2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA) | 979-8-3503-9313-2/24/$31.00 ©2024 IEEE | DOI: 10.1109/HPCA57654.2024.00085

2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

GRIT: Enhancing Multi-GPU Performance with
Fine-Grained Dynamic Page Placement

Yueqi Wang*{ , Bingyao Li*f, Aamer Jaleel{, Jun Yangj, Xulong Tangf
University of Pittsburght, NVIDIA}
yuw249 @pitt.edu, bil35@pitt.edu, ajaleel@nvidia.com, juy9 @pitt.edu, tax6@pitt.edu

Abstract—Multi-GPU systems have become popular to cater
to the growing demands for high parallelism and large memory
capacity. However, the delivered performance is constrained
by the non-uniform memory access (NUMA) overhead arising
from data sharing and communication across multiple GPUs.
Recent multi-GPUs employ unified virtual memory (UVM) to
simplify the programming effort. In UVM-enabled multi-GPUs,
three popular page placement schemes are adopted to mitigate
the NUMA overheads: i) on-touch page migration, ii) access
counter-based migration, and iii) page duplication. However, we
observe that the preferred page placement scheme varies across i)
different applications, ii) different pages of the same application,
and iii) even different execution phases of a single page, making it
challenging to find a ‘““one-size-fits-all” page placement scheme. To
this end, we propose GRIT, which dynamically and automatically
determines the appropriate page placement schemes at runtime
in a fine-grained manner to enhance multi-GPU performance and
scalability. Experimental results indicate that GRIT achieves an
average of 60%, 49%, and 29% performance improvements over
uniformly adopting on-touch migration, access counter-based
migration, and page duplication, respectively.

I. INTRODUCTION

Graphics Processing Units (GPUs) are widely used in mod-
ern computing systems to provide accelerated performance for
various applications [13], [15]-[17], [20], [26], [37], [46], [47],
[49], [501, [53], [57], [64]. Despite the continuous efforts from
GPU vendors to increase single GPU parallelism and memory
capacity, modern GPUs still struggle to keep up with the
rapid growth of dataset sizes and parallelism requirements of
applications [51]. To cater to application demands, multi-GPU
systems today provide high parallelism and large aggregated
memory capacity by connecting multiple GPUs through high-
bandwidth connections (e.g., NVLink [21]). For instance,
NVIDIA DGX-2 [42] features up to 16 GPUs per node, while
AMD equips the TS4 server with four MI25 GPUs [7].

Modern multi-GPU systems generally employ unified vir-
tual memory (UVM) to simplify programming and improve
application portability and compatibility [4], [5], [41], [45].
UVM allows GPUs to access data residing in remote physical
memory through universal pointers. However, the performance
of UVM-enabled multi-GPUs is constrained by the non-
uniform memory access (NUMA) overheads arising from data
sharing and communication across GPUs. To mitigate NUMA
overheads, there are three popular page placement schemes
in UVM-enabled multi-GPUs. First, on-touch page migra-
tion [44] always migrates pages to the requesting GPU’s mem-

* The authors contributed equally.

ory when the pages are not locally present. While this guar-
antees local page access, significant data-sharing across GPUs
can lead to frequent page migrations. Second, counter-based
page migration [45] uses an “access counter” to trigger page
migration when the access counter reaches a certain threshold
(e.g., 256 in NVIDIA Volta GPUs [41], [43]). However, the
benefits are often offset by the large number of expensive
remote accesses and frequent page table entry invalidations [4],
[5], [8], [9]. Third, page duplication replicates pages in the
GPU’s local memory to facilitate local page reads. However,
page duplication redundantly keeps duplicated pages, which
can potentially lead to memory oversubscription [22], [24],
[38]. Moreover, when a GPU performs a write operation, it
has to invalidate all page replicas on other GPUs (called page
write collapse), incurring additional overheads.

Modern multi-GPU systems uniformly adopt one of the
page placement schemes. We plot the performance of uni-
formly adopting each scheme in Figure 1. We use various
benchmarks with representative access patterns and implement
all three schemes in MGPUSim [56]. The detailed character-
istics of benchmarks are given in Table II, and the simulation
configurations are discussed in detail in Section III-B. We
also include results called Ideal. The Ideal is implemented
as follows: i) All the page reads, except the first cold page
reads, can find the page in the GPU’s local memory. ii) All
the page writes update the pages with zero NUMA latency
regardless of whether the pages are in local memory or remote
memory. Note that, the Ideal is not practical, and we only
use it to reflect the optimization potentials. The results in
Figure 1 are normalized to the on-touch migration. The figure
reveals that there is no ‘“one-size-fits-all” page placement
scheme that universally yields the highest performance across
all applications. These performance differences are attributed
to the diverse page-sharing patterns observed both across
different applications and across different execution phases in
the same application (quantitative results and detailed analysis
are given in Section IV-B). This figure clearly demonstrates the
importance of developing a dynamic page placement scheme
in multi-GPU systems.

Prior works mitigating NUMA overheads in multi-GPUs
include prefetching [23], [24], [52], dynamic page migra-
tion [10], [12], [24], and peer-to-peer load/store [38], [39].
Specifically, prefetching relies on the accurate prediction of
data access patterns which are hard to observe in GPUs due to
the massive parallelism. Dynamic page migration proactively

2378-203X/24/$31.00 ©2024 IEEE 1080
DOI 10.1109/HPCA57654.2024.00085
Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

N

Normalized
performance
-

e - !
cwm=abNOw

BFS BS
OOn-touch

c2p
oA

FIR GEMM MM ST
= Dupli m|deal

Fig. 1. Performance of each scheme relative to baseline on-touch migration.

sc

ion

Ave.

migrates the pages in a bandwidth-aware fashion. However,
it is solely based on one migration policy (e.g., on-touch),
which is not able to benefit different sharing patterns across
GPUs. Peer-to-peer load/store allows fine-granular data trans-
fer among GPUs. However, it increases the access latency
and requires maintaining expensive cache coherence across
multiple GPUs [38], [39].

In this paper, we aim to enhance multi-GPU memory
access efficiency by dynamically determining page placement
schemes in a fine-grained manner. To this end, We propose
fine-GRained dynamlc page placemenT (GRIT) with three
key and novel designs. First, we introduce a Fault-Aware Ini-
tiator that detects and decides when to change page placement
schemes by leveraging the number of page faults sent to the
host. Second, we propose a software-based Page Attribute
Table (PA-Table) in memory that records the page access
information to determine appropriate page placement schemes.
We design a hardware-based Page Attribute Cache (PA-Cache)
to reduce the potential memory bandwidth contention caused
by memory accesses to PA-Table. Finally, we develop a
Neighboring-Aware Predictor that leverages the access pattern
similarity of neighboring pages to proactively predict and
determine page placement schemes for adjacent pages. The
paper makes the following major contributions:

e We conduct a comprehensive characterization and root the
source of performance variation across different page place-
ment schemes. We quantitatively analyze the page sharing
patterns across different applications and across different
execution phases within a single application. The results
indicate that i) different pages prefer different placement
schemes during execution and ii) neighboring pages generally
show the same scheme preferences.

e We propose GRIT, which incorporates three optimizations:
i) Fault-Aware Initiator to detect the inappropriate page
placement scheme and initial scheme change when necessary;
ii) Page Attribute Table to track the page access characteris-
tics and make decisions on the appropriate page placement
scheme; and iii) Neighboring-Aware Prediction to proactively
determine the page placement scheme for adjacent pages.

o We evaluate GRIT using eight multi-GPU applications. Ex-
perimental results show that GRIT achieves an average of
60%, 49%, and 29% performance improvement over on-
touch migration, access counter-based migration, and page
duplication, respectively. We also evaluate GRIT with large
page size and different numbers of GPUs, and compare it
with the state-of-the-art. The results show that GRIT either
outperforms existing approaches or can be combined with
existing approaches to yield further benefits.

1081

Initialization
GPU,

GPU, | GPU,

GMMU

Device Memor
[_Page |
INTERCONNECT
UVM Driver

GPU, GPU;

Access.
oL,
v
UVM Driver

GPU;

e Access counter-
A~ based migration

SA

L2

v
UVM Driver
cPU{f GPUJ§
Duplication
(Write]
GPU GPU GPU
N Colfapse
GPU, E

Fig. 2. Baseline GPU architecture and page placement schemes.

~—
UVM Driver

Duplication

v
UVM Driver

i
E el
i

On-touch
migration

GPU;4

(C)

Page Placement Schemes

4
[vemory

GPU,

II. BACKGROUND
A. Baseline UVM-Enabled Multi-GPU System

In this paper, we focus on multi-GPU systems, where mul-
tiple GPUs are connected via high-bandwidth interconnects
such as PClIe [40] or NVLink [21]. Figure 2 shows the multi-
GPU architecture. Unified virtual memory (UVM) [21] is
employed and managed by the UVM driver on the CPU side.
UVM allows programs to use universal pointers to access the
memory in the CPU and different GPUs. Each GPU has its
own local memory and local page table (PT). If the page table
entry is invalid in the local page table, a local page fault
is generated and sent to the UVM driver. The UVM driver
maintains a centralized page table that stores all valid and up-
to-date address translations for all GPUs [5].

B. Page Placement Scheme

There are three common page placement schemes which are
illustrated in Figure 2.

1) On-touch migration: As shown in Figure 2 @), whenever
a GPU accesses a page that is not currently presented in its
local memory, the page will be migrated into the requesting
GPU memory. Migrating a page is expensive and introduces
execution overheads [10], [30], [32], [60]. The detailed page
migration is similar to previous works [10], [30], [32], [60].
Specifically, first, UVM flushes in-flight instructions in the CU
pipeline and the contents of the caches and TLBs of the GPU
that owns the page. Second, the UVM driver migrates the
page to the requesting GPU and notifies the finish of the page
migration to the requesting GPU. On-touch page placement
ensures that the subsequent GPU accesses to the same page
can fetch the data from its local memory. However, if a page is
accessed by different GPUs in an interleaved manner, on-touch
placement can lead to “ping-pong” page migrations, which
significantly degrades performance.

2) Access counter-based migration: NVIDIA Volta
GPUs and newer generations [14], [41] feature hardware-
implemented access counters to avoid frequent page migration.
The access counters track the number of remote accesses at
a page group granularity of 64 KB. The GPU establishes the
address translation to a remote physical page in its local page
table. A static threshold of 256 remote accesses is employed
to trigger page migration. Figure 2 shows the process
of the access counter-based page placement scheme. The
detailed process is as follows. 1) When a GPU first accesses
a physical page in another GPU, it generates a local page
fault. This local page fault is forwarded to the UVM driver.
The UVM driver walks the centralized page table to obtain

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

the translation of the page and sends the translation back to
the requesting GPU; 2) Upon receiving the translation, the
GPU updates the local page table to establish the remote
translation mapping, as well as fetches the data at a cache line
granularity from the remote GPU; 3) On each remote memory
access to a page, the access counter of the corresponding
page group is incremented. When the access counter reaches
the threshold, the page migration request is generated to the
UVM driver; 4) The UVM driver broadcasts the invalidation
requests to every GPU to invalidate the page table entries,
TLBs, and caches to ensure translation and data coherence,
as well as flush in-flight instructions in the CU pipeline; 5)
After all invalidations finish, the UVM driver initiates the
page migration. This scheme helps reduce “Ping-Pong” page
migrations across GPUs but introduces remote access and
invalidation overheads [30].

3) Page duplication: Figure 2 (© shows the page du-
plication scheme. Specifically, when a read/load operation
generates a local page fault, the GPU replicates the page in
its physical memory. In scenarios where the page is loaded by
multiple GPUs, each GPU stores a page replica in its local
memory. When a GPU performs a write operation on a shared
page, page write-collapse is required to ensure consistency.
Specifically, when any GPU writes a page, the GPU sends a
page protection fault to the UVM. Upon receiving the page
protection fault, the UVM driver sends the page invalidation
requests to the corresponding GPUs. GPUs that own the page
flush in-flight instructions in the CU pipeline, the contents of
TLBs and caches, and invalidate the corresponding Page Table
Entry (PTE). Then, the requesting GPU can resume its write
operations on the page. If any other GPUs read that page again,
the UVM driver copies the most recent version of the page to
that particular GPU. The page duplication allows read-shared
pages to be accessed locally by multiple GPUs, avoiding
remote memory access latency. However, the overhead of
collapsing read-write shared pages can be expensive, making
it unsuitable for write-intensive applications. Moreover, it is
subject to memory oversubscription because of duplicated
copies of the same page (as shown by prior works [38], [63]).

III. METHODOLOGY

A. Applications

We use eight applications with various multi-GPU mem-
ory access and page sharing patterns from AMDAPPSDK
[6], Hetero-Mark [55], SHOC [18], and DNN-MARK [20]
benchmark suites as listed in Table II. Specifically, BE'S and
BS demonstrate a random access pattern where each GPU
performs read and write operations to other GPUs in an
unpredictable manner. C2D, FIR, SC, and ST exhibit adjacent
access pattern in which the input data is batched and shared
with the neighboring GPUs. GEMM and MM follow a scatter-
gather access pattern where each GPU reads or writes data
from local and remote GPUs.

TABLE 1
BASELINE MULTI-GPU CONFIGURATION.
[Module | Configuration
Compute Unit 1.0 GHz, 64 per GPU
L1 Vector Cache 16 KB, 4-way
L1 Inst Cache 32 KB, 4-way
L1 Scalar Cache 16 KB, 4-way
L2 Cache 256 KB, 16-way
DRAM Configured to 70% of application’s memory footprint
[10], [22], [24], [34]
L1 TLB 32 entries, 32-way, l-cycle lookup latency,
CU private, LRU replacement policy
L2 TLB 512 entries, 16-way, 10-cycle lookup latency,

CUs shared, LRU replacement policy

GMMU 8 shared page table walker [48], [54], [59],
100-cycle latency per level [25]

128 entries shared across page table walker [48]

64 entries

256 [43]

300GB/s NVLink-v2

32GB/s PCle-v4

TABLE II
LIST OF APPLICATIONS.

Page table walk

Page walk cache

Page walk queue

Access counter threshold
Inter-GPU network
CPU-GPU network

N Benchmark Access Memory
‘ Abbr. Application Suite Pattern Footprint
BFS Breadth-first Search SHOC Random 32 MB
BS Bitonic Sort AMDAPPSDK | Random 30 MB
Cc2D Convolution 2D DNN-Mark Adjacent 94 MB
FIR Finite Impulse Resp. Hetero-Mark Adjacent 155 MB
Gey | Seneral Matrix AMDAPPSDK | Scatter-Gather | 16 MB
Multiplication
MM Matrix Multiplication AMDAPPSDK Scatter-Gather | 33 MB
sC Simple Convolution AMDAPPSDK | Adjacent 131 MB
ST Stencil 2D SHOC Adjacent 33 MB

B. Baseline Configuration

We conduct our experiments using the industrial-validated
MGPUsim Simulator [56]. We target multi-GPU system where
each GPU has its own local page table and GPU Memory
Management Unit (GMMU). The baseline configurations are
shown in Table I. Note that, the GPU memory capacity is
configured to a fixed ratio (i.e., 70%) of the application’s
memory footprint (given in the last column of Table II).
This allows us to model the memory oversubscription during
execution while avoiding extremely long simulation times
when simulating large memory footprints. This approach is
also employed by prior work GPU [10], [22], [24], [34]. In
the baseline settings, we use a 4KB page size and provide
sensitivity to large page size in Section VI-B3. In all the
experiments, the thread block (TB) scheduler first schedules
the TBs across CUs within one GPU in a round-robin fashion.
Only when the GPU cannot accommodate more TBs, the
scheduler moves to the next GPU [30], [32]. This scheduling
captures the inter-TB locality within a GPU.

IV. MOTIVATION AND CHARACTERIZATION

A. Overall Application Characteristics

We plot the page-handling latency of each page place-
ment scheme and normalize the page-handling latency to the
baseline on-touch migration. For each scheme, we further
break down the page-handling latency into six parts, as shown
in Figure 3. Specifically, “Local” captures local page table
walk latency after L2 TLB misses. “Host” represents the
UVM page faults handling latency. “Page-migration” captures

1082

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

N
&

0.75
0.5

Normalized latency

OWrits

Elocal mHost OPag

Fig. 3. Page-handling latency breakdown of each page placement scheme. (OT

represents on-touch migration, AC indicates access counter-based migration,
and D stands for page duplication.)

the page migration latency as discussed in detail in Sec-
tion II-B1. One can observe that “page-migration” accounts
for a significant portion of page-handling latency in each
application when on-touch migration is employed, whereas,
in contrast, the “page-migration” is significantly reduced by
allowing remote access when access counter-based migration
is employed. However, the counter-based migration introduces
a notable increase in remote access latency, which is denoted
by the “remote-access” portion in the figure. While “page-
migration” and “remote-access” latency are eliminated in the
page duplication scheme, duplicating pages introduces two
unique latencies labeled as ‘“page-duplication” and “write-
collapse”. Specifically, “page-duplication” includes latencies
of i) UVM driver duplicating page to requested GPU, ii)
page eviction from GPU due to oversubscription, and iii)
page re-duplication when accessing the evicted page. “Write-
collapse” includes latencies of i) the UVM driver walking the
centralized page table to obtain the information and ii) the
GPU that owns the page flushes in-flight instructions in the
CU pipeline, contents of the caches and TLBs, and invalidates
the corresponding PTE. In Figure 3, applications BF'S, GEMM,
and MM show little “write-collapse” latency. This is because
these applications are read-intensive, and duplicating shared
pages can substantially increase local access. However, “page-
duplication” and “write-collapse” can introduce significant
latencies in certain applications with frequent reads and writes
to the shared pages. As such, those shared pages are frequently
collapsed after writes and then re-duplicated after reads by
GPUs. For example, in BS, C2D, and ST, it’s observed that
46%, 49%, and 45% of their pages, respectively, experience
write-collapse being re-duplicated by reads afterward.

B. Page Access Characteristics

Observation 1: The page-sharing patterns vary among
different applications and show variations over time within
the same application. Figure 4 shows the percentage of
private pages and shared pages of each application. We define
the private page as pages that are only accessed by one GPU

100%
75%

Page/access
percentage

BFS
OPrivate page

BS
o Shared page

c2D FIR GEMM
oAccess to private page

MM sc ST
mAccess to shared page

Fig. 4. Percentage of private page and shared page, and percentage of accesses
going to private pages and shared pages.

1083

> =GPU 1 GPU2 GPU3 =GPU4

"6.; 100% 100% —

S0 75% 75% I

o @

28 50% 50%

8 25% 25% I

SO 0% 0%

o g 0 5 10 15 20 25 30 0 5 10 15 20 25 30

(a) Time (x1000000 cycles) (C2D) (b) Time (x1000000 cycles) (ST)

Fig. 5. Shared page access pattern over time for a certain page.

during the entire execution, while shared page are accessed by
more than one GPU during the whole execution. One can ob-
serve differences in page sharing across different applications.
For example, in FIR and SC, almost all the pages are private.
In contrast, almost all pages are shared by GPUs in BFS and
ST. Applications such as C2D and MM show a mix of both
private and shared pages. The sharing behavior significantly
impacts the performance of page placement schemes. For
private pages, pages are exclusively accessed by a single GPU.
Therefore, migrating the page on touch to the requesting GPU
maximizes the locality for subsequent accesses. This is also
the reason why on-touch migration outperforms other page
placement schemes in FIR and SC (see Figure 1), where
a significant portion of private pages are observed. We also
show the percentage of accesses to private pages and shared
pages in Figure 4. One can observe that, except BF'S, all other
applications have a majority of page accesses going to the
dominating page types (i.e.,g private or shared). While BF'S
has a large number of shared pages, only a few accesses are
going to shared pages. Therefore, employing access counter-
based page migration is appropriate for these shared pages.

For shared pages, we further investigate their access behav-
iors during the course of execution. We collect the distribution
of the accesses to a page from all GPUs at intervals of one
million cycles for C2D and ST, who have a significant amount
of page sharing. As shown in Figure 5, we can classify the
shared pages into two categories. First, producer-consumer
shared page (PC-shared page), where the page is dedicatedly
accessed by one GPU at certain intervals and then accessed
dominantly by another GPU at different intervals, as shown in
the C2D (Figure 5 (a)). For such scenarios, adopting on-touch
migration is more favorable. Second, all shared page, where
different GPUs access the shared page frequently throughout
the execution, as shown in the ST (Figure 5 (b)). In this case,
access counter-based migration is beneficial as this scheme
involves tracking the access counts of each shared page on
different GPUs. If a particular page is currently residing on a
GPU with a low access count, the page becomes a potential
candidate for migration to another GPU with a higher access
count. We also observe sharing pattern change for the same
page in different intervals within ST. Specifically, the same
page in ST shows the all-shared pattern during intervals O-
5 and becomes the PC-shared pattern during intervals 25-30.
Therefore, for those applications with extensively shared pages
(e.g., BS, C2D, and ST), it is important to dynamically decide
the most suitable page placement scheme for different appli-
cations and different pages during the executions considering
the variations of page sharing patterns.

Observation 2: Page duplication does not always yield

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

e Shared Private e Read-write Read e Shared Private

50 50 L —
40 — 040 = o
E — £ £
F30 i F30 Faggl =S Z222=22
c c c
o — Ke} o
320 320 320
5] @ 15}
X — — X — X
w10 - w10 o w1o

0 B a— 0 o i i el A s Sl S ol
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 2000 4000 6000 8000
Pages Pages Pages

Fig. 6. Private or shared page attribute over time

for all pages (GEMM). for all pages (GEMM).

100%

75%
50%
25%

Percentage

0%
GEMM MM sC ST
m Access to read-write page

BFS BS c2p FIR
O Access to read page
Fig. 9. Percentage of the accesses going to read pages and read-write pages.

H Read-write Read

Percentage of
page attribute
(2
(=]

X

0 5 10 15 20 25 30
Time (x1000000 cycles) (ST)

Fig. 10. Read and read-write attribute over time for a certain page.

benefits for read-write intensive applications. Ideally, page
duplication can significantly improve performance as all pages
can be accessed in local memory when reused. However, as
shown in Figure 1, the read duplication does not always yield
the best performance. Figure 9 presents this problem using the
distribution of GPU memory accesses to read pages and read-
write pages. The read page refers to a page where all memory
accesses to that page are read during the entire execution.
The read-write page is defined as a page that experiences at
least one write operation during the execution. Combining with
Figure 1, one can make the following observations. First, the
page duplication works well for applications with substantial
read-shared pages (e.g., BF'S and GEMM), since duplicating the
shared pages locally can significantly reduce remote memory
access latencies. Second, the page duplication does not provide
benefits to applications with intensive read-write pages (e.g.,
BS, C2D, SC, and ST). This is because the overheads of page
write-collapse can be expensive.

Moreover, read or read-write page attributes also exhibit
time variations within the same application. To illustrate this,
we further study the memory access patterns of the read-write
page during the execution. Figure 10 shows the distribution
of the read/write memory accesses to a particular read-write
page at intervals of one million cycles for ST. We observe that
write memory accesses are not always present throughout the
execution of the application. Instead, there are intervals where

Fig. 7. Read or read-write page attribute over time

Fig. 8. Private or shared page attribute over time
for all pages (ST).

there are only read accesses (intervals 0-8) and other intervals
where there are both read and write accesses (intervals 9-31).
This highlights the importance of carefully choosing the page
duplication, considering the variation in read/write memory
access behavior for different pages and different periods.
Takeaway. The study above reveals that different applica-
tions benefit from different page placement schemes, indi-
cating that there is no one-size-fits-all scheme. The degree
of page sharing and page read/write varies across different
applications, which affects the effectiveness of different page
placement schemes. Within a specific application, different
pages exhibit distinct access patterns, and their behaviors
may vary over time. This dynamic nature of page access
behavior calls for a dynamic page placement scheme that can
accommodate variations in page access characteristics.

C. Page Attributes Characterization

We observe that in many applications, the neighboring
pages tend to exhibit similar access attributes. To illustrate
it, we sample the accesses attributes (i.e., shared/private and
read/write) of consecutive 4,000 pages throughout the entire
execution of GEMM, and the results are presented in Figure 6
and Figure 7. To be more specific, the y-axis represents the
total execution cycles, and we divide the entire execution
cycle into 50 intervals. For each interval, we track all the
page access attributes. As observed, for example, at the same
time interval, pages 0 to 1,000 exhibit the same private and
read attribute, while pages 1,000 to 2,000 display the same
shared attribute. This pattern is also closely related to the
algorithmic data structure in the application. In the case of
GEMM, the algorithm allocates three separately consecutive
memory segments for the two input matrices and the output
matrix. During execution, each GPU reads data for the input
matrices from both its local memory and the remote GPU’s
memory, then each GPU writes its computed portion of the
output matrix only to its own local memory (i.e., DRAM).
The output matrix is divided into portions, and each GPU is
responsible for computing and updating its assigned portion.
As aresult, the shared pages, which contain data from the input
matrices, remain read and are accessed by multiple GPUs.
These pages are accessed consecutively in the matrix, leading
to consistent access patterns among neighboring pages within
a certain interval. On the other hand, the write pages, which

1084

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

Resolve Fault

l False
Page SV Fault-Aware™, 1™1S(Scheme
Fault Driver nitiato, Decision
i
CPU Neighboring-

Page Attribute Aw_arfe
Table & Cache Prediction

Fig. 11. High level overview of GRIT.

store the output matrix data, are accessed sequentially in the
matrix and modified exclusively by a specific GPU, making
them private and consecutive. We also present the private and
shared page attributes over time of one irregular application
(ST) to demonstrate the neighboring page access attributes.
We can observe from Figure 8 that, even though the attributes
of specific pages change over time, neighboring pages exhibit
similar page attributes as well as attribute changes over time.
This observation highlights that if we can track one page’s
access attributes, we can predict the neighboring page access
behavior ahead of time, enabling us to proactively determine
the page placement scheme for neighboring pages.

V. FINE-GRAINED DYNAMIC PAGE PLACEMENT (GRIT)
A. High Level Overview

We propose fine-GRained dynamlc page placemenT
(GRIT) that leverages page access attributes to dynamically
determine the page placement scheme at runtime. There are
three major challenges in effectively and efficiently determin-
ing a page placement scheme. First, different applications
have distinct page access behaviors and the page access
patterns of an application change over time. Therefore, it
is important to promptly identify improper page placement
schemes during the execution and determine when to initiate
the scheme change. Second, to identify the right moment
to change the scheme and select a suitable scheme, it is
important to record the application page access attributes with-
out introducing significant overhead. Finally, inaccurate page
placement scheme predictions can lead to unnecessary page
migration overhead or increased remote memory accesses.
Therefore, it is important to accurately predict the neighbor
page attributes. To this end, we propose GRIT as shown in
Figure 11, which incorporates three novel designs: i) Fault-
Aware Initiator to determine when to initiate page placement
scheme change, ii) Page Attribute Table to monitor the page
access characteristics (i.e., share/private and read/write) to
provide information for selecting appropriate page placement
schemes, and iii) Neighboring-Aware Prediction to proactively
decide neighboring page placement scheme by leveraging
the similarity of access patterns and page attributes among
consecutive pages.

B. Fault-Aware Initiator

One intuitive way to detect whether the current page place-
ment scheme is suitable is to periodically check the per-GPU
and per-page attributes. However, the periodic checks require
each GPU to maintain access patterns and attribute information

=] VPT Index bits
= "
5 it back
((N
i [PA-Cache i i
1 e 1
||| way-0 way-3 i i PA-Table i
i — | — | ! i
! VPT [Record Bits| | 2 VPT |Record Bits ! } VPN (45)[Fault Count(2) [RIW (1) !
H | e e o | I s s [0xA000 10 0]
i - b 0xA001 01 1 !
i P i
i P i
i &2 §] NI ! }
i |"<; >—‘—‘—1‘ i i
i | i
)R
| EE— ¥ Y, return

Fig. 12. Overview of PA-Table and PA-Cache in GRIT.

for every page, which results in significant storage overhead
in each GPU. Additionally, interconnection communication
overhead arises as the information needs to be shared across
different GPUs to analyze access patterns and page attributes
for each GPU. To mitigate these overheads, we employ the
page fault as an indicator to trigger the page placement scheme
change, which includes the number of local page faults and
page protection faults. When a page translation is invalid in
the local page table entry, it generates a local page fault
that is sent to the CPU for handling. Frequent occurrences
of local page faults for the same page indicate that the
page is being accessed frequently by multiple GPUs and that
the current page placement scheme is unsuitable, suggesting
that page duplication may be more appropriate. Additionally,
as mentioned in Section II-B3, in the page duplication, the
UVM driver will receive a page protection fault when a write
operation is performed on a shared page. If write operations
frequently occur on a shared page, it indicates that the page
duplication is not suitable due to the expensive page write
collapsing overheads, thus a scheme change is demanded.
Therefore, by monitoring the number of local page faults and
page protection faults received in the UVM driver, we can
efficiently detect unsuitable page placements without incurring
additional storage and interconnection overhead. The default
fault threshold is set to four' to initiate the scheme change.
When a specific page reaches the fault threshold, it triggers
an interruption to the UVM driver for scheme change. We
implement a Page Attribute Table (PA-Table) in the CPU
memory to track the number of page faults for each page.
We discuss PA-Table details next and address questions: How
to track page information? and Which scheme to change to?.

C. Page Attribute Table

Page Attribute Table (PA-Table) is designed to indicate page
attributes (i.e., private/share and read/write) and track the num-
ber of page faults (i.e., local page faults and page protection
faults). Figure 12 shows the architecture details of PA-Table.
Specifically, each entry in the PA-Table is 48 bits and stores
VPN (45 bits), read/write type (1 bit), and fault counter (2 bits,
initialized to 00). In this PA-Table design, accessing PA-Table
involves additional memory accesses, potentially impacting the
memory bandwidth of running applications and introducing
additional overheads. To mitigate this issue, we introduce a

'We also evaluate our approach with different fault thresholds (i.e., the total
number of local page faults and page protection faults) in Section VI-BI.

1085

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

hardware-managed Page Attribute cache (PA-Cache) to store
frequently accessed entries, thereby mitigating memory band-
width contention caused by additional memory accesses to the
PA-Table. Figure 12 also illustrates the microarchitecture of
PA-Cache. The cache is designed for 64 entries with a 4-way
associative structure. The PA-Cache employs a write-allocate
and write-back policy.

How to track page attribute: When UVM receives a local
page fault or page protection fault, it initiates the page table
walk to resolve the fault request and also checks the PA-Cache
to obtain the access information of the corresponding page.
Specifically, we design 64 entries in the PA-Cache. The VPN
is divided into index bits (the lower 4 bits of VPN) and virtual
page tag (VPT, the upper bits of VPN excluding the index
bits). The index bits of the request are used to locate the set
in the PA-Cache. The VPT of the request is then compared
with the VPT stored in the corresponding set. If the VPT
of the request is found in the PA-Cache, the fault counter
is incremented by 1. The read/write bit is set as the requested
page attribute (0 for read, 1 for write). Once the read/write
bit is set to 1 (write), it remains unchanged during the current
scheme lifetime. The entry in the PA-Table will be deleted
once the fault counter reaches the fault threshold and the page
attribute is updated to a new scheme. However, if the VPT is
not found in the PA-Cache, a memory access is generated to
access the PA-Table. Two scenarios may happen. If the entry is
found in the PA-Table, the corresponding entry is then brought
into the PA-Cache as in the write-allocate policy, and the fault
counter and read/write bit are updated. Otherwise, the VPT
of the request and the corresponding bit are registered in the
PA-Cache. The reason for bringing the entry to PA-Cache and
updating it there instead of directly updating it to PA-Table is
that there is a high possibility for other GPUs to access this
page subsequently due to page sharing. If the PA-Cache is full,
an entry is evicted using the LRU replacement policy and is
written back to the PA-Table. If the fault counter reaches the
fault threshold, the page access information is sent to the UVM
driver for the following analysis, and both the entry in the
PA-Cache and the PA-Table are deleted. Note that, we do not
include a bit for private and shared page characteristics. This
is because the corresponding entry is deleted after the page
placement scheme is changed. In the case of a page accessed
by only one GPU after deletion, it will never generate a local
page fault or page protection fault. Therefore, when a request
successfully hits either PA-Cache or PA-Table and triggers a
scheme change, it indicates that the page is a shared page.

TABLE III
POLICY PREFERENCE.
Types Private PC-shared All-shared
Read OT/Duplication ~ OT/Duplication ~ Duplication
Read-write | OT OT/AC AC

Which scheme to change: From the characterization in
Section IV, we can derive the candidate page placement
scheme related to the page attributes, as described in Table III.
Based on the page access information obtained from PA-Table,

Get access
— information
from PA-Table

(Duplication)

True

Accessed True False -
by more than one Al;q Accefs
GPUs? UEELT counter

Fig. 13. Scheme decision mechanism in GRIT.

63 62:54 53:52 51:12 1 10:9 8:0

X | Unused | Group | 4 KB Page Frame |U| Scheme |G|P|D|A|P|P|R|U]V

D Bits Bits Number (PFN) B Bits A clwi’ |/
(UB) D|T |w|s

Fig. 14. Page table entry format for 4KB pages in GRIT.

we propose a page placement scheme decision mechanism as
shown in Figure 13. If a page placement scheme change is
triggered, it indicates that the corresponding page is a shared
page. This is because a privately accessed page, which is
exclusively accessed by a single GPU, generates only one
local page fault and is registered in the PA-Table upon initial
access. Afterward, the page is migrated to the local memory,
and the translation mapping is established in the local page
table. Consequently, private pages do not trigger any updates
to the PA-Table, and page placement scheme changes are not
initiated for such pages. Therefore, our mechanism simplifies
the decision-making process by solely checking the read/write
bits of the page. If all accesses to a page are read, the scheme is
changed to page duplication. Conversely, if a page is accessed
by write, the access counter-based migration is chosen. The
adopted page placement scheme will be updated in both the
host side PTE and the GPU PTE. The bits of 9 to 10 in the
PTE are used to store the scheme bits as shown in Table IV
and Figure 14. Note that, there is no need to initiate another
page table walk to update the scheme bit. This is because
the scheme bit update occurs during the page table walk to
resolve the page fault. The PA-Cache and PA-Table lookup and
decision-making latency (e.g., PA-Table lookup only needs one
memory access) is generally less than page table walk latency
(e.g., an average of 2-3 memory accesses depending on page
walk cache performance). In situations where the page table
walk is faster than making a scheme decision, we hang on
the page table walk and let it wait for the scheme decision
to be finalized. Note also that, there are potential overheads
associated with scheme changes. When the scheme is reset
from duplication to another scheme, data consistency needs
to be ensured. In such cases, the UVM driver invalidates the
corresponding PTE/TLB in each GPU.

TABLE IV
SCHEME BITS.

[Scheme Bits [01 [10 [11
| Scheme | On-touch migration [Access counter-based | Duplication |

D. Neighboring-Aware Prediction

Recall our discussion in Section IV, neighboring pages
tend to exhibit similar page attributes. We further propose
a Neighboring-Aware Prediction approach, which leverages
attribute similarity to predict the attributes of neighboring
pages and proactively determine the page placement scheme.
It allows pages that have not yet been allocated in the GPU’s

1086

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

page table or are still using their previous page placement
scheme to apply the new scheme on the next page fault occur-
rence without having to reach the fault threshold. Specifically,
we define a page group as a set of consecutive pages (i.e.,
pages are located adjacently in the virtual address space).
The minimum page group size is eight 4KB pages, and eight
smaller groups can be combined to form a larger group. In
our approach, we set the maximum group size to 512 pages,
which corresponds to a 2MB continuous virtual address space
that can be accommodated within a single page table page.
This design eliminates the need to check across different
page table pages and avoids generating additional memory
accesses. We leverage the unused bits in the host side PTE
to create a group size bit (i.e., bits 52 to 53, as shown in
Figure 14), which identifies the number of consecutive pages
within the page group. For example, if bits 52 and 53 are set
to “007, it indicates a single 4KB page. If the bits are set to
“01”, it represents a page group of eight consecutive 4 KB
pages. The mapping of group bits and their corresponding
number of pages is illustrated in Table V. Note that, the
reason for leveraging PTE records this information instead of
embedding it in the PA-Table is that the virtual addresses of
consecutive pages are stored sequentially in the page table.
When we know the virtual address of the base page” in the
group and the size of the group, we can easily identify all
the consecutive pages within that group by simply traversing
the page table entries sequentially. The group size bits are
only recorded in the PTE of the base page in each page
group to simplify the process of managing and analyzing
consecutive page groups. The virtual address of the base page
(V PNypgse) is calculated as follows: VP Nygse = VP Neyrr —
(V PNeyrr/ PageSize)%GroupSize x PageSize. It is im-
portant to note that if the group size is set to “01” or larger,
it indicates that all the pages within the group adopt the same
page placement scheme.

TABLE V
GROUP BITS AND THEIR CORRESPONDING NUMBER OF PAGES.
Group bits | Number of pages | Size
00 1 4KB
01 8 32KB
10 64 256KB
11 512 2MB

As shown in Figure 15, initially, all group size bits are set
to “00”. When the number of page faults of a specific page
reaches the page fault threshold, the page placement scheme
change is initiated (@). Once a new scheme is determined
for this particular page, we then check the page placement
scheme (bits 9 to 10 of the PTE) for eight neighboring pages
(®). If more than half of these checked pages adopt the same
page placement scheme as the newly selected scheme for this
specific page, we apply this new scheme to all these pages and
update the corresponding scheme bits for each page. Then,
we promote these eight pages into a group and update group
bits of the base page to “01” to indicate all eight consecutive

2We define the first page in each group as the base page.

1087

(2}

VPN Group Bits__ |Scheme Bits Other Bits VPN Group Bits SchemeBits Other Bits
0xF000 00 10 | oxFo00 [] o1 10,
0xF001 LT 00 , 0xF001 ;00 10
0xF002 1 00 00 0xF002 00 10 F
0xF003 [, 00 T 0xFoo3 | I 00 10|
0xF004 00 o q-—=—]-€) oxFoos4 [] 00 10,
0xF005 T 00 1 0xF005 , 00 10
0xF006 1 oo 0xF006 " 00 10!
0xF007 [, 00 T oxFoo7 | I_00 10]

256KB Page Group
A

32 KB Page Group 32 KB Page Group 32 KB Page Group

x8|

—_ = = ——

r

Page Page Page Page x8 Page Page Page

Fig. 15. Neighboring-Aware Prediction in GRIT.

pages now adopt the same page placement scheme and can
be treated as a cohesive unit (@). We then recursively check
if this group can combine with other neighboring groups to
further promote to a larger group. Similarly, if more than half
of the neighboring groups (i.e., the group size bit of the base
page is “01”) adopt the same page placement scheme as the
newly determined scheme, we further propagate the scheme
to all these pages (i.e., 64 pages), and update the group size
bit of the base page to “10”, indicating that 64 pages are now
adopting the same page placement scheme (@).

When the page fault of a specific page within the group
reaches the fault threshold and initiates a scheme change,
the scheme bit of this page is changed to the new scheme,
making it different from the scheme used by other pages within
the same group. As a result, we will perform a downward
degradation of the page group, wherein the original group
will be downgraded to a smaller group due to the presence
of a newly selected different scheme within the group. For
example, if the group bits are initially “10” (indicating a
group size of 64 consecutive pages employing the same page
placement scheme), and one of the pages within the group
changes to another scheme, the 64-page group is degraded into
eight 8-page groups. The group of pages where the scheme
change occurred will change group bits to “00” because one of
these eight pages is now using a different scheme and cannot
be considered a unified group anymore. However, the other
seven 8-page groups derived from the initial group still use
the same scheme, and hence, their group bits are set to “01”.

Note that, when the newly determined page placement
scheme is the same as the previously adopted page placement
scheme, which can only occur in the access counter-based
migration, we do not perform page group checks to prevent
unnecessary back-and-forth group promotion and degradation.
For example, consider a page group with eight pages, all
employing the access counter-based migration. When one page
within the group changes to the duplication, the group is
downgraded to single eight pages. Subsequently, the second
and third pages also change to duplication, and upon checking
the neighboring eight pages, only three pages use the same
duplication, which is insufficient to trigger a group promotion.
Then, if another page within this neighboring range initiates
a scheme change and the decision remains the same as the

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

A Sch

Decision

g
Prediction Mechanism
2
S & | Host MMU o| @
Memory 5 PT-walk Request !’T _
Page 3 Scheme bits | Group Bits | ...
¥ E == i
i 1 E PA-Table [|
L2 TLB E 3 VPN Record bits | Page Table
I]
GMMU 3 Memory >
X g L
PT-walk g ® : ®
z

Fault-Aware Initiator

Fig. 16. Overview of GRIT.

previous scheme, i.e., access counter-based migration, it will
not perform a page group check. This is because more than
half of the neighboring eight pages are still using the access
counter-based migration scheme, and if we choose to promote
to a larger group, the three pages that employ duplication will
be changed back to the access counter-based scheme. Avoiding
page group checks in such cases prevents unnecessary group
promotion and degradation.

Note also that, the page group check happens in the
background so that page placement scheme updates do not
block GPU execution. Once the local page fault or page
protection fault is resolved, the GPU resumes its execution. In
the background, the UVM driver checks if the page placement
scheme can be unified for neighboring pages, and this process
does not involve any page migration or PTE/TLB invalidation.

E. Putting All Together

Figure 16 provides an overview of the entire process of
GRIT. When a read request is generated, and it misses the
L1, L2 TLB, and local page table, the GMMU sends a local
page fault to the host (the GMMU sends a page protection
fault for a write request) (©). Upon receiving the page fault,
the UVM driver updates the PA-Table and PA-Cache to record
and check the fault information (@) in parallel with page table
walks. Depending on the number of faults that have occurred
for this specific page (®), two scenarios may happen. First,
if the fault has not reached the threshold, the UVM driver
checks the scheme bits of the PTE in the centralized page
table when performing the page table walk. If the scheme
bits are different from the scheme currently being employed
due to the neighboring-aware prediction, the page employs the
updated scheme determined by Neighboring-Aware Prediction
as specified in the centralized PTE without waiting to reach
the fault threshold. Second, if the fault count has reached the
fault threshold, the UVM driver uses the access information
stored in PA-Table to decide the appropriate scheme to be
applied (@). It then updates the scheme bits in PTE for both
the GPU and host side accordingly. Also, the UVM driver
triggers Neighboring-Aware Prediction to further optimize for
neighboring pages and update group bits (®).

F. Overheads

Our proposed GRIT introduces two main overheads. First,
the PA-Table incurs memory overheads and the PA-Cache
incurs hardware overheads. In our design, each entry in the
PA-Table is 48 bits (45 bits for VPN + 2 bits for page fault +
1 bit for read/write attribute) for a single page. Given that

1088

the page size is 4KB, the total memory space required is
% = 0.15% of the application memory footprint. Thus,
the memory overhead of the PA-Table is negligible compared
to the overall memory in the system. With 64 entries in the
PA-Cache, the hardware overhead is (41 + 2 + 1) bits x
64 entries = 352 bytes. We use CACTI [58] to estimate the
areas and the results show that PA-Cache is 0.04% compared
to the areas of 32KB 8-associative CPU L1 cache. Second,
scheme change involves latency overheads. It can happen that
a new scheme decision is made after the page table walk has
finished. In such cases, the replay of page fault is postponed
until the scheme bit is updated in the page table entry, and this
can impact the total latency of page fault handling. However,
we rarely observe such case happens in our evaluation and
this additional latency is marginal to the overall performance.
When the scheme is reset from duplication to another scheme,
the UVM driver removes all the page replicas and invalidates
the corresponding PTE and TLB in each GPU to ensure
data consistency. Although this process introduces latency, it
is considered trivial compared to the overheads caused by
improper schemes.

VI. EVALUATION

A. Overall Performance

3
@
T 025
©
E 5 1.5
st 1
Z 805
0
BFS BS c2D FIR GEMM MM sc ST Ave.
O On-touch OAccess counter = Duplication EGRIT mldeal

Fig. 17. Performance of each scheme relative to baseline on-touch migration.

We evaluate our proposed approach using the same bench-
marks in Table II. The baseline architecture configuration
is identical to Table I. Figure 17 plots the performance of
GRIT and the three page placement schemes (i.e., on-touch
migration, access counter-based migration, and page dupli-
cation). The results are normalized to the baseline on-touch
migration. GRIT achieves an average of 60%, 49%, and 29%
performance improvements compared to uniformly employing
on-touch page migration, access counter-based migration, and
page duplication, respectively. The performance benefits stem
from the effectiveness of capturing different page access
patterns and configuring appropriate schemes for different
pages and different applications, as we elaborate in detail next.
First, our approach is able to capture different preferred page
placement schemes for different applications. For example, in
BF'S, our scheme achieves similar performance compared with
page duplication as the majority of the pages in BF'S are read
pages. In contrast, FIR and SC prefer on-touch migration as
most of the pages are private and our approach can capture that
behavior and adjust the page placement scheme accordingly.
It is important to note that, the slight performance drop (2%)
in BE'S is because our design starts with on-touch migration
as the baseline and gradually adjusts the page placement
schemes, which involves generating GPU local page fault. This

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

incurs additional overheads compared to uniformly using page
duplication at initialization. Second, our approach effectively
captures the different page placement schemes during the exe-
cution of a given single application. For example, in GEMM and
MM, page duplication is better compared to on-touch migration
and access counter-based migration as approximately half of
the pages are shared, whereas the other half of pages are
private in these two applications. Our approach still achieves
17% and 9% performance improvements over page duplication
as it is able to capture the read-write pages. That is, our
approach achieves the improvement for GEMM and MM by fine-
tuning the page placement for read pages to duplication and
optimizing the private read-write pages to on-touch migration.
Third, for ST, BS, and C2D, while GRIT achieves the highest
performance improvement over three schemes, there is still a
large gap between GRIT and the ideal performance. This is
because ST, BS, and C2D have a significant amount of shared
read-write pages (99%. 56%, and 42%, respectively) over the
entire execution, making any migration schemes less effective.

" 2
°
8515
= ®
© L 1
)
o 0.5
za
0
BFS BS c2p FIR GEMM MM sc ST Ave.
00n-touch OAccess counter @ Duplication EGRIT

Fig. 18. The number of page faults.

The number of GPU page faults (including both local page
faults and page protection faults) is closely correlated with the
performance results, as these faults can significantly degrade
overall performance due to frequent UVM handling and CPU
interruption. If the page placement scheme is properly deter-
mined, it ensures that most pages are present in local memory
or page table entries are valid in the local page table. It also
avoids frequent page write collapsing, resulting in fewer local
page faults and page protection faults. To help understand the
performance improvements, we present the total number of
GPU page faults when employing different page placement
schemes and GRIT in Figure 18. The results are normalized
to the number of page faults in on-touch migration execution.
GRIT achieves 39%, 55%, and 16% reduction in the total
number of GPU page faults compared to on-touch migra-
tion, access counter-based migration, and page duplication,
respectively. This clearly demonstrates the effectiveness of our
approach in adapting to various access patterns and efficiently
determining the appropriate page placement schemes.

100%
75%
50%
25%

0%

Percentage

BFS BS

0On-touch

c2D FIR GEMM

OAccess counter

MM sc

® Duplication

ST

Fig. 19. Percentage of each page placement scheme by using GRIT.

We further demonstrate the effectiveness of our approach
by plotting the breakdown of the page placement scheme
during the whole execution. Specifically, Figure 19 shows

1089

the percentage of different page placement schemes among
all the accesses that miss the GPU L2 TLBs. Note that, a
single page can change its schemes multiple times during
different execution phases. Each of the scheme changes is
captured in the figure. We observe a hybrid pattern in many
applications. For BFS, GEMM and MM, page duplication is
the predominant choice due to the substantial read shared
pages, which matches the performance results that duplication
yields the best performance across all three page placement
schemes. For C2D, the on-touch migration is most commonly
employed. The primary reason for this is that the majority
of shared pages in C2D are shared by two GPUs, following
a producer-consumer pattern (as shown in Figure 5). This
pattern only occurs two page faults, which fall below the
fault threshold. Therefore, the scheme continues to employ
the initial on-touch migration. This sharing pattern also reflects
the performance results, where the on-touch migration gains
the highest performance in C2D across three schemes. For
BS, access counter-based migration is primarily employed due
to the substantial number of all-shared pages. The primary
choice of access counter-based migration by GRIT matches the
performance results, in which access counter-based migration
achieves the best performance across all three schemes. For
ST, duplication and on-touch migration play an important
role due to the read pages during a certain interval and PC-
shared read-write pages. The choice of duplication and on-
touch migration by GRIT matches the performance results of
ST, where these two schemes outperform access counter-based
migration. For FIR and SC, the on-touch migration remains
the most proper scheme since almost all the pages are private
as characterized in Figure 4. In a nutshell, our approach is
able to distinguish page attributes and consistently select the
most suitable scheme accordingly.

2

1.

0.

Normalized
performance
ol atNG W

BFS BS c2D FIR GEMM
OPA-Table only mPA-Table+PA-Cache mPA-Table:

ST

Ave.

MM
i mGRIT

Fig. 20. Performance of different components in GRIT.

Figure 20 shows performance improvements of each indi-
vidual component of GRIT (i.e., PA-Table only, PA-Table+PA-
Cache, and PA-Table+Neighboring-Aware-Prediction) normal-
ized to baseline on-touch migration scheme. The results
show that PA-Table only, PA-Table+PA-Cache, and PA-
Table+Neighboring-Aware-Prediction achieve an average of
31%, 47%, and 44% performance improvement over the
baseline, respectively. This demonstrates the effectiveness of
each GRIT component, and these components collaboratively
enhance the performance.

B. Sensitive Study

1) Different fault thresholds: Recall that we leverage a
fault threshold to trigger the scheme optimization. A larger
threshold indicates that more GPU local page faults are
needed to trigger page scheme change, thereby delaying the

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

382.5
N=
=8 2
E§1.5
Eo
st 1
Z 2 05

BFS BS c2D FIR GEMM MM SC ST Ave.
OFault Threshold 2 @Fault Threshold 4 mFault Threshold 8 mFault Threshold 16

Fig. 21. GRIT using 2, 4, 8, and 16 as the fault threshold.

effectiveness of timely capturing page access patterns. In
contrast, a smaller threshold leads to frequent and potentially
“ping-pong” page placement scheme changes, increasing the
overheads in search and adjusting the policies. To choose an
appropriate fault threshold, we show the performance results
employing different thresholds (i.e., 2, 4, 8, and 16) normalized
to baseline on-touch migration in Figure 21. The performance
improvements over the baseline on-touch migration are 53%,
60%, 59%, and 48%, to the fault thresholds of 2, 4, 8, and
16, respectively. As one can observe, the performance gain
saturates when employing 4 as the fault threshold. Therefore,
we choose 4 as the fault threshold in our reported main results.

g

o v s uN G

Normalized
o

performance

BFS BS Cc2D FIR GEMM MM sc ST Ave.
OOn-touch (2GPUs) OAccess counter (2GPUs) mDuplication (2GPUs) B GRIT (2GPUs)

Fig. 22. Performance with 2 GPUs.

g

o v s uN G

Normalized
performance

o

BFS BS Cc2D FIR GEMM MM scC ST Ave.
OOn-touch (8GPUs) TOAccess counter (8GPUs) mDuplication (8GPUs) ®GRIT (8GPUs)

Fig. 23. Performance with 8 GPUs.

25
8
og 2
Ng
ﬁ§1.5
Es ¢
z°@o.5
S

BFS BS c2D FIR GEMM MM sC ST Ave.
OOn-touch (16GPUs) O Access counter (16GPUs) EDuplication (16GPUs) mGRIT (16GPUs)

Fig. 24. Performance with 16 GPUs.

2) Different number of GPUs: We also evaluate GRIT in
2-GPU, 8-GPU, and 16-GPU systems. Figure 22, Figure 23,
and Figure 24 present the performances of GRIT with 2
GPUs, 8 GPUs, and 16 GPUs normalized to baseline with
2 GPUs, 8 GPUs, and 16 GPUs, respectively. Note that, in
this experiment, we only change the number of GPUs and
keep the same application input size for a fair comparison.
For 2 GPUs, GRIT achieves 40%, 37%, and 11% performance
improvements over on-touch migration, access counter-based
migration, and page duplication, respectively. The performance
improvements are 38%, 35%, and 26% in 8 GPUs and 27%,
26%, and 23% in 16 GPUs, respectively. To understand
the performance improvements, we also quantify the page
fault reduction achieved by our approach. With 2 GPUs,
we observe reductions of 34%, 42%, and 11% compared
to on-touch migration, access counter-based migration, and

1090

page duplication, respectively. In 8 GPUs, the reductions are
31%, 45%, and 19% for the same schemes. In 16 GPUs, the
reductions are 30%, 47%, and 15% for the same schemes. The
page fault reduction is similar to the 4-GPU system (39%,
55%, and 20%), which demonstrates our approach remains
effective with different numbers of GPUs. Note that, the
decreased performance improvement as the number of GPUs
increases does not mean a weakening of the effectiveness
of our approach. This is because the pages become more
frequently shared among GPUs with more GPUs, leading
to more page migrations. Regardless of the page placement
scheme adopted, page migration latency is unavoidable, and
as the number of migrations increases, the overall impact of
this latency becomes dominant in the total execution time.
This leads to a diminishing in performance improvement as
the potential benefits gained from improved page placement
are reduced by the increased overhead caused by frequent page
migrations.

11

3) Large page: We evaluate GRIT with 2MB page. Note
that, to sufficiently stress the virtual memory subsystem, we
enlarge the application input size (i.e., the memory footprints
span from 0.5GB to 3GB). The result is shown in Figure
25, and the performance is normalized to the baseline with
2MB page size and large input sizes. The average performance
improvement is 23% compared to the baseline on-touch mi-
gration. GRIT maintains its effectiveness even when adopting
larger pages. However, the performance improvement (23%
comparing GRIT-2MB to baseline-2MB) is reduced (60%
comparing GRIT-4KB to baseline-4KB). This is because 2MB
introduces more frequent false sharing among GPUs. Conse-
quently, the page attributes become mixed. For example, in a
sequence of 512 consecutive 4KB pages, there are both read
pages and read-write pages. We can utilize page duplication
for read pages and access counter-based migration for read-
write pages. However, when these pages are merged into a
larger 2MB page, the page attributes become read-write, and
we can only use the access counter-based migration, resulting
in more remote memory accesses.

-

o h
[CERT I BN

Normalized
performance

I

Ave.

padlun

Fig. 25. GRIT with 2MB pages.

C. Compared to State-of-the-art

25

3
Te 2
28 5
R
Eo
St o5
z3 o

BFS BS c20 FIR GEMM MM sc ST Ave.
OGriffin-DPC SOGRIT OGriffin EGRIT+ACUD

Fig. 26. Comparison of Griffin-DPC, GRIT, Griffin, and GRIT+ACUD.

1) Comparison to Griffin: We compare GRIT with the
state-of-the-art multi-GPU page migration management, i.e.,

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

Griffin [10]. Griffin has two major components: i) Dynamic
Page Classification (DPC) which classifies pages into different
categories and decides which pages to migrate and ii) Asyn-
chronous Compute Unit Draining (ACUD) which reduces the
overhead of pipeline draining and flushing when pages are
migrated. Figure 26 compares the performances of Griffin-
DPC, GIRT, Griffin, and GRIT+ACUD normalized to Griffin-
DPC. We implement DPC using the same default hyper-
parameter configurations as Griffin. We make the following
observations. GRIT achieves 27% performance improvement
over Griffin-DPC (the first two bars). The reasons are two-fold.
First, Griffin-DPC triggers page migration at a predefined time
interval, resulting in substantial remote accesses before the
page migration. In contrast, our Neighboring-Aware Prediction
can effectively predict the neighboring page attributes and pre-
determine an optimal page placement scheme, which signifi-
cantly reduces the remote memory access caused by improper
page placement schemes. Second, Griffin-DPC periodically
tracks access information on each GPU, which introduces
significant communication overheads between CPU and GPUs.
In contrast, GRIT tackles this issue by tracking access infor-
mation on the CPU side, where the scheme change latency
can be hidden during page table walks without introducing
additional latency. Next, we implement ACUD on top of GRIT
(GRIT+ACUD) and compared it with Griffin with DPC and
ACUD (Griffin). Comparing GRIT and GRIT+ACUD, we
observe a 9% average performance improvement since ACUD
is orthogonal to GRIT. Also, the last two bars in Figure 26
indicate that GRIT+ACUD achieves 16% improvement over
Griffin, indicating that GRIT yields additional benefits over
Griffin when ACUD is employed.

= § 1.5
Ng 1
st
s ‘O: 0.5
Z8 o
BFS BS c2D FIR GEMM MM sC ST Ave.

Fig. 27. Comparison to GPS [38].

2) Comparison to GPS: We also compare GRIT with the
state-of-the-art peer-to-peer data access: GPS [38]. GPS auto-
matically tracks the subscribers (i.e., the GPUs accessed shared
page) to each page of memory and proactively broadcasts fine-
grained stores to these subscribers, enabling each subscriber
to read data from their local memory at high bandwidth. Note
that, we implement GPS with the same GPS structure size as
described in the original paper, while the GPU configurations
follow our GPU parameters as listed in Table I. Figure 27
presents the performance of GPS and GRIT, normalized to
GPS. GRIT achieved 15% improvement compared to GPS.
This is because GPS duplicates a physical replica in the GPU’s
local memory once this GPU accesses a page, for applications
(e.g.. MM, BS, ST) with a majority of shared page accesses
during the whole execution, almost all pages will be duplicated
in each GPU, which leads to severe memory oversubscription.
The detailed memory oversubscription modeling is discussed
in Section ITI-B. We monitor and track memory usage and page

1091

eviction events during the runtime. The results indicate that
GPS has an average of 34% higher page oversubscription rate
compared to our approach. This introduces extra overheads

and performance penalties.
2

-

Normalized
ot~ »

performance
)

BFS BS c2p FIR GEMM MM

o Griffin-DPC+Trans-FW s GRIT
Fig. 28. Comparison to Griffin-DPC [10] combined with Trans-FW [32].

sC ST Ave.

3) Comparison to the combination of prior works: We
compare GRIT with the combination of Griffin-DPC and
Trans-FW [32]. The Griffin-DPC aims to reduce the number of
page migrations while Trans-FW concentrates on minimizing
the overhead associated with handling page faults caused
by page migration. These two approaches are orthogonal.
As shown in Figure 28, GRIT achieves an average of 18%
improvement compared to the combination. This is because
GRIT enables more local accesses and reduces the number of
page migrations.

D. Comparison to First-Touch Migration

e > N
cuauNnO®

1

Ave.

HHHHH

BFS BS c2D FIR GEMM

Normalized
performance

MM sc ST
Fig. 29. Comparison to first-touch.

We compare GRIT to first-touch migration, Figure 29 shows
GRIT achieves an average of 54% performance improvement.
First-touch migration pins the page on the GPU where that
page is first accessed and uses peer-access for page sharing
across GPUs. It works well for applications with a majority of
private page accesses (e.g., FIR and SC), and GRIT achieves
marginal improvements over first-touch. However, it suffers
remote access overheads for applications with a majority
of shared-page accesses (e.g., MM and GEMM), where GRIT
achieves significant performance improvements.

E. Combine with Prefetching

lonnlilnn

c2D FIR GEMM MM sc
Fig. 30. Performance of GRIT combined with prefetching [23].

o -
o v a N

Normalized
performance

I

Ave.

Prefetching is a technique that leverages the data locality
to proactively fetch data from the remote device’s memory
to the local memory before it is needed. Ganguly et al. [23],
[24] revealed a tree-based neighborhood prefetching approach
implemented in NVIDIA CUDA driver [45]. Specifically, the
system maintains a set of full-binary trees, where the leaf
levels hold 64KB basic blocks, and the root nodes correspond
to 2MB page addresses. The runtime continuously monitors
the current memory occupancy for each GPU and maintains

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

this information for each node in the binary trees. When the
runtime detects that a specific GPU’s occupancy of a non-leaf
node in the tree data structure exceeds 50% of the node’s total
capacity, it selects the leaf nodes under that node as prefetch
candidates and fetches them to that GPU. We next combine
GRIT with the tree-based neighborhood prefetching approach.
Figure 30 shows that GRIT with prefetching approach achieves
23% performance improvement over the baseline on-touch
migration with the prefetching approach. This is because our
approach is able to proactively determine the page placement
scheme, which is complementary to the prefetching approach
and brings additional performance benefits.

F. DNN workloads

o

We evaluate GRIT using VGG16
and ResNetl8 model parallelism on
multi-GPUs. Figure 31 shows that
GRIT achieves 15% on VGGI16 and
18% on ResNetl8 performance im-
provements over their baseline executions. This indicates that
GRIT also works in multi-GPU-based DNN training.

Normalized
performance
o
PPN

VGG16 ResNet18

Fig. 31. DNN.

VII. RELATED WORK

NUMA Optimization: Substantial prior studies have focused
on improving the performance of NUMA systems [1], [10],
[11], [19], [27]-[29], [31]-[33], [36], [61], [63]. Agarwal et
al. [1] developed an intelligent data migration mechanism
for GPU-CPU systems. Young et al. [63] proposed to im-
prove NUMA-GPU by caching remote data in video memory
(CARVE), which dedicates a small fraction of the GPU
memory to store the contents of remote memory. Different
from these NUMA optimizations, our approach focuses on ef-
ficient page placement by fine-tuning different page placement
schemes for pages at runtime, which is complementary to most
of the multi-GPU NUMA optimization.

Runtime Page Placement: Previous research has explored
methods aimed at enhancing the performance of page place-
ment schemes [1]-[3], [19], [35], [62]. Dashti et al. [19]
presented a memory management algorithm that leverages
interleaving, page replication, and page migration, which ad-
dressed the traffic congestion issue and mitigated the cost of
remote wire delays. Agarwal et al. [3] proposed Thermostat,
a mechanism for placing pages in a hybrid memory system at
runtime that detects and acts on hot and cold pages. However,
none of these efforts dive into runtime page attributes, based
on which further improve the page placement. In our work, we
entail a comprehensive analysis of page attributes, leveraging
these insights to further optimize runtime page placement for
multi-GPU NUMA systems.

VIII. CONCLUSION

In this paper, we proposed GRIT which dynamically de-
termines page placement schemes in a fine-grained manner
to enhance multi-GPU page placement. Specifically, we pro-
pose Fault-Aware Initiator to detect the inappropriate page

1092

placement scheme, Page Attribute Table to track the page
attribute and to determine the optimal page placement scheme,
and Neighboring-Aware Prediction to proactively determine
the page placement scheme by predicting page attributes for
adjacent pages. Experimental results show that our proposed
GRIT achieves an average of 60%, 49%, and 29% performance
improvements compared to uniformly employing on-touch mi-
gration, access counter-based migration, and page duplication,
respectively.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous HPCA
reviewers for their constructive feedback and suggestions. This
work is supported in part by NSF grants #2011146, #2154973,
#1725657, #1910413, and #2312157.

REFERENCES

[1] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and T. F. Wenisch,
“Unlocking bandwidth for gpus in cc-numa systems,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2015, pp. 354-365.

N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W.
Keckler, “Page placement strategies for gpus within heterogeneous mem-
ory systems,” in Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2015, pp. 607-618.

N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent
page management for two-tiered main memory,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, 2017, pp. 631-644.
T. Allen and R. Ge, “Demystifying gpu uvm cost with deep runtime and
workload analysis,” in 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2021, pp. 141-150.

T. Allen and R. Ge, “In-depth analyses of unified virtual memory system
for gpu accelerated computing,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1-15.

AMD. (2015) AMD APP SDK OpenCL Optimization Guide.

AMD. (2017) AMD Radeon™ Instinct™ MI25 Accelerator.
[Online]. Available: https://www.amd.com/en/products/professional-
graphics/instinct-mi25

N. Amit, “Optimizing the {TLB} shootdown algorithm with page access
tracking,” in 2017 USENIX Annual Technical Conference (USENIX ATC
17), 2017, pp. 27-39.

N. Amit, A. Tai, and M. Wei, “Don’t shoot down tlb shootdowns!”
in Proceedings of the Fifteenth European Conference on Computer
Systems, 2020, pp. 1-14.

T. Baruah, Y. Sun, A. T. Dincer, S. A. Mojumder, J. L. Abelldn,
Y. Ukidave, A. Joshi, N. Rubin, J. Kim, and D. Kaeli, “Griffin:
Hardware-software support for efficient page migration in multi-gpu
systems,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2020, pp. 596-609.

L. Belayneh, H. Ye, K. Chen, D. Blaauw, T. Mudge, R. Dreslinski, and
N. Talati, “Locality-aware optimizations for improving remote memory
latency in multi-gpu systems,” in 2022 31th International Conference
on Parallel Architectures and Compilation Techniques, 2022.

C.-H. Chang, A. Kumar, and A. Sivasubramaniam, “To move or not
to move? page migration for irregular applications in over-subscribed
gpu memory systems with dynamap,” in Proceedings of the 14th ACM
International Conference on Systems and Storage, 2021, pp. 1-12.

S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and S. Viswanatha,
“Balancing efficiency and fairness in heterogeneous gpu clusters for
deep learning,” in Proceedings of the Fifteenth European Conference on
Computer Systems, 2020, pp. 1-16.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), Oct 2009, pp. 44-54.

[6]
[7]

[10]

[11]

[12]

[13]

[14]

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S. Choi, I. Koo, J. Ahn, M. Jeon, and Y. Kwon, “{EnvPipe}:
Performance-preserving { DNN} training framework for saving energy,”
in 2023 USENIX Annual Technical Conference (USENIX ATC 23), 2023,
pp. 851-864.

Y. Dai, X. Tang, and Y. Zhang, “FlexGM: An Adaptive Runtime System
to Accelerate Graph Matching Networks on GPUSs,” in 2023 IEEE 41st
International Conference on Computer Design (ICCD). 1EEE, 2023,
pp. 348-356.

Y. Dai, Y. Zhang, and X. Tang, “CEGMA: Coordinated Elastic Graph
Matching Acceleration for Graph Matching Networks,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). 1EEE, 2023, pp. 584-597.

A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (shoc) benchmark suite,” in GPGPU-3: Proceedings of
the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, ser. GPGPU-3. New York, NY, USA: Association
for Computing Machinery, 2010, p. 63-74. [Online]. Available:
https://doi.org/10.1145/1735688.1735702

M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth, “Traffic management: a holistic approach to
memory placement on numa systems,” ACM SIGPLAN Notices, vol. 48,
no. 4, pp. 381-394, 2013.

S. Dong and D. Kaeli, “Dnnmark: A deep neural network benchmark
suite for gpus,” in Proceedings of the General Purpose GPUs, 2017, pp.
63-72.

D. Foley and J. Danskin, “Ultra-performance pascal gpu and nvlink
interconnect,” IEEE Micro, vol. 37, no. 2, pp. 7-17, 2017.

D. Ganguly, R. Melhem, and J. Yang, “An adaptive framework for
oversubscription management in cpu-gpu unified memory,” in 202/
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2021, pp. 1212-1217.

D. Ganguly, Z. Zhang, J. Yang, and R. Melhem, “Interplay
between hardware prefetcher and page eviction policy in cpu-gpu
unified virtual memory,” in Proceedings of the 46th International
Symposium on Computer Architecture, ser. ISCA ’19. New York,
NY, USA: ACM, 2019, pp. 224-235. [Online]. Available: http:
//doi.acm.org/10.1145/3307650.3322224

D. Ganguly, Z. Zhang, J. Yang, and R. Melhem, “Adaptive page
migration for irregular data-intensive applications under gpu memory
oversubscription,” in 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 1EEE, 2020, pp. 451-461.

B. Hyun, Y. Kwon, Y. Choi, J. Kim, and M. Rhu, “Neummu:
Architectural support for efficient address translations in neural
processing units,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS °20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1109-1124. [Online].
Available: https://doi.org/10.1145/3373376.3378494

H. Jiang, Y. Chen, Z. Qiao, T.-H. Weng, and K.-C. Li, “Scaling up
mapreduce-based big data processing on multi-gpu systems,” Cluster
Computing, vol. 18, pp. 369-383, 2015.

A. K. Johansen, “Fast multi-gpu communication over pci express bench-
marking pcie transport with the nvidia collective communications library
(nccl) using legacy gpus,” Master’s thesis, 2023.

M. Khairy, V. Nikiforov, D. Nellans, and T. G. Rogers, “Locality-
centric data and threadblock management for massive gpus,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 1EEE, 2020, pp. 1022-1036.

J. Lee, J. M. Lee, Y. Oh, W. J. Song, and W. W. Ro, “Snakebyte: A tlb
design with adaptive and recursive page merging in gpus,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). 1IEEE, 2023, pp. 1195-1207.

B. Li, Y. Guo, Y. Wang, A. Jaleel, J. Yang, and X. Tang, “IDYLL:
Enhancing Page Translation in Multi-GPUs via Light Weight PTE In-
validations,” in Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, 2023, pp. 1163-1177.

B. Li, Y. Wang, and X. Tang, “Orchestrated scheduling and partitioning
for improved address translation in gpus,” in In Proceedings of the 60th
Design Automation Conference (DAC), 2023.

B. Li, J. Yin, A. Holey, Y. Zhang, J. Yang, and X. Tang, “Trans-FW:
Short Circuiting Page Table Walk in Multi-GPU Systems via Remote
Forwarding,” in Proceedings of the 29rd International Symposium on
High-Performance Computer Architecture (HPCA), 2023.

1093

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

B. Li, J. Yin, Y. Zhang, and X. Tang, “Improving address translation
in multi-gpus via sharing and spilling aware tlb design,” in MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture,
2021, pp. 1154-1168.

C. Li, R. Ausavarungnirun, C. J. Rossbach, Y. Zhang, O. Mutlu,
Y. Guo, and J. Yang, “A framework for memory oversubscription
management in graphics processing units,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
49-63. [Online]. Available: https://doi.org/10.1145/3297858.3304044
J. Marathe and F. Mueller, “Hardware profile-guided automatic page
placement for ccnuma systems,” in Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, 2006, pp. 90-99.

U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi, A. Jaleel,
A. Ramirez, and D. Nellans, “Beyond the socket: Numa-aware gpus,”
in Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, 2017, pp. 123-135.

S. P. Mohanty, “Gpu-cpu multi-core for real-time signal processing,” in
2009 Digest of Technical Papers International Conference on Consumer
Electronics, 2009, pp. 1-2.

H. Muthukrishnan, D. Lustig, D. Nellans, and T. Wenisch, “Gps: A
global publish-subscribe model for multi-gpu memory management,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 46-58.

H. Muthukrishnan, D. Lustig, O. Villa, T. Wenisch, and D. Nellans,
“Finepack: Transparently improving the efficiency of fine-grained trans-
fers in multi-gpu systems,” in 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 1EEE, 2023, pp.
516-529.

R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. Lépez-Buedo,
and A. W. Moore, “Understanding pcie performance for end host
networking,” in Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, 2018, pp. 327-341.

Nikolay Sakharnykh. (2017) Unified Memory on
Pascal and Volta. [Online]. Available: http://on-
demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-
sakharnykh-unified-memory-on-pascal-and-volta.pdf

NVIDIA. (2018) DB2 Launch Datasheet Deep Learning Letter WEB.
[Online]. Available: https://www.scribd.com/document/336084072/
61681-DB2-Launch-Datasheet- Deep-Learning-Letter- WEB-NVidia-
Deep-Learning-Box#

NVIDIA. (2022) NVIDIA Linux Open GPU Kernel Module
Source. [Online]. Available: https://github.com/NVIDIA/open-gpu-
kernel-modules

NVIDIA Corp. (2016) Nvidia pascal architecture. [Online].

Available: https://www.nvidia.com/en-us/data-center/resources/pascal-
architecture- whitepaper/

NVIDIA Corp. (2018) Everything you to
know about unified memory. [Online]. Avail-
able: https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-
everything-you-need-to-know-about-unified-memory.pdf

T. Pany, D. Détterbock, H. Gomez-Martinez, M. S. Hammed, F. Horkner,
T. Kraus, D. Maier, D. Sdnchez-Morales, A. Schiitz, P. Klima et al.,
“The multi-sensor navigation analysis tool (musnat)—architecture, lidar,
gpu/cpu gnss signal processing,” in Proceedings of the 32nd Interna-
tional Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS+ 2019), 2019, pp. 4087-4115.

E. Park, J. Ahn, S. Hong, S. Yoo, and S. Lee, “Memory fast-forward:
A low cost special function unit to enhance energy efficiency in gpu
for big data processing,” in 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2015, pp. 1341-1346.

B. Pratheek, N. Jawalkar, and A. Basu, “Improving gpu multi-tenancy
with page walk stealing,” in 2021 IEEE 27th International Symposium
on High Performance Computer Architecture (HPCA), 2021.

M. M. Rathore, H. Son, A. Ahmad, A. Paul, and G. Jeon, “Real-time big
data stream processing using gpu with spark over hadoop ecosystem,”
International Journal of Parallel Programming, vol. 46, pp. 630-646,
2018.

L. Savioja, V. Vilimiki, and J. O. Smith, “Audio signal processing using
graphics processing units,” Journal of the Audio Engineering Society,
vol. 59, no. 1/2, pp. 3-19, 2011.

need

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

D. Schaa and D. Kaeli, “Exploring the multiple-gpu design space,”
in 2009 IEEE International Symposium on Parallel & Distributed
Processing. 1EEE, 2009, pp. 1-12.

A. Sethia, G. Dasika, M. Samadi, and S. Mahlke, “Apogee: Adaptive
prefetching on gpus for energy efficiency,” in Proceedings of the
22nd international conference on Parallel architectures and compilation
techniques. 1EEE, 2013, pp. 73-82.

C. Shao, J. Guo, P. Wang, J. Wang, C. Li, and M. Guo, “Oversub-
scribing gpu unified virtual memory: Implications and suggestions,” in
Proceedings of the 2022 ACM/SPEC on International Conference on
Performance Engineering, 2022, pp. 67-75.

S. Shin, G. Cox, M. Oskin, G. H. Loh, Y. Solihin, A. Bhattacharjee, and
A. Basu, “Scheduling page table walks for irregular gpu applications,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), June 2018, pp. 180-192.

Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mc-
cardwell, A. Villegas, and D. Kaeli, “Hetero-mark, a benchmark suite
for cpu-gpu collaborative computing,” in 2016 IEEE International
Symposium on Workload Characterization (IISWC), 2016, pp. 1-10.

Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K.
Ziabari, Z. Chen, R. Ubal, J. L. Abellan, J. Kim, A. Joshi, and
D. Kaeli, “Mgpusim: Enabling multi-gpu performance modeling and
optimization,” in Proceedings of the 46th International Symposium
on Computer Architecture, ser. ISCA "19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 197-209. [Online].
Available: https://doi.org/10.1145/3307650.3322230

R. Tang, Z. Zhao, K. Wang, X. Gong, J. Zhang, W. Wang, and P.-C. Yew,
“Ascetic: Enhancing cross-iterations data efficiency in out-of-memory
graph processing on gpus,” in Proceedings of the 50th International
Conference on Parallel Processing, 2021, pp. 1-10.

1094

[58]

[59]

[61]

[62]

[63]

[64]

S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P.
Jouppi, “A comprehensive memory modeling tool and its application
to the design and analysis of future memory hierarchies,” in 2008
International Symposium on Computer Architecture, 2008, pp. 51-62.
J. Vesely, A. Basu, M. Oskin, G. H. Loh, and A. Bhattacharjee,
“Observations and opportunities in architecting shared virtual memory
for heterogeneous systems,” in 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), April 2016,
pp. 161-171.

P. Wang, J. Wang, C. Li, J. Wang, H. Zhu, and M. Guo, “Grus: Toward
unified-memory-efficient high-performance graph processing on gpu,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 18, no. 2, pp. 1-25, 2021.

C. Xie, F. Xin, M. Chen, and S. L. Song, “Oo-vr: Numa friendly
object-oriented vr rendering framework for future numa-based multi-
gpu systems,” in Proceedings of the 46th International Symposium
on Computer Architecture, ser. ISCA "19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 53-65. [Online].
Available: https://doi.org/10.1145/3307650.3322247

Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble page
management for tiered memory systems,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2019, pp. 331-345.

V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans, and O. Villa,
“Combining hw/sw mechanisms to improve numa performance of multi-
gpu systems,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1EEE, 2018, pp. 339-351.

Y. Zhang, D. Peng, X. Liao, H. Jin, H. Liu, L. Gu, and B. He, “Large-
graph: An efficient dependency-aware gpu-accelerated large-scale graph
processing,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 18, no. 4, pp. 1-24, 2021.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:29 UTC from IEEE Xplore. Restrictions apply.

