This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380

LOGO IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Relative Q-learning for Average-Reward Markov
Decision Processes with Continuous States

Xiangyu Yang, Jiagiao Hu, and Jian-Qiang Hu

Abstract— Markov decision processes are widely used
for modeling sequential decision-making problems under
uncertainty. We propose an online algorithm for solving a
class of average-reward Markov decision processes with
continuous state spaces in a model-free setting. The al-
gorithm combines the classical relative Q-learning with an
asynchronous averaging procedure, which permits the Q-
value estimate at a state-action pair to be updated based
on observations at other neighboring pairs sampled in sub-
sequent iterations. These point estimates are then retained
and used for constructing an interpolation-based function
approximator that predicts the Q-function values at unex-
plored state-action pairs. We show that with probability one
the sequence of function approximators converges to the
optimal Q-function up to a constant. Numerical results on
a simple benchmark example are reported to illustrate the
algorithm.

Index Terms—Dynamic systems and control; Markov
processes; Online computation

[. INTRODUCTION

Markov decision processes (MDPs) provide an important
framework for studying sequential decision making problems
under uncertainty. For discounted MDPs, many solution al-
gorithms have been proposed, and there is a rich body of
literature on this subject (e.g., [1], [2], [3]). When the discount
factor is close to one and/or the system performance cannot
be easily quantified in economic terms, it is often convenient
and sometimes necessary to consider MDPs with average
reward criterion [4]. Example applications of average-reward
MDPs include the control of queueing networks [5], inventory
management [6], automatic guided vehicles scheduling [7],
and the optimization of networked systems [8]. Compared with
discounted MDPs, average-reward MDPs receive less attention
partly due to their analytical difficulties, such as the existence
and structural properties of optimal policies; cf. [6], [9]. In

The work of X. Yang was supported by the China Postdoctoral
Science Foundation under Grant 2023M732054, the Shandong Provin-
cial Natural Science Foundation under Grant ZR2023QG159, and the
Shandong Postdoctoral Science Foundation under Grant SDCX-RS-
202303004. The work of J. Hu was supported by the U.S. National Sci-
ence Foundation under Grant CMMI-2027527. The work of J.-Q. Hu was
supported in part by the National Natural Science Foundation of China
(NSFC) under Grants 72033003, 72350710219 and 71720107003.

Xiangyu Yang is with the School of Management, Shandong
University, Jinan, Shandong, P.R. China 250100 (e-mail: yangxi-
angyu@email.sdu.edu.cn).

Jiagiao Hu is with the Department of Applied Mathematics & Statis-
tics, State University of New York, Stony Brook, NY 11794-3600, U.S.A.,
(e-mail: jiagiao.hu.1@stonybrook.edu).

Jian-Qiang Hu is with the School of Management, Fudan University,
Shanghai, P.R. China 200433 (e-mail: hujg@fudan.edu.cn).

addition, approximately solving the optimality equation for an
average-reward problem in a model-free setting, e.g., when the
immediate reward and/or transition dynamics are unknown,
could also be very computationally challenging [10].

An effective class of methods for solving average-reward
MDPs is based on adapting and extending the Q-learning
algorithms [1] for discounted-reward problems. Early studies
in, e.g., [11], [12], have shown promising performance of
such an approach in a model-free environment. Reference
[13] introduces the relative value iteration (RVI) Q-learning
algorithm and provides the first convergence proof of Q-
learning for average-reward problems. The idea of the algo-
rithm is to approximate the RVI algorithm (see, e.g., [14],
[4]) using a stochastic approximation (SA) recursion and then
carry out Q-value updates by subtracting an offset that depends
on a predetermined reference state or set of reference state-
action pairs at each iteration step. Some recent developments
based on RVI can be found in, e.g., [15], [16], [17]. Another
class of algorithms directly learns the policy, i.e., the so-
called policy gradient methods [18], [19], which are essen-
tially simulation-based optimization techniques that work with
parameterized policies. Vanilla policy gradients require that
the system dynamics can be modeled or simulated and may
suffer from high variance in gradient estimation. Consequently,
their effective (online) model-free implementations often rely
on the use of Q/value-function-based methods. For a detailed
account of model-free algorithms for average-reward MDPs,
we refer the reader to [20], [21]. We remark that as noted in
[21], the majority of these algorithms have been developed
for finite (or countable) state space problems, and there are
few attempts aimed at addressing continuous-state MDPs with
average reward criterion.

In this paper, we present a new model-free algorithm for
solving a class of average-reward MDPs with continuous state
spaces. The algorithm is also based on RVI and shares some
similarities with the aforementioned RVI Q-learning method.
However, unlike RVI Q-learning (which relies on enumerating
all state-action pairs), in a continuous-state space, one must
instead consider compact approximations of the tabular repre-
sentation of the Q-function by working with only a countable
number of state-action samples. In addition, since it is not
possible for a state to be visited infinitely often along a single
sample trajectory, another difficulty that arises in a continuous-
state domain is how to obtain a reliable estimate of the Q-
value at a state-action pair in an online method such as Q-
learning. We address these issues through a novel combination
of interpolation-based function approximation with an online

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

averaging procedure adapted from the so-called shrinking ball
method [22]. In particular, compared with some of the existing
function approximation techniques, which often require the
approximator to be a non-expansion (e.g., [23]) or linear
in structure (e.g., [24]), an interpolation-based approximator
offers more flexibility and has the advantage of allowing the Q-
values at unvisited locations to be effectively predicted using
estimates at previously sampled state-action pairs that lie in
their vicinity, leading to reasonable control decisions even
at states that have not been visited thus far. The shrinking
ball method was originally introduced in [22] for solving
continuous (static) simulation optimization problems. The key
idea here is to incorporate this technique into Q-learning in
the spirit of [25] so that the Q-value estimate at a given
state-action pair can be continuously updated by averaging
the performance at all other pairs collected along a single
trajectory produced from a learning policy.

At each iteration of the algorithm, given a Q-function
approximator, an initial point estimate of the Q-value at the
current state-action pair is first formed by using a simulation-
based version of the average-reward optimality equation
(AROE). The estimate is then used in the asynchronous aver-
aging (shrinking ball) procedure to improve the Q-value esti-
mates at all other previously sampled pairs that are considered
to be sufficiently close to the current pair. These data are fully
retained and subsequently used in an interpolation-based fitting
strategy for constructing a new Q-function approximator. We
note that the update on the function approximator is only
carried out at certain iterations called “interpolation times,”
which occur at a frequency that decreases with the number of
algorithm iterations. Under appropriate conditions, we show
that the sequence of function approximators converges uni-
formly with probability one (w.p.1) to the unique optimal Q-
function, modulo an offset value that does not influence the
determination of the optimal policy; cf. [26].

Currently, the majority of techniques advocated in the
literature for solving continuous-state problems resort to some
forms of state space aggregation. Reference [27] discusses
upper bounds on the approximation errors of state space
aggregation. Reference [28] employs an adaptive aggregation
technique based on confidence intervals. Reference [29] con-
siders a weighted kernel function approximator using local
averaging methods. Other related work, although less relevant
to the average-reward setting, include, for example, the adap-
tive state aggregation method [30] and the nearest neighbor
regression method [31] for discounted MDPs. All these ap-
proaches require a finite discretization of the state space, which
could lead to computational difficulties, either resulting in a
solution that is not accurate enough or in a computing effort
that becomes excessively demanding. Some discretization-free
approaches are the recently introduced empirical relative value
learning (ERVL) [32] and approximate relative value learning
(ARVL) [23]. To the best of our knowledge, these algorithms
seem to be the only existing discretization-free methods for
average-reward MDPs with provable convergence guarantees.
Nevertheless, both ERVL and ARVL are offline techniques
that require the use of a large number of predetermined
transition samples in order to obtain a good approximation

of the value function. Our algorithm, in a sense, can also
be viewed as a version of (RVI) Q-learning with adaptive
state aggregation. However, it is a fully online, model-free
method that approximates the entire Q-function based on a
single sample trajectory produced from a learning policy, and
consequently can be applied when the transition dynamics are
either unknown or difficult to estimate.

The rest of this paper is organized as follows. Section II
gives preliminaries on the average-reward MDP model and
presents the proposed algorithm. In Section III, we analyze
the algorithm and prove its almost sure convergence. A simple
numerical example is provided in Section I'V. Finally, Section
V concludes this paper.

[I. RELATIVE Q-LEARNING FOR CONTINUOUS-STATE
AVERAGE-REWARD MDPs

A. Preliminaries

We consider an infinite-horizon average-reward MDP de-
scribed by a tuple (S, A,p, R), where the state space S is
a compact and connected subset of Euclidean d-space R?,
the action space A is a (discrete) finite set, p(-|s,a) is the
Markov transition density function on .S given a state-action
pair (s,a) € S x A, and R(-,-) : S x A — R is the
expected immediate reward function. For ease of exposition,
we assume that all actions are admissible at any state. We
consider a model-free setting, in which the expected reward
R(s, a) cannot be evaluated exactly and the transition density
p is also unknown, so only the transition samples are available.

Let IT denote the set of all stationary Markov policies, where
each element is a mapping 7 : S — Ay, with Ay being a
| A|-dimensional probability simplex, and 7(-|s) represents a
probability distribution on the action space A at state s. Under
a given policy 7, the process evolves as follows: given the
current state s; at time ¢, an action ay is first sampled according
to m(-|s;) and applied to the system, then a random reward
r(st,at,wt) is earned. Throughout the paper, we assume
R(st,at) = E[r(st,at,w;)] for all t, where w; is a random
vector independently drawn from some fixed distribution. Next
the system transitions to a new state ;41 ~ p(-|s¢, a;). The
long-run average reward under policy 7 is defined as

=
J™(s) == liTrgioréfTE{ Z R(s¢,ae) | so = s|,
t=0
where T' is the decision horizon, s is a given initial state,
and a; ~ 7(-|s;) for all ¢ > 0. The goal is to determine a
stationary policy 7* € II that maximizes J™(s) for all initial
states s € S.

It has been shown that under appropriate conditions (see,
e.g., [33], [6] and references therein), the optimal average
reward does not depend on the initial state s and satisfies the
AROE:

T+ V*(5) = max{R(s5,0) + Eyp o[V @)} (D

where V*(-) is a bounded real-valued function and J* is the
optimal average reward such that J* > sup, J™(s), Vs € S.
Any maximizer of the right side of (1) defines a stationary

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380

YANG et al.: RELATIVE Q-LEARNING FOR AVERAGE-REWARD MARKOV DECISION PROCESSES WITH CONTINUOUS STATES 3

policy that is optimal over all states, i.e., if an action a* ~
7*(+|s) satisfies

JT+V*(s) = R(s,a%) + Eyp(fs,a) [V (1))

then 7* is optimal and J™ (s) = J* for all s € S. Hereafter,
we suppress the subscript in the expectation for notational
convenience.

Since the function V* in (1) is unique up to a constant, we
focus on the relative value function V" (s) := V*(s) — V*(s9)
with V7 (s9) = 0, where sy € S is an arbitrary preselected
state. Therefore, the AROE can be expressed in terms of the
relative value function as

J+V(s) = maax{R(s, a) + E[V"(y)]}. (2)

Vs € 5,

Define the optimal Q-function as Q*(s,a) := R(s,a) +
E[V"(y)]. Then we can state (2) in the following equivalent
form:

T +Q(s,0) = Ris,a) + Elmax @ (5,0)] ©)

Note that since V" (s9) = max, Q*(so, a)—J* = 0, we clearly
have J* = max, Q*(s¢,a).

B. Algorithm Description

As in RVI Q-learning, our algorithm works with a learning
policy and uses the transition samples generated from the
policy to construct a sequence of interpolation-based function
approximators that iteratively approximates the solution to (3).
With a slight abuse of notation, we use {m;(-|s)} to present a
collection of prespecified learning policies, where ;(+|s) gives
the probability that an action should be selected when state s is
encountered at time ¢. Let {¢;.} be a sequence of interpolation
times at which the function approximator is updated, where the
index k is the number of updates. Let B(s,r) be an open ball
in R? with center s and radius 7. For a sequence of positive
real numbers {r.}, define L;(s;,a;) = 1{s; € B(s;,r+)} -
1{a: = a;}, indicating whether the current pair (s, a;) falls in
the neighborhood of a previously sampled pair (s;, a;), where
[< tand 1{-} is the indicator function. Whenever I;(s;, a;) =
1, we say that the neighborhood of (s, a;) has been visited at
time ¢. For any state-action pair (s;, a;) sampled at time [, let
Ne(si,ar) = Z;zlﬂ I;(s1, a;) denote the number of times the
neighborhoods of (s;, a;) have been visited between time [+ 1
and time t. We also let N} (s;, a;) = Zz':tk,l-s-l Ii(s;,a1) =
Nt(sl,al) — Ntkfl(sl,al) for all ¢ € [tk,1 + 1,tk}, which
represents the number of times the neighborhoods of (s;, a;)
have been visited since the most recent interpolation time prior
to time t.

Let Qi be the function approximator of Q* constructed
at the k-th interpolation time t;. For all ¢ € [tr—1 + 1,t],
the estimated Q-value at (s, a:), denoted by Qt(st,at), is
obtained using a simulation-based version of (3) with the
current approximation (J;_; replacing the true Q-function Q*,
that is,

Qt(staat) = 1(st, ar, w)
+ max Qr-1(8t+1,b) — max Qr-1(s0,b). “)

Construct O Construct O,
at the end of the (k —1)-th time interval) (at the end of the £-th time interval

| |

| | | | | | | T et

to-1 b, o+l +2 o -1 8, t,+1

k-th time interval

Update §, with the same O, ,
at every time step

Fig. 1. A graphical illustration of the timeline for the construction of the
sequence of Q-function approximators {Qg}. Note that Qx remains
unchanged between successive interpolation times for all k.

Next, in order to reliably estimate the expectation and the
reward R in (3), the point estimate Qt(st,at) is used in
an asynchronous averaging procedure to adaptively update
the Q-value estimates at all other state-action pairs that are
considered to be sufficiently close to (s, a;). Specifically, for
each previously sampled state-action pair (s;,q;), if a; = a
and s; € B(s;,r:), then the Q-value estimate Qt(sl,al)
is updated by incorporating the new information Qq(s;,as);
otherwise, it remains unchanged. This leads to the following
recursion:

Qi(st,) = (1 — af (s1,a1) (51, a1)) Q-1 (51, ar)
+ af (s1,a) I (s1,a1) Qe (¢, ar),)

where o (s;, ;) is the learning rate at time t. We assume that
the learning rate takes the form o (s;, a;) = f(N[F (s, a;)) for
some real-valued function f, that is, it is viewed as a function
of the number of times the neighborhoods of (s;, a;) have been
visited since the most recent interpolation time prior to time
t. Recursion (5) is essentially an asynchronous SA updating
scheme, in which the usual deterministic step-size is replaced
with a state-action pair-dependent random learning rate (see,
e.g., Chapter 7 of [34]).

The detailed algorithmic steps and a pictorial illustration of
the algorithm’s general structure are presented in Algorithm
1 and Figure 1. The algorithm uses a separate function
approximator (i (s,a) for each action ¢ € A to predict
the Q-values at unvisited state-action pairs. We require the
interpolation times to satisfy ¢t — tx_1 — o0 as k — oo so
that there is an increasingly large number of iterations between
successive updates of Qy(s,a); see Figure 1. Intuitively, as
more state-action pairs are collected over [tr—1 + 1,t;], the
Q-value estimates obtained in (7) will become more accurate.
This in turn allows the new function approximator Q(s, a) to
be constructed based on increasingly reliable data. Also, note
that there is a trade-off involved in choosing the shrinking ball
radius ;. A large value of r; helps to reduce the estimation
noise (i.e., through averaging a large number of state-action
pairs in (7)) but at the same time introduces a high estimation
bias, and vice versa. The idea is thus to carefully control
the decreasing speed of r; so that both the noise and bias
in the estimation can be eliminated by gradually sending 7, to

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Algorithm 1: Relative Q-learning for Continuous-State
Average-Reward MDPs

Input: Select a learning policy {7;}, an initial state
S0, interpolation times {t}, learning rates
{ak¥(s,a)}, shrinking ball radii {r;}, and a
reference state sy € S.

Output: The function approximator Q.

1 k<1t 0, Ay« 0
2 Qo(s,a) + 0,V(s,a) € S x A4
3 while the stopping criterion is not satisfied do
4 Choose an action a; ~ 7¢(+|s¢), obtain r(s¢, as, we),

and observe the next state s;41;
5 At+1 (*AtU{(St,at)};
6 Estimate the Q-value at (s, a;) as

Qt(sta at) — T(Sta ag, wt)
+ max Qr—1(5¢41,b) — max Qr—1(50,0); (6)

foreach previously sampled pair (s;,a;) € A; do

7 Update the Q-value estimate as
Q(s1,) < (1 — of (s, @) I (s1, 1)) Qe—1 (51, ar)
8 + af (51, @) Te(s1,a0) Qe (¢, ar); @)
9 end
10 if ¢ = t;, then
11 foreach a € A do
12 Construct Qx (s, a) by interpolating the data
{((s',a’),@t(s’,a')) 1 (s',d') € Ay, = a};

13 end
14 k+—k+1
15 end
16 t+—t+1
17 end

zero. We remark that in a finite-state space setting, each ball
B(sy, ;) will only contain the state s; itself (assuming that
the radius r; is small enough). Thus, the update (7) will only
be carried out when the same (s;,a;) pair is revisited at time
t, in which case (6) and (7) together becomes identical to RVI
Q-learning. Consequently, the algorithm can be viewed as a
generalization of RVI Q-learning to continuous-state spaces.

[1l. CONVERGENCE ANALYSIS

The convergence analysis is based on that of [25] with
appropriate modifications tailored to the average-reward set-
ting. We begin by introducing some notations. Define .#; =
o {s0, a0, wo, $1,a1,w1,- .., St,a:}. Let Ay(a) be the set of
sampled states contained in A; at which action a is taken. The
Euclidean distance between two states s, s’ € S is denoted by
d(s,s’), and for a set of states C' C S, the distance between
s and C is d(s,C) := infyeccd(s,s’). The volume of a d-
dimensional ball B C S is denoted as Vol(B). For any two
sequences of positive real numbers {a;} and {b;}, we write
a; = Q(by) if liminf; o a;/by > 0. Denote by ||-||tv the

total variation norm for finite signed measures. For a bounded
real-valued function g(z) over a set Z, define the span semi-
norm of g as ||g(2)||z = sup,ez 9(2) — inf.cz g(2). Note
that ||g(z)||z = 0 whenever g(z) is a constant function on Z.

We make the following assumptions on the MDP model
and algorithm parameters:

Assumptions:

Al Rpap = SUp; , , |7(s,a,w)| < co. R(-,a) is Lipschitz
continuous uniformlly in a, i.e., there exists a constant K i such
that |R(s,a) — R(s',a)| < Kgd(s,s'), Vs,s' € S, Va € A.
A2. (i) There exists a constant 3 € (0, 1) such that

sup la(ls,a) —q(:|s',a')lrv < 28,

(s,a),(s",a’)ESXA

where ¢ is the one-step transition kernel of the underlying
Markov chain.

(ii) There exists a constant K, such that [|p(z|s,a) —
p(z|s’,a)|dz < Kpd(s,s') forall a € A and s,5" € S.
A3. For every a € A, there exists an L(a) < oo such that
the function approximator Qx(-,a) is Lipschitz continuous
uniformly in &k with its Lipschitz constant bounded by L(a)
w.p.1.
Ad. The learning rate function satisfies the following condi-
tions: f(i) € (0,1) Vi, >0, f(i) = oo, and Y ;o) f2(i) <
0.
AS. There exist constants 7, ¥ € (0,1) such that

() (tp — tk,l)%t;w = Q(k¢) for an arbitrarily small
constant € > 0;

(ii) The sequence of shrinking ball radii {r;} is non-
increasing satisfying r» — 0 and 7, = Q(¢77);

(iii) The learning policy satisfies m;(als;) > o for all
a€ A, sp€S8, andt >0 wp.l.
A6. There exist a (deterministic) stationary policy p: S — A
and 0 € (0,1) such that for any d-dimensional ball B C S
with Vol(B) < 1, P,(B) > dVol(B), where P, is the
invariant probability measure of the state process under p.

Assumption Al has been previously adopted in, e.g., [23],
[35], [36], to deal with computational issues for continuous-
state MDP models. A2 involves regularity conditions on
the transition dynamics of the underlying Markov chain. In
particular, A2(i) implies that for any deterministic stationary
policy 4/, its associated t-step transition probability P}, (-[s)
converges geometrically to its unique invariant probability
measure P, in the sense that

IP3,(-]s) = P ()]lrv < 28° (8)

uniformly in s; see Lemma 3.3 on pp. 57 of [33]. Under Al
and A2, there exist a constant J* and a bounded function V*
satisfying the AROE (1) (Corollary 3.6 in Chapter 3 of [33]).
This further indicates the existence of an optimal stationary
policy by the measurable selection theorem. For more general
sufficient conditions that guarantee the existence of stationary
optimal policies for average-reward MDPs, we refer the reader
to, e.g., [6] and [37]. A3 requires the function approximator
to be sufficiently smooth to quantify the prediction error at
a given unvisited state-action pair based on information at

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380

YANG et al.: RELATIVE Q-LEARNING FOR AVERAGE-REWARD MARKOV DECISION PROCESSES WITH CONTINUOUS STATES 5

already sampled pairs. We remark that one potential limitation
of A3 is that it is a condition that depends on the algo-
rithm trajectory. Nevertheless, given that no prior knowledge
about the Lipschitz constants is assumed, this smoothness
requirement could be expected to hold by several interpolation
methods such as barycentric interpolation, spline, and kernel-
based approaches; see, e.g., [38]. A4 is the standard condition
on the learning rate (step size) used in the SA literature.
A5 includes some technical assumptions on algorithm input
parameters. In particular, A5(i) imposes the condition on the
growth rate of interpolation times ¢;. AS5(ii) characterizes the
decreasing rate of the shrinking ball radius r;. A5(iii) requires
the learning policy to be constantly exploratory and is satisfied
by widely-adopted e-greedy learning policies [39]. In view
of the ergodicity condition A2(i), A6 further requires the
existence of a stationary policy p, so that the Markov chain of
the state process under p is uniformly ergodic with an invariant
probability measure that is bounded away from zero.

Our main result, as stated in Theorem 1 below, indicates
that as the number of interpolations increases, the sequence of
function approximators {Q} will converge uniformly to the
optimal Q-function @Q* w.p.1, modulo a constant value.

Theorem 1 Suppose all conditions A1—A6 are satisfied. As
k — oo,

||Qk(57a) — Q*(S,G)HSXA —0 w.p.l.

Note that from (2), the optimal action a* at any state s is
obtained by a* = argmax, @*(s,a), so adding a constant
to Q* will not have an effect on the choice of the optimal
action a*. Thus, when the algorithm terminates, we can use
the last function approximator (), to approximately determine
the optimal strategy.

The proof of Theorem 1 relies on a series of intermediate
results (Lemmas 1—8 below). We begin with a preliminary
result that shows the Lipschitz continuity of the optimal Q-
function.

Lemma 1 If Al and A2 hold, then for every a € A, the
optimal Q-function Q*(s,a) is Lipschitz continuous with
Lipschitz constant Ly := (Kgr + cK,), where c is some
positive constant.

Proof: Note that under Al and A2, there exists a constant
¢ such that |V7(s)| < ¢, Vs € S (see Section 3.2 and 3.3 of
[33]). Therefore, for each a € A, we have for any s,s’ € S,

|Q*(S’ a) - Q*(S/a a)'

< |Rs.) ~ Bs)| + [[V @lplls.) — plels' |z
< Kgd(s,s") + cKpd(s,s')
— Lod(s, s,

and the Lipschitz continuity of Q*(s,a) follows. [|
Lemma 2 shows that the neighborhoods of each sampled
state-action pair will be visited infinitely often (i.0.) from

time t;_1 + 1 to time t; as k — oo. Therefore, the Q-value
estimate is updated increasingly frequently during the time
interval [tx—1 + 1,tx] as k becomes large.

Lemma 2 If A2, A5, and A6 hold, then for each state-action
pair (s;,a;) sampled at time I,

P(kILI&(Ntk(sl,al) — Ny, (s1,a41)) = oo) =1.

Proof: For the policy p given in A6, we have from (8)
and the properties of the total variation norm that |P!,(B|s) —
P.(B)| < pt forall s € S, ¢t > 0, and any d-dimensional
ball B C S with Vol(B) < 1. It follows that P’;(B|s) >
P.(B) — gt > éVol(B) — B'. For a sufficiently large ¢,
consider the ball B(s;, ;) with cgt=¢ < Vol(B(s;, ;) < 1,
where cp is some positive constant (A5(ii)). Since 8¢ — 0
at a geometric rate, there exists a positive integer m such
that for all s € S and t > m — 1, P! (B(s;,71)]s) >
§Vol(B(s;,r¢)) — $6Vol(B(sy, 1)) = £6Vol(B(s;, 1)) > 0.
Hence, for any state s;_,,+1 encountered at time { — m + 1,
under policy u, we have

1
P(s: € B(si,7t)|St—m+1) > §5V01(B(sl,rt)).

Now for a fixed s;_,,+1, consider any sequence of actions
{Gt—m+1,0t—mt2,--.,0;_1} € A™~! generated under u. By
A5(iii), the learning policy {m;} will take the same sequence
of actions w.p. at least ¥*~!. Thus, under {7}, we have
P(s; € B(s1,7¢)|8t—m+1) = 9™ 1(6/2)Vol(B(sy,7¢)). This
in turn implies that for all ¢ > m,

P(s¢ € B(s1,7¢)|Ft—m)
= P(s¢ € B(s1,74)|S¢—m, Gt—m)

= / P(st € B(s1,7t)|St—m+1)0(dSt—m+41|St—m, Gt—m)
S
1

> §ﬂ7"_15V01(B(sl,rt))
1

Z i'ﬂmil(sCBti’yd.

For notational brevity, define ¢’ := %197”6. Further let
Xk = Ltk_t?’fni’l_lj and p = dep(xr + Dt — 2Ink —
2V A Ink +1n® k, where A, = (xx + 1)(1 — &ept;,).
We consider the following probability for a sufficiently large
k (thus t is also large enough):

P(Nt, (s1,a1) — Ney,_, (s1,a1) < p)
Xk
< PO 1{sty—im € B(s1, 7t —im) Nty —im = ar} < pi)
1=0
Xk
P(Z sty —im & B(St, Tty —im) U Gty —im 7 a1}

=0

> Xk +1—pr)
E[e? i L{sty—im ¢B(317Ttk—im)u<ltk—rim#az}]
- eAMXk+1—pk)
E[e? Sk Hse—imEB(si,rey,)Uatk—m#az}]

- e xr+1—pk)

(©))

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

for any given constant A > 0, where the second inequality
follows from Markov’s inequality and the third inequality is
because the shrinking ball radius is non-increasing. Note that

E[e)\ﬂ{stk ¢B(s1,7t,,)Uat, #ai } |=gztk—m]

= (6)\ - 1)P(Stk ¢ B(Slﬂrtk) U ay, 7£ al|§5tk_m) +1
= (e* = 1)[1 = P(s, € B(si,r0,)|F1,—m)
x P(at, = ailst, € B(si,71,,)s Fto—m)] +1

< (e =1)(1 = &epty ™) + 1.

A bound on the numerator of (9) can then be derived as
follows:

E[(i)‘ P ﬂ{stk—im¢B(Sl77“tk)Uatk.—im7$az}]
_ E[e’\ X sty —im@B(s1,7e),)Uas, —im#ar}
~ E[e)\ll{stkQB(sl,nk)Uatkyéal}‘cgztk_m]]

< (€~ 1)1 - Fepty) +1)
X E[e>‘ SR sty —im@B(s1,me,)Uatk—im?éal}}

—1)(1 = epty, ") +1]

)(1— 8 epty ") +1])

< eXP((Xk +1)(* = 1)(1 = ept),

where the last inequality is due to the fact that In(z +1) < z
for x > 0. Plugging the above into (9) and optimizing the
bound with respect to A, we have

P(Ntk(slaal) - Ntk71(3l7al) S pk) S eBk(l*iHﬂ k),

where By = xx + 1 — pr. Since pr < §cp(xr + l)t,c ,
we have 0 < é}’: < 1. Applying the inequality that Inz <
(x—1) — 2(z — 1)% for z € (0, 1], we obtain

_ (Br—Ayp)? 1

2By, -
k2’

P(Ntk(slval) - Ntk71(slval) < pk) <e

It follows that

Z P(Ntk (Sl7 al)
k=1

which implies that P(Ny, (s, a1) — Ny, _, (s1, a1) < pg, 1.0.) =
0 by the Borel-Cantelli lemma (see, e.g., [40]). Finally, by
AS5(i), it can be observed that pr, — oo as k — oo. This
completes the proof.]

Lemma 3 indicates that for every action a € A, the
collection of states visited up to time tj, i.e., Ay, (a), will
become dense in S as k — oo.

Lemma 3 If A2, A5, and A6 hold, then for every a € A, we
have

= Ni,_, (s1,a1) < pr) < 00,

P(lim supd(s, Ay, (a)) = 0) =
k—oo se 8
Proof: Let € be small enough such that Vol(B(v,€/2)) <
1 whenever v € S. Since S is compact, we can find a finite col-
lection of states {vy,...,v,} such that S C U7_, B(vj,€/2).
As in the proof of Lemma 2, there exists a constant T such

that P(s; € B(vj,€e/2)|Fi_p) > 9™ 1ocp(e/2)? and
min, m(als;) > O for all t > T. Let £, = |%=2=L] For

a sufficiently large k (thus t > T'), we have

P(supd(s, A¢, (a)) >
seS

€)=P(3s" €S, d(s', Ay, (a)) > ¢)

(Els'ES B(s',e) N Ay, (a) = 0)
(U" B(vj,e/2) N Ay, (a) = @))

<ZP (vj,€/2) N Ag, (a) = 0)
= ZP((SO ¢ B(vj,e/2)Uag #a)N

(Stk—l ¢ B(vj76/2) U Aty —1 7é a))

< D> P((sta-1 ¢ B(vj,€/2) Uay,—1 # a)

3

n (Stk—l—m ¢ B(Uja€/2) Uay,—1-m 7é a)
N (St,—1-2m & B(vj,€/2) Uay,—1-2m # a)
N N (Ste—1—tm & B(vj,€/2) Uay, —1-0ym # a))

= [1—P(st,—1 € B(vj,€/2) Nay,—1 = al
(Sty—1—-m & B(vj,€/2) Uay,—1—m #a)N...N
(stkflffkm ¢ B(vjv 6/2) U agy,—1—tym 7& a))]

X P((sty—1-m & B(vj,€/2)Uay,—1-m #a)N...N
(Stk—l—ek"l ¢ B(vja 6/2) Uag, —1—t,m 7é a))

Z [1—dcple/2)4]

X P((sty—1-m & B(vj,€/2) Uay,—1-m #a)N...N
(Stk—l—ékm gé B(Uj’ 6/2) Uat,—1—t,m 7é a))

n L
< Z H[l —&'cp(e/2)]

j=1i=0
n Ly
< Zexp (- 25/03(6/2)d)
j=1 i=0

=nexp (—0'cp(e/2) (s +1)).

It is easy to see that Y .- P(sup,cgd(s, Ay (a)) >
€) < oo. Thus, the Borel-Cantelli lemma implies that
P(sup,cg d(s, A, (a)) > €, i.0.) = 0. Finally, the result is
proved because € can be arbitrarily small. []

Next, we show that both the point estimate Q,(s,a) and
the Q-function approximator Q(s,a) constructed by the al-
gorithm remain bounded at all times.

Lemma 4 If Al and A3 hold, then max,e,, max,|Q;(s, a)|
and sup, g max,|Qx (s, a)| are bounded for all ¢ and k& w.p.1.

Proof: For notational convenience, let D; =
max,ca, maxy|Q;(s,a)|, and denote by D the diameter of
S, ie., D:=supg scgd(s,s). By A3, for any s,s" € S and
a€ A, wp.l

|Qk(87a)| < ‘Qk(s/’a” —i—Ld(S,SI)

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380

YANG et al.: RELATIVE Q-LEARNING FOR AVERAGE-REWARD MARKOV DECISION PROCESSES WITH CONTINUOUS STATES 7

< |Qk(s',a)| + LD,

where L := max,ca L(a) < co. Furthermore since Qk(s, a)
is constructed by interpolating {(s a) th s’ a)
(s',d') € Ay,,a’ = a}, we have sup g maxa|Qk(s a)| <

Dy, + LD. From (6), the point estimate obtained at any time
t > 0 satisfies

IQt(St; Clt)|

S Rmaw + |mbaXQk71(5t+17b) - m?Xrifl(S(h b)‘

< Rz + mz?X |Qk—1(5t+1a b) - Qk—1(507 b)|
< Rma:r: +LD.
This, together with (7), shows that \Qt(sl, a)] <

max{D;_1, Rmnaz + LD} for every (s;,a;) € A4, and thus
Dt S max {thlv Rma:r + LD} .

Note that by construction, Qo(s,a) = 0 for all (s,a) €
S x A. Clearly, Dy < Rypaz + LD, and a simple induction
shows that D; < Ry + LD for all £. It follows that
sup,cgmaxy|Qr(s,a)| < Dy, + LD < Ryap + 2LD for
all k. This completes the proof.]

Our main result is to show that the sequence of function
approximators {Qy} converges to the optimal Q-function Q*
under span semi-norm. Since @) is constructed using point
estimates th, we proceed by investigating the convergence
properties of the iterates generated by (6). For each (s;,q;) €
Ay, and k € {1,2,...}, we consider the error term

Qt(slval) - Q*(Sl7al)7

Also let n¢(s;,a;) = a¥(s;,a;)I;(s;,a;) for notational conve-

nience. Hence by subtracting both sides of (7) by Q*(s;, a;),
we obtain the following recursion:

(s, 1) = Vt € [tr_1 + 1, 1]

(1= me(s1,ar))ee—1(s1, ar) +me(s1, ar)
X (8¢, ap, we) + mngQk-—r(StH, b)
Q" (s1,)]

= (L —ne(si,a1))er—1(s1, ar) + mi(s1, ar)
X (By(s1,a1) + Wi(se, ae) + Hi(se,a4)),

ee(si, 1) =

— max Qr—1(s0,b) —

where Bi(s;,a;) = QF(st,a:) — Q*(s;,a;) is the
bias caused by using the shrinking ball strategy,
Wi(st,ae) = r(st,ap,wy) + maxp Qp—1(s¢41,0) —

El[r(s¢, ar,wy) + maxy Qr—1(y,b)] is a noise term where
y ~ p(-|st,at), and

Ht(stvat)
= E[r(st, ar,wi) + m?x Qr_1(y,b)]
— (E[r(s¢, ag,wy) + ml?XQ*(y,b)]

— max Qr—1(s0,b)
— ml;axQ*(so,b))
— [px Qi1 (9:) — max Qv)yl)

— max Qr—1(s0,b) + maxQ (s0,b)

is the approximation error caused by replacing Q* with
Qr—1. To see how this error propagates between successive

interpolation times, we expand the recursion for e;(s;, a;)
starting from time ¢;_; + 1. This yields

Uc(ty i tg—1) + Up(ti : ti—1)
+ Uw(tk : tk—l) + UH(tk : tk—l),

e, (81, a41) =

where we have defined

tr
Uty ste1) = [[T (0= miCsi,a)er, (s, 02),
i=tp—1+1
UB(tk . tkfl)
tr tr

= Z [H (1 = m;(st, an)mi(s1, ar) Bi(si, ar),
i=ti_1 41 j=it1

Uw(tk : tk—l)

= > [T =ni(si,a))ni(si, a)Wi(si, i),
i=tp_1+1 j=it1

Ub(ty : tg-1)

= Y LT oo bCon, o) i, o)

i=th—141 j=i+1

The convergence properties of the terms Uc(tg : tx—1),
Up(t : tp—1), and Uy (tg : tp—1) are presented and analyzed
in Lemmas 5, 7, and 8 below.

Lemma 5 If A1—A6 hold, then for each state-action pair
(siya1) € Ay, Uc(ty s tg—1) — 0 as k — oo w.p.l.

Proof: By Lemma 4 and Lemma 1, we have

let,_i (s1,a1)] < 2Rpmaz + LD + c. Thus,

|U5(tk . tk_1)|
123
=[J] @ —ni(s,a)let,_, (s1,a)]
i=tp_1+1
123
Z ni(é‘h al))(szaz + LD+ C)-

i=tr_1+1

< exp(—

Notice that

123
ni(se, ar) = Z FONF (st a)) Ti(s1, a)
i=tr_1+1 i=tr_1+1
Ny, (s1,00) =Ny (s1,a1)
= > £G)-
j=1
By Lemma 2 and the condition Y .o, f(i) = oo (A4), we
obtain |U.(t : tx—1)| — 0 as k — oo w.p.1 . [|

The analysis of the remaining results relies on the following
intermediate result.

Lemma 6 Let A4 hold. Then for each state-action pair
(s,a) sampled by the algorithm and any positive in-

teger L 325y [Tjmipr (1= (s,a)Imi(s,a) < 1 for

all ¢t > [. Further, if A2, A5, and A6 hold, then
St [T (U= ny(s,0)] miCs,0) = 1 as b = o0
w.p.l.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Proof: Let Yy = Z’L l+1[H§‘:i+1 (1 —mnj(s,a))lmi(s,a)
for notational convenience. First, we show Y; <1 forall ¢t > [
by induction. When ¢ = [+ 1, it is clear that ¥; < 1. Suppose
Y; <1 for some t > [, we obtain

t+1 t+1
}/H-l = Z [H (1 —nj (57a))}m(57a)

i=I41 j=it1

= 41(8,a) + (1 = m41(s, a))

< Y LT @=nj(s.a)ni(s,a)
i=l+1 j=i+1
=Ne1(s,a) + (1 = ni11(s,)Yy
<1,

where the inequality follows from the induction hypothesis.
Thus we have Y; < 1 for all £ > [.

Next, let X; = Zz —tp 141 |:HJ z+1(1 - 77]‘(57@))] 771’(37 a‘)
and A; = | X; — 1| where t € [ty—1 + 1,%]. Using a similar
argument as above, we can easily obtain that X;, = n, (s, a)+
(1 =, (s,a)) Xy, —1. It follows that

Atk = Atkfl(l — Mty (57 a))
tr
=Dy [(U =nils,a))
i=tp_1+2
tr
< Atk—1+1 exp(— Z ni(87 a’))
1=tk_1+2
123
= Atk_lJrl exp(_ Z ni(sﬂa) +77tk—1+1(87a))
i=tr_1+1

Ny, (s,a)thk_1 (s,a)

>

j=1
Niy (5,0)=Ni, _, (5,0)

D

Jj=1

= Atk71+1 exp(i f(j) + ntk—1+1(57 a))

< exp(—

fG)+1),

which tends to zero as k — oo w.p.l by Lemma 2. This
completes our proof.]

Lemma 7 If A1—A6 hold, then for each state-action pair
(sl,al) S Atk—l’ UB(tk : tk—l) —0as k — Wpl

Proof: From the definition of B;(s;, a;) and Lemma 1,
we have

Ii(s1,a1) | Bi(s1, ar)| < Ii(s1, a1)Lod(ss, s1) < Lars,

which tends to zero as ¢ — oo (due to k — o0) by AS5(i).
Hence for any € > 0, there exist constants N > 0 and M > 0
such that I;(s;, a;)|Bi(si,a;)] < €/2 forall k > N and i €
(tx—1 + M, ty]. Thus we obtain that for a sufficiently large k
w.p.1,

|UB(tk : tk_1)|
tr tk

= > [T @ =ni(sia))ni(se, a)|Bi(si, ar)

i=t_1+1 j=i+1

tk—1+M
< S T @ =nlse,a))milse, a)l Bilsi, ar)|

i=th_1+1 j=it1

€ 123 123
T3 Z [H (1 —mnj(si,a)mi(s1,)
=ty 1+ MA1 =it

te—1+M 4y .

< > LI = miCsian)ina(ses an) | Bi(se, an)| + 5

i=tp—1+1 j=i+1

tp—1+M th €
< | Z exp(— Z Uj(sl,al))|Bi(5laal)|+§
1=trp_1+1 Jj=i+1
tr €
< M exp(— Z 1;(s1,a1)) (2 Rmaz + 2¢) + 9
Jj=tr—1+M+1
ZQM(Rmaat‘i’C)eXp(* Z f Slaal)) (Sl7a’l)
J=tr—1+1
tk—1+M €
+ D FINFGsna)L(sna) + 5

j=tk—1+1
< 2M(Rpaz + €)
Ny, (s1,01) =Ny (s1,a1)

2.

j=1

x exp (- FG)+M) + 5

<e

—)

where the second inequality comes from Lemma 6, the
second last inequality is due to f(NF(s;, ar))l;(s1,a1) < 1,

and the last inequality comes from the assumption

A4 and Lemma 2 that implies 2M(Ryax +
Niy (s1,a1) =Ny, (1,0 .

¢) exp(— Yoy b T k) L M) < e/2 holds

for k sufficiently large. Finally, since € is arbitrary, we have
|Up(ty : tg—1)] = 0 as k — oo w.p.1. [|

Now, we show the convergence of the noise term Uy (¢
th—1)-

Lemma 8 If A1—A6 hold, then for each state-action pair
(si,a1) € Ayy_,, Up(tg s t—1) = 0 as k — oo w.p.l.

Proof: For any k > 1, consider the sequence M; :=
ZzthlH ni(s1, a1)Wi(s4,ai), YVt € [tg—1 + 1,tx]. Note that
ne(s1,ar) is F-measurable, we thus have

t—1

Z ni(s1, ar)Wi(si, ai) + ne(s, ar)

i=tp_1+1
X E[r(st7 ag,we) + maka,l(stH, b)

— E[r(st, at, ws) —l—maka 1(y,b)]|#]

E[Mt‘gzt] -

= M;_+.
In addition,
t
EIMZ) =E[(D milsi,a)Wi(si,a1))?]

i=tg—1+1

t
=E[Y ni(s,a)Wi(si,ar)],
i=tp_1+1

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380

YANG et al.: RELATIVE Q-LEARNING FOR AVERAGE-REWARD MARKOV DECISION PROCESSES WITH CONTINUOUS STATES 9

where the last step follows from the fact that for all ¢ < j, the
Cross terms
Eni(s1, ar)n;(s1, a)Wi(s1, ar) Wi (s1, ar)]
= E[ni(st, an)nj (1, a) Wilsi, a) E[W; (s, az)| 7]
=0.

By Al and Lemma 4, we have |[Wi(s,a)] < 4(Rmnaz +
LD) for all ¢ and (s,a). Consequently, due to the condition

Yooy F2(5) < oo (A4),

t
E 77 Slyal

i=tr_1+1
Ni(si,a0)—Ney _ (s1,a1)

E[M?] < 16(Rpax + LD)?

— 16(Rymas + LD)?E] 2]

< 0.

Hence {M;} is an L2-bounded martingale.

Recall that ¢, — tx_1 — oo as k — oo. Thus, according
to the martingale convergence theorem, for any € > 0, we
can find constants K and 7T such that for all k¥ > K, there
exists a finite random variable M, satisfying |M; — M| < €,
Vt € [tk—1 + T, tx] w.p.1. Thus for any k > 1, we have

Uw(tk : tk—l)

tr tr

Z [H (1 = m;(s1,a1))]mi(s1, 1) Wi(si, a;)
i=t_1+1 j=i+1

tr

H (L =m;(si,m))
j=tr—1+1

tr

< S — L

ni(s1, ar)Wi(si,a;)

i=t_1+1 Hj:tk,lﬂ(l —n;(s1,ar))
1 &
=— > bmi(si,a)Wilsq, i),
b =ty +1
where b, (= = L . It can be observed that

G=tp g +1(1=m5(st,a1))
0 < b; < biy1 and b; %OoaStk*tk 1 — oo (due to k —

oc). Based on the fact that 1%, ., bamalon.a)Waleias)
M, < oo for all k£ w.p.1 and applying the Kronecker s lemma

(see, e.g., [40]) in a path-wise manner, we obtain

1 &
> bimi(si, a)Wilsi, ai) = 0

i=tr_1+1

by,

as k — oo w.p.1, which completes our proof.]
Finally, we are ready to present the proof of the main
convergence result Theorem 1.

Proof of Theorem 1 By the definition of @Q*(s,a) and
Lemma 4, we have sup, g max,|Q*(s,a)| < Rpae + ¢ and
SUp, e s Max,|Qr (s, a)| < Rymar +2LD, Vk > 0. Hence
1Qk(s,a) — Q" (s, a)||3x,4
= sup max(Q(s,a) —
(

Q*(s,a))
Q" (s, a))

ses @

— inf min(Qk(s,a) —

seES a (10)

Q" (s, a)|
< 2(2Rpas + 2LD + 0).

< 2supmax|Q(s, a) —
seS @

Next, we proceed by using an inductive argument and suppose
that on each sample path w, there exists a constant G and
time 7; > 0 such that ||Qx(s,a) — Q*(s,a)|lsxa < G
for all k& > 7;. In what follows, we show that we can
find another time 7;4; > 7; and a constant { € (0,1)
satisfying [|Qr(s,a) — Q*(s,a)||sxa < (G for all k > 7;44.
Repeating this argument in turn shows the convergence of
1Q(s,a) — Q(s,a) x4 to 0.

By A2(i), there exists a positive constant /3’ such that
B+ B < 1. Let r ﬁGLQ)WheI'GSG (0,1 —
B — p') is a given constant. Define the event Q, =
{limg— 00 sup, d(s, Ay, (a)) = 0}, Ya € A. For each sample
path @ € NgecaQq, there existis some 7' such that S C
Usea, ,(@)B(s,7), Va € A. Let 7 = max{7’,7;}. Clearly,
S C UTSGAtT (a)B(s,r) for any a € A.

For any state-action pair (s,a) € A;_ and for all k£ > 741,
consider the recursion

Ety, (57 a’) = (1 = Mty (Sv a))etk_l(s, a) + Nty (Sa a)
X (Btk (87 CL) + Wtk (Stlc7a’tk) + Htk, (Stk7atk:))
=Uc(ty : tg—1) + Up(tg : ti—1)

+ Uw(tk : tk—l) + UH(tk : tk—l)-

Let Q. = {limk_moUE(tk tk—l) = O}, Qsp =
t

{limy, 0 Zz Lo 1+1[jk:i+1(1 - 77j(37a)) i(s,a) = 1},

QB = {hmk_mo UB(tk tk—l) = O} and QW =

{limg— 00 Uw (t : t—1) = 0}. From Lemmas 5—8, for each
sample path @ € Ngecaflq N2 N, N2 NQyy, there exists
an interpolation time 7/, > 7 such that for all (s,a) € A¢,
and k > TJ’-H,

et (s,a)
<99 S (] - nsa)nisaHs.0)
i=tk_1+1 j=i+1
and
et (s,a)
> —% + Z [H (1 =n;(s,a))]ni(s, a) Hi(si, a;).

i=tp_1+1 j=it1

Next for any s € S and b € A, denote s, =
argmingca, (5) d(s,s’). Since S C Ugep,)B(s',7), we
have d(s,sp) < r. It follows that Qx(s,b) — Q*(s,b) =

Qr(s,0) — Qr(sp,0) + Qr(sp,0) — Q" (sp,b) + Q" (sp,b) —
Q*(S7b) = Qk(sab) - Qk(Sb,b) + th (Sb,) Q (Sb7b) +
Q*(sp,b) — Q*(s,b) for all k > 7/, + 1, where in the last

step we have used the fact that Qy(sy, b) = Qy, (sp,b) due to
the interpolation property of (). Hence we have

Qk(87b) - Q*(S,b)
S |Qk(8ab) - Qk(slﬂb)‘ + th (Sbab) - Q*(Sb7b)
+ Q" (56, 0) — Q" (s,)|

G
S(L-i-LQ)T"‘F%

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380

10 IEEE TRANSACTIONS ON AUTOMATIC CONTROL
SR < b) — Q*(y.b)]d
+ Z [H (1 - nj(sba b))]nz(sln b)HZ(S“ ai) < /S+ sl;p m?X[Qk—l(ya) - Q (y7)] v
i=tp_141 j=it1 . .
" - [infmin(Quns (5.) ~ Q" (3.l

Qr(s,b) — Q" (s,b)
> —|Q1(5,0) — Q(sp,b)| + Qr, (55,b) — Q" (s, b)
— Q" (sp,b) — Q" (s,0)]

Z *(L‘FLQ)T* %

ty

+ > [T (= mjlse,0)nmi(ss, b)Hi(si, as).

i=tr_1+1 j=i+1
This suggests that

supmax(Q(s,b) — Q*(s,0)) < (L + Lg)r + §+
ses b 4

t tk

Z [H (L =mny(s"sa")NIni(s', a") Hi(ss, a:)

i=trp—1+1 j=i+1
(1D

max
(s',a") €A,

and

inf min(Qx(s,)~ Q*(5,0)) > (L + La)r — 57+

tr tr

S LT G =ni(s',aNmi(s' a) Hi(si, ai).

i=tp_1+1 j=it+1

min
(s',a")EN:,
(12)

Next we derive a bound for ||Z§":'tk_1+1[l_[§’“:i+l(1 -

n;(s,a))ni(s,a)H;(s;,a;)|a,, . To this end, we note that for
any two state-action pairs (s’,a’) and (s”,a”) in S x A and
for any k£ > 0 and ¢ € [tr—1 + 1,11,

Hy(s',a') — Hy(s",a")

= /[mgx Qr-1(y, b) — max Q" (y, b)]g(dy|s', a')
[l Qus (0:8) ~ max " v sl)

= /[mgx Qi-1(y,b) — max Q" (y, b)|v(dy),

where v is a finite signed measure on S defined by v(-) :=
q(-|s’,a’) — q(-|s",a”). By the Hahn-Jordan decomposition
theorem, there exist two disjoint measurable sets S and S~
with ST U S~ = S such that

[Vllrv = v(ST) = v(S7) < 28,
where v(ST) > 0 and v(S~) < 0 (by A2(i)). On the other

hand, since v(S) = v(S*) + v(S™) = 0, we have that
v(ST) < 8. It follows that

/[mgx Qr—1(y,b) — max Q*(y, 0)|v(dy)
=/ [max Qr—1(y, b) — max Q*(y, b)ldv
S+
4 [max Quea(y:) — mpx @y D)l

T /S infminlQu- (4, 8) — Q"(v. bldv
4 /7 ir;f Inbin[Qk_1(y, b) — Q" (y,b)]dv
<v(S)Qr-1(y,b) — Q" (y,b)llsxa
+ inlf mbin[QkA(y, b) — Q" (y,b)] - v(S)
< BG.
Therefore,
Ht(S/, a/) - Ht(sﬂa Cl//)
_ / [max Qi1 (y, b) — max Q" (y, H]w(dy)
< BG.

From the arbitrariness of (s’,a’) and (s”,a”), we know for
all t > 0,

[Hi(s,a)l[sxa < BG.

We now use (13) to establish a bound for

(13)

Tk tr

> [T = ni(s,aDimi(s, a)Hi(si ai) |, -

i=tp_1+1 j=i+1

By Lemma 6, the limit of the sequence

[5 (] a-neamisal

i=tp_1+1 j=i+1 k=7l +1
is 1 for all (s,a) € A_. Thus there exists an interpolation time
Tj+1 > T/ such that for all £ > 75, and any (s,a) € A,

tr tr
Y [T @ =ni(s,a)imi(s,a) — 1]
i=tp_1+1 j=i+1
< ﬂ/G
= IX 2Rymae 1 2LD +0)

It follows that for any two state-action pairs (s’,a’) and
(s",a") in Ay,
123

ty
> LI a=m(s s a))nas’ a))
i=tp_1+1 j=i+1
tr tr
— > LT =" a")lmi(s”, a")]
i=tp_1+1 j=i+1
tr tr
> LI a=mi(s'a))mis',a') = 1
i=tr—1+1 j=i+1
tr tr
+1= Y] =", a")mi(s", a")]
1=tp_1+1 =141
G
2 X (2Rpmaz +2LD + ¢)’

IN

IN

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380
YANG et al.: RELATIVE Q-LEARNING FOR AVERAGE-REWARD MARKOV DECISION PROCESSES WITH CONTINUOUS STATES 11

Note that since H; is fixed during time interval [tx_1 + 1, tx]
(due to using the same function approximator), we denote it
as Hj. Therefore, when £ > 7,11, we have

tr t
> LT (=, a)lmi(s,) Hi(si, ai) | a,,
1=tp_1+1 j=1+1
tk tr

= max o LTI =nits,a)nils, a) He(si, ai)
SRt 41 =it
tk tr B
~ min Y (] (- (s a)(s,0) Bi(sia)
(s:0)€Mer ;S 1 j=it1
< max
(s,a)EAL,
B tr tk
sup Hk(slaa/) Z [H (1 77]j(saa))]7]i(57a)}

(s’,a’)ESXA i=tn 141 j=itl

_(Svg)l’ierfl\w
inf Hha) S [T - s a)ntsa)

’ ’
(s’,a’)ESXA ity 41 =it

< max su Hi(s',ad') — inf Hp(s',d
T (s,a)EA, {((s’,a’)EPSXA k(’) (s',a’")eSXA k())
tr tk

x> [T @ =nils,a)lni(s,a)}

i=t_1+1 j=i+1

+|| inf Hi(s,a")
(s',a’)ESXA
tr tk
< S T - msans.al,,
i=tp_141 j=i+1
< BG inf Hy(s',d
<B +|(S,’a}§1€SXA k(s',d')|
123 123
<> [TT @=ny(s,a)ini(s, a)lla,.
i=tr_1+1 j=i+1
< BG

B'G
2 X (2Rpmaz +2LD + ¢)
(14)

+2 X (2Rmax +2LD +¢) X
= (B+8)G.

By combining the result with (10), (11) and (12), we obtain
that

[Qr(s,0) — Q"(s,b)[lsxa

= supmax(Qr(s,b) — Q*(s,b))
ses b

- suelg mbin(Qk(Sa b) - Q* (Sv b))

<2(L+ LQ)T + %
tr tr

+ 1l Z [H (1 —=n;(s,a)]ni(s, a)H;(si, i) a,,
i=t_1+1 j=i+1
—ea+ S LTI (= nsls a)lmts,) HiCsis).,

i=tp—141 j=i+1

<(E+8+4)G,

where the last inequality comes from (14).

By Lemma 3, 5, 6, 7, and 8, we have P(Nacae N Q- N
Qep NQpN Q) = 1. Let (= {+ S+ F/, then we have
|Qr(s,b) — Q*(s,b)||sxa < (G for all k> 7;41 w.p.1. This
completes our proof.]

IV. AN ILLUSTRATIVE EXAMPLE

We illustrate our algorithm by applying it to a machine
replacement example. The original problem is frequently used
as a testbed to evaluate the performance of algorithms for
discounted MDPs (see, e.g., [41], [42], [43]) and is adapted
to an average-reward setting in [32] and [23]. We consider
a four-dimensional version of the problem, where the state
variable s = (s1, $2, 83, 84) measures the accumulated uti-
lization of four independent machines. For each machine,
there are two admissible actions: keep the current machine
(K) or replace it with a new one (R). Thus the action set
A = {(a1,as,a3,a4) € (K x R)*} contains 16 different
actions. For each machine i € {1,2,3,4}, the transition
density is given by

@i exp(—pi(s; — s1)), 85 > si,0; = K;
p(si]si,ai) = < @i exp(—;is;), sy >0,a; = R;
0, otherwise.

The immediate reward produced by any machine ¢ is given
by r(s,K) = k;s; and r(s,R) = ;. Thus, the AROE for
machine 7 can be stated as follows:

J + v (s) = max{Ty:, Tr:},
where we have defined

(o)
Tosim =i+ [prexp(—ilsl = s)vi (5)ds!
0

Ty = s+ / i exp(—pist Yol (s1)dst.
0

The goal is to maximize the expectation of the long-run
average reward. For comparison with the theoretical optimal
solution, we note that the optimal value function v} has a
closed-form expression given by

.
“(s) —ri(1+ pi8:)s; + 12% 7, 0< s <8
vi(s) = .

' — ki85 — 12% 57, otherwise,

where s; is a unique threshold such that the optimal action is
K whenever s; € [0,5;] and R if s; > §;; see, e.g., Section
5 of [23]. Therefore, the optimal value function v* under our
setting is simply given by the sum of the four v]’s. In our
computational experiment, we set the parameters as follows:
o1 =2/3, k1 =3, Y1 =15, o = 4/5, Ky = 2, Yy =
17, Y3 = 3/4, K3 = 7, ¢3 = 5, Y4 = 3/2, R4 = 10, ’(/)4 =
20, which leads to the thresholds 57 = 2.65, 55 =~ 3.53, §3 ~
0.59, 54 ~ 1.10.

To make the state space compact, we adopt the same
approach used in [42] by setting an upper bound s, = 5 on
the state values. We assume that if the i-th element of the next
state happens to be larger than s,,4, then the ¢-th machine is

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

replaced immediately, and a new state is drawn as if action R
were taken for the i-th machine in the previous step. It can
be seen that f:jaz p(s’|s,R)ds’ is almost negligible under our
parameter setting and thus the optimal value function of the
modified problem closely matches that of the original problem.

The proposed relative Q-learning (RQ) algorithm is im-
plemented with the following parameter values: learning rate
ai(s,a) = NF(s,a)=0%1, interpolation times ¢ = Y&, 2,
reference state s9 = (2.5,2.5,2.5,2.5). We examine the
algorithm with two different shrinking ball radii: a logarithmic
decaying radius r; = Cp/log(l + t) and a polynomially
decaying radius r; = C3(t + 1)77, where C; and Cy are
positive constants. We denote the algorithms corresponding to
these two choices as RQ-log and RQ-poly, respectively. It is
easy to verify that in the latter case, Assumptions A5(i) and
AS5(ii) are satisfied with 0 < v < 1/12. So our implementation
of RQ-poly is based on setting v = 0.083 ~ 1/12. Regarding
C, and C5, we recommend choosing their values to make the
radius approximately 10% of the diameter of the state space
when the algorithm terminates. The numerical results reported
here are based on the choice C; = 13 and C5 = 3. The
learning policy of RQ is taken to be an e-greedy policy with
e = 0.1, that is, choosing the greedy action with respect to
Q)1 with probability 1—e and selecting a random action with
probability e at every iteration step. The function approximator
is constructed by using the stochastic kriging method (see,
e.g., [44], [45]). As suggested in, e.g., [46], [47], we use the
Matérn kernel as the covariance function in the kriging model.
The initial state is set to (4,4,4,4).

In addition to RQ, we have also applied three other methods:
a discretization-based heuristic variant of RVI Q-learning, the
ERVL algorithm proposed in [32], and the ARVL method
proposed in [23]. In the first method, we combine the soft-
state aggregation method of [30] with RVI Q-learning to
construct an asynchronous online algorithm called RVIQ-
SSA. It uses the transition samples generated from a learning
policy to iteratively estimate the Q-function values at a given
set of clusters (aggregate states). In the experiments, those
clusters are obtained by discretizing the state space using a
grid size of 1.0 along each dimension, and each encountered
state s belongs to the jth cluster with probability P(j|s) =

exp(—||ls—4||*/0.01) ~ : : ; -
S, exp(—Ts 7 [F/0.01) - The Q-function estimator is then con

structed in the form of a weighted sum }_, P(j|5)Q(j, a)
for all (s,a), where Q(j,a) is an estimate of the Q-value at
each cluster-action pair. In ERVL and ARVL, the iterates are
(estimated) value functions. At each iteration, both algorithms
sample NN states uniformly over the state space. For each
sampled state action combination, M next states are obtained
by simulating the transition dynamics. In particular, since there
are 16 actions in this example, each state-action combination
is repeatedly simulated 16 times. These samples are used to
approximate the expectation involved in the AROE (assuming
the immediate rewards are deterministic) through either direct
sample average approximation (in ERVL) or kernel density
estimation (in ARVL). A synchronous approximate value iter-
ation step is then carried out, and an estimated value function
is subsequently constructed based on the nearest neighbor

averaging technique. In our implementation, we have used
N =100, M = b5, and the total number of algorithm iterations
is set to K = 50. Other hyper-parameters, including the
bandwidth used in Gaussian kernel density estimation (used
in ARVL) and the number of nearest neighbors, are taken to
be the same as in [32] and [23]. To allow for a fair comparison
with ERVL and ARVL, the numbers of iterations of RQ and
RVIQ-SSA are set to N x 16 M x K = 100x80x 50 = 400000,
which corresponds to the total number of transition samples
consumed by ERVL and ARVL.

Since all comparison algorithms are randomized, we per-
form ten independent replications for each algorithm and
denote by o, , the estimated value function obtained in
the ¢-th run of an algorithm, where ¢ = 1,2,...,10 and
alg € {RQ-poly, RQ-log, RVIQ-SSA, ERVL, ARVL}. Table
I shows the spans of the differences between the optimal
value function v* and the estimated value functions ob-
tained by different comparison algorithms upon termination.
Note that the results are averaged over ten replications, i.e.,
= Zglﬂfzzlg(s) — v*(8)||p, where D is a set of 1024 low-
discrepancy states selected by using the Sobol sequence on
the four-dimensional state space (cf., e.g., Chapter 5 of [48]).
Fig. 2 illustrates the convergence behavior of the five algo-
rithms by plotting the averaged span semi-norm values with
respect to the number of samples used.

TABLE |
SPANS OF VALUE FUNCTION APPROXIMATES OBTAINED BY RQ-POLY,
RQ-L0G, RVIQ-SSA, ERVL, AND ARVL (MEANS AND STAND ERRORS
BASED ON 10 INDEPENDENT REPLICATIONS).

RQ-poly RQ-log RVIQ-SSA ERVL ARVL
16.21(0.43) 22.57(0.83) 32.52(0.64) 46.24(1.05) 47.95(0.34)
60
——— RQ-log RVIQ-SSA —— ARVL
’=S —— RQ-poly ERVL
2 30 LN ! N ~
N N>R TETN T e s e - T p
L e
0 S S
\,9 R ST
= ©
= 30 (W,
SN ¥ M\/\"."‘/\\’" .

g ~ ~
SeANAALNTTN AN TS

I

|2 20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
number of samples

4.0 _
x10°

Fig. 2. Performance of comparison algorithms in averaged span semi-
norm.

We see that the proposed algorithm outperforms RVIQ-SSA,
ERVL, and ARVL and yields the smallest span semi-norm
values as data accumulate. Test results indicate comparable
performance of ERVL and ARVL. Since both algorithms use
a large number of transition samples at each step, whereas
RQ works with a single sample trajectory, they show a
faster initial improvement than RQ. However, both ERVL
and ARVL stop making improvements during early iterations.
We conjecture that this is mainly due to the discarding of
past sampling information in these algorithms, so that the

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380
YANG et al.: RELATIVE Q-LEARNING FOR AVERAGE-REWARD MARKOV DECISION PROCESSES WITH CONTINUOUS STATES 13

constant number of transition samples used at each step (i.e.,
constant values of N and M) may result in an estimation
error in density estimation/sample average approximation that
cannot be eliminated across the iterations. RQ, on the other
hand, is an online algorithm that fully retains past learning
data. Compared to RQ, ERVL, and ARVL, the advantage of
RVIQ-SSA lies in its computational and memory efficiencies
because the algorithm uses a constant number of aggregate
states and does not require storing historical transition data.
However, the use of the weighted average in the Q-function
approximator could lead to substantial bias in its estimation.
The performance of ERVL and ARVL could be improved by
increasing the per-iteration sample size; however, that would
result in a reduced number of algorithm iterations under a
given computing budget.

V. CONCLUSION

In this paper, motivated by RVI Q-learning, we have pro-
posed a relative Q-learning algorithm for solving average-
reward MDPs with continuous state spaces in a model-free
online manner. In particular, to achieve the transition from
the commonly studied discrete-state setting to a continuous-
state domain, the algorithm integrates an asynchronous online
averaging procedure with interpolation-based function approx-
imation. The online averaging procedure allows the estimation
error at a visited state-action pair to be eliminated by averaging
Q-value estimates at all pairs that are within its neighborhood;
whereas the function approximator offers the flexibility in
approximating the Q-function over the entire domain by inter-
polating historical data collected during the learning process.
Under appropriate conditions, we have shown the almost sure
(uniform) convergence of the sequence of function approxima-
tors to the optimal Q-function, modulo a constant value that
does not affect the determination of the optimal policy. To our
knowledge, this is the first online Q-learning based algorithm
for solving continuous-state average reward problems with a
strong convergence guarantee. A simple benchmark example
has also been presented to illustrate the algorithm, indicating
its promising performance compared to some of the existing
methods.

REFERENCES

[1] C.J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, 1989.

[2] H. S. Chang, J. Hu, M. C. Fu, and S. I. Marcus, Simulation-Based
Algorithms for Markov Decision Processes, 2nd ed. London, UK:
Springer, 2013.

[3] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators,
1st ed. Boca Raton, USA: CRC Press, 2010.

[4] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. Hoboken, USA: John Wiley & Sons, 2014.

[5] J. G. Dai and M. Gluzman, “Queueing network controls via deep
reinforcement learning,” Stochastic Systems, vol. 12, no. 1, pp. 30-67,
2022.

[6] E. A. Feinberg and Y. Liang, “On the optimality equation for average

cost Markov decision processes and its validity for inventory control,”

Annals of Operations Research, vol. 317, no. 2, pp. 569-586, October

2022.

P. Tadepalli and D. Ok, “Model-based average reward reinforcement

learning,” Artificial Intelligence, vol. 100, no. 1, pp. 177-224, 1998.

[7

—

[8] G. Qu, Y. Lin, A. Wierman, and N. Li, “Scalable multi-agent reinforce-
ment learning for networked systems with average reward,” in Advances
in Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates,
Inc., 2020, pp. 2074-2086.

[9]1 A. Arapostathis, V. S. Borkar, E. Ferndndez-Gaucherand, M. K. Ghosh,
and S. I. Marcus, “Discrete-time controlled markov processes with
average cost criterion: A survey,” SIAM Journal on Control and Op-
timization, vol. 31, no. 2, pp. 282-344, 1993.

[10] C.-Y. Wei, M. Jafarnia-Jahromi, H. Luo, H. Sharma, and R. Jain,
“Model-free reinforcement learning in infinite-horizon average-reward
markov decision processes,” in Proceedings of the 37th International
Conference on Machine Learning, ser. ICML’20. JMLR.org, 2020.

[11] A. Schwartz, “A reinforcement learning method for maximizing undis-
counted rewards,” in Proceedings of the Tenth International Conference
on International Conference on Machine Learning, ser. ICML’93. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1993, p.
298-305.

[12] S. P. Singh, “Reinforcement learning algorithms for average-payoff
markovian decision processes,” in Proceedings of the Twelfth AAAI
National Conference on Artificial Intelligence, ser. AAAT'94. AAAI
Press, 1994, p. 700-705.

[13] J. Abounadi, D. Bertsekas, and V. S. Borkar, “Learning algorithms for
markov decision processes with average cost,” SIAM Journal on Control
and Optimization, vol. 40, no. 3, pp. 681-698, 2001.

[14] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. II,
3rd ed. Nashua, USA: Athena Scientific, 2007.

[15] S. Yang, Y. Gao, B. An, H. Wang, and X. Chen, “Efficient average
reward reinforcement learning using constant shifting values,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1,
2016.

[16] K. E. Avrachenkov and V. S. Borkar, “Whittle index based g-learning for
restless bandits with average reward,” Automatica, vol. 139, p. 110186,
2022.

[17] Y. Wan, A. Naik, and R. S. Sutton, “Learning and planning in average-
reward markov decision processes,” in Proceedings of the 38th Interna-
tional Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, M. Meila and T. Zhang, Eds., vol. 139. PMLR,
18-24 Jul 2021, pp. 10653-10662.

[18] R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Advances in Neural Information Processing Systems, S. Solla, T. Leen,
and K. Miiller, Eds., vol. 12. MIT Press, 1999.

[19] P. Marbach and J. Tsitsiklis, “Simulation-based optimization of markov
reward processes,” IEEE Transactions on Automatic Control, vol. 46,
no. 2, pp. 191-209, Feb 2001.

[20] S. Mahadevan, “Average reward reinforcement learning: Foundations,
algorithms, and empirical results,” Machine Learning, vol. 22, no. 1-3,
pp. 159-195, 1996.

[21] V. Dewanto, G. Dunn, A. Eshragh, M. Gallagher, and F. Roosta,
“Average-reward model-free reinforcement learning: a systematic review
and literature mapping,” 2021.

[22] S. Baumert and R. L. Smith, “Pure random search for noisy objective
functions,” University of Michigan, Tech. Rep., 2002.

[23] H. Sharma, M. Jafarnia-Jahromi, and R. Jain, “Approximate relative
value learning for average-reward continuous state mdps,” in Proceed-
ings of The 35th Uncertainty in Artificial Intelligence Conference, ser.
Proceedings of Machine Learning Research, R. P. Adams and V. Gogate,
Eds., vol. 115. Tel Aviv, Israel: PMLR, 22-25 Jul 2020, pp. 956-964.

[24] C.-Y. Wei, M. Jafarnia Jahromi, H. Luo, and R. Jain, “Learning infinite-
horizon average-reward mdps with linear function approximation,” in
Proceedings of The 24th International Conference on Artificial Intel-
ligence and Statistics, ser. Proceedings of Machine Learning Research,
A. Banerjee and K. Fukumizu, Eds., vol. 130. PMLR, 13-15 Apr 2021,
pp- 3007-3015.

[25] J. Hu, X. Yang, J.-Q. Hu, and Y. Peng, “A g-learning algorithm for
markov decision processes with continuous state spaces,” submitted to
Systems & Control Letters, 2022.

[26] A. M. Devraj and S. P. Meyn, “Q-learning with uniformly bounded
variance,” IEEE Transactions on Automatic Control, vol. 67, no. 11, pp.
5948-5963, 2022.

[27] R. Ortner, “Pseudometrics for state aggregation in average reward
markov decision processes,” in Algorithmic Learning Theory, M. Hutter,
R. A. Servedio, and E. Takimoto, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 373-387.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

——, “Adaptive aggregation for reinforcement learning in average
reward Markov decision processes,” Annals of Operations Research, vol.
208, no. 1, pp. 321-336, September 2013.

D. Ormoneit and P. Glynn, “Kernel-based reinforcement learning in
average-cost problems,” [EEE Transactions on Automatic Control,
vol. 47, no. 10, pp. 1624-1636, Oct 2002.

S. Singh, T. Jaakkola, and M. Jordan, “Reinforcement learning with soft
state aggregation,” Advances in neural information processing systems,
vol. 7, 1994.

D. Shah and Q. Xie, “Q-learning with nearest neighbors,” in Advances
in Neural Information Processing Systems. Curran Associates, Inc.,
2018, pp. 3111-3121.

H. Sharma, R. Jain, and A. Gupta, “An empirical relative value learning
algorithm for non-parametric mdps with continuous state space,” in 2079
18th European Control Conference (ECC). IEEE, 2019, pp. 1368-1373.
O. Hernandez-Lerma, Adaptive Markov Control Processes, 1st ed. New
York, USA: Springer, 1989.

V. S. Borkar, Stochastic Approximation: A Dynamical Systems View-
point, 1st ed., ser. Texts and Readings in Mathematics ; 48. Gurgaon:
Hindustan Book Agency, 2008.

R. Ortner and D. Ryabko, “Online regret bounds for undiscounted
continuous reinforcement learning,” in Advances in Neural Information
Processing Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger,
Eds., vol. 25. Curran Associates, Inc., 2012.

J. Qian, R. Fruit, M. Pirotta, and A. Lazaric, “Exploration bonus for
regret minimization in discrete and continuous average reward mdps,”
in Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
Eds., vol. 32. Curran Associates, Inc., 2019, pp. 4890-4899.

E. A. Feinberg, P. O. Kasyanov, and N. V. Zadoianchuk, “Average cost
markov decision processes with weakly continuous transition probabili-
ties,” Mathematics of Operations Research, vol. 37, no. 4, pp. 591-607,
2012.

C. Szepesvari and W. D. Smart, “Interpolation-based g-learning,” in
Proceedings of the 21st International Conference on Machine Learning,
2004, pp. 791-798.

S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvari, “Convergence
results for single-step on-policy reinforcement-learning algorithms,”
Machine learning, vol. 38, no. 3, pp. 287-308, 2000.

R. Durrett, Probability: theory and examples, Sth ed. Cambridge, UK:
Cambridge university press, 2019, vol. 49.

J. Rust, “Chapter 14 numerical dynamic programming in economics,’
ser. Handbook of Computational Economics. Elsevier, 1996, vol. 1,
pp. 619-729.

R. Munos and C. Szepesvéri, “Finite-time bounds for fitted value
iteration,” Journal of Machine Learning Research, vol. 9, p. 815-857,
Jun 2008.

W. B. Haskell, R. Jain, H. Sharma, and P. Yu, “A universal empirical
dynamic programming algorithm for continuous state mdps,” [EEE
Transactions on Automatic Control, vol. 65, no. 1, pp. 115-129, Jan
2020.

B. Ankenman, B. L. Nelson, and J. Staum, “Stochastic kriging for
simulation metamodeling,” Operations Research, vol. 58, no. 2, pp. 371—
382, 2010.

B. Wang and J. Hu, “Some monotonicity results for stochastic kriging
metamodels in sequential settings,” INFORMS Journal on Computing,
vol. 30, no. 2, pp. 278-294, 2018.

M. L. Stein, Interpolation of spatial data: some theory for kriging,
Ist ed. New York, NY: Springer, 1999.

S. Petit, J. Bect, P. Feliot, and E. Vazquez, “Gaussian process interpo-
lation: the choice of the family of models is more important than that
of the selection criterion,” Jul. 2021, working paper or preprint.

P. Glasserman, Monte Carlo methods in financial engineering. Springer,
2004, vol. 53.

L

-
R o

Xiangyu Yang holds a bachelor's degree in
engineering management, minoring in financial
mathematics from Shandong University, China,
and a doctoral degree in management science
from Fudan University, China. He is now a post-
doctoral fellow with the School of Management,
Shandong University. His research interests in-
clude optimization and simulation-based MDPs
and financial statistics.

Jiagiao Hu received the B.E. degree in au-
tomation from Shanghai Jiao Tong University,
the M.S. degree in applied mathematics from
the University of Maryland, Baltimore County,
and the Ph.D. degree in electrical engineering
from the University of Maryland, College Park.
Since 2006, he has been with the Department of
Applied Mathematics and Statistics at the State
University of New York, Stony Brook, where he
is currently an Associate Professor. Dr. Hu’s
research interests include Markov Decision Pro-

cesses, simulation optimization, and stochastic modeling and analysis.
His research has been supported by the National Science Foundation,
Air Force Office of Scientific Research, and the Department of Energy.
Dr. Hu currently serves on the editorial boards of /ISE Transactions and

Operations Research.

Jian-Qiang Hu is the Distinguished Professor
of Fudan University and the Hongyi Professor
of Management Science in School of Manage-
ment, Fudan University. He received his B.S.
degree in applied mathematics from Fudan Uni-
versity, China, and M.S. and Ph.D. degrees in
applied mathematics from Harvard University.
His research interests include discrete-event
stochastic systems, simulation, stochastic opti-
mization, with applications in supply chain man-
agement, financial engineering, and healthcare.

He has published over 100 research papers and is a co-author of
the book, Conditional Monte Carlo: Gradient Estimation and Optimiza-
tion Applications (Kluwer Academic Publishers, 1997). He won the
Outstanding Simulation Publication Award from INFORMS Simulation
Society twice (1998, 2019) and the Outstanding Research Award from
Operations Research Society of China in 2020. He has been on editorial
board of Automatica, Operation Research, IIE Transaction on Design
and Manufacturing, and Journal of the Operations Research Society of

China.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

