2023 IEEE 41st International Conference on Computer Design (ICCD) | 979-8-3503-4291-8/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICCD58817.2023.00060

2023 IEEE 41st International Conference on Computer Design (ICCD)

FlexGM: An Adaptive Runtime System to
Accelerate Graph Matching Networks on GPUs

Yue Dai
Computer Science Department
University of Pittsburgh
Pittsburgh, PA
Email: yud42@pitt.edu

Abstract—GMNs (Graph Matching Networks) exploit recently
developed GNNs (Graph Neural Networks) to analyze the similar-
ity between two graphs. They are increasingly deployed in many
application domains due to their improved inference accuracy.
A GMN consists of two stages, i.e., node-embedding and node-
matching stages. The node-matching stage matches node features
from two graphs for similarity, which accounts for over 90% of
the total execution time. However, it is challenging to accelerate
GMNs on GPUs due to their diverse computing patterns for
different graph inputs. For large graphs, the overhead comes
mainly from the high computation overhead, which increases
quadratically to the size of the graphs; for small graphs, the
overhead comes from the low parallelism and resource utilization.

In this paper, we propose FlexGM, a flexible runtime, to
adaptively accelerate GMNs on GPUs. For large graphs, we
exploit the massive computation redundancy in GMNs and
develop a low-overhead deduplication module to mitigate the high
computation overhead. For small graphs, we develop a unified
matching module to optimize GPU hardware resource usage. An
adaptive module manager is then developed to judiciously select
beneficial optimization strategies. Experimental results show that
the FlexGM system achieves 2.5x (up to 7.6x) average speedup
over existing methods.

Index Terms—Graph matching networks, Graph neural net-
works, GPU runtime

[. INTRODUCTION

Graph Similarity Computing plays a pivotal role in nu-
merous application domains, such as bioinformatic analysis
in medical science [1], friend cycle matching in social net-
works [2], and feature matching in the computer vision [3],
[4]. Recently introduced Graph Matching Networks (GMNs)
demonstrate outstanding inference accuracy on these tasks [3],
[5]-[7]. GMNs comprise two stages: The first, the embedding
stage, integrates subgraph information into node features,
while the second, the matching stage, calculates similarities
between node features for diverse matching purposes. Gen-
erally, the embedding stage is facilitated by Graph Neural
Networks (GNNs), which take advantage of existing GNN
optimizations [8]-[11]. However, the matching stage, which
requires all-to-all node matching between pairs of various-
sized graphs, comprises over 90% execution latencies across
distinct models and datasets, identifying it as the primary
bottleneck in most GMN applications. Despite this, many
applications necessitate a rapid response time or high through-
put. For instance, computer vision tasks require real-time

Xulong Tang
Computer Science Department
University of Pittsburgh
Pittsburgh, PA
Email: xulongtang @pitt.edu

Youtao Zhang
Computer Science Department
University of Pittsburgh
Pittsburgh, PA
Email: zhangyt@cs.pitt.edu

graph matching with strict deadlines [12]-[14], and the graph
searching requires handling millions of matching queries in a
short time [14]-[16]. These GMN applications are typically
deployed on servers equipped with GPUs. Therefore, devel-
oping a GMN-accelerating runtime system for the GPUs is
crucial and highly beneficial.

Nevertheless, designing a runtime system for GMNs is chal-
lenging due to the diversity in computing patterns exhibited
by graphs of varying sizes. The inefficiency comes from two
aspects: First, the all-to-all node matching suffers quadratic
computing complexity, thus introducing heavy overheads when
the input graphs are large. However, there exists tremendous
redundancy in GMN computing. In particular, nodes tend to
have identical neighborhoods, resulting in the same features
and matching results. Consequently, redundant computations
are introduced by repeatedly calculating these identical match-
ings. Therefore, detecting and eliminating those redundant
computations could be beneficial for handling large graph in-
puts. Nevertheless, when the graphs are small, the overhead of
detecting and eliminating those redundant computations could
outweigh the benefits. Secondly, the GPU hardware resources
are underutilized when the input graphs are small. Specifically,
as varying sizes of graph pairs pose challenges to batching,
current GMN implementations tend to compute the similarities
between different graph pairs serially. Therefore, when a single
graph pair is not large enough to saturate the GPU hardware
resources, the GPU resources will be underutilized and cannot
contribute to shorter execution latency. One potential solution
is to parallel the node matching across different-sized graphs
using Sparse Matrix Multiplication (SpMM). However, for
large graphs that fully utilize GPU resources, the overhead
of managing the sparse data structure could offset any ad-
vantages. In summary, to optimize GMN computations on
GPUs, it is essential to eliminate redundant computations
and maximize parallelism during the node-matching stage.
Moreover, it is equally important to carefully balance the
advantages of such strategies against the potential overheads.

To this end, we introduce FlexGM, a runtime system to
adaptively accelerates GMN computations on GPUs. Firstly,
we present a graph deduplication module that reduces un-
necessary computation in the node-matching stage. Secondly,
we implement a unified matching module that parallels node

2576-6996/23/$31.00 ©2023 IEEE 348
DOI 10.1109/ICCD58817.2023.00060
Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:01 UTC from IEEE Xplore. Restrictions apply.

matching across various graph pairs to harness the full poten-
tial of GPUs’ parallel capacity. Lastly, to optimally balance
the trade-off between the advantages and overheads of these
enhancements, we propose an adaptive module manager that
selectively activates optimization modules based on the input
data, thus ensuring diverse inputs achieve their optimization
targets. Our contributions can be summarized as follows:

e We conduct a thorough and quantitative analysis of the com-
putational challenges faced by GMNs on GPUs and identify
the optimization opportunities in diverse input workloads.

We introduce FlexGM, a runtime system designed to en-
hance GMN execution on GPUs. FlexGM incorporates
a graph deduplication module to mitigate redundancy, a
unified matching module to optimize hardware utilization,
and an adaptive module manager to dynamically activate
beneficial optimizations.

We implement and evaluate FlexGM utilizing widely
adopted GMN models. The experimental results demon-
strate that FlexGM achieves an average speedup of 2.5x
and peaks at 7.6x over existing GMN implementations.

II. BACKGROUND
A. Graph Matching Networks

Graph Neural Network (GNN) based models for graph
similarity computation have recently emerged as a popular
choice owing to their enhanced accuracy and scalability [3],
[5]-[7]. These models are referred to as Graph Matching
Networks (GMNs). These GMNs typically encompass two
stages: When provided with a pair of graphs (G, G2), where
(71 is conventionally referred to as the target graph and G5 as
the query graph, all nodes from both graphs are subjected to
two stages, namely, node embedding stage and node matching
stage, these stages occur either at a layer-wise or model-wise
level and help calculate the degree of similarity between the
graphs, as shown in Figure 1.

B,
Y

Fig. 1. Node embedding and node matching stages in GMN models.

Graph Matching Networks
|

Gy Gy
‘:;\\ 2N\
S

HE-

B —

v yo |
Node Embedding Stage |
(Aggregation, Combinatit

e

! st € Histogram,
Attention,
=N
Node Matching Stage
I(Node compari: i

I
1
[}
1
1
1
1
I
I
[:¢

Layer-wisely/Model-wisely

Stage 1: Node Embedding. During the node embedding
stage, GMNs employ a conventional GNN methodology to
update node features. At this stage, every node gathers intra-
graph messages from its adjacent nodes, subsequently merging
these received messages with its own features through neural
networks. The general process for the node embedding stage
at layer [can be articulated as follows:

X = o(COMB(AGGR(A, X', WhH, W) (1)

349

The equation incorporates o (-) as the activation function, A as
the graph’s adjacency matrix, X' as the layer [node feature,
and W! and W! as the layer [weights. The input feature X' is
aggregated along edges, as denoted by the adjacency matrix
A, in the AGGR(-) module. Following this, a combination
module COM B(-) combines the aggregated messages with
nodes’ original features based on T .

Stage 2: Node Matching. During the node matching stage,
GMNs compute the similarity between nodes from target and
query graphs. Various functions like dot-product similarity,
cosine similarity, and Euclidean similarity are utilized to
compute similarities between the cross-graph node-pairs [5]—
[7]. These similarity values can either be used directly for
making predictions [5], [7] or indirectly facilitate further cross-
graph communication [3], [6]. The matching procedure at layer
[can be represented as:

L X(yT

o K

2
The S is the similarity matrix between two node sets in layer
[and K is the scale factors (i.e., K = 1 for dot-product simi-
larity, K = 2 for euclidean similarity, and K;; = || X}|| - [|Y}|]
for cosine similarity). For Euclidean similarity, the score Sfj
will be further normalized by subtracting squared magnitudes
of row vectors Sf-]- = Sfj — (I XH? + HYJlHQ) [6]. Recent
GMNs adopt layer-wise node matching since it yields better
accuracy [3], [4], [6], [7], [17].

B. GMN implementations on GPUs

GMNs are commonly executed on GPUs by leveraging
existing GNN and deep learning frameworks [18]-[21]. In
particular, the node embedding stages are implemented by
GNN frameworks such as PyTorch-Geometric (PyG) [19], and
the node matching stages are implemented by general-purpose
deep learning frameworks like PyTorch [18]. Many studies
focus on improving the performance of GNN operations on
GPUs [8], [19], [20]. As a result, the computations in the node
embedding stages are effectively parallelized across batches of
input graphs, facilitating simultaneous processing of edges and
nodes from various graph pairs and capitalizing on the parallel
processing power of GPUs.

I1I. MOTIVATIONS

To delve into potential challenges and opportunities associ-
ated with optimizing GMNs on the GPUs, we characterize
computations in three widely used GMN models: Graph-
Matching-Network (GMN-Li) [6], SimGNN [5] and Graph-
Sim [7]. The models are implemented in PyTorch [18] and
PyTorch-Geometric [19]. We investigate their performances on
three representative datasets: AIDS [22] represents small-sized
graphs, Github Stargazers (GITHUB) [23] represents middle-
sized graphs, and REDDIT-BINARY (RD-B) [15] represents
large-sized graphs. More details about GMN models, datasets,
and experiment platforms are described in Section V.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:01 UTC from IEEE Xplore. Restrictions apply.

A. Bottleneck in GMNs

To recognize the bottleneck in GMN computing, we first
analyze the latencies from different stages of the GMN
model. Figure 2 illustrates the breakdown of GMN inference
latencies. Noticeably, the node matching consumes over 90%
total execution time on average. Hence, optimizing the node-
matching stage is crucial for enhancing the efficiency of GMN
execution. The substantial time consumption can be traced to
two main issues from two kinds of distinct computing patterns:
While dealing with large graphs, the quadratically increased
node comparisons can cause heavy computation, resulting in
significant latencies with massive redundancy; while handling
small graphs, a single graph pair can hardly fully exploit the
GPU parallel capability, leading to long latencies with low
hardware utilization.

100%
80%

Breakdown of GMN
latency
N A O
o o o
SIS

0%

SimGNN GraphSim GMN-Li
AIDS
@ Node Matching

SimGNN GraphSim GMN-Li
GITHUB
mNode Embedding

SimGNN GraphSim GMN-Li
RD-B

Fig. 2. Normalized latency breakdown in GMN models.

B. Redundancy in quadratically increased node comparisons

When computing node matching on large graph inputs, the
GMN:ss face an overwhelming surge in computational demands.
The volume of computations and associated memory accesses
grow dramatically with the increase in graph sizes due to
all-to-all node comparisons. Nevertheless, massive redundancy
exists in these heavy burdens due to duplicate subgraphs.

Redundant matching. In GMNs, the feature of a node
in layer [, denoted as Xf, represents the information from
the [-hop subgraph surrounding node;. As such, if another
node, node;, has an [-hop neighborhood forming a subgraph
identical to that of node; (i.e., isomorphic neighborhood
subgraphs), the features of node; and node; at layer [will
be the same (i.e., Xf =X]l-). As the example illustrated in
Figure 3, nodey and node; have the same features due to
their identical neighborhoods. We refer to nodes with distinct
features as unique nodes and nodes with features that replicate
those of the unique nodes as duplicate nodes. The matching
results from duplicate nodes to the other graphs are identical
to their unique counterparts. For instance, suppose we carry
out node matching at layer /. Assuming we have a unique
node; with features X! and a duplicate node; having identical
features to node; (i.e., X =X l) matched with the same graph
(i.e., YY), the matching results for node; would be the same
as the matching results of node;, as shown below.

Sl_ _ X;(Yl)T _ Xf(Yl)T 3)
J K K
In this case, the matching results associated with the duplicate
node; (i.e., Sé-) can be obtained by reusing the matching

—g!

350

Gy
1
X v Layer 1 Layer 2
@: Unique node
\
|\ Xo = X1 = XZ
\
G, vt
Layer 1 Layer 2
Duplicate node

X3 xien)’

So= X

Unique matching Duplicate matching

Fig. 3. An illustration of a duplicate node and its
matching with their unique counterparts.

corresponding duplicate

100% 100%

o o

T 80% T 80%

Z 60% z 60%

£ 40% £ 4%

S 20% S, 20%

S 0% S 0%

a 2 £ 3|2 E J|Z2 E J| Ao 2 £E 3|2 E J)Z2 E 3

0w z 0w z 0w z 0w z 0w z 0w z

5 gL E2 55258 8 222225255

8 5 g s £ % e g° 8 s £°%a g°%a g°

= [} (5} 5} 2 2] 5] 5}

o AIDS GITHUB RD-B o AIDS GITHUB RD-B
mUnique Node ®Duplicate Node mUnique i = Dupli i

Fig. 4. Ratios of duplicate node (left) and consequent duplicate pairs (right).

results tied to the unique node; (i.e., Sf). We refer to the
matching results from the unique nodes as unique matching
and the results from the duplicate nodes as duplicate matching.
Using the example illustrated in Figure 3, the matching results
from nodey to nodes in the other graphs S} are the same
as those results computed by node; (i.e., Sll), then we can
regard one of them as unique matching and reuse it for the
other. Consequently, computations for duplicate matching are
redundant and can be eliminated. We quantitatively investigate
the number of duplicate nodes and corresponding redundant
matching to quantify this potential redundancy. As depicted in
Figure 4, duplicate nodes account for over 74% on average,
leading to over 78% duplicate matching.

=
o

-

o

I
o
=

SimGNN GraphSim GMN-Li | SimGNN GraphSim GMN-Li
GITHUB
mDeduplication Overhead

SimGNN GraphSim GMN-Li
RD-B

Normalized time cost of
matching and deduplicate

=Node Matching

Fig. 5. Comparison between latencies of matching stage and deduplication
overheads. All results are normalized to the latency of the matching stage.

Challenges and trade-off of deduplication. However,
redundancy removal in GMN computing is costly. The process,
which we call deduplication, requires comparing nodes within
a graph and recognizing duplicates, often introducing consider-
able overheads due to numerous comparisons on lengthy node

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:01 UTC from IEEE Xplore. Restrictions apply.

features. To investigate potential overheads, we implement a
naive solution for deduplication, which first identifies duplicate
matching by comparing node features within the same graph
and then computes unique matching results for all duplicate
nodes. As illustrated in Figure 5, the average overhead of the
deduplication process is 1.1x the latency of the matching stage
with redundancies, indicating its unignorable costs. The over-
head ratios fluctuate across models and datasets. For instance,
in GMN-Li, the deduplication accounts average 0.17x of the
original matching stage latencies. However, in GraphSim, the
cost rises to 2.9x. Moreover, smaller graphs amplify the ratio
because node matching is relatively faster. For instance, in
RD-B, deduplication for GMN-Li takes only 0.04x latencies
compared to node matching, yet in AIDS, the ratio increases
0.36x. This variability underscores the need for an adaptive
approach that can flexibly handle redundant computation based
on the specific context of the GMN model and dataset.

C. Poor parallelism across graph pairs

Batched Pairs

gpt

Time

4

Fig. 6. An illustration of serial node matching in baselines.

EGI% GZ%

pa——1A W) ety

When carrying out node matching on small graph inputs,
the GMNs experience suboptimal hardware utilization. The
amount of concurrent computations and related memory ac-
cesses is insufficient to fully engage the underlying resources,
resulting in inefficient hardware utilization. However, it is
challenging to parallel node matching across different graph
pairs due to varying sizes of input graphs, which leads to
different input sizes for Equation (2) and subsequent oper-
ations. To this end, when handling the node-matching stage
of batched graph pairs, existing implementations of GMNs
compute graph pairs in a pair-by-pair manner (i.e., serialized),
and concurrent computations are only performed on node pairs
from the same graph pairs, as shown in Figure 6. While nodes
within large graph pairs can easily maximize the usage of the
GPU’s computing units and memory bandwidth, small graphs
may underutilize these resources. To further explore this issue,
we evaluated the utilization of Stream Multiprocessors and
memory bandwidth during the node-matching stages in GMNs.
As seen in Figure 7, GPU resources tend to be underutilized
when handling small graphs in AIDS.

Challenges and trade-off of optimization. A viable
method for parallelizing node comparisons across batched
graph pairs is to employ sparse matrix multiplication (SpMM),
which allows parallel comparison of node pairs within a
batch using auxiliary data structures for specifying required
comparisons. However, this introduces overheads, primarily

80%

ions
ing

60%

40%

20%

Resource utilizati
during node matchi

o
B

GraphSim SimGNN GMN-Li |GraphSim SimGNN GMN-Li (GraphSim SimGNN GMN-Li
AIDS GITHUB RD-B

m SM_Utilization ~mMem_Utilization

Fig. 7. Stream Multiprocessor (SM) and Memory (Mem) utilization of GMN
models during the node matching.

=
=)
=1

-
oo
3*.% 10
52
5§
T © 1
iz
& 01
EE
2% 0.01
GraphSim SimGNN GMN-Li (GraphSim SimGNN GMN-Li |GraphSim SimGNN GMN-Li
AIDS github_stargazers REDDIT-BINARY

mSerial Matching @ Unified Matching

Fig. 8. Latencies of node pair similarity computing in baselines (serial
matching) and unified matching normalized to the baselines.

due to the need for an additional data structure to indicate the
node pairs requiring computation. If the graph pairs are already
sufficiently large to maximize GPU resources, this method
might yield little benefit and may even degrade performance.
We refer to this approach as “unified matching” and discuss
the design details in Section IV-C. As depicted in Figure 8§,
unified matching significantly accelerates the computation of
node pair similarity in AIDS, delivering an 18X speedup on
computing Equation (2). However, the solution’s effectiveness
diminishes in benchmarks with larger graph inputs, such as
RD-B. Therefore, it is critical to devise a strategy that adap-
tively parallel computations across different pairs to optimally
utilize the underlying GPU hardware resources.

IV. FLEXGM
A. Overview of FlexGM

L e b B 1 i T BE 4 k]

Adaptive Module Manager (§1V-D) |

GMN Models "@ fﬁ

Unified Matching
Module (8§1V-C)

-

Graph Deduplication
Module (§IV-B)

Fig. 9. The workflow overview of FlexGM.

To tackle the challenges in GMN computing, we introduce
FlexGM, an end-to-end runtime system aimed at boosting
the performance of GMNs on GPUs. FlexGM is composed
of three key components: Firstly, the Graph Deduplication

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:01 UTC from IEEE Xplore. Restrictions apply.

Input Graph Pairs

Gy 2 Gn—l

AR

Edge Index (€;,4.) Unique Nodes(U;x,,)

Source Node Indices Unique Node ldx |
\ Destinate Node Indices \ \ Unique Node Cnt |

Node Map (M,)
[_Correlated Unique ldx |

Graph Deduplication Module

Unique Node Hash Table
(Unique Idx, Unique Hash, Unique Cnt)

—0 |2 —> =>
12 g 2~ Next
Edge |2 [0,1,34_Node 03, Bl e et
Index > ... | - — Map e = | Ma S
L5 Ts L 5 Hy |1 — P || Nodes
_ —r
Subgraph code Unique Subgraph code

(Node Idx, Neighbor Idx) (Node Idx, Neighbor Idx)

Node Features

Dedupllcatlon Kernel

Gl Grl Unique Node Matching Sim Map
— . — o
Jniqu Graphsim | GraphSim
Node G
Gz - | lax | &2 3
‘ﬂﬁ‘ ______ »| Sim Hist
g Node| sii O
Unique| Histogram SimGNN Map
a Node Cross Msg
Gn_2 e ighted | GMN-Li
n-1 Attention [GMN-Li o

Weighted Matching Operations

Fig. 10. The illustrated workflow of the Graph Deduplication Module.

Module (§1V-B) eliminates redundant computations in GMNs.
Secondly, the Unified Matching Module (§IV-C) parallels
node similarity computing across varying-sized graph pairs.
Thirdly, the Adaptive Module Manager (§IV-D) dynamically
activates the modules above to balance the trade-off between
their overheads and benefits. As illustrated in Figure 9, the
workflow in FlexGM consists of the following steps: Initially,
the adaptive module manager gathers input (e.g., graph sizes)
and model information (e.g., node feature size)(@), determines
which modules to activate, and configures the GMN layers(@).
During GMN computing, the layers dispatch the workload
to the activated modules for optimized execution(@). The
activated modules then perform the execution and return
results that align with the native GMN models’ format(@).
Periodically, the adaptive module manager gathers runtime
information (e.g., layer latencies) from GMN models(@),
adjusting its decisions and parameters.

B. Graph Deduplication Module

The graph deduplication module eliminates redundant com-
putations with two functionalities: Firstly, it incorporates a
deduplication kernel that efficiently identifies unique nodes
and maps duplicate nodes to their unique equivalents. Sec-
ondly, it adopts a set of weighted matching operations to
execute node-matching schemes within the GMN models
without referring to the duplicate nodes. The detailed workflow
of the graph deduplication module is depicted in Figure 10.

Deduplication Kernel. The deduplication kernel adopts a
customized CUDA kernel that harnesses the computing power
of GPUs to efficiently identify duplicate nodes in parallel.
The kernel leverages a unique neighbor encoding scheme to
simplify the equality check. Moreover, it adopts a hash-table-
based approach to avoid massive comparisons between nodes.

352

In addition to the edge index that is commonly used by GNN
libraries to represent the graph topology [19], [20], the module
takes two extra tensors as inputs: The Unique Nodes tensor, de-
noted as Us x4, serves to represent unique node information. Its
it entry U[i] consists of the node index of the i*" unique node
and the number of duplicates of the i*" unique node (including
itself). The Node Map tensor M,, is a one-dimensional tensor
that stores mappings from each node to its unique node. Its 7"
element M[i] denotes that node; is a duplicate of node ;).
During the deduplication process, nodes are dispatched to
different threads and processed parallelly as follows:

Firstly, each node is represented by an integer tensor de-
noted as Subgraph Code. The first element of this tensor
is the node’s index, while the subsequent elements are the
indices of the node’s neighbors. For example, as depicted in
Figure 10, node; has one neighbor nodes. Hence, its subgraph
code is a two-element tensor (1,2). Since real-world graphs
typically have nodes with a limited number of neighbors, using
subgraph codes instead of node features can considerably
reduce overheads associated with the following steps.

Secondly, the nodes’ subgraph codes are transformed into
their unique representation, denoted as the Unique Subgraph
Code in Figure 10. Specifically, each thread replaces the
indices within the subgraph code with their respective unique
counterparts from the node map and sorts these unique indices.
The sorting ensures that neighbors in different permutations
are represented equivalently. Referring to the previous exam-
ple, the unique equivalent for node; is nodeg, while nodes is
a unique node. Hence, the unique subgraph code of node; is
transformed from (1, 2) to (0, 2).

Next, each thread hashes the Unique Subgraph Code of
the node and uses the resulting hash value to locate an entry
in the Unique Node Hash Table. If the entry is unoccupied,
the node is unique. In such a scenario, the thread records
the node’s index, hash value, and the pointer to its unique
subgraph code in the entry. However, if the entry is occupied
and the unique subgraph code of the entry matches the node’s
code, it is a duplicate node. In this case, the thread increments
the unique count in this entry by one and assigns its unique
node index to the node’s unique index in the node map. Using
the previous example, the thread hashes the unique subgraph
code of node; into Hy. Upon checking, the thread finds that
the entry associated with H is already occupied by nodey,
and they have the same unique subgraph code. Therefore,
node; is identified as a duplicate node of nodeg. The thread
then assigns the unique index of 0 to node; (i.e., M[1]) and
increments the unique count in that entry (i.e., U[0][1]) by one.

Weighted Matching Operations. To realize the node-
matching stage without relying on duplicate nodes, we use
a set of weighted matching operations to modify GMN layers.
The weighted matching operations accept the unique nodes
(Usx,,) alongside the node features as inputs and compute
node-matching stages in the following steps: Firstly, we em-
ploy the unique node index to select and match unique nodes.
As depicted in Figure 10, we select the unique nodes from
the graph pair (G, Gy), yielding graph pairs (G, Gy) that

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:01 UTC from IEEE Xplore. Restrictions apply.

consist exclusively of unique nodes, and conduct matching
between them. Secondly, we utilize the unique node count
to weigh the subsequent matching mechanisms in different
GMN models. Intuitively, the matching results from the unique
node are scaled up (i.e., multiplied) by these counts, then
participate in the following computing as results from a set of
duplicate nodes. For instance, for SImGNN, which necessitates
a histogram operation to count similarities within different
ranges [5], the unique node counts are multiplied by the count,
thereby ensuring that the original counts on duplicate nodes are
correctly computed by counting the weighted counts on unique
nodes. For GMN-Li, which requires an attention operation to
weigh and aggregate cross-graph information [6], we multiply
the attention value by the unique node counts, ensuring that
the messages from multiple duplicate nodes are substituted
by scaled messages from unique nodes. Lastly, we recover the
matching results for each node using the node map (i.e., M,,).

C. Unified Matching Module

The unified matching module dissects the node-matching
process from different graph pairs into fine-grained node pairs
and computes the similarities between these node pairs in
parallel through a customized CUDA kernel. We illustrate
the workflow of the Unified Matching Module in Figure 11.
First, the graph pairs are decomposed into node pairs, and the
matching tasks from different graph pairs are unified into a
batch-wise matching procedure. We employ an auxiliary 2-D
tensor called Match Index to indicate which node pair should
be compared, whose each entry (i, j) signifies the computation
of similarity .S;; between node; and node;. Second, all node
pairs are partitioned into equally-sized Matching Groups. Each
group is assigned a GPU warp to ensure a balanced workload
distribution. We leverage the shared memory to cache the
match indices in each block, as the threads frequently reuse
them to access the node features. Lastly, the threads within
a warp employ the match index (i, ;) to access the features
of node; (i.e., X;) and node; (i.e., X;). In particular, each
thread is assigned a specific feature from the node pairs, and
consecutive threads access and process consecutive node fea-
tures of the pair. This approach allows the memory access of
node features within a warp to be aligned into fewer memory
transaction requests. The partial results produced by the dif-
ferent threads are aggregated using the __shfl_down_sync()
operation, which directly communicates between threads and
accumulates the partial results into the final similarity score.

D. Adaptive Module Manager

The adaptive module manager dynamically activates benefi-
cial modules based on cost models and uses runtime feedback
to validate these decisions. For each batch, the module man-
ager collects input information(e.g., graph sizes, node feature
sizes, etc.), estimates the potential benefits of the modules
based on cost models, and enables beneficial modules before

353

Batched Input Pairs

/

Unified Matching Module“

Paire (S4)
Ma"""u\ O s
Index 11 T T T T T T T T T T I T T T T I T T T T T T I T I T T
Ma,hllllllllllllll 11111111111111 11111111111111
Group [Grou Grou
s A s
f‘wtw ‘.NH‘.NH‘.{"'I'J'I"‘I‘}(‘I-‘ | ST EmmEmEEE
CLITTTIL] X; CITIITIT] LTI 1]
Warps 2323322 22222222 233222
333333 Threads|| $3$$3833 33333
LT [IT1111]] CLIIT11T]
_.ehfl"down_sync() || i ..
Fig. 11. The detailed workflow of the Unified Matching Module.

inference. For the graph deduplication module, the cost model
is as Equation (4),

1

7Iu = ’

dup {07
4)

|M| denotes the number of matching pairs per batch, ~
and « represent matching complexity and duplicate matching
ratio, respectively. We define matching complexity as the
approximate ratio of matching stage latency to the overall
latencies. Removing duplicates can be more beneficial with
higher matching numbers, complexity, and duplicate rates,
thus we multiply them to get the benefit factors. We use the
number of nodes per batch, |V|, to approximate overheads
and divide the benefit factors by this approximation to obtain
N Bg.p, representing the potential benefit matrix for enabling
the graph deduplication module. If the matrix is higher than
the preset threshold 64, the graph deduplication module will
be activated. For the unified matching module, the cost model
can be represented as Equation (5),

— 17
=10,

We approximate the intensity of node matching computing per
%raPh pair by multiplying their average number of node pairs

(i.e., total node pairs divided by batch size) with the size
of node features |F'|. The results are further discounted by
dividing the GPU hardware’s theoretical FLOPS, denoted as
P, then reversed to obtain the final metric N B,,,,,. Intuitively,
it represents how many graphs pairs the underlying GPUs
can handle concurrently. If NB,,,, is higher than the preset
threshold 6,,,,, the module will be enabled.

if NBdup > Gdup
otherwise

|M| x~v X«

NBaw ==y

PxB
| M| F]? "

if NBym, >

gu’m,
NBum = o (5)

otherwise

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:01 UTC from IEEE Xplore. Restrictions apply.

TABLE 1
DETAILS OF GMNS MODELS.

Model Layers (Type[hidden_sizes]) Similarity
MLP[1,64],
. 5%{MGNN][64,64,64], .
GMN-Li [6] MATCHINé[64,64],[MLP(64]*3,64,64)} Euclidean
READOUT(64,128,128]
3%(GCN[1,64], SIM[64,1],SAMPLE[M, 16X 16]),
GraphSim [7] CNN[3,16,32,64,128] Cosine
MLP([128%3,128,64,32,16,1])
35(GCN[1,64]),
SimGNN [5] S;“éfé’é][ﬁ[lgi?gx’éi]’ Dot-product
NTN[128,16],MLP([32,16,8.4,1])
TABLE II
DETAILS OF DATASETS.
Datasets Ave. # of Nodes | Ave. # of Edges | # of Graph Pairs
AIDS [22] 15.69 16.20 200
GITHUB [23] 113.79 234.64 1273
RD-B [15] 429.63 497.75 200
RD-5K [15] 508.52 594.87 500
RD-12K [15] 391.41 456.89 1193

During GMN computing, the manager periodically vali-
dates its decisions and adjusts its parameters. Specifically,
it periodically activates disabled modules and monitors their
latencies to check if there is a better choice. If the current
mode is incorrect, the manager will use the current matrix
value to overwrite the current threshold so that the manager
will make a different choice on similar workloads next time.
The manager periodically samples runtime information and
uses running averages to update parameters, such as v and «
in Equation (4), which are not directly detectable from input
data. Initially, these values are set based on offline profiling
averages, then updated with running averages of runtime la-
tencies and duplicate matching ratios sampled during runtime.

V. EVALUATION

A. Experiment setup

Models. We evaluate FlexGM using three recent GMNs: 1)
GMN-Li [6] and 2) GraphSim [7] conducts layer-wise node
matching, and 3) SimGNN [5] employs node matching in the
last-layer. The model details are described in Table I. The layer
configurations are presented as Operations([hidden sizes]). The
special GNN used in [6] is referred to as MGNN.

Datasets. We employ five widely-used real-world graph
classification datasets for our evaluation, as detailed in Ta-
ble II. Specifically, AIDS [22] comprises small-sized graphs
representing molecular compounds sourced from the Antivi-
ral Screen Database of Active Compounds. Github Stargaz-
ers(GITHUB) [23] encompasses medium-sized graphs, where
nodes symbolize authors and edges indicate their relation-
ships. REDDIT-BINARY(RD-B), REDDIT-MULTI-5K(RD-
5K), and REDDIT-MULTI-12K(RD-12K) [15] consist of
large-sized graphs, where nodes represent users, and edges
denote relationships between them. Following classification
task settings in GMN-Li [6], we create similar/dissimilar graph
pairs by randomly substituting edges in the base graphs. We
set the batch size to 32 for the datasets with smaller graphs
(i.e., AIDS, GITHUB) and 8 for those larger graphs (i.e., RD-
B, RD-5K, and RD-12K) to avoid out-of-memory.

354

Platforms and implementations. We conduct experiments
on a server with a 64-Core AMD EPYC 7742 CPU and an
NVIDIA A100 GPU. The following GMN implementations
are compared in the experiments:

e PyG (Baseline). The PyG implements GMN models with
PyTorch [18] and PyTorch-Geometric [19]. Specifically,
we implement the node embedding stages within GMNs
by the PyTorch-Geometric and use PyTorch to realize the
operations in the node matching stages.

e FlexGM. FlexGM uses C++/CUDA for the backend and
Python for the front end. The node embedding stage remains
the baseline implementation, and the node matching stages
are enhanced by our designs.

To investigate the benefits of each module, we also compare
the following modes of FlexGM. The adaptive module man-
ager is disabled in these modes.

e FlexGM_Dedup. This version of FlexGM always activates
the graph deduplication module while keeping the unified
matching module down.

e FlexGM_UM. This version of FlexGM always activates the
unified matching module while keeping the graph dedupli-
cation module down.

e FlexGM_Full. This version of FlexGM always activates
both the unified matching module and the graph dedupli-
cation module.

B. Overall Speedup

As shown in Figure 12, FlexGM achieves 2.6x speedups
over the baseline on average. In benchmarks with heavy node-
matching computing on large graphs, such as GMN-Li on RD-
5K, the speedup can be up to 7.6 x. Regarding GMN models,
the average speedup on GMN-Li, GraphSim, and SImGNN are
4.7x 1.8x and 1.3x, respectively. There are more significant
speedups on GMN-Li, which conducts heavier node-matching
computing. Specifically, GMN-Li computes similarities and
uses them for cross-graph message passing in each of its
five layers, leading to higher node-matching latency ratios
that are effectively shortened. Regarding the datasets, FlexGM
achieves higher speedup on datasets containing larger graphs,
such as RD-B, RD-5K, and RD-12K. The primary reason is
massive duplicate subgraphs in these larger graphs. This phe-
nomenon leads to considerable benefits from the deduplication
module, resulting in a 3.5x average speedup in RD-B, RD-5K,
and RD-12K. While the deduplication is not beneficial in the
smaller graphs, unified matching can also effectively speed up
the GMNSs, resulting in a 1.3x speedup in AIDS. The results
demonstrate that FlexGM can effectively speed up different
GMNSs on diverse workloads.

C. Optimization Analysis

Graph Deduplication Module. As shown in Figure 12, the
graph deduplication module (i.e., FlexGM_Dedup) is highly
effective when dealing with larger graphs. Specifically, 3.1x,
3.3x, and 2.5x speedups are observed in the RD-B, RD-5K,
and RD-12K datasets. These improvements can be attributed

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:01 UTC from IEEE Xplore. Restrictions apply.

=
=)

-

modes over the baseline

o

Speedup of different FlexGM

SimGNN GraphSim GMN-Li
AIDS

SIimGNN GraphSim GMN-Li
GITHUB
B FlexGM_UnifyMatching

@ Baseline

SimGNN GraphSim GMN-Li
RD-B
B FlexGM_Dedup

SimGNN GraphSim GMN-Li | SimGNN GraphSim GMN-Li | Average
RD-5K RD-12K
OFlexGM_Full =FlexGM

Fig. 12. The speedup of FlexGM_UM, FlexGM_Dedup, FlexGM_Full and FlexGM over the baseline.

= 100%
$S 80%
23 60%
25 0%
0T
£8 20%
©
e
z E |z E 3|z E @Z|z E 3|2 E 3
[z = O z = 0 z = O z = O z = 0
52 6 2 2l 2 2|0 2 2|0 2 Z|0 2 Z
o= E 2 0| g o0|f g o|f g ol g0
sé ° 5 ° 5 ® 5 ® 5 ® 5
= AIDS GITHUB RD-B RD-5K RD-12K
B Dup_Matching B Unique_Matching
Fig. 13. The ratio of detected unique and duplicate matching.

to higher ratios of duplicates. As depicted in Figure 13,
the deduplication module eliminates over 90% matching in
the RD-B, RD-5K, and RD-12K dataset, demonstrating that
larger real-world graphs are more likely to contain recurring
subgraphs. The graph deduplication module, therefore, plays a
critical role in improving GMN performances on large graphs.

Unified Matching Module. The FlexGM_UM efficiently
enhances the performance of GMNs on small graphs. As
shown in Figure 12, in AIDS, it achieves 1.4x, 1.6x, and
1.2x speedups over the baseline for SImGNN, GraphSim,
and GMN-Li, respectively. As shown in Figure 14, in AlDs,
the underlying hardware resources are better exploited than
the baseline. However, in RD-B, where the module is not as
beneficial, the hardware resources are already exploited well.

Adaptive Module Manager. It can be observed from
Figure 12 that simply enabling both modules statically in
FlexGM_Full does not consistently yield performance im-
provements; in certain instances, it may even result in in-
creased latencies. However, incorporating the adaptive module
manager, FlexGM surpasses the performance of all statically
configured modes. Notably, in datasets with smaller graphs,
such as AIDS, FlexGM achieves comparable performance
enhancements as FlexGM_UM, while in datasets containing
larger graphs, like RD-B, it achieves the performance gains
observed in FlexGM_Dedup. These findings underscore the
ability of the adaptive module manager to judiciously select
and enable modules that contribute positively to performance.

VI. RELATED WORKS

Various software and GPU runtime optimizations have
been introduced to enhance the performance of GNNs and
traditional Graph Matching algorithms [9]-[11], [24], [25].
GNNAdpvisor [8] utilizes a group-based workload management

355

100.0%
80.0%
60.0%
40.0%
20.0%

0.0%

PyG UM |[PyG UM |PyG UM |PyG UM
SimGNN SimGNN

PyG UM
GraphSim
RD-B

Hardware Utilizations of
FlexGM_UM and the baseline

GMN-Li

GraphSim
AIDS
B SM_Utilization

B Mem_Utilization

Fig. 14. The hardware utilizations of FlexGM_UM and baseline.

system to balance workload and a node reordering scheme
to optimize data locality. QGTC [10] constructs a tensor-
core-based framework supporting arbitrary bit-width quantized
GNNs. HAG [9] proposes a hierarchical aggregation method
to eliminate redundant computations during node aggrega-
tion. However, these techniques primarily enhance the node-
embedding stage in GMNs, overlooking inefficiencies in the
node-matching stage. Conversely, optimizations in conven-
tional subgraph matching computation, like CECI [24], aren’t
readily transferable to GMNs. This is attributed to the differ-
ences in their computing flows: traditional algorithms focus on
search-based matching, while GMNs are built on top of the
GNN-based parallel similarity computations. CEGMA [14] is
the most relevant to our study. It improves GMN computing
by memorizing matching results, integrating node embedding
and matching stages in GMNs, and designing a dedicated hard-
ware accelerator. However, CEGMA relies on extra hardware
designs to mitigate overheads and maximize the efficiency of
the suggested dataflows, which hampers their application on
general computing platforms. To conclude, while substantial
efforts have been made to accelerate GNNs, no prior work
targets optimizing GMN computing on GPUs, leaving a gap
between general computing platforms and emerging GMN
algorithms.

VII. CONCLUSION

In this study, we introduce FlexGM, a runtime system, to
tackle the computational challenges inherent in Graph Match-
ing Networks (GMNs) on GPUs. FlexGM speeds up GMN
execution by adaptively eliminating redundant computation
and exploiting underlying GPU resources. The experiment
results show that FlexGM can achieve 2.5x on average and
up to 7.6 speedup over the prior implementations.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:01 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEGDEMENT

The authors sincerely thank the anonymous ICCD reviewers
for their constructive feedback and suggestions. This work
is supported in part by NSF grants #2011146, #2154973,
#1725657, #1910413, and #2312157.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

K. M. Borgwardt, H.-P. Kriegel, S. Vishwanathan, and N. N. Schrau-
dolph, “Graph kernels for disease outcome prediction from protein-
protein interaction networks,” in Biocomputing 2007. World Scientific,
2007, pp. 4-15.

C. Fabiana, M. Garetto, and E. Leonardi, “De-anonymizing scale-
free social networks by percolation graph matching,” in 2015 IEEE
Conference on Computer Communications (INFOCOM). 1EEE, 2015,
pp. 1571-1579.

P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superglue:
Learning feature matching with graph neural networks,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 4938-4947.

W. Li, X. Liu, and Y. Yuan, “Sigma: Semantic-complete graph matching
for domain adaptive object detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
5291-5300.

Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “Simgnn:
A neural network approach to fast graph similarity computation,” in
Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining, 2019, pp. 384-392.

Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,” in
International conference on machine learning. PMLR, 2019, pp. 3835—
3845.

Y. Bai, H. Ding, K. Gu, Y. Sun, and W. Wang, “Learning-based efficient
graph similarity computation via multi-scale convolutional set match-
ing,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 04, 2020, pp. 3219-3226.

Y. Wang, B. Feng, G. Li, S. Li, L. Deng, Y. Xie, and Y. Ding, “Gn-
nadvisor: An adaptive and efficient runtime system for gnn acceleration
on gpus,” in 15th USENIX symposium on operating systems design and
implementation (OSDI 21), 2021.

Z.Jia, S. Lin, R. Ying, J. You, J. Leskovec, and A. Aiken, “Redundancy-
free computation for graph neural networks,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 997-1005.

Y. Wang, B. Feng, and Y. Ding, “Qgtc: accelerating quantized graph
neural networks via gpu tensor core,” in Proceedings of the 27th ACM
SIGPLAN symposium on principles and practice of parallel program-
ming, 2022, pp. 107-119.

Z. Lin, C. Li, Y. Miao, Y. Liu, and Y. Xu, “Pagraph: Scaling gnn training
on large graphs via computation-aware caching,” in Proceedings of the
11th ACM Symposium on Cloud Computing, 2020, pp. 401-415.

356

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Y. Jin, D. Mishkin, A. Mishchuk, J. Matas, P. Fua, K. M. Yi, and
E. Trulls, “Image matching across wide baselines: From paper to
practice,” International Journal of Computer Vision, vol. 129, no. 2,
pp. 517-547, 2021.

J. Ma, X. Jiang, A. Fan, J. Jiang, and J. Yan, “Image matching
from handcrafted to deep features: A survey,” International Journal of
Computer Vision, vol. 129, no. 1, pp. 23-79, 2021.

Y. Dai, Y. Zhang, and X. Tang, “Cegma: Coordinated elastic graph
matching acceleration for graph matching networks,” in 2023 [EEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2023, pp. 584-597.

P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings
of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining, 2015, pp. 1365-1374.

W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting code clones with
graph neural network and flow-augmented abstract syntax tree,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). 1EEE, 2020, pp. 261-271.

1. Papakis, A. Sarkar, and A. Karpatne, “Gennmatch: Graph convolu-
tional neural networks for multi-object tracking via sinkhorn normaliza-
tion,” arXiv preprint arXiv:2010.00067, 2020.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

R. Wang, J. Yan, and X. Yang, “Learning combinatorial embedding
networks for deep graph matching,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2019, pp. 3056-3065.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in Osdi, vol. 16, no. 2016. Savannah, GA,
USA, 2016, pp. 265-283.

K. Riesen and H. Bunke, “Iam graph database repository for graph based
pattern recognition and machine learning,” in Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition (SPR) and
Structural and Syntactic Pattern Recognition (SSPR). Springer, 2008,
pp. 287-297.

B. Rozemberczki, O. Kiss, and R. Sarkar, “An api oriented open-source
python framework for unsupervised learning on graphs,” arXiv preprint
arXiv:2003.04819, vol. 10, no. 3340531.3412757, 2020.

B. Bhattarai, H. Liu, and H. H. Huang, “Ceci: Compact embedding
cluster index for scalable subgraph matching,” in Proceedings of the
2019 International Conference on Management of Data, 2019, pp. 1447—
1462.

B. Li, J. Yin, A. Holey, Y. Zhang, J. Yang, and X. Tang, “Trans-fw: Short
circuiting page table walk in multi-gpu systems via remote forwarding,”
in 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 1EEE, 2023, pp. 456-470.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:22:01 UTC from IEEE Xplore. Restrictions apply.

