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Abstract—GMNs (Graph Matching Networks) exploit recently
developed GNNs (Graph Neural Networks) to analyze the similar-
ity between two graphs. They are increasingly deployed in many
application domains due to their improved inference accuracy.
A GMN consists of two stages, i.e., node-embedding and node-
matching stages. The node-matching stage matches node features
from two graphs for similarity, which accounts for over 90% of
the total execution time. However, it is challenging to accelerate
GMNs on GPUs due to their diverse computing patterns for
different graph inputs. For large graphs, the overhead comes
mainly from the high computation overhead, which increases
quadratically to the size of the graphs; for small graphs, the
overhead comes from the low parallelism and resource utilization.

In this paper, we propose FlexGM, a flexible runtime, to
adaptively accelerate GMNs on GPUs. For large graphs, we
exploit the massive computation redundancy in GMNs and
develop a low-overhead deduplication module to mitigate the high
computation overhead. For small graphs, we develop a unified
matching module to optimize GPU hardware resource usage. An
adaptive module manager is then developed to judiciously select
beneficial optimization strategies. Experimental results show that
the FlexGM system achieves 2.5× (up to 7.6×) average speedup
over existing methods.

Index Terms—Graph matching networks, Graph neural net-
works, GPU runtime

I. INTRODUCTION

Graph Similarity Computing plays a pivotal role in nu-

merous application domains, such as bioinformatic analysis

in medical science [1], friend cycle matching in social net-

works [2], and feature matching in the computer vision [3],

[4]. Recently introduced Graph Matching Networks (GMNs)

demonstrate outstanding inference accuracy on these tasks [3],

[5]–[7]. GMNs comprise two stages: The first, the embedding

stage, integrates subgraph information into node features,

while the second, the matching stage, calculates similarities

between node features for diverse matching purposes. Gen-

erally, the embedding stage is facilitated by Graph Neural

Networks (GNNs), which take advantage of existing GNN

optimizations [8]–[11]. However, the matching stage, which

requires all-to-all node matching between pairs of various-

sized graphs, comprises over 90% execution latencies across

distinct models and datasets, identifying it as the primary

bottleneck in most GMN applications. Despite this, many

applications necessitate a rapid response time or high through-

put. For instance, computer vision tasks require real-time

graph matching with strict deadlines [12]–[14], and the graph

searching requires handling millions of matching queries in a

short time [14]–[16]. These GMN applications are typically

deployed on servers equipped with GPUs. Therefore, devel-

oping a GMN-accelerating runtime system for the GPUs is

crucial and highly beneficial.

Nevertheless, designing a runtime system for GMNs is chal-

lenging due to the diversity in computing patterns exhibited

by graphs of varying sizes. The inefficiency comes from two

aspects: First, the all-to-all node matching suffers quadratic

computing complexity, thus introducing heavy overheads when

the input graphs are large. However, there exists tremendous

redundancy in GMN computing. In particular, nodes tend to

have identical neighborhoods, resulting in the same features

and matching results. Consequently, redundant computations

are introduced by repeatedly calculating these identical match-

ings. Therefore, detecting and eliminating those redundant

computations could be beneficial for handling large graph in-

puts. Nevertheless, when the graphs are small, the overhead of

detecting and eliminating those redundant computations could

outweigh the benefits. Secondly, the GPU hardware resources

are underutilized when the input graphs are small. Specifically,

as varying sizes of graph pairs pose challenges to batching,

current GMN implementations tend to compute the similarities

between different graph pairs serially. Therefore, when a single

graph pair is not large enough to saturate the GPU hardware

resources, the GPU resources will be underutilized and cannot

contribute to shorter execution latency. One potential solution

is to parallel the node matching across different-sized graphs

using Sparse Matrix Multiplication (SpMM). However, for

large graphs that fully utilize GPU resources, the overhead

of managing the sparse data structure could offset any ad-

vantages. In summary, to optimize GMN computations on

GPUs, it is essential to eliminate redundant computations

and maximize parallelism during the node-matching stage.

Moreover, it is equally important to carefully balance the

advantages of such strategies against the potential overheads.

To this end, we introduce FlexGM, a runtime system to

adaptively accelerates GMN computations on GPUs. Firstly,

we present a graph deduplication module that reduces un-

necessary computation in the node-matching stage. Secondly,

we implement a unified matching module that parallels node
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matching across various graph pairs to harness the full poten-

tial of GPUs’ parallel capacity. Lastly, to optimally balance

the trade-off between the advantages and overheads of these

enhancements, we propose an adaptive module manager that

selectively activates optimization modules based on the input

data, thus ensuring diverse inputs achieve their optimization

targets. Our contributions can be summarized as follows:

• We conduct a thorough and quantitative analysis of the com-

putational challenges faced by GMNs on GPUs and identify

the optimization opportunities in diverse input workloads.

• We introduce FlexGM, a runtime system designed to en-

hance GMN execution on GPUs. FlexGM incorporates

a graph deduplication module to mitigate redundancy, a

unified matching module to optimize hardware utilization,

and an adaptive module manager to dynamically activate

beneficial optimizations.

• We implement and evaluate FlexGM utilizing widely

adopted GMN models. The experimental results demon-

strate that FlexGM achieves an average speedup of 2.5×
and peaks at 7.6× over existing GMN implementations.

II. BACKGROUND

A. Graph Matching Networks
Graph Neural Network (GNN) based models for graph

similarity computation have recently emerged as a popular

choice owing to their enhanced accuracy and scalability [3],

[5]–[7]. These models are referred to as Graph Matching
Networks (GMNs). These GMNs typically encompass two

stages: When provided with a pair of graphs (G1, G2), where

G1 is conventionally referred to as the target graph and G2 as

the query graph, all nodes from both graphs are subjected to

two stages, namely, node embedding stage and node matching

stage, these stages occur either at a layer-wise or model-wise

level and help calculate the degree of similarity between the

graphs, as shown in Figure 1.

Node Embedding Stage
(Aggregation, Combination)

Layer-wisely/Model-wisely

Graph Matching Networks

Node Matching Stage
(Node comparison/messaging)

Histogram,
Attention,
Sampling,

…

Fig. 1. Node embedding and node matching stages in GMN models.

Stage 1: Node Embedding. During the node embedding

stage, GMNs employ a conventional GNN methodology to

update node features. At this stage, every node gathers intra-

graph messages from its adjacent nodes, subsequently merging

these received messages with its own features through neural

networks. The general process for the node embedding stage

at layer l can be articulated as follows:

X l+1 = σ(COMB(AGGR(A,X l,W l
e),W

l
n)) (1)

The equation incorporates σ(·) as the activation function, A as

the graph’s adjacency matrix, X l as the layer l node feature,

and W l
e and W l

n as the layer l weights. The input feature X l is

aggregated along edges, as denoted by the adjacency matrix

A, in the AGGR(·) module. Following this, a combination

module COMB(·) combines the aggregated messages with

nodes’ original features based on W l
n.

Stage 2: Node Matching. During the node matching stage,

GMNs compute the similarity between nodes from target and

query graphs. Various functions like dot-product similarity,

cosine similarity, and Euclidean similarity are utilized to

compute similarities between the cross-graph node-pairs [5]–

[7]. These similarity values can either be used directly for

making predictions [5], [7] or indirectly facilitate further cross-

graph communication [3], [6]. The matching procedure at layer

l can be represented as:

Sl =
X l(Y l)T

K
(2)

The Sl is the similarity matrix between two node sets in layer

l and K is the scale factors (i.e., K = 1 for dot-product simi-

larity, K = 2 for euclidean similarity, and Kij = ‖X l
i‖ · ‖Y l

j ‖
for cosine similarity). For Euclidean similarity, the score Sl

ij

will be further normalized by subtracting squared magnitudes

of row vectors Sl
ij = Sl

ij − (‖X l
i‖2 + ‖Y l

j ‖2) [6]. Recent

GMNs adopt layer-wise node matching since it yields better

accuracy [3], [4], [6], [7], [17].

B. GMN implementations on GPUs

GMNs are commonly executed on GPUs by leveraging

existing GNN and deep learning frameworks [18]–[21]. In

particular, the node embedding stages are implemented by

GNN frameworks such as PyTorch-Geometric (PyG) [19], and

the node matching stages are implemented by general-purpose

deep learning frameworks like PyTorch [18]. Many studies

focus on improving the performance of GNN operations on

GPUs [8], [19], [20]. As a result, the computations in the node

embedding stages are effectively parallelized across batches of

input graphs, facilitating simultaneous processing of edges and

nodes from various graph pairs and capitalizing on the parallel

processing power of GPUs.

III. MOTIVATIONS

To delve into potential challenges and opportunities associ-

ated with optimizing GMNs on the GPUs, we characterize

computations in three widely used GMN models: Graph-

Matching-Network (GMN-Li) [6], SimGNN [5] and Graph-

Sim [7]. The models are implemented in PyTorch [18] and

PyTorch-Geometric [19]. We investigate their performances on

three representative datasets: AIDS [22] represents small-sized

graphs, Github Stargazers (GITHUB) [23] represents middle-

sized graphs, and REDDIT-BINARY (RD-B) [15] represents

large-sized graphs. More details about GMN models, datasets,

and experiment platforms are described in Section V.
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A. Bottleneck in GMNs

To recognize the bottleneck in GMN computing, we first

analyze the latencies from different stages of the GMN

model. Figure 2 illustrates the breakdown of GMN inference

latencies. Noticeably, the node matching consumes over 90%

total execution time on average. Hence, optimizing the node-

matching stage is crucial for enhancing the efficiency of GMN

execution. The substantial time consumption can be traced to

two main issues from two kinds of distinct computing patterns:

While dealing with large graphs, the quadratically increased

node comparisons can cause heavy computation, resulting in

significant latencies with massive redundancy; while handling

small graphs, a single graph pair can hardly fully exploit the

GPU parallel capability, leading to long latencies with low

hardware utilization.
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Fig. 2. Normalized latency breakdown in GMN models.

B. Redundancy in quadratically increased node comparisons

When computing node matching on large graph inputs, the

GMNs face an overwhelming surge in computational demands.

The volume of computations and associated memory accesses

grow dramatically with the increase in graph sizes due to

all-to-all node comparisons. Nevertheless, massive redundancy

exists in these heavy burdens due to duplicate subgraphs.

Redundant matching. In GMNs, the feature of a node

in layer l, denoted as X l
i , represents the information from

the l-hop subgraph surrounding nodei. As such, if another

node, nodej , has an l-hop neighborhood forming a subgraph

identical to that of nodei (i.e., isomorphic neighborhood

subgraphs), the features of nodei and nodej at layer l will

be the same (i.e., X l
i = X l

j). As the example illustrated in

Figure 3, node0 and node1 have the same features due to

their identical neighborhoods. We refer to nodes with distinct

features as unique nodes and nodes with features that replicate

those of the unique nodes as duplicate nodes. The matching

results from duplicate nodes to the other graphs are identical

to their unique counterparts. For instance, suppose we carry

out node matching at layer l. Assuming we have a unique

nodei with features X l
i and a duplicate nodej having identical

features to nodei (i.e., X l
i = X l

j) matched with the same graph

(i.e., Y l), the matching results for nodei would be the same

as the matching results of nodej , as shown below.

Sl
j =

X l
j(Y

l)T

K
=

X l
i(Y

l)T

K
= Sl

i (3)

In this case, the matching results associated with the duplicate

nodej (i.e., Sl
j) can be obtained by reusing the matching

Layer 1 Layer 2
Duplicate node

…

Unique matching Duplicate matching

Layer 1 Layer 2 …
Unique node

Fig. 3. An illustration of a duplicate node and its corresponding duplicate
matching with their unique counterparts.
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Fig. 4. Ratios of duplicate node (left) and consequent duplicate pairs (right).

results tied to the unique nodei (i.e., Sl
i). We refer to the

matching results from the unique nodes as unique matching

and the results from the duplicate nodes as duplicate matching.

Using the example illustrated in Figure 3, the matching results

from node0 to nodes in the other graphs S1
0 are the same

as those results computed by node1 (i.e., S1
1 ), then we can

regard one of them as unique matching and reuse it for the

other. Consequently, computations for duplicate matching are

redundant and can be eliminated. We quantitatively investigate

the number of duplicate nodes and corresponding redundant

matching to quantify this potential redundancy. As depicted in

Figure 4, duplicate nodes account for over 74% on average,

leading to over 78% duplicate matching.
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Fig. 5. Comparison between latencies of matching stage and deduplication
overheads. All results are normalized to the latency of the matching stage.

Challenges and trade-off of deduplication. However,

redundancy removal in GMN computing is costly. The process,

which we call deduplication, requires comparing nodes within

a graph and recognizing duplicates, often introducing consider-

able overheads due to numerous comparisons on lengthy node
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features. To investigate potential overheads, we implement a

naive solution for deduplication, which first identifies duplicate

matching by comparing node features within the same graph

and then computes unique matching results for all duplicate

nodes. As illustrated in Figure 5, the average overhead of the

deduplication process is 1.1× the latency of the matching stage

with redundancies, indicating its unignorable costs. The over-

head ratios fluctuate across models and datasets. For instance,

in GMN-Li, the deduplication accounts average 0.17× of the

original matching stage latencies. However, in GraphSim, the

cost rises to 2.9×. Moreover, smaller graphs amplify the ratio

because node matching is relatively faster. For instance, in

RD-B, deduplication for GMN-Li takes only 0.04× latencies

compared to node matching, yet in AIDS, the ratio increases

0.36×. This variability underscores the need for an adaptive

approach that can flexibly handle redundant computation based

on the specific context of the GMN model and dataset.

C. Poor parallelism across graph pairs

Batched Pairs Time

Fig. 6. An illustration of serial node matching in baselines.

When carrying out node matching on small graph inputs,

the GMNs experience suboptimal hardware utilization. The

amount of concurrent computations and related memory ac-

cesses is insufficient to fully engage the underlying resources,

resulting in inefficient hardware utilization. However, it is

challenging to parallel node matching across different graph

pairs due to varying sizes of input graphs, which leads to

different input sizes for Equation (2) and subsequent oper-

ations. To this end, when handling the node-matching stage

of batched graph pairs, existing implementations of GMNs

compute graph pairs in a pair-by-pair manner (i.e., serialized),

and concurrent computations are only performed on node pairs

from the same graph pairs, as shown in Figure 6. While nodes

within large graph pairs can easily maximize the usage of the

GPU’s computing units and memory bandwidth, small graphs

may underutilize these resources. To further explore this issue,

we evaluated the utilization of Stream Multiprocessors and

memory bandwidth during the node-matching stages in GMNs.

As seen in Figure 7, GPU resources tend to be underutilized

when handling small graphs in AIDS.

Challenges and trade-off of optimization. A viable

method for parallelizing node comparisons across batched

graph pairs is to employ sparse matrix multiplication (SpMM),

which allows parallel comparison of node pairs within a

batch using auxiliary data structures for specifying required

comparisons. However, this introduces overheads, primarily
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Fig. 7. Stream Multiprocessor (SM) and Memory (Mem) utilization of GMN
models during the node matching.
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Fig. 8. Latencies of node pair similarity computing in baselines (serial
matching) and unified matching normalized to the baselines.

due to the need for an additional data structure to indicate the

node pairs requiring computation. If the graph pairs are already

sufficiently large to maximize GPU resources, this method

might yield little benefit and may even degrade performance.

We refer to this approach as ”unified matching” and discuss

the design details in Section IV-C. As depicted in Figure 8,

unified matching significantly accelerates the computation of

node pair similarity in AIDS, delivering an 18× speedup on

computing Equation (2). However, the solution’s effectiveness

diminishes in benchmarks with larger graph inputs, such as

RD-B. Therefore, it is critical to devise a strategy that adap-

tively parallel computations across different pairs to optimally

utilize the underlying GPU hardware resources.

IV. FLEXGM

A. Overview of FlexGM

Input Batched Graph Pairs

Unified Matching 
Module ( IV-C)

Graph Deduplication 
Module ( IV-B)

Adaptive Module Manager ( IV-D)

GMN Models

Node Embedding & Node Matching Layers

GMN Configurations
1 1

2

3 34 4

5

Fig. 9. The workflow overview of FlexGM.

To tackle the challenges in GMN computing, we introduce

FlexGM, an end-to-end runtime system aimed at boosting

the performance of GMNs on GPUs. FlexGM is composed

of three key components: Firstly, the Graph Deduplication
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… …

5 6
… …

Source Node Indices
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4

So rce Node Indices
Edge Index 

Correlated Unique Idxorrelated Unique Idx
Node Map 

Subgraph code
Node Idx, Neighbor Idx

Edge 
Index

Node 
Map

0 2
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2 0,0,3,3
… …

5 6
… …

Unique Subgraph code
(Node Idx, Neighbor Idx)

…

…

0 2
2 1
… … …
5 1
… … …

Unique Node Hash Table
(Unique Idx, Unique Hash, Unique Cnt )

Next
Node 
Map

Next
Unique
Nodes

Weighted Matching Operations

Unique N
Unique Node Idx
Unique Node Cnt

Unique
Node 
Idx

Node 
MapUnique

Node 
Cnt

Weighted 
Histogram

Weighted 
Attention

GraphSim

SimGNN

GMN-Li

Node Features Unique Node Matching Sim Map

Sim Hist

Cross Msg

SimGNN

GMN-Li

GraphSim

Input Graph Pairs

Fig. 10. The illustrated workflow of the Graph Deduplication Module.

Module (§IV-B) eliminates redundant computations in GMNs.

Secondly, the Unified Matching Module (§IV-C) parallels

node similarity computing across varying-sized graph pairs.

Thirdly, the Adaptive Module Manager (§IV-D) dynamically

activates the modules above to balance the trade-off between

their overheads and benefits. As illustrated in Figure 9, the

workflow in FlexGM consists of the following steps: Initially,

the adaptive module manager gathers input (e.g., graph sizes)

and model information (e.g., node feature size)( 1 ), determines

which modules to activate, and configures the GMN layers( 2 ).

During GMN computing, the layers dispatch the workload

to the activated modules for optimized execution( 3 ). The

activated modules then perform the execution and return

results that align with the native GMN models’ format( 4 ).

Periodically, the adaptive module manager gathers runtime

information (e.g., layer latencies) from GMN models( 5 ),

adjusting its decisions and parameters.

B. Graph Deduplication Module

The graph deduplication module eliminates redundant com-

putations with two functionalities: Firstly, it incorporates a

deduplication kernel that efficiently identifies unique nodes

and maps duplicate nodes to their unique equivalents. Sec-

ondly, it adopts a set of weighted matching operations to

execute node-matching schemes within the GMN models

without referring to the duplicate nodes. The detailed workflow

of the graph deduplication module is depicted in Figure 10.

Deduplication Kernel. The deduplication kernel adopts a

customized CUDA kernel that harnesses the computing power

of GPUs to efficiently identify duplicate nodes in parallel.

The kernel leverages a unique neighbor encoding scheme to

simplify the equality check. Moreover, it adopts a hash-table-

based approach to avoid massive comparisons between nodes.

In addition to the edge index that is commonly used by GNN

libraries to represent the graph topology [19], [20], the module

takes two extra tensors as inputs: The Unique Nodes tensor, de-

noted as U2×u, serves to represent unique node information. Its

ith entry U [i] consists of the node index of the ith unique node

and the number of duplicates of the ith unique node (including

itself). The Node Map tensor Mn is a one-dimensional tensor

that stores mappings from each node to its unique node. Its ith

element M[i] denotes that nodei is a duplicate of nodeM[i].

During the deduplication process, nodes are dispatched to

different threads and processed parallelly as follows:

Firstly, each node is represented by an integer tensor de-

noted as Subgraph Code. The first element of this tensor

is the node’s index, while the subsequent elements are the

indices of the node’s neighbors. For example, as depicted in

Figure 10, node1 has one neighbor node2. Hence, its subgraph

code is a two-element tensor (1, 2). Since real-world graphs

typically have nodes with a limited number of neighbors, using

subgraph codes instead of node features can considerably

reduce overheads associated with the following steps.

Secondly, the nodes’ subgraph codes are transformed into

their unique representation, denoted as the Unique Subgraph
Code in Figure 10. Specifically, each thread replaces the

indices within the subgraph code with their respective unique

counterparts from the node map and sorts these unique indices.

The sorting ensures that neighbors in different permutations

are represented equivalently. Referring to the previous exam-

ple, the unique equivalent for node1 is node0, while node2 is

a unique node. Hence, the unique subgraph code of node1 is

transformed from (1, 2) to (0, 2).
Next, each thread hashes the Unique Subgraph Code of

the node and uses the resulting hash value to locate an entry

in the Unique Node Hash Table. If the entry is unoccupied,

the node is unique. In such a scenario, the thread records

the node’s index, hash value, and the pointer to its unique

subgraph code in the entry. However, if the entry is occupied

and the unique subgraph code of the entry matches the node’s

code, it is a duplicate node. In this case, the thread increments

the unique count in this entry by one and assigns its unique

node index to the node’s unique index in the node map. Using

the previous example, the thread hashes the unique subgraph

code of node1 into H0. Upon checking, the thread finds that

the entry associated with H0 is already occupied by node0,

and they have the same unique subgraph code. Therefore,

node1 is identified as a duplicate node of node0. The thread

then assigns the unique index of 0 to node1 (i.e., M[1]) and

increments the unique count in that entry (i.e., U [0][1]) by one.

Weighted Matching Operations. To realize the node-

matching stage without relying on duplicate nodes, we use

a set of weighted matching operations to modify GMN layers.

The weighted matching operations accept the unique nodes
(U2×u) alongside the node features as inputs and compute

node-matching stages in the following steps: Firstly, we em-

ploy the unique node index to select and match unique nodes.

As depicted in Figure 10, we select the unique nodes from

the graph pair (G1, G2), yielding graph pairs (G
′
1, G

′
2) that
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consist exclusively of unique nodes, and conduct matching

between them. Secondly, we utilize the unique node count

to weigh the subsequent matching mechanisms in different

GMN models. Intuitively, the matching results from the unique

node are scaled up (i.e., multiplied) by these counts, then

participate in the following computing as results from a set of

duplicate nodes. For instance, for SimGNN, which necessitates

a histogram operation to count similarities within different

ranges [5], the unique node counts are multiplied by the count,

thereby ensuring that the original counts on duplicate nodes are

correctly computed by counting the weighted counts on unique

nodes. For GMN-Li, which requires an attention operation to

weigh and aggregate cross-graph information [6], we multiply

the attention value by the unique node counts, ensuring that

the messages from multiple duplicate nodes are substituted

by scaled messages from unique nodes. Lastly, we recover the

matching results for each node using the node map (i.e., Mn).

C. Unified Matching Module

The unified matching module dissects the node-matching

process from different graph pairs into fine-grained node pairs

and computes the similarities between these node pairs in

parallel through a customized CUDA kernel. We illustrate

the workflow of the Unified Matching Module in Figure 11.

First, the graph pairs are decomposed into node pairs, and the

matching tasks from different graph pairs are unified into a

batch-wise matching procedure. We employ an auxiliary 2-D

tensor called Match Index to indicate which node pair should

be compared, whose each entry (i, j) signifies the computation

of similarity Sij between nodei and nodej . Second, all node

pairs are partitioned into equally-sized Matching Groups. Each

group is assigned a GPU warp to ensure a balanced workload

distribution. We leverage the shared memory to cache the

match indices in each block, as the threads frequently reuse

them to access the node features. Lastly, the threads within

a warp employ the match index (i, j) to access the features

of nodei (i.e., Xi) and nodej (i.e., Xj). In particular, each

thread is assigned a specific feature from the node pairs, and

consecutive threads access and process consecutive node fea-

tures of the pair. This approach allows the memory access of

node features within a warp to be aligned into fewer memory

transaction requests. The partial results produced by the dif-

ferent threads are aggregated using the shfl down sync()
operation, which directly communicates between threads and

accumulates the partial results into the final similarity score.

D. Adaptive Module Manager

The adaptive module manager dynamically activates benefi-

cial modules based on cost models and uses runtime feedback

to validate these decisions. For each batch, the module man-

ager collects input information(e.g., graph sizes, node feature

sizes, etc.), estimates the potential benefits of the modules

based on cost models, and enables beneficial modules before

Batched Input Pairs

…

Unified Matching Module
( )Node

Pairs
Match
Index

Group 1 …Group 2 Group 3Match
Group

…Warps

( )

Threads

__shfl_down_sync()

Fig. 11. The detailed workflow of the Unified Matching Module.

inference. For the graph deduplication module, the cost model

is as Equation (4),

NBdup =
|M | × γ × α

|V | , Idup =

{
1, if NBdup ≥ θdup

0, otherwise
(4)

|M | denotes the number of matching pairs per batch, γ
and α represent matching complexity and duplicate matching

ratio, respectively. We define matching complexity as the

approximate ratio of matching stage latency to the overall

latencies. Removing duplicates can be more beneficial with

higher matching numbers, complexity, and duplicate rates,

thus we multiply them to get the benefit factors. We use the

number of nodes per batch, |V |, to approximate overheads

and divide the benefit factors by this approximation to obtain

NBdup, representing the potential benefit matrix for enabling

the graph deduplication module. If the matrix is higher than

the preset threshold θdup, the graph deduplication module will

be activated. For the unified matching module, the cost model

can be represented as Equation (5),

NBum =
P ×B

|M ||F | , Ium =

{
1, if NBum ≥ θum

0, otherwise
(5)

We approximate the intensity of node matching computing per

graph pair by multiplying their average number of node pairs
|M |
B (i.e., total node pairs divided by batch size) with the size

of node features |F |. The results are further discounted by

dividing the GPU hardware’s theoretical FLOPS, denoted as

P , then reversed to obtain the final metric NBum. Intuitively,

it represents how many graphs pairs the underlying GPUs

can handle concurrently. If NBum is higher than the preset

threshold θum, the module will be enabled.
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TABLE I
DETAILS OF GMNS MODELS.

Model Layers (Type[hidden sizes]) Similarity

GMN-Li [6]

MLP[1,64],
5*{MGNN[64,64,64],

MATCHING[64,64], MLP(64*3,64,64)}
READOUT[64,128,128]

Euclidean

GraphSim [7]
3*(GCN[1,64], SIM[64,1],SAMPLE[M,16×16]),

CNN[3,16,32,64,128]
MLP([128*3,128,64,32,16,1])

Cosine

SimGNN [5]

3*(GCN[1,64]),
SIM[64,1] + HIST[M,16],

READOUT[64,128,16],
NTN[128,16],MLP([32,16,8,4,1])

Dot-product

TABLE II
DETAILS OF DATASETS.

Datasets Ave. # of Nodes Ave. # of Edges # of Graph Pairs
AIDS [22] 15.69 16.20 200
GITHUB [23] 113.79 234.64 1273
RD-B [15] 429.63 497.75 200
RD-5K [15] 508.52 594.87 500
RD-12K [15] 391.41 456.89 1193

During GMN computing, the manager periodically vali-

dates its decisions and adjusts its parameters. Specifically,

it periodically activates disabled modules and monitors their

latencies to check if there is a better choice. If the current

mode is incorrect, the manager will use the current matrix

value to overwrite the current threshold so that the manager

will make a different choice on similar workloads next time.

The manager periodically samples runtime information and

uses running averages to update parameters, such as γ and α
in Equation (4), which are not directly detectable from input

data. Initially, these values are set based on offline profiling

averages, then updated with running averages of runtime la-

tencies and duplicate matching ratios sampled during runtime.

V. EVALUATION

A. Experiment setup

Models. We evaluate FlexGM using three recent GMNs: 1)

GMN-Li [6] and 2) GraphSim [7] conducts layer-wise node

matching, and 3) SimGNN [5] employs node matching in the

last-layer. The model details are described in Table I. The layer

configurations are presented as Operations([hidden sizes]). The

special GNN used in [6] is referred to as MGNN.

Datasets. We employ five widely-used real-world graph

classification datasets for our evaluation, as detailed in Ta-

ble II. Specifically, AIDS [22] comprises small-sized graphs

representing molecular compounds sourced from the Antivi-

ral Screen Database of Active Compounds. Github Stargaz-

ers(GITHUB) [23] encompasses medium-sized graphs, where

nodes symbolize authors and edges indicate their relation-

ships. REDDIT-BINARY(RD-B), REDDIT-MULTI-5K(RD-

5K), and REDDIT-MULTI-12K(RD-12K) [15] consist of

large-sized graphs, where nodes represent users, and edges

denote relationships between them. Following classification

task settings in GMN-Li [6], we create similar/dissimilar graph

pairs by randomly substituting edges in the base graphs. We

set the batch size to 32 for the datasets with smaller graphs

(i.e., AIDS, GITHUB) and 8 for those larger graphs (i.e., RD-

B, RD-5K, and RD-12K) to avoid out-of-memory.

Platforms and implementations. We conduct experiments

on a server with a 64-Core AMD EPYC 7742 CPU and an

NVIDIA A100 GPU. The following GMN implementations

are compared in the experiments:

• PyG (Baseline). The PyG implements GMN models with

PyTorch [18] and PyTorch-Geometric [19]. Specifically,

we implement the node embedding stages within GMNs

by the PyTorch-Geometric and use PyTorch to realize the

operations in the node matching stages.

• FlexGM. FlexGM uses C++/CUDA for the backend and

Python for the front end. The node embedding stage remains

the baseline implementation, and the node matching stages

are enhanced by our designs.

To investigate the benefits of each module, we also compare

the following modes of FlexGM. The adaptive module man-

ager is disabled in these modes.

• FlexGM Dedup. This version of FlexGM always activates

the graph deduplication module while keeping the unified

matching module down.

• FlexGM UM. This version of FlexGM always activates the

unified matching module while keeping the graph dedupli-

cation module down.

• FlexGM Full. This version of FlexGM always activates

both the unified matching module and the graph dedupli-

cation module.

B. Overall Speedup

As shown in Figure 12, FlexGM achieves 2.6× speedups

over the baseline on average. In benchmarks with heavy node-

matching computing on large graphs, such as GMN-Li on RD-

5K, the speedup can be up to 7.6×. Regarding GMN models,

the average speedup on GMN-Li, GraphSim, and SimGNN are

4.7× 1.8× and 1.3×, respectively. There are more significant

speedups on GMN-Li, which conducts heavier node-matching

computing. Specifically, GMN-Li computes similarities and

uses them for cross-graph message passing in each of its

five layers, leading to higher node-matching latency ratios

that are effectively shortened. Regarding the datasets, FlexGM

achieves higher speedup on datasets containing larger graphs,

such as RD-B, RD-5K, and RD-12K. The primary reason is

massive duplicate subgraphs in these larger graphs. This phe-

nomenon leads to considerable benefits from the deduplication

module, resulting in a 3.5× average speedup in RD-B, RD-5K,

and RD-12K. While the deduplication is not beneficial in the

smaller graphs, unified matching can also effectively speed up

the GMNs, resulting in a 1.3× speedup in AIDS. The results

demonstrate that FlexGM can effectively speed up different

GMNs on diverse workloads.

C. Optimization Analysis

Graph Deduplication Module. As shown in Figure 12, the

graph deduplication module (i.e., FlexGM Dedup) is highly

effective when dealing with larger graphs. Specifically, 3.1×,

3.3×, and 2.5× speedups are observed in the RD-B, RD-5K,

and RD-12K datasets. These improvements can be attributed
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Fig. 14. The hardware utilizations of FlexGM UM and baseline.

to higher ratios of duplicates. As depicted in Figure 13,

the deduplication module eliminates over 90% matching in

the RD-B, RD-5K, and RD-12K dataset, demonstrating that

larger real-world graphs are more likely to contain recurring

subgraphs. The graph deduplication module, therefore, plays a

critical role in improving GMN performances on large graphs.

Unified Matching Module. The FlexGM UM efficiently

enhances the performance of GMNs on small graphs. As

shown in Figure 12, in AIDS, it achieves 1.4×, 1.6×, and

1.2× speedups over the baseline for SimGNN, GraphSim,

and GMN-Li, respectively. As shown in Figure 14, in AIDs,

the underlying hardware resources are better exploited than

the baseline. However, in RD-B, where the module is not as

beneficial, the hardware resources are already exploited well.

Adaptive Module Manager. It can be observed from

Figure 12 that simply enabling both modules statically in

FlexGM Full does not consistently yield performance im-

provements; in certain instances, it may even result in in-

creased latencies. However, incorporating the adaptive module

manager, FlexGM surpasses the performance of all statically

configured modes. Notably, in datasets with smaller graphs,

such as AIDS, FlexGM achieves comparable performance

enhancements as FlexGM UM, while in datasets containing

larger graphs, like RD-B, it achieves the performance gains

observed in FlexGM Dedup. These findings underscore the

ability of the adaptive module manager to judiciously select

and enable modules that contribute positively to performance.

VI. RELATED WORKS

Various software and GPU runtime optimizations have

been introduced to enhance the performance of GNNs and

traditional Graph Matching algorithms [9]–[11], [24], [25].

GNNAdvisor [8] utilizes a group-based workload management

system to balance workload and a node reordering scheme

to optimize data locality. QGTC [10] constructs a tensor-

core-based framework supporting arbitrary bit-width quantized

GNNs. HAG [9] proposes a hierarchical aggregation method

to eliminate redundant computations during node aggrega-

tion. However, these techniques primarily enhance the node-

embedding stage in GMNs, overlooking inefficiencies in the

node-matching stage. Conversely, optimizations in conven-

tional subgraph matching computation, like CECI [24], aren’t

readily transferable to GMNs. This is attributed to the differ-

ences in their computing flows: traditional algorithms focus on

search-based matching, while GMNs are built on top of the

GNN-based parallel similarity computations. CEGMA [14] is

the most relevant to our study. It improves GMN computing

by memorizing matching results, integrating node embedding

and matching stages in GMNs, and designing a dedicated hard-

ware accelerator. However, CEGMA relies on extra hardware

designs to mitigate overheads and maximize the efficiency of

the suggested dataflows, which hampers their application on

general computing platforms. To conclude, while substantial

efforts have been made to accelerate GNNs, no prior work

targets optimizing GMN computing on GPUs, leaving a gap

between general computing platforms and emerging GMN

algorithms.

VII. CONCLUSION

In this study, we introduce FlexGM, a runtime system, to

tackle the computational challenges inherent in Graph Match-

ing Networks (GMNs) on GPUs. FlexGM speeds up GMN

execution by adaptively eliminating redundant computation

and exploiting underlying GPU resources. The experiment

results show that FlexGM can achieve 2.5× on average and

up to 7.6× speedup over the prior implementations.
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