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Abstract

Recent years have seen an increase in the development of
large deep learning (DL) models, which makes training ef-
ficiency crucial. Common practice is struggling with the
trade-off between usability and performance. On one hand,
DL frameworks such as PyTorch use dynamic graphs to fa-
cilitate model developers at a price of sub-optimal model
training performance. On the other hand, practitioners pro-
pose various approaches to improving the training efficiency
by sacrificing some of the flexibility, ranging from making
the graph static for more thorough optimization (e.g., XLA)
to customizing optimization towards large-scale distributed
training (e.g., DeepSpeed and Megatron-LM).

In this paper, we aim to address the tension between usabil-
ity and training efficiency through separation of concerns.
Inspired by DL compilers that decouple the platform-specific
optimizations of a tensor-level operator from its arithmetic
definition, this paper proposes a schedule language, Slapo,
to decouple model execution from definition. Specifically,
Slapo works on a PyTorch model and uses a set of schedule
primitives to convert the model for common model training
optimizations such as high-performance kernels, effective
3D parallelism, and efficient activation checkpointing. Com-
pared to existing optimization solutions, Slapo progressively
optimizes the model “as-needed” through high-level primi-
tives, and thus preserving programmability and debuggabil-
ity for users to a large extent. Our evaluation results show
that by scheduling the existing hand-crafted optimizations
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in a systematic way using Slapo, we are able to improve
training throughput by up to 2.92X on a single machine
with 8 NVIDIA V100 GPUs, and by up to 1.41X on multiple
machines with up to 64 GPUs, when compared to the out-of-
the-box performance of DeepSpeed and Megatron-LM.
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1 Introduction

The demand of large deep learning (DL) models is surging in
recent years as they demonstrate dominating model accuracy
on a range of tasks in natural language processing (NLP) [3,
5, 10, 12] and computer vision [13, 34, 66]. These models
are normally invented in user-friendly DL frameworks like
PyTorch [42] with dynamic model graphs?, which by design
lacks sufficient optimization for high-performance execution.
This issue becomes more and more critical as the size of
models grows exponentially and so does the time of training.

In order to reduce the model training time, developers
propose various kinds of optimization. The first type of
optimization is implemented manually in different layers
of model training, such as inserting high-performance ker-
nels [11, 29, 41, 55] for computationally intensive operators

!Dynamic graph DL frameworks construct the model graph on the fly when
executing its forward computation instead of constructing the graph ahead
of time.
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on specific devices (e.g., NVIDIA GPUs), employing data, ten-
sor, and pipeline parallelism [38, 50, 55], as well as activation
checkpointing [8, 22, 26], to efficiently distribute the train-
ing across multiple devices. However, manual optimization
introduces the following two challenges.

Challenge 1: Generality — Incorporating the above opti-
mizations requires making intrusive changes to the model
implementation, which means that the optimization is not
easy to generalize to other models. A new model, even with
minimal change from the old one, may not be able to directly
reuse the old optimization. In addition, the optimized model
becomes platform-specific, requiring developers to main-
tain multiple implementations to serve all requirements (e.g.,
training on different platforms and deploying on non-GPU
devices).

Challenge 2: Ease of Tuning - In practice, an optimization
scheme has a number of configurations to tune (e.g., pipeline
stages, number of activation checkpoints) to get a combina-
tion that results in the best performance. Developers need to
identify tunable configurations in the implementation and
modify the model to expose them for effective tuning. This
process can be tedious and error-prone especially when the
model definition is closely tied to optimizations.

In addition to manual optimization, the other set of opti-
mization approaches converts the DL model into a number
of static graphs and leverages DL compilers to automatically
apply optimizations. For example, JAX [4] is a DL frame-
work powered by a compiler XLA [18]. JAX traces the entire
model to obtain a whole graph statically, on top of which
the compiler can perform aggressive optimizations such as
operator fusion, expression simplification, and even 3D paral-
lelism [71]. Similarly, the recent release PyTorch 2.0 [43] pro-
vides a compiler interface to trace PyTorch dynamic graph
executions and construct static graphs in torch. fx [52] for
optimizations. While automatic optimization requires mini-
mal engineering effort from model developers and addresses
some of the challenges mentioned above, it also introduces
two new challenges.

Challenge 3: Programmability — Working on static model
graphs is limited by the requirement that everything must be
statically analyzable and deterministic. Frameworks may im-
pose constraints on the users to facilitate the conversion to
static graphs. For example, JAX programming model requires
pure Python functions, no in-place updates, etc., so develop-
ers may need to rewrite the model to meet these constraints
in order to make it runnable [4]. For another example, Py-
Torch 2.0 cannot trace through the collective operators like
all_reduce which are essential for distributed training [43].
Moreover, it is usually non-trivial for developers to control
or configure the optimizations in fine granularity, such as
disabling certain rules, or excluding certain operators from
a compiler pass.

Challenge 4: Debuggability — To make model implemen-
tation easy to understand and maintain, model developers
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usually implement layer modules (e.g., convolutional, fully
connected, and attention layers) as building blocks, and use
them to compose a model hierarchically. However, to ex-
pand the scope of optimization and improve performance,
DL compilers operating on a static model graph often flatten
the hierarchy to create a single-level dataflow graph, and
rewrite certain operators (e.g., decomposing the batch_norm
op into a number of smaller ones). This prevents develop-
ers from understanding and troubleshooting performance or
convergence issues, as the optimized model may bear little
resemblance to the original model implementation.

To address the challenges mentioned above, we propose
Slapo?, a Schedule LAnguage for Progressive Optimization,
designed for DL frameworks with dynamic model graphs.
Slapo has the following major features.
Decouple model execution from its definition. To ad-
dress Challenge 1, we decouple model execution (named
“schedule”) from its definition. As a result, model developers
can maintain the same model implementation, and perfor-
mance engineers can optimize a model- or platform-specific
schedule in a separate place. This idea is inspired by well-
known domain-specific compilers — Halide [49] and Apache
TVM [7] - which propose widely adopted schedule lan-
guages that decouple tensor operator scheduling from its
arithmetic definition.
Auto-tuning. A separate schedule also enables massive auto-
tuning opportunities. Similar to AutoTVM [9], Slapo provides
a programming interface that allows developers to specify a
set of tuneable knobs to form an efficient tuning space. The
tuning space can then be explored by Slapo auto-tuner to
realize the optimal configuration, which addresses Challenge
2. Along this direction, Slapo can also enable auto-scheduling
as Ansor [70], and this is our planned future work.
Progressive optimization. Slapo incorporates a “trace by
need” approach that only traces a desired module to be a
static graph for compiler-based aggressive optimizations.
The traced part can be expanded or shrunk progressively as
needed. Developers explicitly call the scheduling primitives
to realize this, addressing Challenge 3.
Structure-preserving scheduling. Model developers usu-
ally define building blocks (e.g., convolutional or attention
layers), and then compose them together to form a complete
model. Consequently, developers often leverage this struc-
ture to analyze and debug the model. Slapo preserves this
hierarchy when constructing the schedule (see §3.1 for de-
tails), so that developers can easily locate the module and
apply scheduling. Also, as the model structure is preserved
and optimization can be progressively applied, it facilitates
the users to debug any performance and convergence issue,
and a verifier (§3.5) is provided to further aid debugging,
addressing Challenge 4.

In summary, we make the following contributions:

Zhttps://github.com/awslabs/slapo
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e We propose Slapo, a schedule language that decouples
model execution from definition, and preserves model
structure hierarchy to enable progressive optimization.

o We define a comprehensive set of schedule primitives
for Slapo to cover prevalent optimizations in distributed
training, and provide an extensible infrastructure for
users to easily incorporate their own optimizations.

o We design and implement a lightweight auto-tuner for
further reducing the efforts required to identify the
optimal schedule configurations for training efficiency.

e We evaluate Slapo by training popular deep learning
models with billions of parameters and compare Slapo
with the state-of-the-art (SOTA) distributed training
frameworks such as DeepSpeed [51] and Megatron-
LM [55]. With minimal programming effort, Slapo is
capable of scheduling the existing hand-crafted opti-
mizations to achieve up to 2.92x speedup on a single
machine with 8 NVIDIA V100 GPUs, and up to 1.41x
speedup on multiple machines with 64 V100 GPUs,
when compared to the out-of-the-box best baselines.

2 Background and Motivation

In this section, we first introduce common practices of im-
proving a DL model training efficiency for dynamic graphs
(e.g., PyTorch), followed by an end-to-end motivating exam-
ple to illustrate the challenges of this process.

2.1 Efficient Model Training

High-performance kernel libraries. To achieve high ef-
ficiency in deep learning model training, it is straightfor-
ward to leverage efficient kernels specifically optimized for
particular hardware platforms (e.g., NVIDIA GPUs, Google
TPUs, and AWS Trainium). For example, there are many
libraries [11, 29, 41, 55] that provide efficient CUDA ker-
nel implementations. These libraries encapsulate kernels
as DL framework-compatible modules for developers to re-
place the native implementation in their models. In the case
where there are no existing CUDA implementations, devel-
opers may leverage compiler-based solutions, such as Torch-
Script [46] and TorchInductor [45], to generate a kernel.

Activation checkpointing. Apart from compute optimiza-
tion techniques, memory footprint optimization is also es-
sential for training large models. A large portion of memory
consumption in the training process is contributed by for-
ward activation tensors that are stored for the later gradient
calculation. By checkpointing some activation tensors and re-
computing the rest of them in backward propagation, we are
able to significantly reduce memory footprint, and thus sup-
port a larger batch size and higher training throughput. This
approach is called activation checkpointing and is originally
proposed by [8]. Furthermore, existing works [22, 26, 27, 65]
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also demonstrate that by carefully selecting which activa-
tions to checkpoint, we are capable of better utilizing device
memory and achieving an even better throughput.
Parallelism in distributed training. When the model is
too large to fit in a single device, training it in parallel in a
distributed environment is inevitable. The parallelism tech-
niques are usually classified into three types: data parallelism,
tensor parallelism, and pipeline parallelism. Both tensor and
pipeline parallelism belong to a larger class called model par-
allelism. Data parallelism partitions training data, so each de-
vice trains the replicated model with different data [1, 31, 50],
and aggregates their partial gradients for parameter updating.
Since data parallelism replicates an entire model on each de-
vice, it is insufficient when the model size (i.e., total memory
consumption of its parameters) is too large to fit on a single
GPU. In this case, tensor parallelism, takes another approach
by partitioning the model parameter tensor onto multiple
devices [55]. However, it requires developers to explicitly use
collective communication operators to scatter tensors and
aggregate partial results. For example, Megatron-LM [55]
is a widely used PyTorch-based framework that provides
manual parallelized Transformer models [61] and is adopted
to train extremely large models [67]. Finally, pipeline paral-
lelism [20, 38] partitions models by layers and groups them
into a series of stages. By putting each stage on a different
device, we can overlap the computation of multiple data
batches. To ensure correctness and performance, pipeline
parallelism needs a specialized runtime to schedule and syn-
chronize data. These techniques are not mutually exclusive
and can be combined. Combining all of them is known as 3D
parallelism [39].

2.2 A Motivating Example
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(a) Vanilla Attention Layer (b) Optimized Attention Layer

Figure 1. An attention layer in BERT. — The Query, Key,
Value, and Output are nn.Linear modules containing learn-
able weights and biases. (1) - (4) indicate optimization points.

In this subsection, we use BERT [12] model implementa-
tion from HuggingFace Hub [62] to showcase how the above
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Figure 2. Overview of Slapo.

techniques are applied to a DL model for efficient training.
Fig. 1(a) depicts the architecture of attention layer [61], the
core and most time-consuming module in BERT. An atten-
tion layer is composed of two submodules — SelfAttention
and Projection. We conduct a few steps to progressively
improve the training efficiency of this attention layer and
show the resulting implementation in Fig. 1(b).

(D Fuse QKV. By default, the Query, Key, Value in
SelfAttention are three standalone nn.Linear modules,
which may incur extra kernel launch overheads. We replace
them with a single nn. Linear module with their parameters
concatenated, as shown in the following code snippet.

1 def __init__(self, ...):
- self.query = nn.Linear(n_hidden, n_head)

N}

3 - self.key = nn.Linear(n_hidden, n_head)

4 - self.value = nn.Linear(n_hidden, n_head)

5 + self.qkv = nn.Linear(n_hidden, n_head * 3)

6 def forward(self, hidden_states, ...):

7 = query = transpose(self.query(hidden_states))
8 - key = transpose(self.key(hidden_states))

9 - value = transpose(self.value(hidden_states))
10+ qkv = transpose(self.qkv(hidden_states))
11+ query, key, value = split(qkv, 1, dim=-1)

(2) Use efficient kernels. The pink blocks in Fig. 1 are the
core attention computation, which is also the bottleneck of
performance and memory footprint. A recent work flash at-
tention [11] proposes to compute the attention in a block-by-
block fashion, so only a block of the intermediate attention
tensor is generated at a time, significantly reducing the peak
memory consumption, and thus can improve the training
efficiency by enlarging the batch size. The following code
snippet shows how we replace the existing attention with the
flash attention implementation provided by xFormers [29].
The transpose and reshape operations are simplified.

1 def forward(self, hidden_states, ...):
2 - attn = query Q@ key.T

3 - attn = attn / attn.shape[-1] ** 0.5
4 = attn = dropout(softmax(attn), p)
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5 - attn = attn @ value
6 + attn = xformers.ops.mem_eff_attention(...)

Note that this flash attention implementation only supports
the latest NVIDIA GPUs with Volta, Ampere, and Hopper
architectures, so once this kernel is used, the model is no
longer compatible with other platforms.

Another optimization opportunity is the pattern in Projection.

By default, the bias addition operation is contained in the
Output module. A more aggressive and more efficient way
is to use a DL compiler (e.g., TorchScript [46], TorchInduc-
tor [45]) to fuse the pattern BiasAdd-Dropout-ResidualAdd-
LayerNorm into a single kernel, as suggested by [53].

(3) Tensor parallelism. We then partition the FusedQKV
and Output parameters onto multiple devices. Given the
input of the attention module X, the weights of FusedQKV
(A) and Output (B), we have self-attention function f:

f(XA)B=f(X[A A)) [g;] = f(XA1)B; + f(XA2)B;.

Accordingly, we follow the convention of Megatron-LM [55]
to shard the weights of FusedQKV in columns and shard the
weights of Output in rows. We illustrate the latter in the
following code snippet.

1 def __init__(self, ...):

2 - self.output = nn.Linear(n_hidden, n_hidden)
3 + new_size = n_hidden // world_size

4 + self.output = nn.Linear(new_size, n_hidden)
5 def forward(self, hidden_states):

6 out = self.output(hidden_states)

7 4+ dist.allreduce(out)

Since the output tensor only holds partial results after

sharding, we need to conduct all_reduce to aggregate out-
puts from different devices.
(@ Pipeline parallelism. To pipeline a BERT model and
execute it on a SOTA pipeline runtime, we have to further
manually partition the model to a sequence of sub-models
(each of them includes a series of attention layers) by re-
writing the top module’.

The above process poses a generality issue. Although de-
velopers have spent efforts on identifying and optimizing
the performance bottleneck of a model with semantics pre-
served, this effort is hard to be reused by another model.
Furthermore, the above improved model is no longer com-
patible with a single device, unless we add control logic to
only enable model parallelism on multi-GPU environments
or maintain a separate single-device version. It also creates
a barrier for the model deployment after training, because
a model implementation with custom efficient kernels and
parallelism may not be recognized by inference compilers.

3The code example is omitted due to page limit.
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Table 1. Comparison among Slapo and other systems. —
DP, TP, and PP denote data, tensor, and pipeline parallelism,
respectively. PT denotes PyTorch. Model coverage means
how easily developers can leverage the programming system
to optimize a new model.

Frame-  Model 3D parallelism  Subgraph  Act.  Extensible
work  Coverage DP TP PP Opt. Ckpt. Opt.

§3.1  §322&§332 §331 §33.1 §3.1
Megatron-LM [55] PT o} v v O © X
DeepSpeed [51] PT ° v o x v @) C X
Alpa [71] JAX ° v v 7 © C X
pt.compile [43] PT © X X X ° O X
Slapo PT ® v v/ ) [ v

In essence, the above pain points are the result of tightly
coupling model definition and training/platform-specific op-
timizations. This motivates us to propose a schedule lan-
guage that decouples model execution (i.e., schedule) from
definition and provides easy-to-use primitives for optimizing
large model training. In fact, the idea of decoupling opti-
mization has been widely accepted in DL compilers [2, 7,
49], and opens opportunities for auto-tuning [7] and auto-
scheduling [70].

3 Slapo Design

This section presents the design of Slapo, our schedule lan-
guage to progressively optimize DL model training using
proposed primitives. Slapo decouples model definition from
its training execution strategy for better portability. Slapo
also abstracts out the common optimization techniques us-
ing a set of primitives to apply (or un-apply) one by one,
lowering the bar for performance engineers to try out differ-
ent optimization ideas. Furthermore, Slapo makes it possible
to automate the performance tuning via hyperparameter
search.

Fig. 2 illustrates the overview of Slapo. Slapo accepts a
deep learning model implementation in a DL framework with
dynamic graphs (e.g., PyTorch [42]) and parses the original
model execution as its default schedule. Then, developers
make use of the schedule primitives for optimizations on
top of the default schedule. Slapo provides a comprehensive
set of primitives that cover the prevalent distributed train-
ing optimizations, and Table 1 compares Slapo with other
frameworks.

We define the schedule language in §3.1, and present the
scheduling in various scenarios in §3.2 and §3.3. The schedul-
ing strategy can be auto-tuned to search for a configuration
that achieves the best performance (§3.4). Meanwhile, Slapo
adopts a verifier (§3.5) to ensure the functional correctness of
all schedules. After the schedule is determined and applied,
the scheduled model can be trained on the runtime of the
original DL framework (e.g., PyTorch), or if needed, on the
dedicated runtime of existing distributed systems such as
DeepSpeed [51] pipeline.
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(a) Model Definition and Schedule Creation

import slapo

from transformers import BertLMHeadModel, AutoConfig
config = AutoConfig.from_pretrained('bert-large-uncased")
bert = BertLMHeadModel(config)

sch = slapo.create_schedule(bert)

class BertLMHeadModel (nn.Module):

embeddings def __init_ (self, config):
encoder /] self.embeddings = ...
i self.encoder = \
layer.0 nn.ModuleList(...)
self.pooler = ...
layer.23 def forward(self, x):
x = self.embeddings(x)
x = self.encoder(x)
pooler x = self.pooler(x)

return x
+ (b) Module Replacement (§3.2.1)

sch["bert.encoder. layer.0.attention"].replace(eff_attn)
eff_attn eff_attn Model Param
Partition 1
l l oo l l

+ (c) Parameter Sharding (§3.2.2)

subsch = sch[ bert.encoder. layer.0.eff_attn"]

subsch["QKV"].shard( ["weight", '"bias"], axis=0)
subsch["QKV"]. sync(mode:"backward”)
subsch["0UT"].shard('"weight", axis=1)
subsch["0UT"].sync(mode="forward")

Figure 3. An example of scheduling modules and param-
eters of a BERT model. — ffn is the Feed-Forward Net-
work. eff_attn refers to the replaced attention module. The
weight matrix has a shape of (output_dim, input_dim).
Thus, sharding the weight matrix at axis=0 is equivalent to
partitioning the output dimension.

3.1 Schedule Language

Motivated by §2.2, our goal is to let developers optimize
models in a few lines of code without changing the model
definition itself. Fig. 3 presents the Slapo schedule language
with the BERT model from HuggingFace Hub [62] as an
example. As shown in Fig. 3(a), most DL model develop-
ers define models with a hierarchical structure for better
readability and easy maintenance. The __init__ construc-
tor defines the configurations, submodules, and learnable
parameters, and the forward method defines the forward
computation (the backward computation is generated by the
framework with automatic differentiation [42]). Developers
can then pass the created model into Slapo and create a de-
fault schedule that specifies how to execute the model in the
framework. The schedule preserves the hierarchical struc-
ture, and create_schedule is applied recursively to all the
submodules, so that developers can easily apply schedule
primitives at arbitrary levels.

Built-In Primitives. As shown in Table 2, we categorize
schedule primitives in two sets: whether or not they require a
static graph to be generated. On one hand, when scheduling
at the module level, such as enabling activation checkpoint-
ing, replacing with an efficient alternative, and sharding
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Table 2. A summary of Slapo built-in schedule primitives.

Primitives with Dynamic Graphs | Primitives with Static Graphs

.replace(new_mod)
.shard(param_name, axis)
.sync(type)
.checkpoint()

.replace(new_mod, subgraph)
.fuse(subgraph, compiler)
.pipeline_split()
.checkpoint (subgraph)

learnable parameters, we do not change the computation
specified in the forward method. As a result, the schedule
primitives in the left column of Table 2 do not require a
static graph, thus maximally avoiding the limitation of trac-
ers. We present the details of this scheduling in §3.2. On the
other hand, scheduling the computation, such as operator fu-
sion and pipeline parallelism, has to manipulate the forward
method. Thus, the schedule primitives in the right column
of Table 2 require the computation to be in a static graph, so
we have to use .trace() prior to applying these primitives,
as presented in §3.3. These primitives have covered existing
optimizations ranging from parallelism schemes and com-
piler optimizations, which are general enough to support
efficient training of different models, as demonstrated in §5.
Extensible Primitives. In addition to the predefined primi-
tives, users have the flexibility to incorporate their custom
training optimization as a schedule primitive in Slapo. This
can be achieved by inheriting the provided base primitive
class as shown below. During program execution, Slapo dy-
namically registers the user-defined primitives, enabling
seamless collaboration with other built-in primitives, the
verifier, and the auto-tuner.

1 @slapo.register_primitive()

2 class UserDefinedPrimitive(slapo.Primitive):

3 def __init__(self, name):

4 ... # Initialize data structure and preconditions

5 def apply(self, sch, *xkwargs):
6 ... # Transformation on the schedule

3.2 Schedule Modules and Parameters

We first present scheduling a module and its parameters,
which typically does not change the computation and thus
does not require static graphs.

3.2.1 Schedule Modules For important workloads such
as attention in Fig. 3(a), researchers or hardware vendors
may manually implement efficient kernels [11, 25]. These
highly customized, hand-crafted kernels sometimes could
outperform the ones generated by DL compilers. With Slapo,
we can use .replace(new_module) primitive to replace a

native implementation with an efficient one, where new_module

is the custom module to be replaced, as shown in Fig. 3(b).
Additionally, activation checkpointing is another impor-
tant feature for large model training, as mentioned in §2.1.
Existing frameworks [51, 55] implement fixed strategies
of checkpointing in their model definition and instantiate
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each layer with the same configuration, thus making it dif-
ficult to incorporate other checkpointing techniques [22,
27]. Slapo decouples the checkpointing logic and offers a
.checkpoint () primitive that can explicitly control whether
a module should be checkpointed. Consequently, Slapo en-
ables developers to flexibly adjust the number of checkpoints
via our schedule primitive or leverage the auto-tuner for bet-
ter memory and throughput trade-offs.

3.2.2 Parameter Sharding In (3) of §2.2, we introduced
the steps to enable tensor parallelism, which involves shard-
ing parameters and aggregating outputs. This process is
commonly known as the main challenge in adapting mod-
els for distributed execution. The manual management of
partitioning and communication within the model leads to
a non-executable partitioned model when the number of
devices changes, as well as makes synchronization with up-
stream model changes difficult. While Megatron-LM [55]
provides tensor parallel modules for users, they are limited
to specific models. If user-defined module operators differ
from predefined modules, tensor parallelism cannot be uti-
lized for distributed training.

In contrast, Slapo overcomes these limitations by enabling
users to shard a parameter using the . shard(param, axis)
primitive and aggregate results using the . sync(type) prim-
itive. The type can be “forward” (aggregate the forward ac-
tivations) or “backward” (aggregate the gradients). Notice
Slapo can efficiently capture the parameter and axes informa-
tion covering the entire space of model partition, including
3D parallelism [39, 55] and other complicated parallelism
schemes that an automatic compiler [71] supports. These
primitives can be applied to arbitrary models and parame-
ters, effectively addressing generality issues. It also does not
require the model to be traceable since sharding does not
modify the computation graph. Fig. 3(c) shows that imple-
menting a complex tensor parallel program only requires
five lines of schedule code without modifying the model
definition. Slapo automatically shards parameters for differ-
ent distributed environments and inserts synchronization
points based on users’ annotations. Meanwhile, we employ a
verifier (§3.5) to check correctness after scheduling. In the fu-
ture, we plan to develop an auto-scheduler that automatically
generates these primitives.

3.3 Schedule Computations

The prerequisite of scheduling computations is tracing the
forward method of the target module, and constructing a
static graph in a certain intermediate representation (IR).
There are several approaches to obtaining the static graph IR.
First, run-with-dummy-data [46] is an approach that directly
executes the method with dummy inputs and captures all ex-
ecuted operators in order. Second, AST-analysis [46] directly
analyzes Python abstract-syntax-tree (AST) to obtain the
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subsch = sch["bert.encoder.layer.0.eff_attn"].trace()

def forward(self, x):

q, k, v = self.QKV(x)

attn = g @ k.T

attn /= attn.shape[-1]

attn = F.dropout(F.softmax(attn)) @ v
proj = self.0UT(attn)

output = F.layer_norm(

F.dropout(proj) + x)
return output

eff_attn

+ (a) Operator Fusion

def fusion_pattern(bias, proj, residual):

return F.layer_norm(F.dropout(proj + bias) + residual)
subgraph = subsch.find(fusion_pattern)
subsch. fuse(subgraph, compiler="TorchScript", name="LN")

+ (b) Partial Computation Replacement

def attn_pattern(q, k, v):

attn = g @ k.T; attn /= attn.shape[-1]

return F.dropout(F.softmax(attn)) @ v
flash_attn = third_party_pkg.FlashAttention(...)
subgraph = subsch.find(attn_pattern)
subsch.replace(flash_attn, subgraph, name="FA")

def forward(self, x):
eff_attn g, k, v = self.QKV(x)

attn = self.FA(q, k, v)
proj = self.OUT(attn)
output = self.LN(proj)

return output

Figure 4. An example of scheduling computation of a BERT
model. — For illustration proposes, we do not show the entire
IR of the traced ef f_attn module, but depict it in an identical
forward function. @ denotes dot product. The bias of the new
OUT module is set as None, which has been fused into the LN
module.

static graph. Third, just-in-time (FIT) [4, 56] captures the exe-
cution graph in every training iteration, compiles it once, and
reuses it in the rest process. Finally, bytecode-analysis [44]
hooks into the Python frame evaluation to construct the
graph from Python bytecode.

In Slapo, we define . trace(leaves, flatten) primitive
on top of all approaches. This primitive lets developers con-
figure the granularity and the form of a traced graph. Specif-
ically, leaves indicate the submodules we will not trace
into, and flatten indicates whether to flatten a traced static
graph. By default, the predefined modules (e.g., nn.Linear)
in DL frameworks are all leaves, and we create the static
graph in a hierarchical way. The specification is then passed
to the underlying tracing engine, and the traced module and
submodules become static graphs so that compiler-related
primitives can be enabled. We show a traced BERT attention
module in Fig. 4. In the rest of this subsection, we discuss
the scheduling with static graphs.

3.3.1 Partial Computation Scheduling The computa-
tion latency of a module is usually dominated by a part of
its computational logic, such as attn and output in Fig. 4
(highlighted in yellow and green). As a result, it is effec-
tive if developers can offload the performance bottleneck
logic to efficient kernels or DL compilers. Since most DL
models usually have repetitive layers [12, 66], Slapo offers a
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.find(regex_or_pattern_fn) primitive that performs pat-
tern matching algorithm based on subgraph isomorphism [14],
with user-specified regular expression or a function with an
identical subgraph. This helps find all target subgraphs at
once. These subgraphs then can be scheduled in the same
fashion with operator fusion, partial computation replace-
ment, activation checkpointing, etc.

Operator Fusion. Operator fusion is an important optimiza-
tion technique, as it can reduce the data transfer and kernel
invocation overheads to improve the latency, throughput,
and memory footprint. While existing DL compilers [2, 7,
18, 46] have well-established techniques for conducting op-
erator fusion, distributed training frameworks [51, 55] often
cannot leverage them since they do not capture computa-
tion graphs and thus cannot apply automatic fusion mech-
anisms. However, Slapo can partially trace the module to
avoid untraceable operators at the same time parallelizing the
model, making it effortlessly compatible with existing fusion
techniques. As shown in Fig. 4(a), Slapo takes advantage of
DL compilers by defining the . fuse (subgraph, compiler)
primitive, where compiler indicates the DL compiler that
will be used to generate a fused kernel of the subgraph. We
currently support a pattern-based fusion strategy and utilize
TorchScript [46] and TorchInductor [45] as DL compilers to
enhance kernel performance.

Partial Computation Replacement. In addition to DL
compilers, when the subgraph is the performance bottleneck
in widely used models, developers may manually implement
an efficient kernel and encapsulate it in a module. If this
custom kernel achieves better performance than the one
generated by a DL compiler, developers are capable of us-
ing .replace(new_mod, subgraph) primitive to directly
replace the corresponding computation logic with the cus-
tom one, such as Fig. 4(b). The decision of leveraging a DL
compiler or a custom kernel can be made by developers
with a one-line change. Developers can also rely on Slapo
auto-tuner (§3.4) to realize a better one.

Partial Activation Checkpointing. In addition to enabling
activation checkpointing for an entire module, as described
in Section 3.2, Slapo offers developers the flexibility to use the
.checkpoint(subgraph) primitive, allowing checkpointing
of specific subgraphs within the computation. This stands in
contrast to existing PyTorch-based frameworks, which only
support checkpointing at the module level due to their tightly
coupled model implementation [51, 55]. By providing this
fine-grained control, we address the performance-memory
trade-off dilemma, a topic extensively explored in various
existing works [8, 22, 26].

3.3.2 Pipeline Partitioning In §3.2, we demonstrated
that Slapo can achieve tensor parallelism using parameter
sharding at the module level. However, it is not possible to
achieve pipeline parallelism with the same approach, as it
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requires rewriting the top module, including its forward
method, to be a sequence of submodules.

SOTA dynamic graph-based DL frameworks support pipeline
parallelism in two steps. First, unlike the native runtimes of
DL frameworks that use a single process to execute the model
graph, pipeline parallelism requires launching one process
per pipeline stage. Therefore, DL frameworks with pipeline
parallelism support must provide their own runtime. Second,
the model must be rewritten to follow a specific API conven-
tion. The rewritten implementation consists of a sequence of
submodules, with outputs connecting to inputs between two
consecutive submodules. This allows the DL framework to
assign each module to a stage for execution. However, this
process can be tedious for developers to prepare a model for
pipeline parallelism [51, 55].

A recent work, PiPPy (Pipeline Parallelism for PyTorch) [23],
attempts to address this challenge by tracing the entire model
to a static graph and partitioning the graph into a series of
modules based on user annotations. However, this approach
has limitations, as tracing the entire model can suffer from
the limitations of the graph tracer, as discussed in §1. If a
part of the model cannot be transformed into a static graph,
the entire model cannot be partitioned. In contrast, Slapo
allows developers to configure the granularity and the form
of the traced graph, meaning that developers can choose to
only transform a few top-level modules into a static graph
and use the .pipeline_split() primitive to annotate the
pipeline stage boundaries.

We use the example in Fig. 5 for illustration. To evenly split
a BERT model with 24 attention layers in its encoder into
two partitions, we can use .pipeline_split() primitive*
to annotate a stage boundary between layer 11 and 12 (0-
based) in Fig. 5(a). In this case, only encoder module has
to be traced, but not its submodules (e.g., attention) or
siblings (e.g., embeddings and pooler). We note that the
untraceable, complex computation logic usually lies in core
building block modules (e.g., attention), so limiting the
tracing granularity makes our pipeline partitioning more
applicable.

However, since Slapo preserves the model structure hier-
archy, it is non-trivial to partition a model into a sequence
of modules with user-specified pipeline annotations. Specifi-
cally, if we simply partition the model based on annotations
as Fig. 5(a), we fail to include embeddings and pooler mod-
ules in BERT architecture. To generate the correct partitions,
we propose an algorithm that propagates the pipeline anno-
tations from the annotated submodule to the top module, so
that all ancestor and descendant modules at all levels can be
included. The algorithm is shown as follows.

def partition(sch, common_parent_sch):
2 seq_modules = partition_by_annotation(sch.module)
3 parent_mod = sch.parent.module

“Where to insert pipeline splits to achieve optimal throughput is out of scope
in this paper, but developers can use auto-tuner in §3.4 for exploration.
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sch["bert.encoder.111"].pipeline_split()

Stage 1
Stage 2

pooler

pooler

submodO | submod1 |

o) 7] [l [=]

(b) Pipeline Partition
w/ Annotation Propagation

(a) Pipeline Partition
w/o Annotation Propagation

Figure 5. An example of partitioning a BERT model into
two pipeline stages.

| inline_and_annotate(seq_modules, parent_mod)
5 if parent_mod != common_parent_sch.module:
6 partition(parent_mod, common_parent_sch)

8 sub_schs = sch.get_all_sub_schedules_with_pipeline_split ()
9 common_parent_sch = find_common_parent (sub_schs)

10 for sub_sch in sub_schs:

11 partition(sub_sch, common_parent_sch)

12 partition(common_parent_sch, None)

We first retrieve all the subschedules whose children have
pipeline partition annotation (L8). For the example in Fig. 5,
only a single subschedule sch["bert.encoder" ] is returned.
We then find the common parent module (L9, bert for Fig. 5),
and partition each submodule with the annotations (L10-11).
After partitioning the current module (L2), we inline the par-
titioned module sequence and propagate the pipeline split
annotations to its parent module (L4) so that the parent mod-
ule now also has the annotations. We perform this process
recursively until the common parent module. At this point,
all submodules have been partitioned and inlined, and the
common parent module is not partitioned yet but is anno-
tated by its children. Finally, we partition from the common
parent module (L12) to the top module to finish the process
as depicted in Fig. 5(b).

3.4 Auto-Tuning

Decoupling schedule from model definition enables auto-
tuning. The combinations of schedule primitives provided
by Slapo can introduce a search space, which includes the de-
cisions of the number of activation checkpoints and pipeline
stages, whether to shard a parameter or replace a certain
module/subgraph, etc. Consequently, Slapo provides an auto-
tuner to explore the best combination given a particular
training environment, further reducing the programming
burden.

We provide symbolic variable constructions to help de-
velopers build a search space with arbitrary numbers of
hyperparameters in a schedule. Fig. 6 depicts an example
of a search space composed of batch size and the ratio of
activation checkpointing. In this example with two tunable
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200 def update_space(space):

bs = space.create_symbol(
"batch_size",
range(104, 177, 8)

Invalid space
(0om) - 180
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Figure 6. An example of a user-defined search space.

parameters, we form the candidates of checkpoint ratio based
on the batch size, resulting in a polygon search space instead
of a rectangle. This allows developers to incorporate domain
knowledge to prune inefficient configurations (the white
region), and the invalid configurations (the gray region) can
be quickly pruned by our auto-tuner.

With the search space constructed, the auto-tuner algo-
rithm iteratively determines the values of all tunable pa-
rameters, schedules the model, and launches an evaluation
script provided by developers to benchmark the performance
and memory footprint. Our auto-tuner leverages exhaustive
search by default. Meanwhile, we also provide randomized
coordinate descent [40] for users to accelerate the tuning
process. We evaluate the efficiency of the search space and
the tuning algorithm in §5.4 to show the effectiveness of our
auto-tuner.

3.5 Verification

To achieve high usability, Slapo primitives are flexible to
schedule modules and computations. However, it is possible
for developers to schedule a model incorrectly. For example,
the replaced module may require a different data layout but
developers do not provide the corresponding layout trans-
formation logic, or developers insert the output aggregation
to an invalid point when sharding a parameter tensor.

To guarantee the scheduled model is executable and main-
tains its numerical correctness, Slapo includes the following
verification stages. First, before applying the schedule, we
validate the sequence of schedule primitives with a set of
predefined rules in each primitive. For example, a . sync()
primitive must have a corresponding .shard() primitive
beforehand; primitives for distributed training can only be
specified in a distributed environment with multiple devices;
primitives that require static graphs must have a correspond-
ing .trace() primitive in advance. If any of the rules are
violated, the verifier raises an error and stops the rest sched-
uling process.

Second, we need to assure the numerical correctness of
the scheduled model. We provide a .verify(xschs) primi-
tive for users to conduct differential testing [37] on different
schedules. The verifier generates random inputs and feeds
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in different scheduled models. This validates both sharded
parameter and tensor shapes, as well as confirming consis-
tent outputs with the vanilla model. It works in a distributed
environment without altering the model and highlights prob-
lematic primitives for improved debuggability.

4 Implementations

We implemented Slapo with ~3K LoC in Python on top of
PyTorch [42] to benefit from its dynamic graph and usability.
In this section, we highlight some implementation details.
Static Graph Tracing. Our tracer and the static graph are
based on torch.fx [52], which captures PyTorch models
via symbolic tracing and constructs a static graph with a
6-instruction Python-based intermediate representation (IR).
Like other DL compilers, torch.fx tracer also has unsup-
ported coding styles when capturing the graph, such as cer-
tain types of control flow and data structures. It also flat-
tens the IR and discards all the model structural hierarchy.
Thus, instead of simply invoking torch. fx tracer from the
top module, we invoke the tracer module by module and
carefully maintain the hierarchy. When a particular module
cannot be traced by torch. fx, developers can simply disable
the corresponding schedule primitives that require a static
graph while the rest primitives can still be applied. Since
we directly transform the modules and computation graphs
and feed the scheduled model to the PyTorch runtime, no
additional overhead is introduced during execution.
Framework Dialects. Slapo scheduled model is by design
compatible with native PyTorch runtime and can be exe-
cuted on PyTorch directly. To integrate with the dedicated
runtime of SOTA distributed systems for certain parallelism
(e.g., pipeline), we also implemented two framework dialects
for Megatron-LM [55] and DeepSpeed [51]. These systems
require either wrapping the model with their custom module
or adhering to specific input/output formats. For instance,
DeepSpeed [51] pipeline runtime requires a single tuple of
inputs and outputs in each pipeline stage, so our DeepSpeed
dialect includes automatic logic to (1) unpack the inputs from
the previous stage and encapsulate the outputs as a tuple for
the next stage, and (2) perform liveness analysis to bypass
the tensors that are not required by the current stage but are
required by subsequent stages. By leveraging the provided
dialects, users only need to specify the target framework in
Slapo without modifying the model definition.

5 Evaluation

In this section, we evaluate Slapo on different training con-
figurations, in terms of the number of GPUs, number of
instances, and parallelism strategies, to demonstrate Slapo
is able to align or even outperform existing solutions while
preserving usability. Note that Slapo does not change the
semantics of models and optimizers, so model convergence
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is not affected. We also provide ablation studies to show the
effectiveness of the schedule primitives and the auto-tuner.
Setups. All experiments are conducted on Amazon EC2 p3
instances. More specifically, we use p3dn.24xlarge instances
with 8XNVIDIA V100 32GB GPUs for single-node evalua-
tions, and use at most 8Xp3dn.24xlarge instances for multi-
node evaluations. GPUs in these instances are connected
via NVLink, which provides 300 GB/s theoretical aggregated
GPU interconnect bandwidth, and the inter-node bandwidth
is 100 Gbps. The software environment includes CUDA 11.7,
PyTorch v2.0.1, Megatron-LM (git-hash 0bb597b), DeepSpeed
(v0.9.4), HuggingFace v4.28.1, and NCCL v2.14.3.

Models and Metrics. We apply schedules to a set of popular
PyTorch models from HuggingFace Hub [62] and torchvi-
sion [36], covering language models and image classification
models to demonstrate the generality of Slapo. BERT and
RoBERTa are encoder-only Transformer models. GPT and
OPT are decoder-only Transformer models. T5 has both en-
coders and decoders. WideResNet is a convolutional neural
network. Detailed model settings are shown in Table 3. Other
models like graph neural networks [16, 32] require partition-
ing the graph structure which is out of our scope. All models
in the experiment are trained by AdamW optimizer [35] with
mixed precision, and the micro-batch size (i.e., the number of
samples per data parallel rank) is selected based on the mem-
ory footprint maximizing the system performance. We use
the training throughput (the number of total processed sam-
ples per second) as our evaluation metric. For each setting,
we train the models for tens of steps and take the average
throughput after discarding the first few warm-up steps.

Table 3. Models used in the single-node experiments. — #
of params shows the model size. MLM = Mask language
modeling. CLM = Causal language modeling. Seq2Seq =
Sequence-to-Sequence modeling. IC = Image Classification.

Model Task # of'pérams Seq Leng.t h/ Precision
(Billion) Image Size

BERT [12] MLM 0.96 512 FP16
RoBERTa [33]  MLM 13 512 FP16
GPT [47] CLM 2.86 1024 FP16
OPT [67] CLM 2.69 1024 FP16
T5 [48] Seq2Seq 2.85 1024, 512 FP16
WideResNet [66]  IC 24 3X224%224 FP32

5.1 Evaluation on A Single Machine

This subsection evaluates the end-to-end training efficiency

on 2, 4, and 8 NVIDIA V100 32GB GPUs in a single p3dn.24xlarge

instance to showcase the effectiveness of Slapo.

Systems. We select Megatron-LM v2 [39] as a strong base-
line, which is a SOTA system built on top of PyTorch for
training large Transformer-based language models on GPUs.
Megatron-LM implements its own data loader and optimizer
for better training efficiency. In addition, it implements pop-
ular Transformer models with tensor parallelism as well as
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efficient customized CUDA kernels. We also choose Deep-
Speed [51] as another baseline. DeepSpeed is a SOTA frame-
work that incorporates ZeRO-powered data parallelism (ZeRO-
DP) [50], which applies to arbitrary PyTorch models and is
widely used to train large models. We tune both baseline
systems by changing the configurations such as batch sizes
and activation checkpoints to maximize their performance.

We focus our experiments on frameworks capable of train-
ing models that cannot be fit in a single device, and thus tra-
ditional data-parallel frameworks [17, 24, 54] are not consid-
ered. Additionally, JAX-based frameworks such as Alpa [71]
are excluded from the comparison since they are not di-
rectly comparable to PyTorch-based frameworks. Alpa also
does not exhibit performance advantages when compared to
Megatron-LM for the tested models in Table 3, as the model
architectures are regular [71]. As Slapo is agnostic to paral-
lelism strategies, we evaluate two configurations for every
model to show that Slapo is compatible with the existing
distributed training frameworks. Specifically, “Slapo-ZeRO3”
schedules models with ZeRO-3 [50] that automatically parti-
tions optimizer states, gradients, and parameters to enable
memory-efficient data parallelism; while “Slapo-TP” sched-
ules them to enable tensor parallelism. For each configura-
tion, we auto-tune the checkpointing ratio along with the
batch size.

Results. We first compare two baselines, Megatron-LM and

DeepSpeed ZeRO-3, in Fig. 7. It is worth noting that Megatron-
LM officially only supports three (i.e., BERT, GPT, and T5)

out of the six models listed in Table 3. Comparing these three

models, we find that no one solution is always superior to

the other, highlighting the importance of Slapo which en-
ables developers to easily implement the best parallelism

strategies using schedules for different models.

As shown in Fig. 7, Slapo can always perform the best
and achieve up to 2.92x speedup compared to the baselines.
Slapo-TP achieves throughput gains of 1.02X to 1.46X on 8
GPUs for the models supported by Megatron-LM. Notably,
for the BERT model, Slapo-TP can achieve a speedup of
up to 1.73X. We employ the tensor parallelism scheme pro-
posed by Megatron-LM to shard both attention and MLP
layers, thereby ensuring alignment of multi-device perfor-
mance. While Megatron-LM implements all the customized
kernels within the framework, Slapo captures subgraphs and
enables additional optimization opportunities powered by
deep learning compilers, thus leading to higher performance.

We also note that Slapo-TP does not significantly outper-

form Megatron-LM on GPT and T5 models. The discrepancy
can be attributed to variations in model implementations
between Megatron-LM and HuggingFace, which include dif-
ferences in position embedding, linear bias, layer norm, etc.

The model difference is eliminated when comparing Slapo-
ZeRO3 against DeepSpeed since both frameworks run the
same HuggingFace models. As illustrated in Fig. 7, Slapo-
ZeRO3 consistently outperforms DeepSpeed by a margin
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Figure 7. Training throughput on Amazon EC2 p3dn.24xlarge instance with 8 V100 GPUs.
“Slapo-TP” uses tensor parallelism to align Megatron-LM. “Slapo-ZeRO3” uses DeepSpeed
ZeRO-3 as the parallelism technique. “X” denotes not supported by the framework.

of 1.04x-1.64X. The speedup is primarily attributed to the
utilization of efficient kernels, which are not included by
default in the DeepSpeed training pipeline due to the need
for extensive model and parameter rewriting. It is important
to note that DeepSpeed supports only fully checkpointed
layers implemented in HuggingFace, whereas Slapo can con-
duct selective checkpointing. By combining this with the
auto-tuner, we can consistently achieve higher performance
compared to DeepSpeed. We further conduct ablation study
in §5.4 to demonstrate the performance improvements of
different optimizations.

5.2 Evaluation on Multiple Machines

This subsection presents the results of distributed training
performance in multi-machine setups.

Systems and Setups. The testbed in this evaluation is
p3dn.24xlarge instances with 8 NVIDIA V100 32 GB GPUs
each. We again use DeepSpeed and Megatron-LM v2, as
baselines. Following the common practices [39, 50], we use
ZeRO-3 for DeepSpeed and set model-parallel and pipeline-
parallel size as 8 and 2, respectively, for Megatron-LM. We
consider the strong scaling efficiency, in which the global
batch size is fixed. Typically, distributed training for large
models runs on hundreds to thousands of GPUs and uses
global batch sizes up to thousands out of consideration for
model quality [5, 10, 39]. We fix the global batch size at 256
for our clusters with up to 64 GPUs, and tune the micro-batch
size of each system for the best performance. The evaluation
uses a GPT-10B model [47] and a LLaMA-7B model [58]. The
input sequence length for the experiments is 1024.
Results. First of all, Fig. 8 reaffirms that no single paral-
lelism strategy consistently performs best for different GPU
configurations. In contrast, Slapo consistently outperforms

Figure 8. Training throughput
of different frameworks on up
to 64 V100 GPUs.

Table 4. The total lines of code required to implement high-
performance schedules (sch) for models in Fig. 7 and Fig. 8.

Model Sch | Model Sch Model Sch | Model Sch
BERT 21 GPT 10 T5 11 LLaMA 11
RoBERTa 21 OPT 10 | WideResNet 12

the best available baselines by up to 1.41X when training
the GPT-10B model. This is due to Slapo’s flexibility, as it is
not bound to a specific parallelism strategy or framework. It
allows us to choose the most effective strategy and incorpo-
rate additional optimizations. By leveraging Slapo, we can
readily implement 3D parallelism for emerging models like
LLaMA [58, 59], which would require significant engineer-
ing efforts to be supported in Megatron-LM. Nevertheless,
Slapo achieves a limited speedup over DeepSpeed in the case
of LLaMA-7B. According to our profiling, this is because the
majority of ZeRO-3 overhead, weight all-gather, is moderate
in the 7B-scale model when compared to 3D parallelism.

5.3 Usability Study

To demonstrate the improved usability of Slapo, we present
the lines of code (LoC) count required to implement high-
performance schedules in Table 4. Typical model implemen-
tations on the HuggingFace Hub consist of over 1,000 lines of
code, making it impractical for developers to directly modify
the internal modules scattered in different places to accom-
modate various hardware environments. Slapo offers a user-
friendly interface that allows developers to incorporate the
latest optimization techniques without altering the original
model definition. In most cases, users can achieve compli-
cated distributed optimizations with about 20 lines of code,
significantly reducing the coding burden. Moreover, certain



ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Vanilla

+ Kernel Opt

+ Attn/FFN TP

+ Embedding TP

0 20 40 60 80 100
Throughput (samples/sec)

Figure 9. Ablation study with HuggingFace BERT model.

schedules can be shared among models with similar archi-
tectures, such as BERT and RoBERTa. Even non-expert users
can benefit from our predefined schedule templates to attain
high performance. For an illustrative example schedule on
the BERT model, please refer to Supplemental Material A.
To further illustrate how Slapo can accommodate various
optimizations through the extension of schedule primitives,
we analyze its utilization by initial Slapo users. Our investi-
gation assesses several pull requests submitted by different
teams, each aiming at adding support for new primitives
in our internal repository. We selected several of them and
requested detailed reports on the optimization scenarios fa-
cilitated by these new primitives, as well as the development
efforts required to integrate them. The results are shown
in Table 5. The proposed new primitives have been success-
fully applied to a diverse range of optimization tasks. More
importantly, these primitives can be swiftly implemented
through the extensible primitive interface in §3.1, often re-
quiring only a single day of development effort. Even the
development of an automatic build system for binding CUDA
kernels can be accomplished within the same timeframe.

Table 5. The development efforts of introducing new sched-
ule primitives in Slapo. — LoC is the number of lines of code
for implementing these optimizations as primitives. The de-
velopment time does not include comprehensive testing on
various models.

Approx.

N imiti X
ew primitives Develop Time

Description LoC

Replace a module with
a predefined quantized module 11 1 hour
for quantization-aware training
. Bind a module with
bindQ) a CUDA kernel implementation % 1 day
Use CUDA graph [57] to

reduce kernel launch overheads

.quantize()

.cudagraphify() 16 1 hour

5.4 Ablation Study

We design an ablation study for applied optimizations to
investigate the performance gain of the schedule.

Schedule Primitives. We start from a vanilla HuggingFace
BERT model that is only capable of running on a single device.
As evident in Fig. 9, as we progressively apply the sched-
ule primitives to the model, there is a consistent increase
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Figure 10. Auto-tuning an OPT-350M model. — Contour
lines show the throughput of different combinations of batch
size and checkpoint ratio. Throughput 0 means OOM. Pur-
ple x indicates the explored configurations via coordinate
descent; red X depicts the optimal one.

in performance. Kernel optimizations, such as Flash Atten-
tion [11] and fusing the Bias-GeLU kernel, have shown a
1.18% speedup on a single device. By sharding the attention
and ffn modules as discussed in Fig. 3, we can effectively
scale out to 8 GPUs, achieving a 4.21X speedup. Moreover,
since the word embedding layer contains parameters related
to a vocabulary size of over 30K, sharding this parameter re-
sults in larger batch sizes, leading to a final speedup of 5.69x
and improved scalability when compared to Megatron-LM
BERT in Fig. 7.

Auto-Tuning. To showcase the effectiveness of Slapo auto-
tuner within a large search space, we assess the performance
of an OPT-350M [67] model using 8 V100 GPUs. We define a
search space (including white and yellow regions in Fig. 6)
with 91 configurations composed of various batch sizes and
activation checkpointing ratios. As shown in Fig. 10, the
optimal configuration only checkpoints 50% of the layers
with the batch size below the memory threshold, and attains
over 30% improved performance compared to the poorest
configuration within the search space. With the search space
that has already pruned many inefficient configurations, and
the coordinate descent algorithm deployed by the Slapo auto-
tuner, only 17 configurations (19% of the total candidates)
are explored to identify the optimal configuration with the
highest throughput. The entire search process is completed
in 20 minutes, as opposed to the 139 minutes an exhaustive
search would require, reducing 86% of the search time.

6 Related Work

Schedule Languages and Compilers. Many domain-specific
languages (DSLs) leverage the idea of decoupling optimiza-
tions from algorithms [2, 6, 7, 19, 28, 49, 63], allowing users
to focus on customization and enabling compilers to perform
complex optimizations. TVM [7, 15] inherits the decoupling
idea from Halide [49] and builds an end-to-end compiler for
deep learning inference. Slapo borrows a similar decoupling
idea and applies it to the model execution level.
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Dynamic Graph Optimizations. Due to the dynamic na-
ture and usability of PyTorch, many frameworks and libraries
directly explore optimizations on top of it. ZeRO [50] is a
three-stage data parallelism strategy that partitions opti-
mizer states, gradients, and parameters to reduce memory
usage, implemented first in DeepSpeed [51] and then adopted
by other frameworks [69]. MiCS [68] further improves ZeRO
by minimizing the communication scale. Megatron-LM [39,
55] takes a different approach to implementing model paral-
lelism for Transformers, becoming one of the mainstream
parallelism libraries. Slapo provides comprehensive primi-
tives to apply optimization techniques in a systematic and
productive way. We also use framework dialects described
in §4 to train the scheduled models on these frameworks.
Static Graph Optimizations. Some other DL frameworks
adopt static graphs so that compiler optimizations can be
easily involved. JAX [4] is a popular framework that offers
a programming model similar to NumPy, and is powered
by XLA [18] as the backend compiler. Accordingly, it is able
to achieve 3D parallelism with the corresponding sharding
mechanism, GSPMD [64] and GShard [30]. On top of that,
Alpa [71] is the first compiler based on JAX and XLA to
achieve automatic 3D parallelism. Besides, Unity [60] is an-
other compiler-based distributed training framework that
automatically jointly optimizes model parallelism and opera-
tor fusion. Their automation mechanisms are orthogonal to
Slapo and could inspire Slapo’s auto-scheduler in the future.

Moreover, PyTorch 2.0 [43] utilizes torch. fx [52] as the
IR to capture dynamic graphs and perform optimizations like
operator fusion. Nevertheless, it lacks native support for 3D
parallelism, partial activation checkpointing, etc., which are
crucial for training large models. Slapo takes the heavy lift-
ing work from the users, offering a systematic approach for
efficient multi-device model optimization and performance
improvement through auto-tuning.

7 Conclusion

In this paper, we propose a schedule language Slapo for
progressive optimization of large model training. Slapo de-
couples model execution from definition, and provides a com-
prehensive set of schedule primitives for users to efficiently
optimize the model execution. Experimental results show
Slapo can combine existing optimizations to align or even
outperform their performance with minimal programming
effort. We plan to implement an auto-scheduler for Slapo to
further lower the programming barrier of distributed train-
ing, and we believe Slapo can facilitate the rapid prototyping
of emerging optimizations for large model training.
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A Example Schedule on BERT

The following code snippet shows an example schedule on
BERT model using Slapo, where the 21 lines of schedule code
are highlighted.

1 # Import model definition

2 from transformers import BertLMHeadModel, AutoConfig

3 config = AutoConfig.from_pretrained("bert-large-uncased")
1 model = BertLMHeadModel(config)

6 # Import necessary packages
7 import slapo
8 from slapo.pattern import call_module

9 import torch.nn.functional as F

11 # Construct schedule for the model

12 sch = slapo.create_schedule(model)

14 # Shard embeddings

15 sch["embeddings.word_embeddings"].sync(mode="fwd_pre",
16 sync_op_or_fn=slapo.op.embed_fwd_hook)

17 sch["embeddings.word_embeddings"] .sync(mode="fwd_post",
18 sync_op_or_fn=slapo.op.embed_bwd_hook)

19 for idx in range(config.num_hidden_layers):

20 # Shard self attention module

21 subsch = sch[f"encoder.layer.{idx}.attention"]

22 subsch["self.query"].shard(["weight", "bias"], axis=0)
23 subsch["self.key"].shard(["weight", "bias"], axis=0)

24 subsch["self.value"] .shard(["weight", "bias"], axis=0)
25 subsch.sync(mode="bwd_post", sync_op_or_fn="all_reduce")
26 subsch["output.dense"].shard("weight", axis=1)

27 subsch["output.dense"].sync("fwd_post",

28 sync_op_or_fn="all_reduce")

29 # Shard MLP module
30 subsch = sch[f"encoder.layer.{idx}"]

31 subsch["intermediate.dense"] .shard(

32 ["weight", "bias"], axis=0)

33 subsch["intermediate.dense"].sync("bwd_post",
34 sync_op_or_fn="all_reduce")

35 subsch["output.dense"].shard("weight", axis=1)
36 subsch["output.dense"].sync("fwd_post",

37 sync_op_or_fn="all_reduce")

38 # Decompose linear bias and trace module

39 subsch["attention.output.dense"].decompose ()
40 subsch["output.dense"] .decompose ()

41 subsch.trace(tracer="huggingface", flatten=True)

42 # Replace scaled dot product attention

43 subgraphs = subsch.find(slapo.pattern.scaled_dot_product)
44 subsch.replace(F.scaled_dot_product_attention, subgraphs)
15 # Fuse linear bias and gelu

46 subgraph = subsch.find(lambda x, bias: F.gelu(bias + x))
47 subsch. fuse (subgraph,

48 compiler="TorchInductor", name="BiasGeLU")

49 # Fuse bias add, layer norm, and residual

50 for 1n in ["attention.output.LayerNorm",

51 "output.LayerNorm"] :

52 subgraph = subsch.find(lambda x, bias, residual:

53 call_module(ln, F.dropout(bias + x) + residual))
54 subsch.fuse (subgraph,

55 compiler="TorchInductor", name="LNResidual")
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B Artifact Appendix
B.1 Abstract

This artifact contains the source code of the Slapo prototype
and necessary scripts for configuring the GPU environment
and reproducing the experiments in the paper. To make the
setup process easier for artifact evaluation, we have pack-
aged our artifact into a docker image, complete with de-
tailed instructions for executing the experiments. A machine
equipped with multiple GPUs is required for running the
experiments. It takes about 3 hours to run the artifact on an
AWS p3dn.24xlarge instance.

B.2 Artifact check-list (meta-information)

e Model: BERT [12], RoBERTa [33], GPT [47], OPT [67],

T5 [48], and WideResNet [66].

Run-time environment: NVIDIA Container Toolkit.

Hardware: 8XNVIDIA V100 GPUs.

Metrics: Throughput (samples/sec) and lines of code (LoC).

Output: Bar charts and tables.

Experiments: End-to-end throughput evaluation and abla-

tion study on a single machine, and LoC of the schedules.

How much disk space required?: 256 GB.

e How much time is needed to prepare workflow (ap-
proximately)?: 2 hours for building the docker container.

e How much time is needed to complete experiments
(approximately)?: 3 hours.

e Publicly available?: Yes.

e Code licenses (if publicly available)?: Both the Slapo ar-
tifact and the Slapo language are released under the Apache-
2.0 License.

e Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
10546708

B.3 Description

B.3.1 How to access? The Slapo framework and the arti-
fact are both available online:

e https://github.com/awslabs/slapo
e https://github.com/chhzh123/slapo-artifact

B.3.2 Hardware dependencies. All experiments are con-
ducted on Amazon EC2 p3 instances. We use p3dn.24xlarge
instances with 8XNVIDIA V100 32GB GPUs for single-node
evaluations, and use at most 8xp3dn.24xlarge instances for
multi-node evaluations. GPUs in these instances are con-
nected via NVLink, which provides 300 GB/s theoretical
aggregated GPU interconnect bandwidth, and the inter-node
bandwidth is 100 Gbps. For artifact evaluation, we provide a
p3dn.24xlarge instance for reproducing the single-node ex-
periments. Our artifact can be easily customized for various
hardware environments. Other NVIDIA GPUs with distinct
architectures should also work but will yield different per-
formance results.

B.3.3 Software dependencies. We provide a docker im-
age for this artifact with NVIDIA GPU support. The software
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environment includes CUDA 11.7, PyTorch v2.0.1, Megatron-
LM (git-hash 0bb597b), DeepSpeed (v0.9.4), HuggingFace
v4.28.1, and NCCL v2.14.3.

B.3.4 Datasets. We use the Wikipedia [21] dataset for
evaluating the throughput of Slapo and the baseline systems.

B.4 Installation

To install the artifact, users can clone the repository and
build the artifact by themselves:
1 git clone https://github.com/chhzh123/slapo-artifact.git

—--recursive
2 cd slapo-artifact/3rdparty/slapo/docker
docker build -t slapo -f docker/Dockerfile .

Otherwise, users can pull the pre-built docker image from
Docker Hub (only compatible with NVIDIA V100 GPUs):

1 docker image pull chhzh123/slapo-ae:latest
2 docker tag chhzh123/slapo-ae:latest slapo

B.5 Experiment workflow

We only provide scripts for reproducing the results of Fig-
ure 7, Table 4, and Figure 9, which constitute the main results
of our paper. For other experiments, since they may require
multiple machines or take excessively long time to run, we
do not provide end-to-end evaluation scripts, but users can
still find the instructions in our repository.

For a comprehensive guide and the necessary scripts,
please refer to the README file included in the artifact.
Users can also use the following command to launch a docker
image for the experiments:

1 docker run --name slapo —-shm-size=150G --gpus all --user
root -it slapo:latest

B.6 Evaluation and expected results

Please refer to the artifact for step-by-step instructions. After
executing the experiments, we can obtain:

o Figure 7: The throughput (measured in samples/sec)
for Megatron-LM, DeepSpeed, Slapo-TP, and Slapo-
ZeRO3 across various models listed in Table 3.

e Table 4: The lines of schedule code of different models.

e Figure 9: The performance breakdown on the BERT
model.

B.7 Experiment customization

The Slapo language and the artifact can be further customized
for running diverse models and configurations. We provide
a benchmarking script that can be easily adapted to accom-
modate various models, number of GPUs, batch sizes, and
sequence lengths. Comprehensive information and guide-
lines on this can be found in the artifact.

Additionally, we provide detailed documentation and tu-
torials on using the Slapo language. Please refer to the fol-
lowing link: https://awslabs.github.io/slapo/.
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