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Abstract

Recent years have seen an increase in the development of
large deep learning (DL) models, which makes training ef-
�ciency crucial. Common practice is struggling with the
trade-o� between usability and performance. On one hand,
DL frameworks such as PyTorch use dynamic graphs to fa-
cilitate model developers at a price of sub-optimal model
training performance. On the other hand, practitioners pro-
pose various approaches to improving the training e�ciency
by sacri�cing some of the �exibility, ranging from making
the graph static for more thorough optimization (e.g., XLA)
to customizing optimization towards large-scale distributed
training (e.g., DeepSpeed and Megatron-LM).

In this paper, we aim to address the tension between usabil-
ity and training e�ciency through separation of concerns.
Inspired by DL compilers that decouple the platform-speci�c
optimizations of a tensor-level operator from its arithmetic
de�nition, this paper proposes a schedule language, Slapo,
to decouple model execution from de�nition. Speci�cally,
Slapo works on a PyTorch model and uses a set of schedule
primitives to convert the model for common model training
optimizations such as high-performance kernels, e�ective
3D parallelism, and e�cient activation checkpointing. Com-
pared to existing optimization solutions, Slapo progressively

optimizes the model “as-needed” through high-level primi-
tives, and thus preserving programmability and debuggabil-
ity for users to a large extent. Our evaluation results show
that by scheduling the existing hand-crafted optimizations
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in a systematic way using Slapo, we are able to improve
training throughput by up to 2.92× on a single machine
with 8 NVIDIA V100 GPUs, and by up to 1.41× on multiple
machines with up to 64 GPUs, when compared to the out-of-
the-box performance of DeepSpeed and Megatron-LM.
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1 Introduction

The demand of large deep learning (DL) models is surging in
recent years as they demonstrate dominatingmodel accuracy
on a range of tasks in natural language processing (NLP) [3,
5, 10, 12] and computer vision [13, 34, 66]. These models
are normally invented in user-friendly DL frameworks like
PyTorch [42] with dynamic model graphs1, which by design
lacks su�cient optimization for high-performance execution.
This issue becomes more and more critical as the size of
models grows exponentially and so does the time of training.
In order to reduce the model training time, developers

propose various kinds of optimization. The �rst type of
optimization is implemented manually in di�erent layers
of model training, such as inserting high-performance ker-
nels [11, 29, 41, 55] for computationally intensive operators

1Dynamic graph DL frameworks construct the model graph on the �y when

executing its forward computation instead of constructing the graph ahead

of time.
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on speci�c devices (e.g., NVIDIA GPUs), employing data, ten-
sor, and pipeline parallelism [38, 50, 55], as well as activation
checkpointing [8, 22, 26], to e�ciently distribute the train-
ing across multiple devices. However, manual optimization
introduces the following two challenges.
Challenge 1: Generality – Incorporating the above opti-
mizations requires making intrusive changes to the model
implementation, which means that the optimization is not
easy to generalize to other models. A new model, even with
minimal change from the old one, may not be able to directly
reuse the old optimization. In addition, the optimized model
becomes platform-speci�c, requiring developers to main-
tain multiple implementations to serve all requirements (e.g.,
training on di�erent platforms and deploying on non-GPU
devices).
Challenge 2: Ease of Tuning – In practice, an optimization
scheme has a number of con�gurations to tune (e.g., pipeline
stages, number of activation checkpoints) to get a combina-
tion that results in the best performance. Developers need to
identify tunable con�gurations in the implementation and
modify the model to expose them for e�ective tuning. This
process can be tedious and error-prone especially when the
model de�nition is closely tied to optimizations.
In addition to manual optimization, the other set of opti-

mization approaches converts the DL model into a number
of static graphs and leverages DL compilers to automatically
apply optimizations. For example, JAX [4] is a DL frame-
work powered by a compiler XLA [18]. JAX traces the entire
model to obtain a whole graph statically, on top of which
the compiler can perform aggressive optimizations such as
operator fusion, expression simpli�cation, and even 3D paral-
lelism [71]. Similarly, the recent release PyTorch 2.0 [43] pro-
vides a compiler interface to trace PyTorch dynamic graph
executions and construct static graphs in torch.fx [52] for
optimizations. While automatic optimization requires mini-
mal engineering e�ort from model developers and addresses
some of the challenges mentioned above, it also introduces
two new challenges.
Challenge 3: Programmability –Working on static model
graphs is limited by the requirement that everything must be
statically analyzable and deterministic. Frameworks may im-
pose constraints on the users to facilitate the conversion to
static graphs. For example, JAX programmingmodel requires
pure Python functions, no in-place updates, etc., so develop-
ers may need to rewrite the model to meet these constraints
in order to make it runnable [4]. For another example, Py-
Torch 2.0 cannot trace through the collective operators like
all_reducewhich are essential for distributed training [43].
Moreover, it is usually non-trivial for developers to control
or con�gure the optimizations in �ne granularity, such as
disabling certain rules, or excluding certain operators from
a compiler pass.
Challenge 4: Debuggability – To make model implemen-
tation easy to understand and maintain, model developers

usually implement layer modules (e.g., convolutional, fully
connected, and attention layers) as building blocks, and use
them to compose a model hierarchically. However, to ex-
pand the scope of optimization and improve performance,
DL compilers operating on a static model graph often �atten
the hierarchy to create a single-level data�ow graph, and
rewrite certain operators (e.g., decomposing the batch_norm
op into a number of smaller ones). This prevents develop-
ers from understanding and troubleshooting performance or
convergence issues, as the optimized model may bear little
resemblance to the original model implementation.

To address the challenges mentioned above, we propose
Slapo2, a Schedule LAnguage for Progressive Optimization,
designed for DL frameworks with dynamic model graphs.
Slapo has the following major features.
Decouple model execution from its de�nition. To ad-
dress Challenge 1, we decouple model execution (named
“schedule”) from its de�nition. As a result, model developers
can maintain the same model implementation, and perfor-
mance engineers can optimize a model- or platform-speci�c
schedule in a separate place. This idea is inspired by well-
known domain-speci�c compilers – Halide [49] and Apache
TVM [7] – which propose widely adopted schedule lan-
guages that decouple tensor operator scheduling from its
arithmetic de�nition.
Auto-tuning.A separate schedule also enables massive auto-
tuning opportunities. Similar to AutoTVM [9], Slapo provides
a programming interface that allows developers to specify a
set of tuneable knobs to form an e�cient tuning space. The
tuning space can then be explored by Slapo auto-tuner to
realize the optimal con�guration, which addresses Challenge
2. Along this direction, Slapo can also enable auto-scheduling
as Ansor [70], and this is our planned future work.
Progressive optimization. Slapo incorporates a “trace by
need” approach that only traces a desired module to be a
static graph for compiler-based aggressive optimizations.
The traced part can be expanded or shrunk progressively as
needed. Developers explicitly call the scheduling primitives
to realize this, addressing Challenge 3.
Structure-preserving scheduling. Model developers usu-
ally de�ne building blocks (e.g., convolutional or attention
layers), and then compose them together to form a complete
model. Consequently, developers often leverage this struc-
ture to analyze and debug the model. Slapo preserves this
hierarchy when constructing the schedule (see §3.1 for de-
tails), so that developers can easily locate the module and
apply scheduling. Also, as the model structure is preserved
and optimization can be progressively applied, it facilitates
the users to debug any performance and convergence issue,
and a veri�er (§3.5) is provided to further aid debugging,
addressing Challenge 4.
In summary, we make the following contributions:

2h�ps://github.com/awslabs/slapo
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Table 2. A summary of Slapo built-in schedule primitives.

Primitives with Dynamic Graphs Primitives with Static Graphs

.replace(new_mod) .replace(new_mod, subgraph)

.shard(param_name, axis) .fuse(subgraph, compiler)

.sync(type) .pipeline_split()

.checkpoint() .checkpoint(subgraph)

learnable parameters, we do not change the computation
speci�ed in the forward method. As a result, the schedule
primitives in the left column of Table 2 do not require a
static graph, thus maximally avoiding the limitation of trac-
ers. We present the details of this scheduling in §3.2. On the
other hand, scheduling the computation, such as operator fu-
sion and pipeline parallelism, has to manipulate the forward
method. Thus, the schedule primitives in the right column
of Table 2 require the computation to be in a static graph, so
we have to use .trace() prior to applying these primitives,
as presented in §3.3. These primitives have covered existing
optimizations ranging from parallelism schemes and com-
piler optimizations, which are general enough to support
e�cient training of di�erent models, as demonstrated in §5.
Extensible Primitives. In addition to the prede�ned primi-
tives, users have the �exibility to incorporate their custom
training optimization as a schedule primitive in Slapo. This
can be achieved by inheriting the provided base primitive
class as shown below. During program execution, Slapo dy-
namically registers the user-de�ned primitives, enabling
seamless collaboration with other built-in primitives, the
veri�er, and the auto-tuner.

1 @slapo.register_primitive()

2 class UserDefinedPrimitive(slapo.Primitive):

3 def __init__(self, name):

4 ... # Initialize data structure and preconditions

5 def apply(self, sch, ∗∗kwargs):

6 ... # Transformation on the schedule

3.2 Schedule Modules and Parameters

We �rst present scheduling a module and its parameters,
which typically does not change the computation and thus
does not require static graphs.

3.2.1 Schedule Modules For important workloads such
as attention in Fig. 3(a), researchers or hardware vendors
may manually implement e�cient kernels [11, 25]. These
highly customized, hand-crafted kernels sometimes could
outperform the ones generated by DL compilers. With Slapo,
we can use .replace(new_module) primitive to replace a
native implementationwith an e�cient one, where new_module
is the custom module to be replaced, as shown in Fig. 3(b).
Additionally, activation checkpointing is another impor-

tant feature for large model training, as mentioned in §2.1.
Existing frameworks [51, 55] implement �xed strategies
of checkpointing in their model de�nition and instantiate

each layer with the same con�guration, thus making it dif-
�cult to incorporate other checkpointing techniques [22,
27]. Slapo decouples the checkpointing logic and o�ers a
.checkpoint() primitive that can explicitly control whether
a module should be checkpointed. Consequently, Slapo en-
ables developers to �exibly adjust the number of checkpoints
via our schedule primitive or leverage the auto-tuner for bet-
ter memory and throughput trade-o�s.

3.2.2 Parameter Sharding In 3 of §2.2, we introduced
the steps to enable tensor parallelism, which involves shard-
ing parameters and aggregating outputs. This process is
commonly known as the main challenge in adapting mod-
els for distributed execution. The manual management of
partitioning and communication within the model leads to
a non-executable partitioned model when the number of
devices changes, as well as makes synchronization with up-
stream model changes di�cult. While Megatron-LM [55]
provides tensor parallel modules for users, they are limited
to speci�c models. If user-de�ned module operators di�er
from prede�ned modules, tensor parallelism cannot be uti-
lized for distributed training.

In contrast, Slapo overcomes these limitations by enabling
users to shard a parameter using the .shard(param, axis)

primitive and aggregate results using the .sync(type) prim-
itive. The type can be “forward” (aggregate the forward ac-
tivations) or “backward” (aggregate the gradients). Notice
Slapo can e�ciently capture the parameter and axes informa-
tion covering the entire space of model partition, including
3D parallelism [39, 55] and other complicated parallelism
schemes that an automatic compiler [71] supports. These
primitives can be applied to arbitrary models and parame-
ters, e�ectively addressing generality issues. It also does not
require the model to be traceable since sharding does not
modify the computation graph. Fig. 3(c) shows that imple-
menting a complex tensor parallel program only requires
�ve lines of schedule code without modifying the model
de�nition. Slapo automatically shards parameters for di�er-
ent distributed environments and inserts synchronization
points based on users’ annotations. Meanwhile, we employ a
veri�er (§3.5) to check correctness after scheduling. In the fu-
ture, we plan to develop an auto-scheduler that automatically
generates these primitives.

3.3 Schedule Computations

The prerequisite of scheduling computations is tracing the
forward method of the target module, and constructing a
static graph in a certain intermediate representation (IR).
There are several approaches to obtaining the static graph IR.
First, run-with-dummy-data [46] is an approach that directly
executes the method with dummy inputs and captures all ex-
ecuted operators in order. Second, AST-analysis [46] directly
analyzes Python abstract-syntax-tree (AST) to obtain the









ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Hongzheng Chen, Cody Hao Yu, Shuai Zheng, Zhen Zhang, Zhiru Zhang, and Yida Wang

is not a�ected. We also provide ablation studies to show the
e�ectiveness of the schedule primitives and the auto-tuner.
Setups. All experiments are conducted on Amazon EC2 p3
instances. More speci�cally, we use p3dn.24xlarge instances
with 8×NVIDIA V100 32GB GPUs for single-node evalua-
tions, and use at most 8×p3dn.24xlarge instances for multi-
node evaluations. GPUs in these instances are connected
via NVLink, which provides 300 GB/s theoretical aggregated
GPU interconnect bandwidth, and the inter-node bandwidth
is 100 Gbps. The software environment includes CUDA 11.7,
PyTorch v2.0.1, Megatron-LM (git-hash 0bb597b), DeepSpeed
(v0.9.4), HuggingFace v4.28.1, and NCCL v2.14.3.
Models andMetrics.We apply schedules to a set of popular
PyTorch models from HuggingFace Hub [62] and torchvi-
sion [36], covering language models and image classi�cation
models to demonstrate the generality of Slapo. BERT and
RoBERTa are encoder-only Transformer models. GPT and
OPT are decoder-only Transformer models. T5 has both en-
coders and decoders. WideResNet is a convolutional neural
network. Detailed model settings are shown in Table 3. Other
models like graph neural networks [16, 32] require partition-
ing the graph structure which is out of our scope. All models
in the experiment are trained by AdamW optimizer [35] with
mixed precision, and the micro-batch size (i.e., the number of
samples per data parallel rank) is selected based on the mem-
ory footprint maximizing the system performance. We use
the training throughput (the number of total processed sam-
ples per second) as our evaluation metric. For each setting,
we train the models for tens of steps and take the average
throughput after discarding the �rst few warm-up steps.

Table 3. Models used in the single-node experiments. — #
of params shows the model size. MLM = Mask language
modeling. CLM = Causal language modeling. Seq2Seq =

Sequence-to-Sequence modeling. IC = Image Classi�cation.

Model Task
# of params

(Billion)

Seq Length /
Image Size

Precision

BERT [12] MLM 0.96 512 FP16

RoBERTa [33] MLM 1.3 512 FP16

GPT [47] CLM 2.86 1024 FP16

OPT [67] CLM 2.69 1024 FP16

T5 [48] Seq2Seq 2.85 1024, 512 FP16

WideResNet [66] IC 2.4 3×224×224 FP32

5.1 Evaluation on A Single Machine

This subsection evaluates the end-to-end training e�ciency
on 2, 4, and 8NVIDIAV100 32GBGPUs in a single p3dn.24xlarge
instance to showcase the e�ectiveness of Slapo.
Systems.We select Megatron-LM v2 [39] as a strong base-
line, which is a SOTA system built on top of PyTorch for
training large Transformer-based language models on GPUs.
Megatron-LM implements its own data loader and optimizer
for better training e�ciency. In addition, it implements pop-
ular Transformer models with tensor parallelism as well as

e�cient customized CUDA kernels. We also choose Deep-
Speed [51] as another baseline. DeepSpeed is a SOTA frame-
work that incorporates ZeRO-powered data parallelism (ZeRO-
DP) [50], which applies to arbitrary PyTorch models and is
widely used to train large models. We tune both baseline
systems by changing the con�gurations such as batch sizes
and activation checkpoints to maximize their performance.

We focus our experiments on frameworks capable of train-
ing models that cannot be �t in a single device, and thus tra-
ditional data-parallel frameworks [17, 24, 54] are not consid-
ered. Additionally, JAX-based frameworks such as Alpa [71]
are excluded from the comparison since they are not di-
rectly comparable to PyTorch-based frameworks. Alpa also
does not exhibit performance advantages when compared to
Megatron-LM for the tested models in Table 3, as the model
architectures are regular [71]. As Slapo is agnostic to paral-
lelism strategies, we evaluate two con�gurations for every
model to show that Slapo is compatible with the existing
distributed training frameworks. Speci�cally, “Slapo-ZeRO3”
schedules models with ZeRO-3 [50] that automatically parti-
tions optimizer states, gradients, and parameters to enable
memory-e�cient data parallelism; while “Slapo-TP” sched-
ules them to enable tensor parallelism. For each con�gura-
tion, we auto-tune the checkpointing ratio along with the
batch size.
Results. We �rst compare two baselines, Megatron-LM and
DeepSpeed ZeRO-3, in Fig. 7. It is worth noting thatMegatron-
LM o�cially only supports three (i.e., BERT, GPT, and T5)
out of the six models listed in Table 3. Comparing these three
models, we �nd that no one solution is always superior to
the other, highlighting the importance of Slapo which en-
ables developers to easily implement the best parallelism
strategies using schedules for di�erent models.
As shown in Fig. 7, Slapo can always perform the best

and achieve up to 2.92× speedup compared to the baselines.
Slapo-TP achieves throughput gains of 1.02× to 1.46× on 8
GPUs for the models supported by Megatron-LM. Notably,
for the BERT model, Slapo-TP can achieve a speedup of
up to 1.73×. We employ the tensor parallelism scheme pro-
posed by Megatron-LM to shard both attention and MLP
layers, thereby ensuring alignment of multi-device perfor-
mance. While Megatron-LM implements all the customized
kernels within the framework, Slapo captures subgraphs and
enables additional optimization opportunities powered by
deep learning compilers, thus leading to higher performance.
We also note that Slapo-TP does not signi�cantly outper-
form Megatron-LM on GPT and T5 models. The discrepancy
can be attributed to variations in model implementations
between Megatron-LM and HuggingFace, which include dif-
ferences in position embedding, linear bias, layer norm, etc.

The model di�erence is eliminated when comparing Slapo-
ZeRO3 against DeepSpeed since both frameworks run the
same HuggingFace models. As illustrated in Fig. 7, Slapo-
ZeRO3 consistently outperforms DeepSpeed by a margin
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Dynamic Graph Optimizations. Due to the dynamic na-
ture and usability of PyTorch, many frameworks and libraries
directly explore optimizations on top of it. ZeRO [50] is a
three-stage data parallelism strategy that partitions opti-
mizer states, gradients, and parameters to reduce memory
usage, implemented �rst in DeepSpeed [51] and then adopted
by other frameworks [69]. MiCS [68] further improves ZeRO
by minimizing the communication scale. Megatron-LM [39,
55] takes a di�erent approach to implementing model paral-
lelism for Transformers, becoming one of the mainstream
parallelism libraries. Slapo provides comprehensive primi-
tives to apply optimization techniques in a systematic and
productive way. We also use framework dialects described
in §4 to train the scheduled models on these frameworks.
Static Graph Optimizations. Some other DL frameworks
adopt static graphs so that compiler optimizations can be
easily involved. JAX [4] is a popular framework that o�ers
a programming model similar to NumPy, and is powered
by XLA [18] as the backend compiler. Accordingly, it is able
to achieve 3D parallelism with the corresponding sharding
mechanism, GSPMD [64] and GShard [30]. On top of that,
Alpa [71] is the �rst compiler based on JAX and XLA to
achieve automatic 3D parallelism. Besides, Unity [60] is an-
other compiler-based distributed training framework that
automatically jointly optimizes model parallelism and opera-
tor fusion. Their automation mechanisms are orthogonal to
Slapo and could inspire Slapo’s auto-scheduler in the future.
Moreover, PyTorch 2.0 [43] utilizes torch.fx [52] as the

IR to capture dynamic graphs and perform optimizations like
operator fusion. Nevertheless, it lacks native support for 3D
parallelism, partial activation checkpointing, etc., which are
crucial for training large models. Slapo takes the heavy lift-
ing work from the users, o�ering a systematic approach for
e�cient multi-device model optimization and performance
improvement through auto-tuning.

7 Conclusion

In this paper, we propose a schedule language Slapo for
progressive optimization of large model training. Slapo de-
couples model execution from de�nition, and provides a com-
prehensive set of schedule primitives for users to e�ciently
optimize the model execution. Experimental results show
Slapo can combine existing optimizations to align or even
outperform their performance with minimal programming
e�ort. We plan to implement an auto-scheduler for Slapo to
further lower the programming barrier of distributed train-
ing, and we believe Slapo can facilitate the rapid prototyping
of emerging optimizations for large model training.
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A Example Schedule on BERT

The following code snippet shows an example schedule on
BERT model using Slapo, where the 21 lines of schedule code
are highlighted.

1 # Import model definition

2 from transformers import BertLMHeadModel, AutoConfig

3 config = AutoConfig.from_pretrained("bert−large−uncased")

4 model = BertLMHeadModel(config)

5

6 # Import necessary packages

7 import slapo

8 from slapo.pattern import call_module

9 import torch.nn.functional as F

10

11 # Construct schedule for the model

12 sch = slapo.create_schedule(model)

13

14 # Shard embeddings

15 sch["embeddings.word_embeddings"].sync(mode="fwd_pre",

16 sync_op_or_fn=slapo.op.embed_fwd_hook)

17 sch["embeddings.word_embeddings"].sync(mode="fwd_post",

18 sync_op_or_fn=slapo.op.embed_bwd_hook)

19 for idx in range(config.num_hidden_layers):

20 # Shard self attention module

21 subsch = sch[f"encoder.layer.{idx}.attention"]

22 subsch["self.query"].shard(["weight", "bias"], axis=0)

23 subsch["self.key"].shard(["weight", "bias"], axis=0)

24 subsch["self.value"].shard(["weight", "bias"], axis=0)

25 subsch.sync(mode="bwd_post", sync_op_or_fn="all_reduce")

26 subsch["output.dense"].shard("weight", axis=1)

27 subsch["output.dense"].sync("fwd_post",

28 sync_op_or_fn="all_reduce")

29 # Shard MLP module

30 subsch = sch[f"encoder.layer.{idx}"]

31 subsch["intermediate.dense"].shard(

32 ["weight", "bias"], axis=0)

33 subsch["intermediate.dense"].sync("bwd_post",

34 sync_op_or_fn="all_reduce")

35 subsch["output.dense"].shard("weight", axis=1)

36 subsch["output.dense"].sync("fwd_post",

37 sync_op_or_fn="all_reduce")

38 # Decompose linear bias and trace module

39 subsch["attention.output.dense"].decompose()

40 subsch["output.dense"].decompose()

41 subsch.trace(tracer="huggingface", flatten=True)

42 # Replace scaled dot product attention

43 subgraphs = subsch.find(slapo.pattern.scaled_dot_product)

44 subsch.replace(F.scaled_dot_product_attention, subgraphs)

45 # Fuse linear bias and gelu

46 subgraph = subsch.find(lambda x, bias: F.gelu(bias + x))

47 subsch.fuse(subgraph,

48 compiler="TorchInductor", name="BiasGeLU")

49 # Fuse bias add, layer norm, and residual

50 for ln in ["attention.output.LayerNorm",

51 "output.LayerNorm"]:

52 subgraph = subsch.find(lambda x, bias, residual:

53 call_module(ln, F.dropout(bias + x) + residual))

54 subsch.fuse(subgraph,

55 compiler="TorchInductor", name="LNResidual")
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B Artifact Appendix

B.1 Abstract

This artifact contains the source code of the Slapo prototype
and necessary scripts for con�guring the GPU environment
and reproducing the experiments in the paper. To make the
setup process easier for artifact evaluation, we have pack-
aged our artifact into a docker image, complete with de-
tailed instructions for executing the experiments. A machine
equipped with multiple GPUs is required for running the
experiments. It takes about 3 hours to run the artifact on an
AWS p3dn.24xlarge instance.

B.2 Artifact check-list (meta-information)

• Model: BERT [12], RoBERTa [33], GPT [47], OPT [67],

T5 [48], and WideResNet [66].

• Run-time environment: NVIDIA Container Toolkit.

• Hardware: 8×NVIDIA V100 GPUs.

• Metrics: Throughput (samples/sec) and lines of code (LoC).

• Output: Bar charts and tables.

• Experiments: End-to-end throughput evaluation and abla-

tion study on a single machine, and LoC of the schedules.

• How much disk space required?: 256 GB.

• How much time is needed to prepare work�ow (ap-

proximately)?: 2 hours for building the docker container.

• How much time is needed to complete experiments

(approximately)?: 3 hours.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: Both the Slapo ar-

tifact and the Slapo language are released under the Apache-

2.0 License.

• Archived (provide DOI)?: h�ps://doi.org/10.5281/zenodo.

10546708

B.3 Description

B.3.1 How to access? The Slapo framework and the arti-
fact are both available online:

• h�ps://github.com/awslabs/slapo

• h�ps://github.com/chhzh123/slapo-artifact

B.3.2 Hardware dependencies. All experiments are con-
ducted on Amazon EC2 p3 instances. We use p3dn.24xlarge
instances with 8×NVIDIA V100 32GB GPUs for single-node
evaluations, and use at most 8×p3dn.24xlarge instances for
multi-node evaluations. GPUs in these instances are con-
nected via NVLink, which provides 300 GB/s theoretical
aggregated GPU interconnect bandwidth, and the inter-node
bandwidth is 100 Gbps. For artifact evaluation, we provide a
p3dn.24xlarge instance for reproducing the single-node ex-
periments. Our artifact can be easily customized for various
hardware environments. Other NVIDIA GPUs with distinct
architectures should also work but will yield di�erent per-
formance results.

B.3.3 Software dependencies. We provide a docker im-
age for this artifact with NVIDIA GPU support. The software

environment includes CUDA 11.7, PyTorch v2.0.1, Megatron-
LM (git-hash 0bb597b), DeepSpeed (v0.9.4), HuggingFace
v4.28.1, and NCCL v2.14.3.

B.3.4 Datasets. We use the Wikipedia [21] dataset for
evaluating the throughput of Slapo and the baseline systems.

B.4 Installation

To install the artifact, users can clone the repository and
build the artifact by themselves:
1 git clone https://github.com/chhzh123/slapo−artifact.git

−−recursive

2 cd slapo−artifact/3rdparty/slapo/docker

3 docker build −t slapo −f docker/Dockerfile .

Otherwise, users can pull the pre-built docker image from
Docker Hub (only compatible with NVIDIA V100 GPUs):
1 docker image pull chhzh123/slapo−ae:latest

2 docker tag chhzh123/slapo−ae:latest slapo

B.5 Experiment work�ow

We only provide scripts for reproducing the results of Fig-
ure 7, Table 4, and Figure 9, which constitute the main results
of our paper. For other experiments, since they may require
multiple machines or take excessively long time to run, we
do not provide end-to-end evaluation scripts, but users can
still �nd the instructions in our repository.
For a comprehensive guide and the necessary scripts,

please refer to the README �le included in the artifact.
Users can also use the following command to launch a docker
image for the experiments:
1 docker run −−name slapo −−shm−size=150G −−gpus all −−user

root −it slapo:latest

B.6 Evaluation and expected results

Please refer to the artifact for step-by-step instructions. After
executing the experiments, we can obtain:

• Figure 7: The throughput (measured in samples/sec)
for Megatron-LM, DeepSpeed, Slapo-TP, and Slapo-
ZeRO3 across various models listed in Table 3.

• Table 4: The lines of schedule code of di�erent models.
• Figure 9: The performance breakdown on the BERT
model.

B.7 Experiment customization

The Slapo language and the artifact can be further customized
for running diverse models and con�gurations. We provide
a benchmarking script that can be easily adapted to accom-
modate various models, number of GPUs, batch sizes, and
sequence lengths. Comprehensive information and guide-
lines on this can be found in the artifact.
Additionally, we provide detailed documentation and tu-

torials on using the Slapo language. Please refer to the fol-
lowing link: h�ps://awslabs.github.io/slapo/.
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