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TABLE 1
Comparison of GANs for generating EHR.

Properties
medGAN

[22]
CTGAN

[25]
EMR-WGAN

[24]
RDP-CGAN

[26]
TimeGAN

[27]
T-CGAN

[28]
MTGAN

(Proposed)

Time-series data generation × × × × X X X

Preserving temporal correlations × × × × X × X

Uncommon diseases generation × X × × × × X

Stable training with sparse EHR × × × × × × X

of EHR contains multi-label variates (i.e., diagnoses shown
in Fig. 1). Therefore, generating multi-label time-series EHR
with temporal correlations still remains a challenge.

2) Generating uncommon diseases. Based on the statis-
tics of a well-known public EHR dataset, MIMIC-III, some
diseases are frequently diagnosed, such as hypertension and
diabetes, while some other diseases such as tuberculosis are
less common. Although these diseases do not frequently
occur, it is still valuable to study them to provide better
care plans for patients, e.g., analyzing occurrence patterns to
improve diagnosis prediction accuracy. Despite the ability
of existing GANs to generate time-series EHR data, it is
still challenging for them to learn a good distribution for
uncommon diseases. Instead of only generating frequent
diseases shown in Fig. 1(a), we need to find effective ways
to generate uncommon diseases, such as Appendicitis in
Fig. 1(b) given highly imbalanced EHR datasets.

3) Evaluating synthetic EHR data. Since EHR datasets
have an imbalanced disease distribution, traditional evalu-
ation metrics for synthetic images such as Kullback-Leibler
divergence and Jensen-Shannon divergence do not provide
sufficient attention to uncommon diseases. As a result, we
may still get low divergence between the distribution of real
and synthetic EHR data when they are close in terms of
diseases with higher frequency. Therefore, it is still neces-
sary to explore appropriate metrics to evaluate the quality
of synthetic EHR data, especially for uncommon diseases.

To address these challenges, we propose MTGAN, a
multi-label time-series generation model using a conditional
GAN to simultaneously generate time-series diagnoses and
uncommon diseases. In the generator, we first propose
to recursively generate patient-level diagnosis probabilities
with a gated recurrent unit (GRU). Then, to generate uncom-
mon diseases, we adopt the idea of the conditional vector
in CTGAN [25] and broadcast this vector into a smooth
conditional matrix throughout all visits in sequences. In
the critic of MTGAN, we propose to discriminate real and
synthetic samples by giving scores to both the data and their
temporal features. Finally, we design a training strategy
to optimize MTGAN by sampling discrete diseases from
visit-level probabilities and forming the patient-level visit
sequences to stabilize the training process. The model com-
putes temporal features of real data by pre-training a GRU
with the task of next visit prediction. The contributions of
this work are summarized as follows:

• We propose a time-series generative adversarial network
MTGAN to generate multi-label patient-level EHR data.
The generator, critic, and training strategy of MTGAN
are able to simultaneously generate realistic visits and
preserve temporal correlations across different visits.

• We propose a smooth conditional matrix to cope with the
imbalanced disease distribution in EHR data and improve
the generation quality of uncommon diseases.

• We use multiple statistical metrics for synthetic EHR eval-
uation and design a normalized distance especially for
uncommon diseases. Meanwhile, we verify that the syn-
thetic EHR generated by MTGAN can boost deep learning
models on temporal health event prediction tasks.

The remaining parts of this paper are listed below: We
first discuss related work about EHR generation in Section 2.
Then, we formulate the EHR generation problem in Sec-
tion 3 and introduce the details of MTGAN in Section 4.
Next, the experimental setups and results are demonstrated
in Sections 5 and 6, respectively. Finally, we summarize this
paper and discuss the future work in Section 7.

2 RELATED WORK

2.1 Generative Adversarial Networks

The generative adversarial networks are first proposed by
Goodfellow et al. [17] to generate realistic images. A typical
GAN contains a generator to generate synthetic samples
and a discriminator to distinguish real samples from gen-
erated samples. Arjovsky et al. [31] propose WGAN by
replacing the binary classification in the discriminator with
the Wasserstein distance to alleviate mode collapse and
vanishing gradient in GAN. Gulrajani et al. [32] introduce
a gradient penalty in WGAN-GP to improve the training
of WGAN. Xu et al. [25] propose CTGAN to generate imbal-
anced tabular data with a conditional vector. Wang et al. [33]
propose a graph softmax method in GraphGAN to sample
discrete graph data. Unfortunately, typical GANs are not
able to generate time-series data, and therefore cannot be
directly applied to generate EHR data.

2.2 GANs for Sequence Generation

To generate sequences with discrete variates, SeqGAN [30]
is proposed by Yu et al. with the REINFORCE algorithm
and policy gradient. Yoon et al. [27] propose TimeGAN
by jointly training with a GAN loss, a reconstruction loss,
and a sequential prediction loss. To generate time-series
data with conditions, Ramponi et al. [28] propose T-CGAN
by specifying the time step of a data sample as the con-
dition. Esteban et al. [34] propose a recurrent conditional
GAN, RCGAN, to generate real value medical data. Du et
al. [35] propose a GAN-based anomaly detection algorithm
for multivariate time series data. Liu et al. [36] also apply
the GAN framework in BeatGAN by adding an encoder
and decoder to reconstruct time-series data for anomaly
detection. However, generating multi-label synthetic data
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posed generator, critic, and the training strategy. The model
overview of MTGAN is shown in Fig. 2.

4.1 Preliminaries of Generative Adversarial Networks

In a typical framework of generative adversarial networks
(GANs), there exists a generator G that takes a noise z ∈ R

s

from a random distribution as the input and generates a
synthetic data sample x̃ = G(z). The discriminator D

is another key part of GANs. It tries to distinguish real
data samples x from generated samples x̃. The underlying
mechanism of GANs can be formulated as a min-max game:
the generator tries to generate realistic samples to deceive
the discriminator and let it think x̃ is real; the discriminator
conducts a binary classification and tries to classify all real
and synthetic samples correctly. A vanilla GAN is optimized
using the following loss function:

min
G

max
D

E
x∼px

[logD(x)] + E
z∼pz

[log (1−D(G(z)))]. (1)

However, such a simple GAN is sometimes hard to
train due to the vanishing gradient problem, mode collapse,
and failure to converge. To address these issues, Arjovsky
et al. [31] use the Wasserstein distance in WGAN to train
the generator and discriminator (called a critic in WGAN).
Gulrajani et al. [32] introduce a gradient penalty for training
the critic in WGAN-GP. The updated loss functions to train
the generator and critic respectively are as follows:

LD = E
z∼pz

[D(G(z))]− E
x∼px

[D(x)]

+ λ E
x̂∼px̂

[

(‖∆x̂D(x̂)‖2 − 1)
2
]

, (2)

LG = − E
z∼pz

[D(G(z))], (3)

where LG and LD are the losses for the generator and
critic, respectively; λ is a coefficient for the gradient penalty;
x̂ = εx + (1 − ε)x̃, ε ∼ U[0, 1] is sampled from a uniform
distribution; ∆ denotes the derivation operation; and ‖ · ‖2
means `2-norm. In these two loss functions, D(·) calculates a
critic score for an input. It tries to maximize the score for real
data and minimize the score for synthetic data. It turns the
binary classification of the original GAN into a regression
problem. By introducing Wasserstein distance and gradient
penalty, training GAN can be more stable. Therefore, similar
to EMR-WGAN [24] and Smooth-GAN [29], we also intro-
duce the gradient penalty in the training of WGAN.

4.2 Generator

As we discussed before, to generate realistic EHR samples,
we must address the following specific challenges:

C1: How to incorporate temporal features of visit sequences
to increase the correlation of adjacent visits?

C2: How to generate uncommon diseases in the real EHR
dataset D with an unbiased distribution?

4.2.1 Temporally-Correlated Probability Generation

In TimeGAN [27], when generating sequences, an intuitive
method is using recurrent neural networks (RNN). In each
time step, the input of the RNN cell is a random noise and
the hidden state passed from the previous time step. The
output of each time step is a new hidden state. We can

use the hidden state to generate each visit and combine
all visits as a sequence. However, we think that using
noises to generate visits for every time step may somewhat
bring uncontrollable randomness and weaken the temporal
correlation between adjacent visits. We believe an optimized
generator is able to generate the entire sequence given a
single noise vector at the beginning of the sequence. Similar
to the temporal health event prediction task studied in
GRAM [5], CGL [2], and Chet [7], a good generator should
predict (generate) the diagnoses in the next visit, given all
previous visits. Therefore, based on this idea, we propose to
recursively generate the visit sequence from a single noise
vector z, in order to increase the temporal correlation of
adjacent visits, i.e., the challenge C1.

Given a random noise vector z ∈ R
s and a visit length

T , since the disease values in each visit is 0 or 1, we first
generate the disease probability P1 in the first visit by
decoding the noise vector:

P1 = σ(Wz) ∈ R
d. (4)

Here, W ∈ R
d×s is the weight to project the noise into the

visit space. σ is the sigmoid function. After having the first
visit, we can recursively generate the disease probability of
remaining visits using a gated recurrent unit (GRU) [44] ggru:

h̃t = ggru(Pt, h̃t−1) ∈ R
s, (5)

Pt+1 = σ(Wh̃t) ∈ R
d. (6)

Here h̃t denotes the hidden state of GRU at the time step t.
We set h̃0 = 0 and set the noise dimension to be the same
as hidden units of GRU, because we regard the noise vector
as the initial hidden state. Next, we use GRU to calculate
the hidden state of the time step t using the hidden state of
t − 1 and the generated visit probability Pt. Then, we use
the same decoding for z to generate Pt+1 for the visit t+ 1.
Finally, we combine all the generated disease probabilities
as a patient-level distribution P for a synthetic EHR data
sample: P = (P1,P2, . . . ,PT ) ∈ R

d×T .

4.2.2 Smooth Conditional Matrix

After generating the patient-level probabilities, we need to
address the challenge of generating uncommon diseases,
i.e., C2. To deal with highly imbalanced tabular data, CT-
GAN [25] is proposed to use conditional vectors to guide
the GAN training process. More specifically, it first specifies
a category for a tabular feature as the target category. Then,
it uses a conditional vector where the corresponding entry
for the target category is 1. Finally, it concatenates the
conditional vector with the noise vector as the generator
input to generate samples that belong to the target category.

Inspired by CTGAN, we aim to specify a target disease
and adopt the conditional vector to generate a visit sequence
that contains the target disease. However, CTGAN is de-
signed for non-sequential data. For a visit sequence, the
target disease may appear in one or multiple visits. If we
directly concatenate the conditional vector with the noise
vector, this input will have the highest impact on the first
visit and a decreasing impact on the remaining visits, due
to the characters of RNN-based models. As a result, it is
highly possible that this disease only appears in the first
visit. If we concatenate the conditional vector for all Pt,
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the generator may output a visit sequence where each visit
contains the target disease. To avoid these extreme cases, we
propose to smooth the conditional vector into a conditional
matrix c ∈ R

d×T for all visits. First, we apply a location-
based attention method [45] to the generated probability to
broadcast the target disease i into a probability distribution
(attention score) for all visits:

vt = WvPt ∈ R, where t ∈ {1, 2, . . . , T}, (7)

scoret =
evt

∑T
τ=1 e

vτ

. (8)

Here, Wv ∈ R
1×d is an attention weight, and

∑T
t=1 scoret =

1. With this score, if the generator assigns a higher proba-
bility of the target disease to the visit t, the GAN model can
generate corresponding co-occurred diseases in this visit.
After calculating the score for each visit, we create a condi-
tional matrix c ∈ 0d×T , and set the entry ci,t corresponding
to the target disease i and visit t as scoret:

ci,t = scoret. (9)

Then, we use c to calibrate the generated probability by
adding c to P and get a calibrated probability P̃:

P̃ = min (1,P⊕ c) ∈ R
d×T . (10)

Here, ⊕ denotes an element-wise sum of two matrices. We
also clip P̃ to make sure it is no greater than 1. In this way,
the target disease is smoothed to all T visits. Therefore, the
conditional matrix can increase the probability of target dis-
eases and let the uncommon diseases gain more exposure.

In summary, given a noise vector z and a target dis-
ease i, the generator G is able to generate a calibrated
probability distribution P̃ for diseases of a visit sequence:
P̃ = (P̃1, P̃2, . . . , P̃T ) = G(z, i). We will discuss how to
generate discrete diagnoses in Section 4.4.

4.3 Critic

For the critic distinguishing real and fake EHR data, there
is still a specific challenge to be addressed to improve the
quality of synthetic samples:

C3: How to calculate a sequential Wasserstein distance for
real and synthetic visit sequences?

Given a visit sequence, an optimized critic should con-
sider two aspects to determine whether this sequence is
real or not. The first is whether each visit in a sequence
is real. The second is whether this visit sequence is able to
reflect temporally-correlated characters. These two aspects
are intuitive because a visit sequence looks real only if each
independent visit looks real. Furthermore, even if each visit
looks real, the entire sequence may not be real. For example,
we exchange two visits from two different patients or from
the same patient. Even though each visit is real, the critic
should still detect the abnormal visit sequence if the two
exchanged visits are largely different.

Based on the above analysis, we propose a sequential
critique that can simultaneously distinguish whether in-
dividual visits are real and whether the entire sequence
are real. Given an input sequence x = (x1,x2, . . . ,xT ) ∈
{0, 1}d×T and the temporal features of this sequence H =

(h1,h2, . . . ,hT ) ∈ R
d×T that correspond to each visit, the

critic first concatenates the diagnosis vector xt and temporal
feature vector ht for each visit. Then it uses a multi-layer
perceptron (MLP) to calculate a critic score for this visit.
Finally, the score r for the sequence is an average of all visits.
This process can be summarized as follows:

mt = xt || ht ∈ R
d+s, (11)

r =
1

T

T
∑

t=1

MLP(mt) ∈ R. (12)

Here, || denotes the concatenation operation. In this equa-
tion, We use the average of all visits because we hypothesize
mt contains the temporal feature of each visit and therefore
is capable of distinguishing time-series data. In this way, the
critic can simultaneously consider individual visits and the
temporal correlation of adjacent visits. Note that, the visit
sequence x can be either a real or a generated sequence.

In summary, given an input sequence x and the temporal
features H of x, the critic D computes a score for this
sequence: r = D(x,H).

4.4 Training Strategy

After defining the generator and the critic, there are still two
remaining problems when generating diseases and training
the critic with real/synthetic samples and temporal features:

1) How to get temporal features of real samples?
2) How to obtain discrete diagnoses from the generated

probability distribution?

4.4.1 Temporal Feature Pre-training

For the first problem, when generating the probability dis-
tribution, we have already got the hidden state h̃t for each
generated visit. We conjecture that if the generator is opti-
mized, the distribution of hidden state for generated visits
should also be consistent with real samples. Therefore, we
design a prediction task to pre-train a base GRU to calculate
the hidden state for real samples. Given a real visit sequence
x = (x1,x2, . . . ,xT ) ∈ {0, 1}

d×T , we aim to use a GRU g′gru

that has an identical structure to ggru to predict the next
visit for each xt in x. To do this, we first transform x into
a feature sequence (x1,x2, . . . ,xT−1) ∈ {0, 1}

d×(T−1) and
a label sequence (y1,y2, . . . ,yT−1) ∈ {0, 1}

d×(T−1), where
yt = xt+1. We then use the g′gru to calculate the hidden state
ht for xt and predict the next visit ŷt:

ht = g′gru(xt,ht−1) ∈ R
s, (13)

ŷt = σ(W′ht) ∈ R
d. (14)

Here, we also set h0 = 0. To pre-train the g′gru, we use a
binary cross-entropy loss for a single visit prediction, and
calculate the sum of all visits as the final loss Lpre:

Lpre =
T
∑

t=1

d
∑

i=1

yi log ŷi + (1− yi) log (1− ŷi) (15)

After getting the pre-trained g′gru, we freeze its pa-
rameters and use it to calculate the temporal features
H = (h1,h2, . . . ,hT ) = g′gru(x) ∈ R

d×T for real samples
in the critic. For the synthetic data, we let the generator
G return both the probability P̃ and the hidden state
H̃ = (h̃1, h̃2, . . . , h̃T ) ∈ R

d×T : (P̃, H̃) = G(z, i).
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4.4.2 Discrete Disease Sampling

In Section 4.2, our generator outputs a probability distri-
bution of visit sequences. When training the generator, it
is reasonable to directly feed the probability distribution to
the critic because we aim to let the generator increase the
probability of occurred diseases and decrease the probability
of unoccurred diseases based on gradients flowed from the
critic. However, if we directly use the probability distribu-
tion to train the critic, it will increase the uncertainty of the
generator and make the training less stable. For example,
let us say that the generator gives a probability of 0.8 for
a disease. After training the critic, it gives a lower score
for this generation. When training the generator in the next
step, it only knows 0.8 leads to a lower score but does
not know whether to increase or decrease the probability
to reach a higher score. As a consequence, we may need
many iterations to make the training of generator converge
after a lot of explorations in the input space. To stabilize the
training process, we propose to train the critic by sampling
from the generated distribution P̃ to get a discrete diagnoses
sequence x̃ = (x̃1, x̃2, . . . , x̃T ) ∼ P̃ ∈ {0, 1}d×T , where

x̃t ∼ Bernoulli(P̃t) ∈ {0, 1}
d. (16)

Here, we use ∼ to denote element-wise sampling, and
Bernoulli(p) means sampling from a Bernoulli distribution
with the success probability as p. In this approach, the
synthetic data for training the critic are discrete. We also
use the probability 0.8 as an example. Assume the sampled
output is 1, after a generator optimization step, it not only
knows 0.8 will get a low score, but also learns that it should
decrease the probability to reach a higher score.

There is another advantage of generating discrete dis-
eases by sampling. In traditional GANs for generating EHR
such as medGAN [22], medWGAN [23], Smooth-GAN [29],
and RDP-CGAN [26], after getting the disease probability
from either the generator or autoencoder, they directly
round the probability to get the discrete diseases. How-
ever, for uncommon diseases, the probabilities of them are
usually low. Rounding the probability will further decrease
the frequency of uncommon diseases in generated samples.
Therefore, we use sampling from the probability as another
measure to generate uncommon diseases, i.e., C2.

Finally, we use the losses LG and LD to train the genera-
tor and critic respectively, given a target disease i ∼ U[0, d]:

LD = E
x̃∼P̃

[D(x̃, H̃))]− Ex∼p
x|i

[D(x,H)]

+ λE
x̂∼px̂,Ĥ∼p

Ĥ

[

(‖∆
x̂,Ĥ

D(x̂, Ĥ)‖2 − 1)2
]

, (17)

LG = − Ez∼pz
[D(P̃, H̃)]. (18)

The pseudo-code for training MTGAN is summarized in
Algorithm 1. In each iteration, we first sample a target
disease i from a discrete uniform distribution U[0, d]. When
training critic at lines 3-11, we sample real data x ∼ p

x|i

that contain this target disease in any visit, following the
setting in CTGAN. When calculating the gradient penalty,
besides letting x̂ = εx + (1 − ε)x̃, we also incorporate

Ĥ = εH+ (1− ε)H̃ with the same ε into the calculation. At
lines 13-15, we train the generator by feeding the synthetic
probabilities into critic. Finally, we repeat the training of the
critic and the generator until they converge.

Algorithm 1: MTGAN-Training (D, g′gru, ncritic)

Input : Real EHR dataset D
Pre-trained GRU g′gru

Critic training number ncritic

1 d← Count the disease number in D
2 repeat
3 Sample a target disease i ∼ U[0, d]

// Training the critic

4 for j ← 1 to ncritic do
5 Sample real data x ∼ p

x|i, noise z ∼ pz ,
coefficient ε ∼ U[0, 1]

6 H← g′gru(x)

7 P̃, H̃← G(z, i)

8 Sample discrete diseases x̃ ∼ P̃

9 x̂← εx+ (1− ε)x̃

10 Ĥ← εH+ (1− ε)H̃
11 Optimize the critic D using LD

12 end
// Training the generator

13 Sample noise z ∼ pz
14 P̃, H̃← G(z, i)
15 Optimize the generator G using LG

16 until convergence

5 EXPERIMENTAL SETUPS

5.1 Evaluation Metrics

To evaluate the statistical quality of the generated EHR
dataset D̃, we use the following metrics:

• Generated disease types (GT): We use the generated disease
types to evaluate whether the GAN model can generate all
diseases in D. When |D| = |D̃|, D̃ should contain similar
disease types as D.

• Visit/patient-level Jensen-Shannon divergence (JSD{v,p}): JSD
is a metric to evaluate a visit/patient-level distribution
of disease relative frequency between D̃ and real EHR
dataset D. Here, the visit/patient-level frequency of a
disease means the relative frequency of visit/patient that
this disease appears. For patient-level frequency, if a dis-
ease appears in multiple visits of a patient, the disease
frequency is still counted as 1. A lower divergence value
means better generation quality.

• Visit/patient-level normalized distance (ND{v,p}): The Jensen-
Shannon divergence focuses on the overall distributions,
especially on the difference between data points that have
high probability. As a result, the penalty should not be
given for the difference between uncommon diseases that
originally have a low probability. Therefore, to further
evaluate the distribution of uncommon diseases, we adopt
a normalized visit/patient-level distance. Given two dis-
tributions px and px̃ of the visit/patient-level disease
relative frequency in real and generated datasets, the
distance is calculated as follows:

ND =
1

d

∑

i∈C

2|px(i)− px̃(i)|

px(i) + px̃(i)
. (19)

Here, C is the entire disease set in the EHR dataset, and
d is the number of diseases as mentioned before. A good
generation should also have a low normalized distance.
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TABLE 4
Statistical evaluation results on generated data based on MIMIC-III and MIMIC-IV. GT: Generated disease type; JSDv , JSDp: Visit/patient-level
Jensen-Shannon divergence; NDv , NDp: Visit/patient-level normalized distance; RN: Required sample number to generate all disease types.

Metrics
Single Visit Visit Sequence

Real
medGAN CTGAN EMR-WGAN RDP-CGAN WGAN-GP TimeGAN T-CGAN MTGAN

M
IM

IC
-I

II

GT 1,356 2,742 1,210 3,161 1,775 1,037 2,344 4,431 4,880
JSDv 0.2342 0.1983 0.1762 0.1587 0.1843 0.3344 0.1604 0.1344 0
JSDp — — — — 0.2022 0.3518 0.1969 0.1413 0
NDv 1.6751 1.2911 1.6213 0.9067 1.5817 1.7791 1.2943 0.6563 0
NDp — — — — 1.5924 1.7719 1.3312 0.6645 0
RN > 10

7 > 10
7 > 10

7 > 10
7 > 10

7 > 10
7 > 10

7 7,952 6,000
# Params 3.84M 2.59M 1.96M 12.07M 1.35M 3.05M 1.95M 5.84M —

M
IM

IC
-I

V

GT 1,807 2,915 1,396 3,835 1,747 1,331 2,686 5,677 6,102
JSDv 0.2130 0.2217 0.1912 0.1662 0.2135 0.4004 0.1540 0.1467 0
JSDp — — — — 0.2500 0.4153 0.1963 0.1649 0
NDv 1.6709 1.4306 1.6902 0.9709 1.6911 1.7849 1.4222 0.6705 0
NDp — — — — 1.7015 1.7911 1.4731 0.6843 0
RN > 10

7 > 10
7 > 10

7 > 10
7 > 10

7 > 10
7 > 10

7 11,734 10,000
# Params 4.78M 3.21M 2.43M 15.01M 1.67M 3.68M 2.42M 7.25M —

5.4 Parameter Settings

The parameter settings for baselines are listed as follows:

• medGAN: We use three fully-connected (FC) layers with
skip-connection and batch normalization as the generator.
Each layer has 128 hidden units. The discriminator has
three FC layers with 256 and 128 hidden units. The au-
toencoder contains two FC layers with 128 hidden units.

• CTGAN: It uses three FC layers without skip-connection
as the generator. The hidden units are all 128. The discrim-
inator is the same as medGAN.

• EMR-WGAN: The generator and critic of EMR-WGAN
have the same hyper-parameter settings as medGAN.

• RDP-CGAN: We use six 1-d conv layers for both encoder
and decoder with kernel sizes {3, 3, 4, 4, 4, 4} and {4, 4,
4, 4, 3, 3}. We use three conv layers in the generator with
kernel sizes {3, 3, 3} and five conv layers in the critic with
kernel sizes {3, 3, 4, 4, 4}.

• WGAN-GP: It uses a GRU with 128 hidden units as the
generator. The critic has two FC layers with 128 hidden
units. We calculate the sum of the Wasserstein distance
for each visit as the final discriminator loss.

• TimeGAN: The generator, discriminator, embedder, recov-
ery, and supervisor all have a GRU with 128 hidden units.

• T-CGAN: It has the same generator and critic as CTGAN.

In our experiments, we ran MTGAN multiple times and in-
vestigated the model performance with different randomly
initialized parameters. We found that the model tends to
provide results at the same level under different random
initializations. Therefore, we randomly initialize all model
parameters to achieve generality. The size of the noise vector
as well as GRU hidden units s is 256. The MLP used in
the critic has one hidden layer with 64 hidden units. For
base GRU pre-training, we run 200 epochs with Adam
optimizer [47] and set the learning rate to 10−3. For training
MTGAN, we run 3× 105 iterations with batch size 256. The
learning rates for the generator and critic are 10−4 and 10−5

and decay by 0.1 every 105 iterations. The critic training
number ncritic is 1. We use the Adam optimizer and set
β1 = 0.5 and β2 = 0.9. The λ for gradient penalty is 10, the
same as WGAN-GP [32]. All programs are implemented us-

ing Python 3.8.6 and PyTorch 1.9.1 with CUDA 11.1 on a ma-
chine with Intel i9-9900K CPU, 64GB memory, and Geforce
RTX 2080 Ti GPU. The source code of MTGAN is released
publicly at https://github.com/LuChang-CS/MTGAN.

6 EXPERIMENTAL RESULTS

6.1 Statistical Evaluation

To evaluate the statistical difference between generated EHR
data D̃ and real data D, we utilize visit-level GANs to
generate 16,055 and 29,084 visits, and utilize patient-level
GANs to generate 6,000 and 10,000 patients, when training
with MIMIC-III and MIMIC-IV, respectively. The statistical
evaluation results on these datasets are shown in Table 4.

For the generated disease types (GT), the results should
be close to real disease types. All baselines can only generate
less than 4,000 diseases, while the disease types gener-
ated by MTGAN are close to real data. The visit/patient-
level Jensen-Shannon divergence (JSDv , JSDp) shows that
MTGAN can synthesize a good EHR dataset in terms of
the overall disease distribution, while the results of other
baselines are almost on par. However, when considering
uncommon diseases, we can conclude from the normalized
distance (NDv , NDp) that MTGAN has better ability in gen-
erating diseases with low frequency than other baselines.
This conclusion is further validated by the required sample
number (RN) to generate all diseases. In this experiment, we
keep generating samples until the disease type in the syn-
thetic dataset D̃ reaches the disease type in the real dataset
D. For all baselines, we stop at 107 samples given that
they cannot generate more uncommon diseases. However,
MTGAN is able to generate all diseases only using 7,952 and
11,734 samples for MIMIC-III and MIMIC-IV, respectively.
Although these sample numbers are larger than the real
patient numbers in MIMIC-III and MIMIC-IV, the ability to
generate uncommon diseases of MTGAN is verified.

When comparing visit-level and patient-level distance of
GANs for visit sequences, it should be noted that almost
all models have lower scores for JSDv than JSDp. It shows
that retaining temporal correlation in visit sequences is
harder than solely learning the disease distribution in single
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TABLE 7
Downstream task evaluation by pre-training Dipole and GRAM on synthetic data, fine-tuning on real training data. The results are reported on real
test data. Note that “w/o synthetic” indicates that the model is trained using only real training data. We use w-F1 (%) for Diagnosis prediction, AUC

(%) for Heart failure and Parkinson’s disease prediction. The synthetic data have equal sample numbers as real training data.

Models
Dipole GRAM

Diagnosis Heart Failure Parkinson Diagnosis Heart Failure Parkinson

M
IM

IC
-I

II w/o synthetic 19.35 82.08 68.80 21.52 83.55 73.81
w/ WGAN-GP 20.02 (+3.46%) 82.67 (+0.72%) 69.11 (+0.45%) 22.48 (+4.46%) 84.06 (+0.61%) 74.29 (+0.65%)
w/ TimeGAN 19.60 (+1.29%) 82.69 (+0.74%) 68.57 (-0.33%) 22.06 (+2.51%) 83.84 (+0.35%) 73.85 (+0.05%)
w/ T-CGAN 20.38 (+5.32%) 83.38 (+1.58%) 69.33 (+0.77%) 22.30 (+3.62%) 84.22 (+0.80%) 74.40 (+0.80%)
w/ MTGAN 20.48 (+5.84%) 83.41 (+1.62%) 70.45 (+2.40%) 22.57 (+4.88%) 84.19 (+0.77%) 75.06 (+1.69%)

M
IM

IC
-I

V w/o synthetic 23.69 88.69 72.59 23.50 89.61 78.51
w/ WGAN-GP 24.17 (+2.03%) 88.78 (+0.10%) 72.81 (+0.30%) 23.68 (+0.77%) 89.81 (+0.22%) 78.81 (+0.38%)
w/ TimeGAN 23.62 (-0.30%) 88.63 (-0.07%) 72.55 (-0.06%) 23.61 (+0.47%) 89.68 (+0.08%) 78.56 (+0.06%)
w/ T-CGAN 24.60 (+3.84%) 89.04 (+0.39%) 72.76 (+0.23%) 23.75 (+1.06%) 89.94 (+0.37%) 78.90 (+0.50%)
w/ MTGAN 24.74 (+4.43%) 89.11 (+0.47%) 73.16 (+0.79%) 24.09 (+2.51%) 90.05 (+0.49%) 79.35 (+1.07%)

6.4 Ablation Study

To study the effectiveness of the various components, we
conduct ablation studies by removing or changing parts of
the model. The variants of MTGAN are listed as follows:

• Mh-: In the critic, we remove the hidden state in Equa-
tion (11). In addition, we let the generator only output the
probability but not the hidden state of GRU.

• Mc-: We remove the conditional matrix in the generator
to verify the contribution of it to uncommon disease
generation. As a result, the generated synthetic data are
directly sampled from the GRU outputs.

• Mdist: In Equations (17) and (18), we uniformly sample
target diseases. In Mdist, we sample target diseases from
the visit-level disease distribution in real EHR dataset to
study the impact of sampling in the GAN training.

• Mtrans: To test the effect of GRU in the generator of MT-
GAN, we replace ggru with Transformer [48], since Trans-
former is also effective in EHR-related tasks [49], [50], [51].
More specifically, we use a Transformer encoder module,
including a positional encoding part and a masked self-
attention part to generate diseases from T noises. In the
critic, we also remove the hidden state in Equation (11),
since the generator cannot output it for synthetic data.

We report the statistical results of MTGAN variants in
Table 5. Comparing Mh- and MTGAN, we notice both JSD
and ND have a large increase, but it can still generate all
disease types within a small sample number. However, after
removing the conditional matrix, Mc- cannot generate all
disease types with 107 generated samples. We can conclude
that distinguishing hidden states in the critic is able to
improve the quality of synthetic EHR data in terms of the
disease distribution, and the conditional matrix helps to
learn the distribution of uncommon diseases.

When comparing between Mdist and MTGAN, we notice
that JSD does not have a large difference, but ND of Mdist

increases a lot. Additionally, Mdist requires more samples to
generate all disease types. We conjecture it is because un-
common diseases have low frequencies and therefore occur
less in the synthetic data when sampling from the visit-level
disease distribution. This also leads to a high normalized
distance and more samples to generate all disease types.

The last comparison is replacing GRU in the generator
with a Transformer encoder. Although Transformer is effec-

tive and has gained great success in natural language pro-
cessing, it does not achieve superior performance to GRU.
We infer that it is because the visit sequences in MIMIC-
III and MIMIC-IV are not sufficiently long and hence GRU
can adequately capture the temporal features of EHR data.
Furthermore, we think even with positional encoding, it is
still hard to learn temporal information given that the inputs
of all time steps are noises.

In summary, we conclude that both the hidden state
critique and the conditional matrix contribute to the EHR
data generation in terms of overall disease distributions and
especially uncommon diseases.

6.5 Downstream Task Evaluation

In this experiment, we evaluate the synthetic data of GANs
for patient-level generation, i.e., WGAN-GP, TimeGAN, T-
CGAN, and MTGAN. As mentioned in Section 5.1, we select
three temporal prediction tasks as the downstream tasks: Di-
agnosis prediction, heart failure prediction, and Parkinson’s
disease prediction. Here, we choose two predictive models
as baselines of downstream tasks:

• Dipole [52]: It is a bi-directional RNN with attention
methods to predict diagnoses.

• GRAM [5]: It is an RNN-based model using disease do-
main knowledge to predict diagnoses and heart failure.

We first train Dipole and GRAM only using the training
data of MIMIC-III and MIMIC-IV as baselines (w/o syn-
thetic). Then, we generate synthetic EHR that are trained
with WGAN-GP, TimeGAN, T-CGAN, and MTGAN, re-
spectively. Here, the synthetic data have equal sample num-
bers to real training data. Next, we pre-train a new Dipole
and GRAM using these synthetic data, fine-tune them using
real training data, and finally test them on real test data. The
experimental results including baseline results, pre-training
and fine-tuning results, and their increments are shown
in Table 7. In this table, the synthetic data can enhance
the predictive models on almost all tasks, among which
MTGAN has the largest improvement on the diagnosis
prediction. We infer that the synthetic EHR data provide
more samples especially samples with uncommon diseases,
so that the predictive models can provide a better prediction
for them. Additionally, compared to other GANs, MTGAN
has the most predominant results on the Parkinson’s disease
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