
structed incrementally based on all historical simulation 
data, and this in turn offers superior finite-sample per
formance under a limited simulation budget. Note that 
because this is a unimodal problem and gTSSO-QML 
does not exploit gradient information, it is not as effi
cient as SPQO/SDQO. However, the algorithm still out
performs QG, and its performance may be further 
improved through a more careful tuning of algorithm 
parameters.

6. Conclusions
For solving quantile optimization problems in the set
ting of noisy black-box functions, we have proposed 
two new three-timescale gradient-based SA algorithms. 
For this quantile BBO setting, there are very few exist
ing algorithms, so these algorithms represent a meth
odological contribution to the BBO literature. These 
algorithms can also be applied to (stochastic) simula
tion optimization problems where direct gradient esti
mators based on techniques such as perturbation 
analysis or the likelihood ratio method, which rely on 
knowledge of the underlying model, are not readily 
available or are difficult to implement, so the algo
rithms also advance the state of the art in simulation 
optimization. The SPQO algorithm is especially prom
ising for high-dimensional problems, requiring only 
three function evaluations per iterative update. Com
pared with methods relying on order statistics, the 
algorithms proposed here have the potential to achieve 
substantial computational savings. Variants of the algo
rithms using CRN offer the opportunity for further 
reductions in the variance of the gradient estimator and 
hence faster convergence of the algorithms in the simu
lation optimization setting.

Table 4. Performance on the Queueing Example

φ � 0:50 φ � 0:95

Optimal cost 0.62 2.66
SPQO 0.70 (1.2e-2) 2.78 (1.9e-2)
SPQO-CRN 0.67 (8.5e-3) 2.75 (1.5e-2)
SDQO 0.72 (1.6e-2) 2.80 (2.0e-2)
SDQO-CRN 0.73 (2.2e-2) 2.78 (1.7e-2)
QG 1.17 (6.6e-2) 3.57 (1.0e-1)
gTSSO-QML 0.87 (2.8e-2) 3.19 (3.7e-2)

Note. Performance based on 40 independent runs (standard errors in 
parentheses).

Figure 6. Performance of SPQO, SDQO, QG, and gTSSO-QML on the Queueing Example 

number of simulation evaluations

0

1

2

3

4

5

6

ob
je

ct
iv

e 
fu

nc
tio

n 
va

lu
e

SPQO
SDQO
QG
gTSSO-QML
Optimal

0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800
number of simulation evaluations

2

3

4

5

6

7

8

9

10

ob
je

ct
iv

e 
fu

nc
tio

n 
va

lu
e

SPQO
SDQO
QG
gTSSO-QML
Optimal

Hu, Song, and Fu: Black-Box Quantile Optimization 
Operations Research, Articles in Advance, pp. 1–23, © 2024 INFORMS 21 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[9

6.
22

4.
20

8.
18

7]
 o

n 
16

 M
ar

ch
 2

02
4,

 a
t 1

1:
36

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Under the assumption of differentiability of the quan
tile function and other appropriate conditions, we have 
analyzed the bias effect of the proposed gradient estima
tion scheme and established the local convergence of the 
resultant algorithms. More importantly, through a novel 
fixed-point argument, we have also provided detailed 
characterizations of the convergence rates of the quantile 
and quantile gradient estimators. These results extend 
existing work in the single-timescale setting and indicate 
that an upper bound on the MAEs of the algorithms 
diminishes at the optimal rate O(k�1=4). Simulation ex
periments indicate that the algorithms perform well, 
and, in particular, SPQO is very promising for solving 
high-dimensional problems, in terms of the sample size 
required to achieve reasonable performance.

Future avenues of potential research building on the 
results here include (i) developing and analyzing other 
multitimescale algorithms for quantile BBO, such as the 
two-timescale version alluded to in Section 1, for com
parison; (ii) applying the fixed-point approach to study 
the convergence rate of other multitimescale SA algo
rithms (or even single-timescale SA algorithms, as in Hu 
and Fu (2024)); (iii) investigating a more systematic way 
of tuning the step-size parameters needed to implement 
multitimescale SA algorithms; and (iv) designing a more 
comprehensive computational/experimental study to 
characterize when the multitimescale approach is most 
effective.
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approach for quantile optimization problems with high-dimensional 
uncertainty sources. Comput. Methods Appl. Mech. Engrg. 376:113632.

Song M, Hu J, Fu MC (2023) Simultaneous perturbation-based sto
chastic approximation for quantile optimization. Corlu CG, 
Hunter SR, Lam H, Onggo BS, Shortle J, Biller B, eds. Proc. 2023 
Winter Simulation Conf. (IEEE Press, Piscataway, NJ), 3565–3576.

Spall JC (1992) Multivariate stochastic approximation using a simulta
neous perturbation gradient approximation. IEEE Trans. Auto
mat. Control 37(3):332–341.

Spall JC (2003) Introduction to Stochastic Search and Optimization (John 
Wiley & Sons, Hoboken, NJ).

Spall JC, Chin DC (1997) Traffic-responsive signal timing for system- 
wide traffic control. Transportation Res. Part C Emerging Tech. 
5(3–4):153–163.

Spall JC, Cristion JA (1997) A neural network controller for systems 
with unmodeled dynamics with applications to wastewater treat
ment. IEEE Trans. Systems Man Cybernetics Part B Cybernetics 
27(3):369–375.
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