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ABSTRACT

The emergence of evolving data privacy policies and regulations
has sparked a growing interest in the concept of “machine unlearn-
ing”, which involves enabling machine learning models to forget
specific data instances. In this paper, we specifically focus on edge
unlearning in Graph Neural Networks (GNNs), which entails train-
ing a new GNN model as if certain specified edges never existed in
the original training graph. Unlike conventional unlearning scenar-
ios where data samples are treated as independent entities, edges
in graphs exhibit correlation. Failing to carefully account for this
data dependency would result in the incomplete removal of the
requested data from the model. While retraining the model from
scratch by excluding the specific edges can eliminate their influ-
ence, this approach incurs a high computational cost. To overcome
this challenge, we introduce CEU, a Certified Edge Unlearning
framework. CEU expedites the unlearning process by updating the
parameters of the pre-trained GNN model in a single step, ensuring
that the update removes the influence of the removed edges from
the model. We formally prove that CEU offers a rigorous theoretical
guarantee under the assumption of convexity on the loss function.
Our empirical analysis further demonstrates the effectiveness and
efficiency of CEU for both linear and deep GNNs - it achieves
significant speedup gains compared to retraining and existing un-
learning methods while maintaining comparable model accuracy
to retraining from scratch.
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1 INTRODUCTION

Legislation such as the General Data Protection Regulation (GDPR)
[31], the California Consumer Privacy Act (CCPA) [27], and the
Personal Information Protection and Electronic Documents Act
(PIPEDA) [28] has introduced requirements for companies to honor
user requests for the removal of private data. This has sparked
discussions around the concept of the “right to be forgotten” [22],
which empowers users to have more control over their data by
requesting its deletion from learned models. When a company
has already utilized user data to train their machine learning (ML)
models, these models must be appropriately manipulated to reflect
data deletion requests.

In this paper, we study Graph Neural Networks (GNNs) as the
target model and edge removal as the unlearning request. To illus-
trate this scenario, let us consider an online social network platform
where users request the elimination of their sensitive social rela-
tions. The platform owner is legally bound to remove the edges
associated with these sensitive social relations from any GNN model
trained on the graph containing those edges. This ensures that the
model no longer “remembers” those sensitive social relations.

Naively erasing edges from a GNN model by fully retraining can
be excessively time-consuming, particularly for complex GNN mod-
els trained on large graphs. As a result, recent efforts have focused
on developing efficient methods for exact unlearning [7, 10] as well
as approximate unlearning [9, 26] specifically tailored for GNNs.
In this paper, our emphasis is on approximate graph unlearning
methods that facilitate the removal of requested edges from the
model without retraining from scratch. Our approach is inspired by
the concept of influence function, which enables the estimation of
the impact of individual data samples on learning models [21]. To
prove that the resulting model has removed the information related
to the deleted edges, our goal is to provide a rigorously certified
guarantee [15, 16] of the statistical indistinguishability between the
retrained model and the unlearning model.

Despite the plethora of research on machine unlearning for non-
graph datasets (e.g., [3-5, 23]), none of these approaches can be
directly applied to GNNs due to the presence of data dependency
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within graphs. Failing to carefully account for this data dependency
would result in an incomplete removal of the requested data from
the model. While recent efforts have been made to develop exact
and approximate edge unlearning methods for GNNs [7, 9, 10],
exact unlearning methods suffer from potentially significant loss of
model accuracy [7, 10]. On the other hand, the existing approximate
unlearning methods either lack a certified guarantee [8] or are
limited to GNN models with specific structures [9].!

Our contributions. We design CEU, a Certified Edge Unlearning
algorithm that removes requested edges from GNNs without the
need for retraining while providing a provable guarantee of the
unlearning model. Our contributions are outlined as follows.

» Unlearning through influence analysis. We formulate the
unlearning problem as finding a closed-form update on the model
parameters. To achieve this, we introduce a novel influence function
that efficiently computes the necessary update, while also taking
into account the neighborhood of the removed edges. We address
several theoretical and practical challenges of deriving edge influ-
ence by providing an influence estimator that is computationally
and memory efficient.

» Certified unlearning. We undertake in-depth theoretical anal-
ysis and present non-trivial findings. We provide formal proofs
demonstrating that CEU can deliver a rigorous (€, §)-approximation
guarantee under the assumption of a strongly convex loss func-
tion. Additionally, we derive both worst-case and data-dependent
bounds for the statistical distance between the retrained model and
the model obtained through unlearning using CEU.

» Empirical analysis. Through extensive empirical study, we
showcase the efficiency and effectiveness of CEU for both linear
and deep GNN models. Specifically, for linear GNNs, we demon-
strate that CEU achieves effective unlearning with a remarkable
16.2-fold speedup compared to retraining from scratch. Notably,
our method outperforms the exact graph unlearning approach [7]
in terms of both model accuracy and unlearning efficiency, exhibit-
ing a 63% improvement in model accuracy and a 3.7-fold speedup.
Additionally, it surpasses the existing certified graph unlearning
method [9] in terms of unlearning efficiency, achieving a speedup
of at least two orders of magnitude. Moving on to deep GNNs, our
empirical results highlight the high efficiency of CEU, providing a
speedup of up to 5 times compared to retraining while maintain-
ing similar model accuracy. Furthermore, we quantitatively assess
the efficacy of unlearning by conducting a link membership infer-
ence attack [19] on unlearning models. We demonstrate that the
attack accuracy of inferring the removed edges from the unlearning
model is comparable to that from the retrained model, indicating
the successful removal of the targeted edges.

2 RELATED WORK

Machine unlearning [2, 17, 25] refers to a process that aims to
remove the impact of a set of data samples in the training set from
a trained model. From the certainty of unlearning, the existing

!Both theoretical analysis and algorithmic techniques of [9] are closely tied to linear
GNNs such as simple graph convolutions (SGC) and their generalized PageRank (GPR)
extensions.
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machine unlearning methods can be divided into two categories:
exact unlearning and approximate unlearning.

Exact machine unlearning. In exact unlearning, a model is
naively retrained from scratch after removing certain data sam-
ples from the dataset. This is generally computationally expensive.
Several attempts have been made to make unlearning more effi-
cient than retraining from scratch. An earlier study converts ML
algorithms to statistical query (SQ) learning so that unlearning
only needs to retrain the summation of SQ learning [4]. The SISA
(sharded, isolated, sliced, and aggregated) approach [2] trains a
set of constituent models on disjoint data shards. Only the shards
affected by the unlearning requests and their constituent models
are retrained. Some recent works [7, 10] extend exact unlearning
to the graph setting. In particular, GraphEraser [7] adapts the SISA
approach to graph unlearning. It splits graphs into disjoint parti-
tions. Upon receiving an unlearning request, only the model on
the affected shards is retrained. However, as shown in our empiri-
cal studies later (Section 6), GraphEraser suffers from a significant
loss of model accuracy, as splitting the training graph into disjoint
partitions damages the original graph structure. GraphEditor [10]
designs an exact unlearning solution of linear GNNs. However, it
is restricted to the linear structure only. It also cannot deal with
efficient batch removal of a large number of edges.

Approximate machine unlearning. Approximate unlearning
relaxes the requirement for exact unlearning by requiring that the
removed data is statistically unlearned with the guarantee that the
unlearning model cannot be distinguished from an exact deletion
model [16], where the indistinguishability is defined in a similar
manner as differential privacy [12]. Certified unlearning can be
realized by adding noise either on the weights [14, 15, 25, 32, 39]
or on the loss function [16]. In the context of graph unlearning,
Chien et al. [9] provide the first certified GNN unlearning solution.
However, their approach is restricted to GNN models of certain
structures such as Simple Graph Convolution (SGC) and its gener-
alized PageRank (GPR). And their implementation cannot be easily
adapted to general GNNs. Furthermore, their approach cannot sup-
port batch edge removal. Our empirical results show that CEU is
much faster than [9] in batch edge unlearning, with a speed-up
of at least two orders of magnitude. Their follow-up work [26]
extends to a particular type of nonlinear GNN models based on
Graph Scattering Transform (GST). However, [26] considers node
unlearning not edge unlearning. On the other hand, the approxi-
mate edge unlearning solution proposed by Cheng et al. [8] cannot
provide any certified guarantee.

3 PROBLEM FORMULATION

Problem setup. Let G be a set of graphs. In this paper, we only
consider undirected graphs. Let ® be the parameter space of GNN
models. A learning algorithm Ay, is a function that maps an instance
G(V,E) € G to a parameter 6 € ©. Let Opor be the parameters of
Ap, trained on G. Any user can submit an edge unlearning request
to remove specific edges from G. In practice, unlearning requests
are often submitted sequentially. For efficiency, we assume these
requests are processed in a batch. Let Eyyy, denote the batch of edges
that are requested to be removed. As a response to these requests,



Certified Edge Unlearning for Graph Neural Networks

AL has to erase the impacts of Eyp, on AL, and produce an unlearn-
ing model. A straightforward approach is to retrain the model on
G(V,E\EyL) from scratch and obtain the model parameters Ogg.
However, due to the high computational cost of retraining, an al-
ternative solution is to apply an unlearning process Ayy, that takes
EyL and OppR as input and outputs an unlearning model.

Certified guarantee. Approximate unlearning requires some
format of guarantee that the information related to the deleted
data has been removed from the model. Intuitively, if the result
of unlearning is likely to be obtained by retraining, then the un-
learning algorithm has successfully eliminated the influence of the
removed data points from the model. Following this intuition, we
adapt the concept of certified removal [16, 25] to our setting to mea-
sure the difference between the retrained model and one obtained
by unlearning. Broadly speaking, certified removal defines the in-
distinguishability between the retrained model and the unlearning
model in a similar manner as (e, §)-differential privacy [12]. In par-
ticular, it defines the notion of (e, §)-approximate unlearning which
is formalized as follows.

DEFINITION 1 ((€, §)-Approximate Unlearning). Given a learn-
ing algorithm Ay, and two constantse, § > 0, an unlearning algorithm
Ay performs (e, 8)-certified unlearning for Ay, if

P(AuL(D, z, AL(D))) < e*P(AL(D\2)) + 6, 1)
and

P(AL(D\2)) < e“P(AyL(D, z, AL(D))) + 4, )
where z is the sample to be removed.

Intuitively, Def. 1 guarantees that the unlearning model is “ap-
proximately” the same as the retrained model, where the differ-
ence between the unlearning and retrained model is bounded by
the parameters of € and 6. Smaller € and § indicate that the un-
learning model is closer to the retrained model. Trivially, a (0, 0)-
approximate unlearning model is equivalent to the retrained model.

We adapt the notion (€, §)-approximate unlearning to edge re-
moval, and formalize the edge unlearning problem as follows:

DEFINITION 2 ((€, §)-approximate Edge Unlearning). Given
a graph G(V,E), a set of edges Euyp, C E that are requested to be
removed from G, a graph learning algorithm Ay, and its readout
function f, then an edge unlearning algorithm Ay, performs (e, 6)-
certified unlearning for Ay, if:

P(AuL(G, Eyr, AL(G))) < e°P(AL(GuL)) + 6, (3)
and
P(AL(GuL)) < e°P(AuL(G, EyL, AL(G))) + 6, 4
where €, > 0, and Gyr, = G(V, E\Eyy).
While Def. 1 is defined for a single data sample, we extend it to
the removal of a set of samples (edges) to handle batch edge removal.
Our goal is to seek the unlearning mechanism Ay, that can remove

multiple edges at once with (€, §)-approximate guarantee while its
computational complexity is significantly cheaper than retraining.
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Figure 1: The framework of CEU. Orange lines indicate the
process of retraining and green lines indicate unlearning.
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4 METHODOLOGY

Given a graph G(V, E) as input, we can find a model represented by
0 that fits the data by minimizing an empirical loss. In this paper, we
consider cross-entropy loss [11] as our loss function. The original
model for is obtained by solving the following program:

1
OpoRr = arg min — L(0;0,E). (5)
R g i m;

Assume a set of edges Eyr, is deleted from G and let the new
graph after the deletion be Gy, = G(V,E\Eyp), retraining the
model will obtain a new model parameter 6gg on Gyy:

1
ORg = in — 0;v, E\EyL). 6
ke = argmin o ) £(0:0.E\Eur) ©)
veV
A major difficulty, as expected, is that obtaining 6gg is prohibi-
tively slow for complex networks and large datasets. To overcome
this challenge, we will identify a closed-form update Ig; to Oor:

OuL ~ Oor — Igy» (7)

where Ig;, has the same dimension as the learning model 6og.
Intuitively, 6yr, approximates the retraining. Such approximation,
however, may not be able to provide any unlearning guarantee, as
the direction of the gradient residual of Oy, may still be able to leak
information about the removed edges.

Overview of CEU. We design CEU as a two-step process. In
Step 1, CEU adds the perturbation to the loss function, aiming to
hide the real gradient residual and provide the certified unlearning
guarantee. Let éOR be the parameters of the model trained with the
noisy loss function. In Step 2, CEU estimates the one-shot update on
the parameters Bor through influence analysis. Figure 1 illustrates
an overview of CEU. Next, we describe the details of the two steps.

4.1 Step 1: Adding Perturbation on Loss
Function

To enable unlearning with a certified guarantee, we follow the same
idea of certified data removal [16] and add a linear noise term to
the training loss, aiming to hide the real gradient residual. We use
L}, to denote the loss function with noise formalized as follows:

Lsz(e,E)+%||9||2+bT9, (8)
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where b is drawn randomly from the Gaussian distribution A(0, o%).
The randomness in b will mask any potential information leaked
by the estimated edge influence. The resulting perturbed learning
problem can be solved using standard convex optimization methods.

4.2 Step 2: Unlearning through Influence
Analysis
Intuitively, updating model parameters for unlearning can be in-
terpreted from the optimization perspective that the model forgets
Ey by “reversing” the influence L of Eyr, from the model. The
challenge is how to estimate the influence of 6y, on the model.
Influence functions [21] enable efficient approximation of the
effect of some particular training points on a model’s prediction.
Intuitively, the influence function computes the parameters after

the removal of z by upweighting z on the parameters with some
small :

A 1

O - = arg min — ;ﬁ(e,zt) +{L(6;2), 9
where m is the number of data points in the original dataset, and
{ is a small constant. The influence function is not restricted to a
single point. We can define a set of points Z and compute ég, z.

However, most of the existing influence functions cannot be
directly applied to the GNN setting, as removing one edge e(v;,v;)
from the graph can affect not only the prediction of v; and v; but
also those of neighboring nodes of v; and v}, due to the aggregation
function of GNN models. To address this challenge, we design a
new influence function for GNNs that take the neighborhood into
consideration when estimating the influence of the neighborhood
of removing an edge on model parameters.

In general, an ¢-layer GNN aggregates the information of the
£-hop neighborhood of each node. Thus removing an edge e(v;, vj)
will affect not only v; and v; but also all nodes in the ¢-hop neigh-
borhood of v; and v;. To capture such aggregation effect in the
derivation of edge influence, first, we define the set of nodes (de-
noted as V) that will be affected by removing an edge e(v;,0;)
as: Ve = N(v;) U N(vj) U {v;,0;}, where N (v) is the set of nodes
connected to v in £ hops. Furthermore, we define the set of nodes
(denoted as Vg, ) that will be affected by removing a set of edges
EuL as Vg, = Ueery, Ve

To revert the influence of Eyp, on the target model, we compute
the new parameters 0 g, after the removal of Eyy, as follows:

1
9§’VEUL =arg mem |_V| Z Ly(0;0,E) + {( Z L, (0;0, E\Eyr)
veV ueVEUL
- >, Ly6:0B), (10)
veVEUL

Eqn. (10) contains three terms. While the first term measures
the loss of the original model, the second and the third ones to-
gether compute the loss of the nodes affected by the removal of Eyy..
Following this reasoning, Eqn. (10) is equivalent to Eqn. (6) when
= |—‘1,| where |V| is the total number of nodes in the original
graph (the proof'is included in our full version [38]). Following this
reasoning, instead of solving the problem in Eqn. (10), we formulate
the optimization problem as a closed-form update on the original
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model og with the noisy loss function (by Step 1):

OuL = Oor + ﬁIEUL, (11)
where I, Ey is the influence of Eyy, on the target model with noisy
loss. By utilizing this formulation, we can describe changes in the
training graph structure by edge removal as a one-shot update on
model parameters.

In this paper, we take a second-order update strategy that utilizes
second-order derivatives to calculate the closed-form update I; EuL-
Our second-order update result is present in the following theorem.

THEOREM 3. Given the parameters Opr obtained by Ayy, on a
graph G, and the loss function L, assume that L is twice-differentiable
and convex in 0, then the influence of a set of edges Eyyy, is:

Iy = —HGTSR (Ve ; Ly (Bor; v, E\EuL) — Vo ; lb(éOR;v,E)),
vE ELJ-L vE E[J-L
(12)

_—y2_1 N -1 ;
where H@OR =V ™ Yvev Lp(0or, v, E), and Héoa is the inverse

Hessian of the loss at éOR~

The proof of Theorem 3 can be found in our full version [38].
Theorem 3 assumes the loss function is convex. Given the non-
convexity nature of GNN models, the Hessian matrix can be non-
invertible and thus there may not have a solution for the influence
estimation. To address this issue, we follow [21] and add a damping
term A to H dor (ie, H dor + M) if H dor has negative eigenvalues,
where A1 is the same as the regularization rate A in Eqn. (8). Our
empirical analysis (Sec. 6) will show this solution enables effective
unlearning in practice.

There are several practical and theoretical challenges in calcu-
lating the influence (Eqn. (12)). First, for large graphs, even storing
a Hessian matrix in memory is expensive: in our experiments, we
will show that Hessian matrices are huge, e.g. the Hessian matrix
on the CS dataset has a size of around 10° x 10% which would cost
50 GB memory. Second, even under the promise that the linear
system is feasible, computing the inverse of a matrix of huge size
is prohibitive. To address these two challenges, we design an algo-
rithm that approximates the inverse Hessian. Note that the existing
certified graph unlearning method [9] did not use any influence
estimator. Instead, it computes the exact inverse Hessian.

The starting point of our algorithm is a novel perspective that
solving the linear system can be thought of as finding a stationary
point of the quadratic function f: f(x) = arg miny %xTBx —kTx,
where B = I:IGOR’ and

k=Vo > Ly(for:o.E\EuL) =Vo > Ly(Boriv.E). (13)

veVEy, vEVEy,

The random noise b by Step 1 does not appear in B due to the
second-order derivation. It does not appear in k either because it
was contained in both terms in Eqn. (13) and thus was canceled. By
leveraging the stationary point, a convergence guarantee can be
established using gradient-descent-type algorithms [1].

We employ the implementation [24] that combines Hessian-
vector product (HVP) [29] and the conjugate gradient (CG) [35]
to approximate the inverse Hessian. CG exhibits promising com-
putational efficiency for minimizing quadratic functions [30]. It
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is well-known that, as long as some regularity conditions (e.g.,
the objective function is Lipschitz and bounded) are met, the CG
asymptotically converges to a stationary point. This stationary
point corresponds to a solution of Eu. (Eqn. (12)). Hence, we have
the following convergence guarantee of influence estimation.

LEMMA 4 (THEOREM 2.1 OF [30]). The CG method generates a
sequence of iterates {x; }+>1 such thatlim; 400 f(x¢) = 0. In addi-
tion, the per-iteration time complexity is O(x|) where|x| denotes the
dimension of x.

We note, however, that an appealing feature of Eqn. (12) is that
it does not need to find a solution with an exact-zero gradient. This
enables us to terminate CG early by monitoring the magnitude of
the gradients. Our empirical study also shows that CG can get a
good approximation in a small number of iterations.

Besides time efficiency, we have the following lemma showing
that the CG method is memory-efficient.

LEmMA 5. The CG method can be implemented using O(0|) mem-
ory.

The proof of Lemma 5 can be found in our full version [38].

5 CERTIFIED UNLEARNING GUARANTEE

As the unlearning model by CEU approximates the retrained model,
ideally it should provide the theoretical guarantee that the unlearn-
ing model is statistically indistinguishable from the retrained one.
Next, we derive conditions under which the second-order update
by CEU can provide the (€, §)-approximate unlearning guarantee.
To construct theoretical guarantees for our approach, we make the
following assumptions on the GNN models.

AssuMPTION 6. For the given GNN model and its loss function L:
(1) L is a strictly convex loss function that is twice differentiable; (2)
[IVL||2 < c1; (3) V2L is y1-Lipschitz; (4) VL is y2-Lipschitz; and (5)
the node features x, is bounded: ||xy||2 < 1, Vo € V. Herecy, y1, y2
are positive constants.

These assumptions can be satisfied by a wide range of GNNs such
as Simple Graph Convolution (SGC) [6, 37] and Graph Linear Net-
work (GLN) [36] which can achieve the comparable performance
compared with deep GNNs [13, 36, 37]. It is important to note that,
although our theoretical analysis relies on the assumption of strictly
convex loss function, our algorithmic techniques are generic and
can be applied to various GNN models, including non-convex ones.
We will show that CEU can achieve notable empirical performance
on both linear and deep GNNs (Section 6).

Following the state-of-the-art certified removal work [16], we
utilize the gradient residual ||V L||; for the proof of certified guar-
antee. Intuitively, for strongly convex loss functions, the gradient
residual is zero as the optimum is unique. Hence, the norm of the
gradient residual ||V L||2 can reflect the distance between the re-
trained and the unlearning models. Based on this, CEU can establish
the (e, §)-approximation guarantee by following Theorem 7.

THEOREM 7 (THEOREM 3 FROM [16]). Let Ay be the learning
algorithm that returns the unique optimum of the loss L}, and let Ay,
be the unlearning mechanism. Suppose that ||VLy||2 < € for some
computable bound €’ > 0. Ifb ~ N (0, ce’ /€)? with some constants
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c,e > 0, where d is the parameter dimension, then Ayy, provides
(e, 6)-approximation guarantee for Ay, where § = 1.5¢7¢"/2,

Intuitively, Theorem 7 requires the gradient residual norm ||V Ly||2
to be bounded appropriately in order to provide the approximation
guarantee. Thus, our theoretical analysis mainly focuses on finding
the bound of ||VL||2. First, we present the worst-case bound of
[IVLp||2 in Theorem 8.

THEOREM 8 (Worst-case Bound). Assume Assumption 6 holds.
Then we have the following worst-case bound of ||V Lp||2:

. n ygc% 2
9Ly @un E\El < St 3 m)s a9
veFEyL
where n, is the number of neighbors of node v, A is the regularization
rate (Eqn. (8)), and |V| is the number of nodes in the training graph.

The proof of Theorem 8 is provided in our full version [38].
As % in Theorem 8 can be large, the worst-case bound can be
impractically loose. Therefore, next, we derive the data-dependent
bound on ||V.Ly]|2 in Theorem 9.

THEOREM 9 (Data-dependent Bound). Suppose Assumption 6
holds. Then we have the following data-dependent bound of ||V Lp||2:

1

IV Ly (Bur, E\Eu) ||z < YIWHHQ_OIRAH%, (15)
where
A=Vy Z L(00r;v,E) - Vg Z L(Bor; v, E\Eyr).
ZJEVEUL ZJEVEUL

The proof of Theorem 9 can be found in our full version [38].
The data-dependent bound can be computed efficiently by using the
influence estimator (Sec. 4.2). We will show that the data-dependent
bound is much tighter than the worst-case bound in Section 6.

6 EXPERIMENTS

In this section, we empirically verify the efficiency and effectiveness
of CEU. The code and datasets are publicly available 2.

6.1 Experimental Setup

All experiments are executed on a GPU server with NVIDIA A100
(40G). All the algorithms are implemented in Python with PyTorch.
Each experiment is repeated 10 times and the average is reported.

Datasets. We use three datasets, namely Cora [33], Citeseer [41],
and CS [34] datasets, that are popularly used for performance evalu-
ation of GNNs [34, 42]. The statistical information of these datasets
can be found in Appendix A.

GNN models. We consider two types of GNN models: (1) Linear
models: We consider a simplified GCN model that contains only
one layer and a softmax function (without normalization). (2) Deep
models: We consider three representative GNN models, namely
GCN [20], GraphSAGE [18], and GIN [40]. For these GNN models,
we consider various network complexity (up to four hidden layers)
in the experiments, with the same number of neurons as 32 at each
layer respectively. All GNN models are trained for 1,000 epochs with

Zhttps://github.com/kunwu522/certified_edge_unlearning
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an early stop condition that the validation loss does not decrease
for 20 epochs. We randomly split each graph into a training set
(70%), a validation set (10%), and a test set (20%). More details of
the setup of model parameters can be found in Appendix A.

Edges for removal. We randomly pick k = {200, 400, 600, 800,
1,000}) edges from Cora and CiteSeer datasets, and k = {2,000, 4,000,
6,000, 8,000, 10,000}) edges from CS dataset for removal. We pick
more edges from the CS dataset as its number of edges is orders of
magnitude higher than the other two datasets (Table 4).

Metrics. We evaluate the performance of CEU in terms of ef-
ficiency, efficacy, and model accuracy: (1) Unlearning efficiency
is measured as the running time of CEU; (2) Target model accu-
racy is measured as the accuracy of node classification, i.e., the
percentage of nodes that are correctly classified by the model; (3)
Unlearning efficacy: We utilize StealLink [19], a SOTA edge mem-
bership inference attack, to empirically evaluate the extent to which
the model has forgotten the removed edges.® StealLink predicts
whether particular edges exist in the training graph. We measure
the unlearning efficacy as AUC of StealLink’s inference of whether
the removed edges were present in the original graph. Intuitively,
a higher AUC indicates lower unlearning efficacy. AUC close to 0.5
indicates that the model has removed the requested edges.

Noise setup. We follow the same setting of [9] and set A = 0.01
and o = 0.1 (Eqn. (8)). We use the same € (¢ = 0.1 - 10) as in [9].

Baselines. We consider three baselines of exact and approximate
GNN unlearning for comparison with CEU.

e Exact unlearning: We consider GraphEraser [2], the SOTA ex-
act edge unlearning method. GraphFEraser has two partitioning
strategies denoted as balanced LPA (BLPA) and balanced em-
bedding k-means (BEKM). We consider both BLPA and BEKM
as the baseline methods as these two methods exhibit varying
performance in different settings.

e Uncertified unlearning (UEU): We estimate the influence of
the removed edges on the original model (i.e., no noise on the
loss function), and apply similar influence analysis (Section 4.2)
to derive the one-shot update on model parameters. More details
of UEU can be found in our full version [38].

o Certified unlearning: We consider Certified Graph Unlearning
(CGU) [9] as a baseline.*

Two retraining settings. As CEU adds noise to the loss function
of the target model, we consider two different retraining settings
denoted as “Retrain” and “R+N” respectively.

6.2 Tightness of Bounds

The tightness of both worst-case and data-dependent bounds of the
gradient residual norm determines the strictness of the certified
guarantee. To evaluate the tightness of both bounds, we consider the
1-layer GCN model and measure the real gradient residual norm val-
ues (as the ground truth) as well as the two bounds. Figure 2 reports
the value of the two bounds as a function of the number of removed
edges. We have two main observations. First, as expected, the worst-
case bound is much looser than the data-dependent bound. It can be

3Implementation of StealLink: https:/github.com/xinleihe/link_stealing_attack
4Implementation of CGU [9]: https://github.com/thupchnsky/sgc_unlearn
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Figure 2: Tightness of bounds (GRN: Gradient residual norm).

Table 1: Model accuracy of CEU, retraining (Retrain and R+N),
and baselines (BLPA, BEKM, UEU) (Linear GCN, CS dataset).

Number of removed edges
0 2K 4K 6K 8K 10K

Retrain | 0.93 093 093 093 093 0.93

Type Method

Retrain | "o N | 091 091 091 091 090 0.90
BLPA | 084 069 080 084 084 068
BEKM | 0.64 080 056 083 077 067
Unlearn

UEU 093 093 093 093 093 093
CEU 091 091 091 091 0.90 0.90

several orders of magnitude larger than the data-dependent bound.
The looseness in the bound comes from -5 in the bound. Second,
the data-dependent bound is close to the ground-truth gradient
residual norm, regardless of the growth in the number of removed
edges. Given the tightness of the data-dependent bounds, CEU is
expected to handle batch removal of a large number of edges.

6.3 Performance of Linear GCN Models

In this section, we only consider linear GCN models (i.e., 1-layer
GCN model), and evaluate the performance of CEU for this model
on three graph datasets in terms of model accuracy, unlearning
efficiency, and unlearning efficacy. The results of UEU show the
impact of noise on model performance compared with CEU.

Besides these results, we have additional results of the following
studies: (1) the impacts of types of removed edges on unlearning
performance; (2) the performance of sequential unlearning. These
results can be found in our full version [38].

Model accuracy. Table 1 reports the results of GCN model ac-
curacy on the CS dataset. The results on Cora and Citeseer datasets
are similar and can be found in Appendix C.1. We have the follow-
ing observations. First, the model accuracy obtained by CEU stays
very close to that of the retrained model, regardless of the number
of removed edges. The difference in model accuracy between the
retrained and unlearning models remains negligible (in the range
of [0.01%, 0.11%]). Second, in terms of comparison with both exact
unlearning baselines (BEKM, BLPA), the model accuracy by CEU is
significantly higher than these two baselines in all the settings. For
example, when removing 4,000 edges, both BEKM and BLPA only


https://github.com/xinleihe/link_stealing_attack
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Figure 3: Time performance of CEU, retraining (Retrain and R+U), and baselines (BLPA, BEKM, UEU) for linear GCN model.

Table 2: Unlearning efficacy of CEU, retraining, and UEU
(Linear GCN, Cora dataset).

|EuL| | Original | Retrain UEU | R+N  CEU
200 | 0930 | 0577 0572|0533 0.535
400 | 0936 | 0582 0.580 | 0.541 0.543
600 | 0935 | 0582 0.580 | 0.547 0.547
800 | 0936 | 0589  0.585 | 0549 0.552
1,000 | 0935 | 058 0592 | 0.559 0.553

can deliver model accuracy of around 0.56 and 0.80, while CEU can
deliver a model accuracy of around 0.91 (63% and 14% improve-
ment). This demonstrates the weakness of the exact unlearning
through graph partitioning - breaking the graph structure can bring
non-negligible model accuracy loss. Third, regarding the compari-
son with the approximate unlearning baseline (UEU), CEU has very
similar model accuracy, although UEU does not add perturbation
to the model loss function. This demonstrates that CEU addresses
the trade-off between privacy and model accuracy—it can deliver a
provable unlearning guarantee while requiring negligible sacrifice
on model accuracy.

Unlearning efficiency. We report the time performance results
of CEU in Figure 3. Our observations are followings. First, CEU is
significantly faster than retraining from scratch. It speeds up by
11.4X, 6.4%, and 16.2X for Cora, CiteSeer, and CS datasets, respec-
tively. Second, CEU is much faster than both BEKM and BLPA base-
lines, especially when training large graphs. For example, CEU is
3.7% faster than both BLPA and BEKM on the CS dataset when 4,000
edges and 10,000 edges were removed respectively (Figure 3 (c)).
This demonstrates the advantage of the approximate unlearning
methods. Third, for both approximate unlearning methods, CEU
has comparable time performance as UEU although UEU is slightly
faster than CEU.

Unlearning efficacy. Table 2 reports the attack performance
of attack accuracy of the removed edges Eyr, against the original
model, retraining model (with and without noise), UEU, and CEU
on the Cora dataset. We observe the following phenomena. First,

StealLink is highly effective to predict the existence of Eyy, in the
original graph (“Original” column), as the AUC of the attack against
the original model is higher than 0.9 (much higher than 0.5). Second,
the AUC of the attack is noticeably reduced to close to 0.5 for both
retrained and unlearning models (“R+N” and “CEU” columns). This
demonstrates that CEU has a similar ability to make the model
forget the removed edges as retraining. Third, the AUC of both
retraining and learning with noise (“‘R+N” and “CEU” columns) is
lower than that without noise (“Retrain” and “UEU” columns). This
demonstrates that the perturbation added to the loss function helps
to reduce the privacy vulnerability of the removed edges.

Effects of € on model accuracy. We study the effect of various
€ values (for (¢, §)-unlearning)) on unlearning performance. The
noise b is determined by using the data-dependency bound (The-
orem 9) as €’ and € together. Figure 4 reports the model accuracy
with various € values. We observe that, unsurprisingly, the model
accuracy degrades when e grows (i.e., more noise is added). For
instance, when e changes from 0.1 to 10, we witness the model
accuracy drops from 0.925 to 0.9 when removing 2,000 edges from
the CS dataset (Figure 4 (c)). Such model accuracy drop is more
significant on Cora and Citeseer datasets. The drop in model accu-
racy meets our expectation as higher € allows a larger statistical
distance between the retrained model and the unlearning model,
and thus lowers the accuracy of the unlearning model.

Comparison with CGU [9]. As the approach presented in [9] is
specifically designed for Simple Graph Convolutional (SGC) models,
we apply both CEU and CGU to the SGC model to ensure a fair
comparison of their performance. Figure 5 (a) reports the model
accuracy of the retrained model and both CGU and CEU on the
Cora dataset. The results on Citeseer and CS datasets are similar
and can be found in the full version [38]. We observe that the model
accuracy of CEU stays close to CGU in all the settings. On the
other hand, as shown in Figure 5 (b), CEU is much faster than CGU,
with a speed-up by at least two orders of magnitude. Indeed, the
speed-up is more compelling when more edges are removed. This
shows the advantage of CEU for batch edge removal to CGU.

Besides model accuracy and unlearning efficiency, we also eval-
uated the unlearning efficacy of both CEU and CGU, and observed
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that CGU and CEU have comparable unlearning efficacy. Due to
the limited space, we include the results in the full version [38].

6.4 Performance of Deep GNN Models

So far, we only consider the linear GCN model that meets Assump-
tion 6. Next, we evaluate the performance of CEU on deep GNN
models that do not meet Assumption 6. We consider GCN, Graph-
SAGE, and GIN models of various complexity (2-layer, 3-layer, and
4-layer) with ReLU as the activation function. We do not compare
with the existing certified edge unlearning method [9] as it cannot
be used on non-linear GNN models. Hence, we only compare CEU
with the two baselines of exact edge unlearning (BLPA and BEKM).

Model accuracy. Figure 6 reports the model accuracy of the
retrained model and CEU for the GCN model of various complexity.
The results of GraphSAGE and GIN as well as the other two datasets
are similar; they can be found in Appendix C.2. We observe two
phenomena. First, although the model accuracy degrades for both
retrained and unlearning GNN models of higher complexity, the
model accuracy of the unlearning model remains close to that of
the retrained model. The largest difference between model accuracy
is only around 1.4% (Figure 6 (c)). Second, CEU outperforms two
baselines (BLPA and BEKM) in terms of model accuracy for all
the settings. For example, the model accuracy of CEU on the 4-
layer GCN is 30% higher than BEKM when removing 10,000 edges
(Figure 6 (c)). This demonstrates the advantage of CEU to the exact
graph unlearning. We also observe that the model accuracy of both
retrained and unlearning models is insensitive to the number of

edges. This is because the removed edges only takes a small portion
(no more than 6%) of the original data.

Unlearning efficiency. Figure 7 shows the running time of
retraining and CEU on GCN models with CS dataset. The time per-
formance results of the other two datasets are included in Appendix
C.2. We observe that, although the running time for both retraining
and CEU grows with the increase in the complexity of GNN models,
CEU is always significantly faster than retraining in all the settings,
with the speedup factor as large as 5.2x. Furthermore, CEU is domi-
nantly faster than the two baselines of exact unlearning (BLPA and
BEKM), with a speedup as large as one-order magnitude.

Unlearning efficacy. Table 3 presents the attack performance
of StealLink [19] of inferring the removed edges Eyr against the
original model, the retrained model, the unlearning model by CEU,
as well as by two baselines of exact unlearning (BLPA and BEKM)
for GCN model on CS dataset. The results of the other settings can
be found in Appendix C.2. We observe that, while StealLink is highly
effective in predicting the presence of Eyy, from the original model
(“Orig” column), its attack accuracy is significantly reduced to close
to 0.5 when being launched against all the retraining/unlearning
models. This indicates that CEU exhibits a similar capability as
either retraining or exact unlearning to make deep GNN models
forget the removed edges.

7 CONCLUSION

In this paper, we design CEU an efficient edge unlearning method
that handles batch edge removal from GNNs. We prove that CEU
can provide the theoretical guarantee of unlearning for GNN models
under certain assumptions of convexity of the model’s loss func-
tion. Our extensive set of experiments demonstrates that CEU can
achieve significant speedup gains over retraining while delivering
similar model accuracy for both linear and deep GNN models.
There are several research directions for future work. An inter-
esting direction will be extending to handle the removal of nodes
from graphs. It is seemly straightforward that node unlearning can
be easily adapted from edge unlearning, as removing a node v from
a graph is equivalent to removing all the edges that connect with v
in the graph. However, node unlearning indeed is more challenging
than edge unlearning, as removing a node entirely from the model
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Table 3: Unlearning efficacy of CEU and baselines on deep GNN models (GCN, CS dataset).

\Eu| 2-layer 3-layer 4-layer

ULl "Ori g. Retrain CEU BLPA BEKM | Orig. Retrain CEU BLPA BEKM | Orig. Retrain CEU BLPA BEKM
2K 0.960 0.547 0.547 0.502  0.503 | 0.957 0.543 0.547 0.495 0.486 | 0.955 0.543 0.551 0.503  0.510
4K 0.960 0.545 0.552  0.503  0.499 | 0.956 0.545 0.549 0.495 0.506 | 0.956 0.547 0.553 0.501  0.501
6K 0.959 0.550 0.555 0.498 0.504 | 0.957 0.544 0.552  0.499 0.502 | 0.955 0.547 0.550 0.503  0.492
8K 0.959 0.553 0.554 0.502  0.497 | 0.956 0.549 0.550 0.501 0.500 | 0.956 0.547 0.553 0.502  0.507
10K 0.960 0.550 0.554 0.500  0.500 | 0.956 0.551 0.554 0.500 0.505 | 0.956 0.549  0.554 0.500 0.502

requires removing not only the edges connected with the node but ACKNOWLEDGMENTS

also its features and labels. We will explore how to design efficient
and certified node learning methods for the future work. Another
interesting direction is to add additional constraints on unlearning.
A possible constraint is the unlearning capacity, i.e., the maximum
number of edges that can be deleted while still ensuring good model
accuracy.
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Table 4: Description of datasets

Dataset #. Features #.Nodes #.Edges #. Classes
Cora 1,433 2,708 5,429 7
CiteSeer 3,703 3,327 4,552 6
CS 6,805 18,333 163,788 15
APPENDIX

In this appendix, we describe the detailed experimental setup, the
complete proof of our theorems and lemmas, and additional exper-
imental results. Our code is available at https://github.com/kun
wu522/certified_edge_unlearning. Please note that the code is
subjected to reorganization to improve readability.

A MORE DETAILS OF EXPERIMENTAL SETUP

Datasets. Table 4 summarizes the statistical information of the
three graph datasets (Cora, Citeseer, and CS) we used in the experi-
ments.

Model setup. To ensure a fair comparison between the retrained
and unlearned models, we use the same model size (i.e., the same
number of layers and number of neurons) for both retraining and
unlearned models. All GNN models are trained with a learning
rate of 0.001. We train the models by 1,000 epochs, with the early-
stopping condition so that the validation loss does not decrease for
20 epochs.

B COMPLETE PROOF OF THEOREMS AND
LEMMAS

B.1 Proofof{ = ﬁ in Eqn. (10)

In this section, we prove the statement that Eqn. (10) is equivalent

to retraining if { = ﬁ

ProoF. Recall Eqn. (10) as defined below:

1
9§,VEUL =arg m91n m Z‘;Lb(ﬁgv, E)+ {( Z L, (0;0, E\Eyr)
vE

ve VEUL

- Y Ly(6:oB).

Ve VEUL

The first term ﬁ Ywev Lp(0;0, E) can be split in the following
way:

1
m Z Ly (0;0,E)

veV
1 1
= — Lp(0;0,E) + — L,(0;0,E) 16
'VL,Ev% »(6:0,E) le; b( (16)
EyL EuL

By seting { = |—‘1/| and plugging Eqn. (16) into Eqn. (10), we have

the following:
1

V] Z L,(0;0,E)

Z)EV\VEUL

> Ly (050, E\Ey).

ve VEUL

va,VEUL = arg min

1
+_
14
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As v € V\Vg, will not be affected by Eyr, we can use E\EyL to
replace E as
1

9§’VEUL = arg min —

71 2 Lr(GE\Ew)

ZJEV\VEUL

1
+m Z L, (0;0, E\Eyy,)

IS VEUL

1
= arg min — L (0;0, E\EyL).
g V] Z;/ b( \EuL)

Then the statement follows. m]

B.2 Proof of Theorem 3
Proor. For simplicity, we first define

Ry(6,V.E) = > L3(6,0,).
eV

Then, we formulate a GNN learning process as

~ 1
Oor = argemin — R, (0, V,E). 17
OR = argmin ;7 b ( ) (17)
Since removing edges can be considered as perturbing the input,
we introduce Eqn. 10,

0y =arg mein |_‘l/| Z;/Lb(&v, E)+( Z Ly,(0;0, E\EyL)

UEVEUL
4 Z Ly (0;0,E)
ZJEVEUL
o1
=argmin |7|Rb(9, V,E) + {Ry (8, Vg, , E\EuL) — {Rp (6, Vi, , E).

(18)
We note a necessary condition is that the gradient of Eqn. 18 at
Hg is zero. Then, we have

1 . . .
0= —VQR(QQV, vV, E)+§V9Rb(9§, VEu» E\EUL)—§V9R(9§, Ve E).

14
Nextl, vlve apply Taylor series at fpr and we get
0 =|—‘1,|V6Rb(9OR, V,E) + {VgRy(00R, VEy.» E\EUL)
={VgRp(O0R, VEy, E) + [ﬁV?;R(%R, V,E)
+{VER(00R. Ve E\EuL) — {V4R(60R, Vi E) | (67 — 60R),
(19)

where we have dropped 0(0or - éév) for approximation. Then Eqn.
(19) is a linear system of Ey, the influence of Eyy. Since 9~OR is the
minimum of Eqn. (17), we have ﬁVRb(é()R, V,E)=0.As(isa
small value, we drop the two 0({) terms and have the following:

1 . . .
mngb(QOR, V,E)(6; — Oor)

+ {(VQR(QNOR, iy E\EuL) — VoR(Oog, VEUL,E)) ~ 0.
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Suppose Eqn. (17) is convex, then
. . 1 . _
0y — or ~ - mszwaR, V.E)™!
X(VBRb(éORa Ve E\EUL) = VoR(Oor, Vi, E))§
We have the following:
P d(0; - éOR)|
EuL = dé/ =0
= —ﬁgol (VeRb(éOR, Vs E\EUL) = VoRp (O0r. Vey,» E))
where HéOR = Vzﬁ ZZ)EV L(éOR, 0, E) O

B.3 Proof of Lemma 5

Kun Wu, Jie Shen, Yue Ning, Ting Wang, and Wendy Hui Wang

1
mA as
. 1 .
G(lor) + =A==V > L;(forsv, E\Eur)
ViV,
EuL
1 ~
+ =V Ly(O0r; 0, E).
Vi 2.

UEVEUL
Since v € V\Vg,, is not in the set of infected nodes, therefore,

2oeV\Viy, Ly, (or: 0, E\Eyr) = 2oV \Viy, L,,(0or: v, E), then we
have

G(QOR) + — A Vo—

Z Lb(éOR;ZJ,E) =0.
veV

Back to G(éUL) we have

Vi

ProoF. Recall that a key step of CG update is calculating the G(bu) = H_ A 1
gradient of f(x) as L |V| Oor [\
Vfx)=H: x—(V L3, (80r: 0, E\Ey) -V L3, (8or; 0. E -1 ~1p_ L -1
fx) = BORX_( 0 ; »(00r; 0, E\EuL)—Vp ; »(0or; 0, )) = mHaqHQORA - |V|H90RH90RA
ve EyL, vE EyL
1
As H; € RI9IXI91 we can not explicitly compute H; . Instead, = M(H9 — Hyo, ) Hy, GOR (20)
90}( 90R
we utilize Hessian-vector product [29] to approximately calculate Next,
H dor™ for some very small step size r > 0 by . 1
G ere) o 1@l =17 (¢, HeOR) Ayl Allz
2 gtoor + rx) — g(Vor
H; x=
fox ’ < I1Hg, ~ ooy l2ll - iy A1l
~ ~ |V| for
9(0)=Vg > Ly(lor:o,E\EuL) =V Y, Ly(for;v, E).

Ve VEUL Ve VEUL

As the memory cost of evaluating the function value of g(-) is
0O(]6]), Lemma 5 follows. O

B.4 Proof of Theorem 8
Proor. Let G(0) = Vgl_‘lfl Ywev Lp(6;0, E\Eyr), by Taylor’s
Theorem, there exists some 7 € [0, 1] such that,

- 1 -~
G(QUL) _IEUL)

~ G(éOR +
\4

= G(BoR) + VG (0o + |’7|IEUL) Ipy, -

4
Since VG(éOR + 17 IEUL) is the Hessian of .}, calculated at 0; =
éOR +

|V| IEUL, we denote VG as Hy L and let

A=Vg Yoevy, Ly (8or; 0, E)~ Vg 2oeViy, L, (Oor; v, E\Eyr).

Thus,
. . 1 .
G(0uL) = G(Oor) + Hy, MIEUL

~ 1 ~ 1
= G(QOR) + HHQ HQORA

=(G(é0R>+| |A>+<I 7o, i = lA).

Since G(00r) = 137V Zoev\vy, Lb(00r: 0. E\Eur)
+ |71\V Soevi, Lb(0or; v, E\EuL), let us first look at G(6or) +

Assume the Hessian of L is y;-Lipschitz, the first norm on the right-
hand side can be bounded as

||Hg, = Houllz = 11V2 " L3 (630, E\EqL)
veV

= V%" Lfor;v, E\Ew) |2
veV

1

90RA||2

< Y1||9r; forllz = }'1||I V]

HyL All (21)

—Y1||
\4

where y; > 0.
Then,
GG < 1 75, A1

1

Since L is A-strongly convex, we have ||H9_01R||2 < 4, we mainly

focus on ||A||2.

Observe
1Al =11V > Ly(@orso.E) =Y > Ly(@orso. E\Ew)llz
ZJEVEUL ZJEVEUL
=|| 3 (VL + Gorso. By - VLo (Bors o E\EW]
UEVEUL
< D ||V @os 0. B) - V Ly (Borso B\
UGVEUL

Consider Z denotes the input of the loss function without remov-
ing edges, such as Z, £ (Oog; E), and Z’ denotes (6or; E\EyL), we
have

18l = ) 1IVLy(Zo) = VL(Z))l2

vE VEUL
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(%) v2 Z

IS VEUL

=12 Z

veVEy, ueN(v) U{ov}

®) vz Z ’ Z éngu ,

0€VEy,  ueN(v)

<vr Z

v€VEy, 4eN (o)

SIPINDIN it

V€VEy, ueN (v)

S )

0€VEy, uEN(u)

<V Z A

v€VEy, ueN(v)

@ noe
P

RIS VEUL

Zo~ 74,

S WY e

ueN’(v) U{o}

AT
)GORXM 2

Xu

2

where N and N’ are the set of neighbors of v and the set of neighbors

that after removing Eyy, respectively. In (a), we apply y2-Lipschitz,
and we obtain (b) due to N’ ¢ N and let N(v) = N(-) = N’(").

According to Eqn. 15 in [9], we replace ||Oor]|| < cl in (c). In (d)
ny = |[N(v)| denotes the number of nodes in N(v).

Finally,

1GBuL)l2 < ml I|| L Al
—hl I|I 1|I§|IAII§
1 1.2 [ y2c1 2
S (Y )
vl A A o
EyL
2.2
}/1}/201 2
= A4|V|( >, )
UEVEUL

B.5 Proof of Theorem 9

Proor. The noisy loss function with I;-regularization is defined
as

L L(GvE)+—||6|| +b70.
PTi ZV :
Correspondingly, the gradient of the noisy loss is

VL, = Z VL(0;0,E) + 16 + b,
|V| veV
and the Hessian

Hy=V%Ly = 7i Z V2L(6;0,E) + AL
veV
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Recall Eqn. 20,

G @Il = | — (H,

| |( 9 HQOR) €ORA||2

D (V Ly (6y) = V* Ly (Gor) Hy ! Allz

=l
|V| veV
< ll— |V|2 11D 1IV2L(0y) - V2 Lo 1L Allz.
veV

Given the Lipschitz constant y of the second derivative V2L, we
have

IGOULI| < y—= D, 1165 — Borlll|Hy L Allz
|V|2 or
veV
(@)
<

AL
= Vv

Oor “2’

(a) follows Eqn. (21).

B.6 Details of UEU: Efficient Unlearning
without Certified Guarantee

UEU follows a similar idea as CEU. It aims to identify an update to
Oor through an analogous one-shot unlearning update:

1
fuL = Oor +
\4

where Ig; is the influence of Eyr on the target model, i.e., the
change on the model parameters by Eyr, and for refers to the
parameters of the original model whose loss function does not have
noise.

First, UEU computes the new parameters 0, g, after the removal
of Eyr, as follows:

Igy

O Ve, = argmln ZL(G 0,E)+{ Z L(6;0, E\Eyr)
UEVEUL
-7 Z L(6;0,E). (22)
ZJEVEU.L

Intuitively, Eqn. (22) approximates the effects that moving ¢ mass
of perturbation on Vg, with E\Eyy, in place of E. Then we obtain
the following theorem.

THEOREM 10. Given the parameters Oor obtained by Ay on a
graph G, and the loss function L, assume that L is twice-differentiable
and convex in 0, then the influence of a set of edges Eyrp, is:

Iy =-H! (Yo ). Llorso.E\Ew)-Vo ., L(Oor:v,B))
UEVEUL UEVEUL
(23)
where HoR = Vzl—‘l,‘ Ywev L(O0oRr, v, E) is the Hessian matrix of L
with respect to OoR.

Proor. For simplicity, we first define
R(0,V,E) = Z L(6,0,E).
veV

Then, we formulate a GNN learning process as

1
Oor = arg mein mR(B, V,E). (24)
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Table 5: Model accuracy of CEU, two retrained models (Re-
train and R+N), and three baselines (BLPA, BEKM, UEU) for
Linear GCN model on Cora and CiteSeer datasets.

Number of removed edges

Dataset | Type | Method |—5—— 5015000 800 1000
Retrain | Relrain [ 087 0.87 087 086 086 0386

etram | pN | 084 082 082 081 080 079

Cora BLPA | 058 054 058 058 059 058
Unlearn | BEKM | 065 064 070 070 070 070

UEU | 087 087 087 086 086 0.86

CEU | 084 083 082 081 080 079

Retrain | Relrain [ 077 077 077 076 076 076

etram | pN | 075 075 075 075 075 075

CiteSeer BLPA | 069 069 069 069 069 069
Unlearn | BEKM | 072 072 072 072 072 072

UEU | 077 077 077 077 076 0.76

CEU | 075 075 075 074 075 0.75

Since removing edges can be considered as perturbing the input,
we introduce Eqn. 10,

1
0y =arg min — L(0;v,E) + L(6;0, E\E
¢ gem;( )+{ ). L(6;0,E\Eur)

ve VEU'L

-{ > LB:o.E)
UEVEUL
1
=argmin mR(a, V,E) + {R(0, Vi, E\Eur) — {R(6, Vi, ).
(25)
We note a necessary condition is that the gradient of Eqn. 25 at
Gév is zero. Then, we have
1
0="—VgR(0;,V,E)+{VgR(0s, VE, , E\EuL) —{ VoR(6, VEy,, E).

14
(26)
Next, we apply Taylor series at §or and we get

1
0 szeR(GOR, V,E) + {VgR(O0R, Vi, E\EuL) — {VoR(O0R, Vi, E)
1
+ |7|V§R(90Rs V,E) + {VZR(00R Ve E\EuL)
— {VER(00r, Ve, E) | (07 - O0R), @7)

where we have dropped o(6or — 0;) for approximation. Then Eqn.
(27) is a linear system of Eyp, the influence of Eyy. Since OoR is
the minimum of Eqn. (24), we have ﬁVR(QOR, V,E)=0.As{isa
small value, we drop the two 0({) terms and have the following:
1
14
+¢(VoR(6or, Vi, E\EUL) — VoR(60R, Vi, B)) ~ 0.

Suppose Eqn. (24) is convex, then

V5R(0or, V. E)(0; - Oor)

9§ — 0Bor
1

~ — = V2R(00r, V. E) "' (VoR(60R. Vs, E\EUL) = VoR (€0, Vi, F))

14
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Denote
d(0; — Oor)
AT

= ~Hy! (VoR(8or. Vi E\EuL) = VoR(60R Vs, F)

where Hog = Vzﬁ Yvev L(BoR, v, E). O

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 Model Accuracy Results for Linear GCN on
More Datasets

Table 5 reports the model accuracy of GCN model on Cora and
CiteSeer datasets. Similar to Table 1, we first observe the model
accuracy obtained by CEU stays very close to that of the retrained
model, regardless of the number of removed edges. The difference
in model accuracy between the retrained and unlearned models re-
mains negligible (in the range of [0.06%, 0.57%] and [0.02%, 0.15%]]
on Cora and CiteSeer, respectively). Second, in terms of comparison
with both exact unlearning baselines (BEKM, BLPA), the model

accuracy by CEU is significantly higher than these two baselines
in all the settings. For example, when removing 200 edges from the

Cora dataset with GCN as the target model, both BEKM and BLPA
only can deliver model accuracy of around 0.53 and 0.64, while
CEU can deliver model accuracy of around 0.81. This demonstrates
the weakness of the exact unlearning through graph partitioning -
breaking the graph structure can bring non-negligible model accu-
racy loss. Third, regarding the comparison with the approximate
unlearning baseline (UEU), CEU has very similar model accuracy,
although UEU does not add perturbation to the model loss func-
tion. This demonstrates that CEU addresses the trade-off between
privacy and model accuracy—it can deliver a provable unlearning
guarantee while requiring negligible sacrifice on model accuracy.

C.2 Unlearning Performance for Deep GNN
Models

Model accuracy. Figures 8, 9, and 10 show the model accuracy
of GCN, GraphSAGE, and GIN for various complexity (2-, 3-, and
4-layer) respectively. Similar to the observations in Figure 6, despite
the model accuracy drops for both retrained and unlearned models
of higher complexity, the model accuracy of the unlearned model
remains close to that of the retrained model. The largest difference
between model accuracy is only around 5% (Figure 8 (f)). Secondly,
CEU outperforms two baselines (BLPA and BEKM) in terms of
model accuracy for all the settings. For example, the model accuracy
of CEU on the 4-layer GIN is 29% higher than BLPA when removing
1000 edges.

Unlearning efficiency. Figure 11 reports the running time of
retraining and CEU on GCN models with Cora and CiteSeer datasets.
We have similar observations as in Figure 7. First, although the
running time for both retraining and CEU grows with the increase
in the complexity of GNN models, CEU is always significantly faster
than retraining in all the settings, with the speedup factor as large
as 2.1X. Furthermore, we observe that CEU is faster than the two

(baselines of exact unlearning (BLPA and BEKM) for most settings
on Cora and CiteSeer datasets.

Unlearning efficacy. Table 6 presents the unlearning efficacy
of the original model, retraining model, and CEU for the three GNN
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models on Cora and CiteSeer datasets respectively. The observa-
tions are similar as Table 3 and thus are omitted.
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Table 6: Unlearning efficacy (GCN, Citeseer dataset).

Settin \Eu| 2-layer 3-layer 4-layer

& UL Original Retrain CEU | Original Retrain CEU | Original Retrain CEU
200 0.936 0.604 0.587 0.942 0.568 0.570 0.937 0.558 0.562
GCN 400 0.940 0.597 0.599 0.937 0.578 0.569 0.930 0.578 0.559
+ Cora 600 0.942 0.599  0.589 0.937 0.578  0.571 0.939 0.572  0.563
800 0.940 0.599 0.594 0.938 0.583 0.574 0.934 0.563 0.560
1000 0.943 0.602 0.601 0.938 0.573 0.583 0.932 0.573 0.560
200 0.954 0.641 0.632 0.953 0.627 0.620 0.951 0.608 0.625
GCN 400 0.954 0.640 0.634 0.952 0.625 0.622 0.951 0.618 0.620
+ CiteSeer 600 0.958 0.643  0.639 0.953 0.632  0.622 0.957 0.625  0.623
800 0.955 0.655 0.647 0.954 0.641 0.631 0.953 0.631 0.630
1000 0.956 0.660 0.650 0.953 0.643 0.638 0.952 0.635 0.635
200 0.938 0.653 0.657 0.949 0.667 0.651 0.952 0.663 0.640
400 0.946 0.666 0.649 0.948 0.671 0.669 0.954 0.672 0.643

GraphSAGE
+ Cora 600 0.948 0.660 0.652 0.947 0.672 0.662 0.951 0.678 0.659
800 0.945 0.660 0.657 0.947 0.685 0.672 0.952 0.693 0.663
1000 0.942 0.667 0.657 0.950 0.697 0.681 0.950 0.699 0.676
200 0.960 0.652  0.690 0.963 0.709  0.728 0.970 0.739  0.728
400 0.959 0.663 0.707 0.966 0.720 0.737 0.968 0.729 0.734

GraphSAGE
+ CiteSeer 600 0.960 0.670 0.712 0.965 0.732 0.745 0.965 0.740 0.738
800 0.955 0.677  0.722 0.964 0.737  0.754 0.968 0.747  0.751
1000 0.957 0.683 0.724 0.965 0.743 0.757 0.969 0.755 0.759
200 0.928 0.596  0.587 0.906 0.592  0.592 0.889 0.576  0.563
GIN 400 0.925 0.603 0.592 0.908 0.600 0.586 0.899 0.592 0.560
+ Cora 600 0.920 0.612 0.596 0.910 0.606 0.588 0.895 0.598 0.560
800 0.923 0.613  0.597 0.910 0.603  0.583 0.896 0.586  0.559
1000 0.924 0.622 0.597 0.912 0.608 0.588 0.894 0.602 0.564
200 0.941 0.645 0.613 0.917 0.629 0.606 0.904 0.596 0.597
GIN 400 0.937 0.643 0.628 0.919 0.622 0.610 0.909 0.598 0.599
+ CiteSeer 600 0.934 0.655 0.639 0.919 0.624 0.609 0.905 0.617 0.597
800 0.938 0.656 0.637 0.916 0.635 0.616 0.907 0.623 0.599
1000 0.938 0.660 0.640 0.915 0.641 0.617 0.904 0.629 0.608

Table 7: Unlearning efficacy: CGU versus CEU.

|EuL| | Original | R+N CGU CEU
200 0.952 0.622 0.605 0.598
400 0.951 0.623 0.618 0.620
600 0.952 0.616 0.617 0.622
800 0.951 0.627 0.625 0.624
1000 0.950 0.623 0.625 0.618
—— R+N = CGU --=-- CEU
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Figure 12: Model accuracy: CGU [9] vs. CEU for SGC model.

C.3 CGU versus CEU on Citeseer and CS
Datasets

Model accuracy. Figure 12 presents the model accuracy of both
CGU [9] and CEU for Citeseer and CS datasets. The observations
are similar to those in Figure 5 (a); thus we omit the details.

Unlearning efficacy. Table 7 shows the unlearning efficacy
results by both CGU and CEU, where unlearning efficacy is mea-
sured as the accuracy (AUC) of the membership inference attack
(StealLink [19]). We observe that CGU and CEU have comparable
unlearning efficacy. This demonstrates empirically that CEU pro-
vides similar unlearning efficacy as CGU.
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Table 9: Target model accuracy under single-batch and se-
quential unlearning

. Sequential

D Batch

ataset | Setting B B, Bs B, atc
Retrain | 0.875 0.874 0.873 0.874 | 0.872
Cora UEU | 0.873 0.873 0.873 0.875 | 0.871
R+N 0.818 0.816 0.818 0.819 | 0.815
CEU 0.815 0.814 0.821 0.820 | 0.811
Retrain | 0.778 0.778 0.778 0.777 | 0.776
CiteSeer UEU 0.777 0.778 0.778 0.777 | 0.774
R+N | 0.750 0.749 0.750 0.749 | 0.750
CEU 0.750 0.755 0.751 0.752 | 0.753
Retrain | 0.937 0.937 0.937 0.937 | 0.937
cs UEU 0.937 0937 0.938 0.937 | 0.937
R+N 0.930 0.930 0.930 0.930 | 0.930
CEU 0.931 0929 0.931 0.931 | 0.930

Table 8: Impact of edge types on unlearning efficacy of CEU.

|Eur| ‘ Edge Type ‘ Original ‘ R+N CEU

MaxD 0.631 0.610 0.629
200 Rand 0.930 0.595 0.609
MinD 0.931 0.704 0.709
MaxD 0.571 0.676 0.679
400 Rand 0.928 0.588 0.590
MinD 0.932 0.690 0.687
MaxD 0.644 0.661 0.667
600 Rand 0.927 0.592  0.588
MinD 0.927 0.689 0.681
MaxD 0.702 0.686 0.688
800 Rand 0.927 0.594 0.599
MinD 0.923 0.666  0.663
MaxD 0.759 0.688 0.694
1000 Rand 0.928 0.602 0.593
MinD 0.923 0.659 0.653

C.4 Impact of Type of Removed Edges on
Unlearning

To evaluate the impact of edge types on unlearning performance,
we consider three different strategies to pick edges for removal.

e Random sampling (Rand): we randomly sample k edges from
the training graph.

e Max-degree & Min-degree sampling (MaxD & MinD): As GNN
models aggregate information from the neighboring nodes when
generating node embeddings, the size of node neighbors (i.e.,
node degree) directly affects the amounts of information of
edges encoded in GNNs. Therefore, we measure the impor-
tance of an edge e(v;,v;) as its degree defined as EdgeDegree(e)
= degree(v;)+degree(v;). Then we rank edges by their degree
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in descending order and pick k edges of the largest edge de-
gree (MaxD) as well as the k edges of the smallest edge degree
(MinD) for removal.

Model accuracy. Figure 13 shows the model accuracy results
for removing three types of removed edges. We observe the non-
negligible impact of the type of removed edges on both retrained
and unlearned models. The retrained model witnesses the largest
and smallest drop in model accuracy for the MinD and MaxD edges
respectively (Figure 13 (a) & (b). Meanwhile, the unlearned model
witnesses the same trend as their corresponding retrained models,
where removing MinD edges and MaxD edges incur the largest and
smallest model accuracy downgrade on the unlearned model.

Unlearning efficacy. Table 8 reports the unlearning efficacy
results (AUC of StealLink attack) for removing three types of edges.
We observe the following phenomena. First, StealLink is effective
on predicting the existence of the three types of removed edges
from the original model, with the edges of “Rand” and “MinD” types
most vulnerable to the privacy attack. Second, the AUC of the attack
noticeably reduces when inferring from either the retrained or the
unlearned model. In particular, the AUC is reduced to around 0.6

for both “Rand” and “MinD” types of edges. This demonstrates
the forgettablity power of CEU. We also observe that the edges

of “MaxD” type always have the highest AUC before and after
retraining/unlearning. This suggests that “MaxD” type edges are
most vulnerable to the attack.

C.5 Sequential Unlearning

So far we only considered deleting one batch of edges. In practice,
there can be multiple batch deletion requests to forget the edges in
a sequential fashion. Next, we focus on the scenario where multiple
edge batches are removed sequentially. Specifically, we divide the
to-be-removed Eyy, into k > 1 disjoint batches {Bi}ile, with each
batch consisting of the same number of edges. For each batch B;
(1 <i < k—1), we consider the target model obtained from retrain-
ing/unlearning of the previous batch B;_; as the original model
Oor, and update fpor by removing B; (either by retraining or un-
learning). We evaluate the target model accuracy under sequential
unlearning and compare it with that under one-batch unlearning.
We consider k = 4 and report the target model accuracy for
deleting Eyy, in one batch and deleting Eyy, in k = 4 batches in Table
9. We also report the target model accuracy of the retrained and
unlearned models at each batch. We observe that, first, the accuracy
of the unlearned model remains close to the retrained model at each
batch during sequential removals. Second, the performance of the
unlearned model after removing k batches stays close to that of the
model after single-batch unlearning. These results demonstrate that
CEU can handle sequential deletion of multiple batches of edges.

C.6 Impact of Distance between Removed Edges
and Testing Data on Unlearning
Performance

Intuitively, where the removed edges locate in the graph may affect
the unlearning performance. In particular, the unlearning perfor-
mance can be affected by how far the removed edges are from the
edges in the testing graph. Therefore, in this part of the experiment,
we investigate the impact of the distance between the removed
edges and the testing graph on unlearning performance.
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Figure 13: Model accuracy of different edge types (o = 0.1).

Table 10: Model accuracy of CEU of removing “close” and
“far-away” edges (GCN, Cora dataset).

‘ Number of removed edges

T
P T 100 200 400 600 800 1,000

0.824 0.822 0.821
0.806 0.805

0.821 0.820 0.818 0.815
0.806 0.806 0.805 0.805 0.805

close
far-away

We define the distance between an edge e(u,v) and a node u’
(denoted as dis(e, u’)) as the minimum number of hops required for
u’ to reach both u and v. Then we define the distance between e(u, v)
and the testing dataset Gs (denoted as dis(e, Gs)) as the minimum
distance between e and any node in Gg. Based on the distance

between any edge and the testing data, we classify the edges in the
training graph by their distance to Gs and select the edges with the
top-k highest distance as the “far-away” edges, and the edges with
the top-k lowest distance as the “close” edges.

To evaluate the impact of the distance between the removed
edges and the testing graph on unlearning performance, we measure
the accuracy of the unlearning model by CEU when removing
“close” and “far-away” edges. We randomly sample 10 test sets from
the Cora graph, and report the average results of the 10 trials in
Table 10. The main observation is that removing close edges incurs a
higher change in the target model accuracy than removing far-away
edges. This is expected as for neighborhood aggregation-based
GNNgs, a node exerts its influence on the nodes in its neighborhood.
Thus removing far-away edges has a more limited impact on target
model accuracy than the close ones.
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