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Relative Q-learning for Average-Reward Markov
Decision Processes with Continuous States

Xiangyu Yang, Jiaqiao Hu, and Jian-Qiang Hu

Abstract— Markov decision processes are widely used
for modeling sequential decision-making problems under
uncertainty. We propose an online algorithm for solving a
class of average-reward Markov decision processes with
continuous state spaces in a model-free setting. The al-
gorithm combines the classical relative Q-learning with an
asynchronous averaging procedure, which permits the Q-
value estimate at a state-action pair to be updated based
on observations at other neighboring pairs sampled in sub-
sequent iterations. These point estimates are then retained
and used for constructing an interpolation-based function
approximator that predicts the Q-function values at unex-
plored state-action pairs. We show that with probability one
the sequence of function approximators converges to the
optimal Q-function up to a constant. Numerical results on
a simple benchmark example are reported to illustrate the
algorithm.

Index Terms— Dynamic systems and control; Markov
processes; Online computation

I. INTRODUCTION

Markov decision processes (MDPs) provide an important

framework for studying sequential decision making problems

under uncertainty. For discounted MDPs, many solution al-

gorithms have been proposed, and there is a rich body of

literature on this subject (e.g., [1], [2], [3]). When the discount

factor is close to one and/or the system performance cannot

be easily quantified in economic terms, it is often convenient

and sometimes necessary to consider MDPs with average

reward criterion [4]. Example applications of average-reward

MDPs include the control of queueing networks [5], inventory

management [6], automatic guided vehicles scheduling [7],

and the optimization of networked systems [8]. Compared with

discounted MDPs, average-reward MDPs receive less attention

partly due to their analytical difficulties, such as the existence

and structural properties of optimal policies; cf. [6], [9]. In
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addition, approximately solving the optimality equation for an

average-reward problem in a model-free setting, e.g., when the

immediate reward and/or transition dynamics are unknown,

could also be very computationally challenging [10].

An effective class of methods for solving average-reward

MDPs is based on adapting and extending the Q-learning

algorithms [1] for discounted-reward problems. Early studies

in, e.g., [11], [12], have shown promising performance of

such an approach in a model-free environment. Reference

[13] introduces the relative value iteration (RVI) Q-learning

algorithm and provides the first convergence proof of Q-

learning for average-reward problems. The idea of the algo-

rithm is to approximate the RVI algorithm (see, e.g., [14],

[4]) using a stochastic approximation (SA) recursion and then

carry out Q-value updates by subtracting an offset that depends

on a predetermined reference state or set of reference state-

action pairs at each iteration step. Some recent developments

based on RVI can be found in, e.g., [15], [16], [17]. Another

class of algorithms directly learns the policy, i.e., the so-

called policy gradient methods [18], [19], which are essen-

tially simulation-based optimization techniques that work with

parameterized policies. Vanilla policy gradients require that

the system dynamics can be modeled or simulated and may

suffer from high variance in gradient estimation. Consequently,

their effective (online) model-free implementations often rely

on the use of Q/value-function-based methods. For a detailed

account of model-free algorithms for average-reward MDPs,

we refer the reader to [20], [21]. We remark that as noted in

[21], the majority of these algorithms have been developed

for finite (or countable) state space problems, and there are

few attempts aimed at addressing continuous-state MDPs with

average reward criterion.

In this paper, we present a new model-free algorithm for

solving a class of average-reward MDPs with continuous state

spaces. The algorithm is also based on RVI and shares some

similarities with the aforementioned RVI Q-learning method.

However, unlike RVI Q-learning (which relies on enumerating

all state-action pairs), in a continuous-state space, one must

instead consider compact approximations of the tabular repre-

sentation of the Q-function by working with only a countable

number of state-action samples. In addition, since it is not

possible for a state to be visited infinitely often along a single

sample trajectory, another difficulty that arises in a continuous-

state domain is how to obtain a reliable estimate of the Q-

value at a state-action pair in an online method such as Q-

learning. We address these issues through a novel combination

of interpolation-based function approximation with an online
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averaging procedure adapted from the so-called shrinking ball

method [22]. In particular, compared with some of the existing

function approximation techniques, which often require the

approximator to be a non-expansion (e.g., [23]) or linear

in structure (e.g., [24]), an interpolation-based approximator

offers more flexibility and has the advantage of allowing the Q-

values at unvisited locations to be effectively predicted using

estimates at previously sampled state-action pairs that lie in

their vicinity, leading to reasonable control decisions even

at states that have not been visited thus far. The shrinking

ball method was originally introduced in [22] for solving

continuous (static) simulation optimization problems. The key

idea here is to incorporate this technique into Q-learning in

the spirit of [25] so that the Q-value estimate at a given

state-action pair can be continuously updated by averaging

the performance at all other pairs collected along a single

trajectory produced from a learning policy.

At each iteration of the algorithm, given a Q-function

approximator, an initial point estimate of the Q-value at the

current state-action pair is first formed by using a simulation-

based version of the average-reward optimality equation

(AROE). The estimate is then used in the asynchronous aver-

aging (shrinking ball) procedure to improve the Q-value esti-

mates at all other previously sampled pairs that are considered

to be sufficiently close to the current pair. These data are fully

retained and subsequently used in an interpolation-based fitting

strategy for constructing a new Q-function approximator. We

note that the update on the function approximator is only

carried out at certain iterations called “interpolation times,”

which occur at a frequency that decreases with the number of

algorithm iterations. Under appropriate conditions, we show

that the sequence of function approximators converges uni-

formly with probability one (w.p.1) to the unique optimal Q-

function, modulo an offset value that does not influence the

determination of the optimal policy; cf. [26].

Currently, the majority of techniques advocated in the

literature for solving continuous-state problems resort to some

forms of state space aggregation. Reference [27] discusses

upper bounds on the approximation errors of state space

aggregation. Reference [28] employs an adaptive aggregation

technique based on confidence intervals. Reference [29] con-

siders a weighted kernel function approximator using local

averaging methods. Other related work, although less relevant

to the average-reward setting, include, for example, the adap-

tive state aggregation method [30] and the nearest neighbor

regression method [31] for discounted MDPs. All these ap-

proaches require a finite discretization of the state space, which

could lead to computational difficulties, either resulting in a

solution that is not accurate enough or in a computing effort

that becomes excessively demanding. Some discretization-free

approaches are the recently introduced empirical relative value

learning (ERVL) [32] and approximate relative value learning

(ARVL) [23]. To the best of our knowledge, these algorithms

seem to be the only existing discretization-free methods for

average-reward MDPs with provable convergence guarantees.

Nevertheless, both ERVL and ARVL are offline techniques

that require the use of a large number of predetermined

transition samples in order to obtain a good approximation

of the value function. Our algorithm, in a sense, can also

be viewed as a version of (RVI) Q-learning with adaptive

state aggregation. However, it is a fully online, model-free

method that approximates the entire Q-function based on a

single sample trajectory produced from a learning policy, and

consequently can be applied when the transition dynamics are

either unknown or difficult to estimate.

The rest of this paper is organized as follows. Section II

gives preliminaries on the average-reward MDP model and

presents the proposed algorithm. In Section III, we analyze

the algorithm and prove its almost sure convergence. A simple

numerical example is provided in Section IV. Finally, Section

V concludes this paper.

II. RELATIVE Q-LEARNING FOR CONTINUOUS-STATE

AVERAGE-REWARD MDPS

A. Preliminaries

We consider an infinite-horizon average-reward MDP de-

scribed by a tuple (S,A, p,R), where the state space S is

a compact and connected subset of Euclidean d-space R
d,

the action space A is a (discrete) finite set, p(·|s, a) is the

Markov transition density function on S given a state-action

pair (s, a) ∈ S × A, and R(·, ·) : S × A → R is the

expected immediate reward function. For ease of exposition,

we assume that all actions are admissible at any state. We

consider a model-free setting, in which the expected reward

R(s, a) cannot be evaluated exactly and the transition density

p is also unknown, so only the transition samples are available.

Let Π denote the set of all stationary Markov policies, where

each element is a mapping Ã : S → ∆A, with ∆A being a

|A|-dimensional probability simplex, and Ã(·|s) represents a

probability distribution on the action space A at state s. Under

a given policy Ã, the process evolves as follows: given the

current state st at time t, an action at is first sampled according

to Ã(·|st) and applied to the system, then a random reward

r(st, at, Ét) is earned. Throughout the paper, we assume

R(st, at) = E[r(st, at, Ét)] for all t, where Ét is a random

vector independently drawn from some fixed distribution. Next

the system transitions to a new state st+1 ∼ p(·|st, at). The

long-run average reward under policy Ã is defined as

JÃ(s) := lim inf
T→∞

1

T
E

[

T−1
∑

t=0

R(st, at) | s0 = s
]

,

where T is the decision horizon, s is a given initial state,

and at ∼ Ã(·|st) for all t g 0. The goal is to determine a

stationary policy Ã∗ ∈ Π that maximizes JÃ(s) for all initial

states s ∈ S.

It has been shown that under appropriate conditions (see,

e.g., [33], [6] and references therein), the optimal average

reward does not depend on the initial state s and satisfies the

AROE:

J∗ + V ∗(s) = max
a
{R(s, a) + Ey∼p(·|s,a)[V

∗(y)]}, (1)

where V ∗(·) is a bounded real-valued function and J∗ is the

optimal average reward such that J∗ g supÃ J
Ã(s), ∀s ∈ S.

Any maximizer of the right side of (1) defines a stationary
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policy that is optimal over all states, i.e., if an action a∗ ∼
Ã∗(·|s) satisfies

J∗ + V ∗(s) = R(s, a∗) + Ey∼p(·|s,a∗)[V
∗(y)] ∀s ∈ S,

then Ã∗ is optimal and JÃ∗

(s) = J∗ for all s ∈ S. Hereafter,

we suppress the subscript in the expectation for notational

convenience.

Since the function V ∗ in (1) is unique up to a constant, we

focus on the relative value function V r(s) := V ∗(s)−V ∗(s0)
with V r(s0) ≡ 0, where s0 ∈ S is an arbitrary preselected

state. Therefore, the AROE can be expressed in terms of the

relative value function as

J∗ + V r(s) = max
a
{R(s, a) + E[V r(y)]}. (2)

Define the optimal Q-function as Q∗(s, a) := R(s, a) +
E[V r(y)]. Then we can state (2) in the following equivalent

form:

J∗ +Q∗(s, a) = R(s, a) + E[max
b
Q∗(y, b)] (3)

Note that since V r(s0) = maxaQ
∗(s0, a)−J

∗ = 0, we clearly

have J∗ = maxaQ
∗(s0, a).

B. Algorithm Description

As in RVI Q-learning, our algorithm works with a learning

policy and uses the transition samples generated from the

policy to construct a sequence of interpolation-based function

approximators that iteratively approximates the solution to (3).

With a slight abuse of notation, we use {Ãt(·|s)} to present a

collection of prespecified learning policies, where Ãt(·|s) gives

the probability that an action should be selected when state s is

encountered at time t. Let {tk} be a sequence of interpolation

times at which the function approximator is updated, where the

index k is the number of updates. Let B(s, r) be an open ball

in R
d with center s and radius r. For a sequence of positive

real numbers {rt}, define It(sl, al) = 1{st ∈ B(sl, rt)} ·
1{at = al}, indicating whether the current pair (st, at) falls in

the neighborhood of a previously sampled pair (sl, al), where

l < t and 1{·} is the indicator function. Whenever It(sl, al) =
1, we say that the neighborhood of (sl, al) has been visited at

time t. For any state-action pair (sl, al) sampled at time l, let

Nt(sl, al) =
∑t

j=l+1 Ij(sl, al) denote the number of times the

neighborhoods of (sl, al) have been visited between time l+1
and time t. We also let Nk

t (sl, al) =
∑t

j=tk−1+1 Ij(sl, al) =
Nt(sl, al) − Ntk−1

(sl, al) for all t ∈ [tk−1 + 1, tk], which

represents the number of times the neighborhoods of (sl, al)
have been visited since the most recent interpolation time prior

to time t.
Let Qk be the function approximator of Q∗ constructed

at the k-th interpolation time tk. For all t ∈ [tk−1 + 1, tk],
the estimated Q-value at (st, at), denoted by Q̃t(st, at), is

obtained using a simulation-based version of (3) with the

current approximation Qk−1 replacing the true Q-function Q∗,

that is,

Q̃t(st, at) = r(st, at, Ét)

+ max
b
Qk−1(st+1, b)−max

b
Qk−1(s0, b). (4)

−− − − +− + − +

−
−−

−
−

−−−

Fig. 1. A graphical illustration of the timeline for the construction of the
sequence of Q-function approximators {Qk}. Note that Qk remains
unchanged between successive interpolation times for all k.

Next, in order to reliably estimate the expectation and the

reward R in (3), the point estimate Q̃t(st, at) is used in

an asynchronous averaging procedure to adaptively update

the Q-value estimates at all other state-action pairs that are

considered to be sufficiently close to (st, at). Specifically, for

each previously sampled state-action pair (sl, al), if at = al
and st ∈ B(sl, rt), then the Q-value estimate Q̃t(sl, al)
is updated by incorporating the new information Q̃t(st, at);
otherwise, it remains unchanged. This leads to the following

recursion:

Q̃t(sl, al) = (1− ³k
t (sl, al)It(sl, al))Q̃t−1(sl, al)

+ ³k
t (sl, al)It(sl, al)Q̃t(st, at), (5)

where ³k
t (sl, al) is the learning rate at time t. We assume that

the learning rate takes the form ³k
t (sl, al) = f(Nk

t (sl, al)) for

some real-valued function f , that is, it is viewed as a function

of the number of times the neighborhoods of (sl, al) have been

visited since the most recent interpolation time prior to time

t. Recursion (5) is essentially an asynchronous SA updating

scheme, in which the usual deterministic step-size is replaced

with a state-action pair-dependent random learning rate (see,

e.g., Chapter 7 of [34]).

The detailed algorithmic steps and a pictorial illustration of

the algorithm’s general structure are presented in Algorithm

1 and Figure 1. The algorithm uses a separate function

approximator Qk(s, a) for each action a ∈ A to predict

the Q-values at unvisited state-action pairs. We require the

interpolation times to satisfy tk − tk−1 → ∞ as k → ∞ so

that there is an increasingly large number of iterations between

successive updates of Qk(s, a); see Figure 1. Intuitively, as

more state-action pairs are collected over [tk−1 + 1, tk], the

Q-value estimates obtained in (7) will become more accurate.

This in turn allows the new function approximator Qk(s, a) to

be constructed based on increasingly reliable data. Also, note

that there is a trade-off involved in choosing the shrinking ball

radius rt. A large value of rt helps to reduce the estimation

noise (i.e., through averaging a large number of state-action

pairs in (7)) but at the same time introduces a high estimation

bias, and vice versa. The idea is thus to carefully control

the decreasing speed of rt so that both the noise and bias

in the estimation can be eliminated by gradually sending rt to

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371380

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on May 13,2024 at 14:02:15 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Algorithm 1: Relative Q-learning for Continuous-State

Average-Reward MDPs

Input: Select a learning policy {Ãt}, an initial state

s0, interpolation times {tk}, learning rates

{³k
t (s, a)}, shrinking ball radii {rt}, and a

reference state s0 ∈ S.

Output: The function approximator Qk.

1 k ← 1, t← 0, Λ0 ← ∅;
2 Q0(s, a)← 0, ∀(s, a) ∈ S ×A;

3 while the stopping criterion is not satisfied do

4 Choose an action at ∼ Ãt(·|st), obtain r(st, at, Ét),
and observe the next state st+1;

5 Λt+1 ← Λt ∪ {(st, at)};
6 Estimate the Q-value at (st, at) as

Q̃t(st, at)← r(st, at, Ét)

+ max
b∈A

Qk−1(st+1, b)−max
b∈A

Qk−1(s0, b); (6)

foreach previously sampled pair (sl, al) ∈ Λt do

7 Update the Q-value estimate as

Q̃t(sl, al)← (1− ³k
t (sl, al)It(sl, al))Q̃t−1(sl, al)

+ ³k
t (sl, al)It(sl, al)Q̃t(st, at); (7)8

9 end

10 if t = tk then

11 foreach a ∈ A do

12 Construct Qk(s, a) by interpolating the data
{

(

(s′, a′), Q̃t(s
′, a′)

)

: (s′, a′) ∈ Λt, a
′ = a

}

;

13 end

14 k ← k + 1
15 end

16 t← t+ 1
17 end

zero. We remark that in a finite-state space setting, each ball

B(sl, rt) will only contain the state sl itself (assuming that

the radius rt is small enough). Thus, the update (7) will only

be carried out when the same (sl, al) pair is revisited at time

t, in which case (6) and (7) together becomes identical to RVI

Q-learning. Consequently, the algorithm can be viewed as a

generalization of RVI Q-learning to continuous-state spaces.

III. CONVERGENCE ANALYSIS

The convergence analysis is based on that of [25] with

appropriate modifications tailored to the average-reward set-

ting. We begin by introducing some notations. Define Ft =
Ã {s0, a0, É0, s1, a1, É1, . . . , st, at}. Let Λt(a) be the set of

sampled states contained in Λt at which action a is taken. The

Euclidean distance between two states s, s′ ∈ S is denoted by

d(s, s′), and for a set of states C ¢ S, the distance between

s and C is d(s, C) := infs′∈C d(s, s
′). The volume of a d-

dimensional ball B ¢ S is denoted as Vol(B). For any two

sequences of positive real numbers {at} and {bt}, we write

at = Ω(bt) if lim inft→∞ at/bt > 0. Denote by ∥·∥TV the

total variation norm for finite signed measures. For a bounded

real-valued function g(z) over a set Z, define the span semi-

norm of g as ∥g(z)∥Z := supz∈Z g(z) − infz∈Z g(z). Note

that ∥g(z)∥Z = 0 whenever g(z) is a constant function on Z.

We make the following assumptions on the MDP model

and algorithm parameters:

Assumptions:

A1. Rmax := sups,a,É |r(s, a, É)| < ∞. R(·, a) is Lipschitz

continuous uniformly in a, i.e., there exists a constant KR such

that |R(s, a) − R(s′, a)| f KRd(s, s
′), ∀s, s′ ∈ S, ∀a ∈ A.

A2. (i) There exists a constant ´ ∈ (0, 1) such that

sup
(s,a),(s′,a′)∈S×A

∥q(·|s, a)− q(·|s′, a′)∥TV f 2´,

where q is the one-step transition kernel of the underlying

Markov chain.

(ii) There exists a constant Kp such that
∫

|p(z|s, a) −
p(z|s′, a)| dz f Kpd(s, s

′) for all a ∈ A and s, s′ ∈ S.

A3. For every a ∈ A, there exists an L(a) < ∞ such that

the function approximator Qk(·, a) is Lipschitz continuous

uniformly in k with its Lipschitz constant bounded by L(a)
w.p.1.

A4. The learning rate function satisfies the following condi-

tions: f(i) ∈ (0, 1) ∀i,
∑∞

i=1 f(i) = ∞, and
∑∞

i=1 f
2(i) <

∞.

A5. There exist constants µ, ϑ ∈ (0, 1) such that

(i) (tk − tk−1)
1
2 t−µd

k = Ω(kϵ) for an arbitrarily small

constant ϵ > 0;

(ii) The sequence of shrinking ball radii {rt} is non-

increasing satisfying rt → 0 and rt = Ω(t−µ);
(iii) The learning policy satisfies Ãt(a|st) g ϑ for all

a ∈ A, st ∈ S, and t g 0 w.p.1.

A6. There exist a (deterministic) stationary policy µ : S → A
and ¶ ∈ (0, 1) such that for any d-dimensional ball B ¢ S
with Vol(B) f 1, Pµ(B) g ¶Vol(B), where Pµ is the

invariant probability measure of the state process under µ.

Assumption A1 has been previously adopted in, e.g., [23],

[35], [36], to deal with computational issues for continuous-

state MDP models. A2 involves regularity conditions on

the transition dynamics of the underlying Markov chain. In

particular, A2(i) implies that for any deterministic stationary

policy µ′, its associated t-step transition probability P
t
µ′(·|s)

converges geometrically to its unique invariant probability

measure Pµ′ in the sense that

∥Pt
µ′(·|s)− Pµ′(·)∥TV f 2´t (8)

uniformly in s; see Lemma 3.3 on pp. 57 of [33]. Under A1

and A2, there exist a constant J∗ and a bounded function V ∗

satisfying the AROE (1) (Corollary 3.6 in Chapter 3 of [33]).

This further indicates the existence of an optimal stationary

policy by the measurable selection theorem. For more general

sufficient conditions that guarantee the existence of stationary

optimal policies for average-reward MDPs, we refer the reader

to, e.g., [6] and [37]. A3 requires the function approximator

to be sufficiently smooth to quantify the prediction error at

a given unvisited state-action pair based on information at
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already sampled pairs. We remark that one potential limitation

of A3 is that it is a condition that depends on the algo-

rithm trajectory. Nevertheless, given that no prior knowledge

about the Lipschitz constants is assumed, this smoothness

requirement could be expected to hold by several interpolation

methods such as barycentric interpolation, spline, and kernel-

based approaches; see, e.g., [38]. A4 is the standard condition

on the learning rate (step size) used in the SA literature.

A5 includes some technical assumptions on algorithm input

parameters. In particular, A5(i) imposes the condition on the

growth rate of interpolation times tk. A5(ii) characterizes the

decreasing rate of the shrinking ball radius rt. A5(iii) requires

the learning policy to be constantly exploratory and is satisfied

by widely-adopted ϵ-greedy learning policies [39]. In view

of the ergodicity condition A2(i), A6 further requires the

existence of a stationary policy µ, so that the Markov chain of

the state process under µ is uniformly ergodic with an invariant

probability measure that is bounded away from zero.

Our main result, as stated in Theorem 1 below, indicates

that as the number of interpolations increases, the sequence of

function approximators {Qk} will converge uniformly to the

optimal Q-function Q∗ w.p.1, modulo a constant value.

Theorem 1 Suppose all conditions A1−A6 are satisfied. As

k →∞,

∥Qk(s, a)−Q
∗(s, a)∥S×A → 0 w.p.1.

Note that from (2), the optimal action a∗ at any state s is

obtained by a∗ = argmaxaQ
∗(s, a), so adding a constant

to Q∗ will not have an effect on the choice of the optimal

action a∗. Thus, when the algorithm terminates, we can use

the last function approximator Qk to approximately determine

the optimal strategy.

The proof of Theorem 1 relies on a series of intermediate

results (Lemmas 1−8 below). We begin with a preliminary

result that shows the Lipschitz continuity of the optimal Q-

function.

Lemma 1 If A1 and A2 hold, then for every a ∈ A, the

optimal Q-function Q∗(s, a) is Lipschitz continuous with

Lipschitz constant LQ := (KR + cKp), where c is some

positive constant.

Proof: Note that under A1 and A2, there exists a constant

c such that |V r(s)| f c, ∀s ∈ S (see Section 3.2 and 3.3 of

[33]). Therefore, for each a ∈ A, we have for any s, s′ ∈ S,

|Q∗(s, a)−Q∗(s′, a)|

=
∣

∣[R(s, a) +

∫

V r(z)p(z|s, a)dz]

− [R(s′, a) +

∫

V r(z)p(z|s′, a)dz]
∣

∣

f
∣

∣R(s, a)−R(s′, a)
∣

∣+

∫

∣

∣V r(z)[p(z|s, a)− p(z|s′, a)]
∣

∣dz

f KRd(s, s
′) + cKpd(s, s

′)

= LQd(s, s
′),

and the Lipschitz continuity of Q∗(s, a) follows.

Lemma 2 shows that the neighborhoods of each sampled

state-action pair will be visited infinitely often (i.o.) from

time tk−1 + 1 to time tk as k → ∞. Therefore, the Q-value

estimate is updated increasingly frequently during the time

interval [tk−1 + 1, tk] as k becomes large.

Lemma 2 If A2, A5, and A6 hold, then for each state-action

pair (sl, al) sampled at time l,

P
(

lim
k→∞

(Ntk(sl, al)−Ntk−1
(sl, al)) =∞

)

= 1.

Proof: For the policy µ given in A6, we have from (8)

and the properties of the total variation norm that |Pt
µ(B|s)−

Pµ(B)| f ´t for all s ∈ S, t g 0, and any d-dimensional

ball B ¢ S with Vol(B) f 1. It follows that P
t
µ(B|s) g

Pµ(B) − ´t g ¶Vol(B) − ´t. For a sufficiently large t,
consider the ball B(sl, rt) with cBt

−µd f Vol(B(sl, rt)) f 1,

where cB is some positive constant (A5(ii)). Since ´t → 0
at a geometric rate, there exists a positive integer m such

that for all s ∈ S and t g m − 1, P
t
µ(B(sl, rt)|s) g

¶Vol(B(sl, rt)) −
1
2¶Vol(B(sl, rt)) =

1
2¶Vol(B(sl, rt)) > 0.

Hence, for any state st−m+1 encountered at time t −m + 1,

under policy µ, we have

P(st ∈ B(sl, rt)|st−m+1) g
1

2
¶Vol(B(sl, rt)).

Now for a fixed st−m+1, consider any sequence of actions

{ât−m+1, ât−m+2, . . . , ât−1} ∈ A
m−1 generated under µ. By

A5(iii), the learning policy {Ãt} will take the same sequence

of actions w.p. at least ϑm−1. Thus, under {Ãt}, we have

P(st ∈ B(sl, rt)|st−m+1) g ϑm−1(¶/2)Vol(B(sl, rt)). This

in turn implies that for all t g m,

P(st ∈ B(sl, rt)|Ft−m)

= P(st ∈ B(sl, rt)|st−m, at−m)

=

∫

S

P(st ∈ B(sl, rt)|st−m+1)q(dst−m+1|st−m, at−m)

g
1

2
ϑm−1¶Vol(B(sl, rt))

g
1

2
ϑm−1¶cBt

−µd.

For notational brevity, define ¶′ := 1
2ϑ

m¶. Further let

Çk = + tk−tk−1−1
m , and Äk = ¶′cB(Çk + 1)t−µd

k − 2 ln k −

2
√

Ak ln k + ln2 k, where Ak := (Çk + 1)(1 − ¶′cBt
−µd
k ).

We consider the following probability for a sufficiently large

k (thus t is also large enough):

P(Ntk(sl, al)−Ntk−1
(sl, al) f Äk)

f P(

Çk
∑

i=0

1{stk−im ∈ B(sl, rtk−im) ∩ atk−im = al} f Äk)

= P(

Çk
∑

i=0

1{stk−im /∈ B(sl, rtk−im) ∪ atk−im ̸= al}

g Çk + 1− Äk)

f
E[e¼

∑χk
i=0 1{stk−im /∈B(sl,rtk−im)∪atk−im ̸=al}]

e¼(Çk+1−Äk)

f
E[e¼

∑χk
i=0 1{stk−im /∈B(sl,rtk )∪atk−im ̸=al}]

e¼(Çk+1−Äk)
(9)
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for any given constant ¼ > 0, where the second inequality

follows from Markov’s inequality and the third inequality is

because the shrinking ball radius is non-increasing. Note that

E[e¼1{stk /∈B(sl,rtk )∪atk
̸=al}|Ftk−m]

= (e¼ − 1)P(stk /∈ B(sl, rtk) ∪ atk ̸= al|Ftk−m) + 1

= (e¼ − 1)[1− P(stk ∈ B(sl, rtk)|Ftk−m)

× P(atk = al|stk ∈ B(sl, rtk),Ftk−m)] + 1

f (e¼ − 1)(1− ¶′cBt
−µd
k ) + 1.

A bound on the numerator of (9) can then be derived as

follows:

E[e¼
∑χk

i=0 1{stk−im /∈B(sl,rtk )∪atk−im ̸=al}]

= E
[

e¼
∑χk

i=1 1{stk−im /∈B(sl,rtk )∪atk−im ̸=al}

× E[e¼1{stk /∈B(sl,rtk )∪atk
̸=al}|Ftk−m]

]

f
(

(e¼ − 1)(1− ¶′cBt
−µd
k ) + 1

)

× E[e¼
∑χk

i=1 1{stk−im /∈B(sl,rtk )∪atk−im ̸=al}]

f

Çk
∏

i=0

[(e¼ − 1)(1− ¶′cBt
−µd
k ) + 1]

= exp
(

Çk
∑

i=0

ln[(e¼ − 1)(1− ¶′cBt
−µd
k ) + 1]

)

f exp((Çk + 1)(e¼ − 1)(1− ¶′cBt
−µd
k )),

where the last inequality is due to the fact that ln(x+1) f x
for x g 0. Plugging the above into (9) and optimizing the

bound with respect to ¼, we have

P(Ntk(sl, al)−Ntk−1
(sl, al) f Äk) f e

Bk(1−
Ak
Bk

+ln
Ak
Bk

)
,

where Bk := Çk + 1 − Äk. Since Äk f ¶′cB(Çk + 1)t−µd
k ,

we have 0 < Ak

Bk
f 1. Applying the inequality that lnx f

(x− 1)− 1
2 (x− 1)2 for x ∈ (0, 1], we obtain

P(Ntk(sl, al)−Ntk−1
(sl, al) f Äk) f e

−
(Bk−Ak)2

2Bk =
1

k2
.

It follows that
∞
∑

k=1

P(Ntk(sl, al)−Ntk−1
(sl, al) f Äk) <∞,

which implies that P(Ntk(sl, al)−Ntk−1
(sl, al) f Äk, i.o.) =

0 by the Borel-Cantelli lemma (see, e.g., [40]). Finally, by

A5(i), it can be observed that Äk → ∞ as k → ∞. This

completes the proof.

Lemma 3 indicates that for every action a ∈ A, the

collection of states visited up to time tk, i.e., Λtk(a), will

become dense in S as k →∞.

Lemma 3 If A2, A5, and A6 hold, then for every a ∈ A, we

have

P
(

lim
k→∞

sup
s∈S

d(s,Λtk(a)) = 0
)

= 1.

Proof: Let ϵ be small enough such that Vol(B(v, ϵ/2)) f
1 whenever v ∈ S. Since S is compact, we can find a finite col-

lection of states {v1, . . . , vn} such that S ¦ ∪nj=1B(vj , ϵ/2).
As in the proof of Lemma 2, there exists a constant T such

that P(st ∈ B(vj , ϵ/2)|Ft−m) g 1
2ϑ

m−1¶cB(ϵ/2)
d and

mina Ãt(a|st) g ϑ for all t g T . Let ℓk = + tk−1−T
m ,. For

a sufficiently large k (thus t g T ), we have

P( sup
s∈S

d(s,Λtk(a)) > ϵ) = P(∃s′ ∈ S, d(s′,Λtk(a)) > ϵ)

= P(∃s′ ∈ S, B(s′, ϵ) ∩ Λtk(a) = ∅)

f P
(

∪nj=1 (B(vj , ϵ/2) ∩ Λtk(a) = ∅)
)

f
n
∑

j=1

P(B(vj , ϵ/2) ∩ Λtk(a) = ∅)

=
n
∑

j=1

P
(

(s0 /∈ B(vj , ϵ/2) ∪ a0 ̸= a) ∩ . . .∩

(stk−1 /∈ B(vj , ϵ/2) ∪ atk−1 ̸= a)
)

f
n
∑

j=1

P
(

(stk−1 /∈ B(vj , ϵ/2) ∪ atk−1 ̸= a)

∩ (stk−1−m /∈ B(vj , ϵ/2) ∪ atk−1−m ̸= a)

∩ (stk−1−2m /∈ B(vj , ϵ/2) ∪ atk−1−2m ̸= a)

∩ . . . ∩ (stk−1−ℓkm /∈ B(vj , ϵ/2) ∪ atk−1−ℓkm ̸= a)
)

=
n
∑

j=1

[

1− P
(

stk−1 ∈ B(vj , ϵ/2) ∩ atk−1 = a|

(stk−1−m /∈ B(vj , ϵ/2) ∪ atk−1−m ̸= a) ∩ . . .∩

(stk−1−ℓkm /∈ B(vj , ϵ/2) ∪ atk−1−ℓkm ̸= a)
)]

× P
(

(stk−1−m /∈ B(vj , ϵ/2) ∪ atk−1−m ̸= a) ∩ . . .∩

(stk−1−ℓkm /∈ B(vj , ϵ/2) ∪ atk−1−ℓkm ̸= a)
)

f
n
∑

j=1

[1− ¶′cB(ϵ/2)
d]

× P
(

(stk−1−m /∈ B(vj , ϵ/2) ∪ atk−1−m ̸= a) ∩ . . .∩

(stk−1−ℓkm /∈ B(vj , ϵ/2) ∪ atk−1−ℓkm ̸= a)
)

f
n
∑

j=1

ℓk
∏

i=0

[1− ¶′cB(ϵ/2)
d]

f
n
∑

j=1

exp
(

−
ℓk
∑

i=0

¶′cB(ϵ/2)
d
)

= n exp
(

−¶′cB(ϵ/2)
d(ℓk + 1)

)

.

It is easy to see that
∑∞

k=0 P(sups∈S d(s,Λtk(a)) >
ϵ) < ∞. Thus, the Borel-Cantelli lemma implies that

P(sups∈S d(s,Λtk(a)) > ϵ, i.o.) = 0. Finally, the result is

proved because ϵ can be arbitrarily small.

Next, we show that both the point estimate Q̃t(s, a) and

the Q-function approximator Qk(s, a) constructed by the al-

gorithm remain bounded at all times.

Lemma 4 If A1 and A3 hold, then maxs∈Λt
maxa|Q̃t(s, a)|

and sups∈S maxa|Qk(s, a)| are bounded for all t and k w.p.1.

Proof: For notational convenience, let Dt =
maxs∈Λt

maxa|Q̃t(s, a)|, and denote by D the diameter of

S, i.e., D := sups,s′∈S d(s, s
′). By A3, for any s, s′ ∈ S and

a ∈ A, w.p.1

|Qk(s, a)| f |Qk(s
′, a)|+ Ld(s, s′)
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f |Qk(s
′, a)|+ LD,

where L := maxa∈A L(a) <∞. Furthermore, since Qk(s, a)
is constructed by interpolating

{(

(s′, a′), Q̃tk(s
′, a′)

)

:
(s′, a′) ∈ Λtk , a

′ = a
}

, we have sups∈S maxa|Qk(s, a)| f
Dtk +LD. From (6), the point estimate obtained at any time

t > 0 satisfies

|Q̃t(st, at)|

f Rmax + |max
b
Qk−1(st+1, b)−max

b
Qk−1(s0, b)|

f Rmax +max
b
|Qk−1(st+1, b)−Qk−1(s0, b)|

f Rmax + LD.

This, together with (7), shows that |Q̃t(sl, al)| f
max{Dt−1, Rmax + LD} for every (sl, al) ∈ Λt, and thus

Dt f max {Dt−1, Rmax + LD} .

Note that by construction, Q0(s, a) = 0 for all (s, a) ∈
S × A. Clearly, D0 f Rmax + LD, and a simple induction

shows that Dt f Rmax + LD for all t. It follows that

sups∈S maxb|Qk(s, a)| f Dtk + LD f Rmax + 2LD for

all k. This completes the proof.

Our main result is to show that the sequence of function

approximators {Qk} converges to the optimal Q-function Q∗

under span semi-norm. Since Qk is constructed using point

estimates Q̃tk , we proceed by investigating the convergence

properties of the iterates generated by (6). For each (sl, al) ∈
Λtk−1

and k ∈ {1, 2, . . .}, we consider the error term

εt(sl, al) := Q̃t(sl, al)−Q
∗(sl, al), ∀t ∈ [tk−1 + 1, tk].

Also let ¸t(sl, al) = ³k
t (sl, al)It(sl, al) for notational conve-

nience. Hence by subtracting both sides of (7) by Q∗(sl, al),
we obtain the following recursion:

εt(sl, al) = (1− ¸t(sl, al))εt−1(sl, al) + ¸t(sl, al)

× [r(st, at, Ét) + max
b
Qk−1(st+1, b)

−max
b
Qk−1(s0, b)−Q

∗(sl, al)]

= (1− ¸t(sl, al))εt−1(sl, al) + ¸t(sl, al)

× (Bt(sl, al) +Wt(st, at) +Ht(st, at)),

where Bt(sl, al) := Q∗(st, at) − Q∗(sl, al) is the

bias caused by using the shrinking ball strategy,

Wt(st, at) := r(st, at, Ét) + maxbQk−1(st+1, b) −
E[r(st, at, Ét) + maxbQk−1(y, b)] is a noise term where

y ∼ p(·|st, at), and

Ht(st, at)

:= E[r(st, at, Ét) + max
b
Qk−1(y, b)]−max

b
Qk−1(s0, b)

− (E[r(st, at, Ét) + max
b
Q∗(y, b)]−max

b
Q∗(s0, b))

=

∫

[max
b
Qk−1(y, b)−max

b
Q∗(y, b)]q(dy|st, at)

−max
b
Qk−1(s0, b) + max

b
Q∗(s0, b)

is the approximation error caused by replacing Q∗ with

Qk−1. To see how this error propagates between successive

interpolation times, we expand the recursion for εt(sl, al)
starting from time tk−1 + 1. This yields

εtk(sl, al) = Uε(tk : tk−1) + UB(tk : tk−1)

+ UW (tk : tk−1) + UH(tk : tk−1),

where we have defined

Uε(tk : tk−1) := [

tk
∏

i=tk−1+1

(1− ¸i(sl, al))]εtk−1
(sl, al),

UB(tk : tk−1)

:=

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(sl, al))]¸i(sl, al)Bi(sl, al),

UW (tk : tk−1)

:=

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(sl, al))]¸i(sl, al)Wi(si, ai),

UH(tk : tk−1)

:=

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(sl, al))]¸i(sl, al)Hi(si, ai).

The convergence properties of the terms Uϵ(tk : tk−1),
UB(tk : tk−1), and UW (tk : tk−1) are presented and analyzed

in Lemmas 5, 7, and 8 below.

Lemma 5 If A1−A6 hold, then for each state-action pair

(sl, al) ∈ Λtk−1
, Uε(tk : tk−1)→ 0 as k →∞ w.p.1.

Proof: By Lemma 4 and Lemma 1, we have

|εtk−1
(sl, al)| f 2Rmax + LD + c. Thus,

|Uε(tk : tk−1)|

= [

tk
∏

i=tk−1+1

(1− ¸i(sl, al))]|εtk−1
(sl, al)|

f exp(−
tk
∑

i=tk−1+1

¸i(sl, al))(2Rmax + LD + c).

Notice that

tk
∑

i=tk−1+1

¸i(sl, al) =

tk
∑

i=tk−1+1

f(Nk
i (sl, al))Ii(sl, al)

=

Ntk
(sl,al)−Ntk−1

(sl,al)
∑

j=1

f(j).

By Lemma 2 and the condition
∑∞

i=1 f(i) = ∞ (A4), we

obtain |Uε(tk : tk−1)| → 0 as k →∞ w.p.1 .

The analysis of the remaining results relies on the following

intermediate result.

Lemma 6 Let A4 hold. Then for each state-action pair

(s, a) sampled by the algorithm and any positive in-

teger l,
∑t

i=l+1[
∏t

j=i+1 (1− ¸j (s, a))]¸i(s, a) f 1 for

all t > l. Further, if A2, A5, and A6 hold, then
∑tk

i=tk−1+1

[

∏tk
j=i+1(1− ¸j(s, a))

]

¸i(s, a) → 1 as k → ∞

w.p.1.
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Proof: Let Yt =
∑t

i=l+1[
∏t

j=i+1 (1− ¸j (s, a))]¸i(s, a)
for notational convenience. First, we show Yt f 1 for all t > l
by induction. When t = l+1, it is clear that Yt f 1. Suppose

Yt f 1 for some t > l, we obtain

Yt+1 =
t+1
∑

i=l+1

[
t+1
∏

j=i+1

(1− ¸j (s, a))]¸i(s, a)

= ¸t+1(s, a) + (1− ¸t+1(s, a))

×
t

∑

i=l+1

[
t
∏

j=i+1

(1− ¸j (s, a))]¸i(s, a)

= ¸t+1(s, a) + (1− ¸t+1(s, a))Yt

f 1,

where the inequality follows from the induction hypothesis.

Thus we have Yt f 1 for all t > l.

Next, let Xt =
∑t

i=tk−1+1

[

∏t
j=i+1(1− ¸j(s, a))

]

¸i(s, a)

and ∆t = |Xt − 1| where t ∈ [tk−1 + 1, tk]. Using a similar

argument as above, we can easily obtain that Xtk = ¸tk(s, a)+
(1− ¸tk(s, a))Xtk−1. It follows that

∆tk = ∆tk−1(1− ¸tk(s, a))

= ∆tk−1+1

tk
∏

i=tk−1+2

(1− ¸i(s, a))

f ∆tk−1+1 exp(−
tk
∑

i=tk−1+2

¸i(s, a))

= ∆tk−1+1 exp(−
tk
∑

i=tk−1+1

¸i(s, a) + ¸tk−1+1(s, a))

= ∆tk−1+1 exp(−

Ntk
(s,a)−Ntk−1

(s,a)
∑

j=1

f(j) + ¸tk−1+1(s, a))

f exp(−

Ntk
(s,a)−Ntk−1

(s,a)
∑

j=1

f(j) + 1),

which tends to zero as k → ∞ w.p.1 by Lemma 2. This

completes our proof.

Lemma 7 If A1−A6 hold, then for each state-action pair

(sl, al) ∈ Λtk−1
, UB(tk : tk−1)→ 0 as k →∞ w.p.1.

Proof: From the definition of Bi(sl, al) and Lemma 1,

we have

Ii(sl, al)|Bi(sl, al)| f Ii(sl, al)LQd(si, sl) f LQri,

which tends to zero as i → ∞ (due to k → ∞) by A5(ii).

Hence for any ϵ > 0, there exist constants N > 0 and M > 0
such that Ii(sl, al)|Bi(sl, al)| f ϵ/2 for all k g N and i ∈
(tk−1 +M, tk]. Thus we obtain that for a sufficiently large k
w.p.1,

|UB(tk : tk−1)|

=

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(sl, al))]¸i(sl, al)|Bi(sl, al)|

f

tk−1+M
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(sl, al))]¸i(sl, al)|Bi(sl, al)|

+
ϵ

2

tk
∑

i=tk−1+M+1

[

tk
∏

j=i+1

(1− ¸j(sl, al))]¸i(sl, al)

f

tk−1+M
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(sl, al))]¸i(sl, al)|Bi(sl, al)|+
ϵ

2

f

tk−1+M
∑

i=tk−1+1

exp(−
tk
∑

j=i+1

¸j(sl, al))|Bi(sl, al)|+
ϵ

2

fM exp(−
tk
∑

j=tk−1+M+1

¸j(sl, al))(2Rmax + 2c) +
ϵ

2

= 2M(Rmax + c) exp
(

−
tk
∑

j=tk−1+1

f(Nk
j (sl, al))Ij(sl, al)

+

tk−1+M
∑

j=tk−1+1

f(Nk
j (sl, al))Ij(sl, al)

)

+
ϵ

2

f 2M(Rmax + c)

× exp
(

−

Ntk
(sl,al)−Ntk−1

(sl,al)
∑

j=1

f(j) +M
)

+
ϵ

2

f ϵ,

where the second inequality comes from Lemma 6, the

second last inequality is due to f(Nk
j (sl, al))Ij(sl, al) f 1,

and the last inequality comes from the assumption

A4 and Lemma 2 that implies 2M(Rmax +

c) exp(−
∑Ntk

(sl,al)−Ntk−1
(sl,al)

j=1 f(j) + M) f ϵ/2 holds

for k sufficiently large. Finally, since ϵ is arbitrary, we have

|UB(tk : tk−1)| → 0 as k →∞ w.p.1.

Now, we show the convergence of the noise term UW (tk :
tk−1).

Lemma 8 If A1−A6 hold, then for each state-action pair

(sl, al) ∈ Λtk−1
, UW (tk : tk−1)→ 0 as k →∞ w.p.1.

Proof: For any k g 1, consider the sequence Mt :=
∑t

i=tk−1+1 ¸i(sl, al)Wi(si, ai), ∀t ∈ [tk−1 + 1, tk]. Note that

¸t(sl, al) is Ft-measurable, we thus have

E[Mt|Ft] =

t−1
∑

i=tk−1+1

¸i(sl, al)Wi(si, ai) + ¸t(sl, al)

× E
[

r(st, at, Ét) + max
b
Qk−1(st+1, b)

− E[r(st, at, Ét) + max
b
Qk−1(y, b)]|Ft

]

=Mt−1.

In addition,

E[M2
t ] = E[(

t
∑

i=tk−1+1

¸i(sl, al)Wi(sl, al))
2]

= E[
t

∑

i=tk−1+1

¸2i (sl, al)W
2
i (sl, al)],
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where the last step follows from the fact that for all i < j, the

cross terms

E[¸i(sl, al)¸j(sl, al)Wi(sl, al)Wj(sl, al)]

= E[¸i(sl, al)¸j(sl, al)Wi(sl, al)E[Wj(sj , aj)|Fj ]]

= 0.

By A1 and Lemma 4, we have |Wt(s, a)| f 4(Rmax +
LD) for all t and (s, a). Consequently, due to the condition
∑∞

j=1 f
2(j) <∞ (A4),

E[M2
t ] f 16(Rmax + LD)2E[

t
∑

i=tk−1+1

¸2i (sl, al)]

= 16(Rmax + LD)2E[

Nt(sl,al)−Ntk−1
(sl,al)

∑

j=1

f2(j)]

<∞.

Hence {Mt} is an L2-bounded martingale.

Recall that tk − tk−1 → ∞ as k → ∞. Thus, according

to the martingale convergence theorem, for any ϵ > 0, we

can find constants K and T such that for all k g K, there

exists a finite random variable M∞ satisfying |Mt−M∞| < ϵ,
∀t ∈ [tk−1 + T, tk] w.p.1. Thus for any k g 1, we have

UW (tk : tk−1)

=

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(sl, al))]¸i(sl, al)Wi(si, ai)

=

tk
∏

j=tk−1+1

(1− ¸j(sl, al))

×
tk
∑

i=tk−1+1

1
∏i

j=tk−1+1(1− ¸j(sl, al))
¸i(sl, al)Wi(si, ai)

=
1

btk

tk
∑

i=tk−1+1

bi¸i(sl, al)Wi(si, ai),

where bi := 1∏
i
j=tk−1+1(1−¸j(sl,al))

. It can be observed that

0 < bi f bi+1 and bi → ∞ as tk − tk−1 → ∞ (due to k →
∞). Based on the fact that

∑tk
i=tk−1+1

bi¸i(sl,al)Wi(si,ai)
bi

=
Mtk <∞ for all k w.p.1 and applying the Kronecker’s lemma

(see, e.g., [40]) in a path-wise manner, we obtain

1

btk

tk
∑

i=tk−1+1

bi¸i(sl, al)Wi(si, ai)→ 0

as k →∞ w.p.1, which completes our proof.

Finally, we are ready to present the proof of the main

convergence result Theorem 1.

Proof of Theorem 1 By the definition of Q∗(s, a) and

Lemma 4, we have sups∈S maxa|Q
∗(s, a)| f Rmax + c and

sups∈S maxa|Qk(s, a)| f Rmax + 2LD, ∀k > 0. Hence

∥Qk(s, a)−Q∗(s, a)∥S×A

= sup
s∈S

max
a

(Qk(s, a)−Q∗(s, a))

− inf
s∈S

min
a

(Qk(s, a)−Q∗(s, a)) (10)

f 2 sup
s∈S

max
a

|Qk(s, a)−Q∗(s, a)|

f 2(2Rmax + 2LD + c).

Next, we proceed by using an inductive argument and suppose

that on each sample path ϖ, there exists a constant G and

time Äj > 0 such that ∥Qk(s, a) − Q∗(s, a)∥S×A f G
for all k g Äj . In what follows, we show that we can

find another time Äj+1 > Äj and a constant · ∈ (0, 1)
satisfying ∥Qk(s, a)−Q∗(s, a)∥S×A f ·G for all k g Äj+1.

Repeating this argument in turn shows the convergence of

∥Qk(s, a)−Q∗(s, a)∥S×A to 0.

By A2(i), there exists a positive constant ´′ such that

´ + ´′ < 1. Let r = ÀG
4(L+LQ) where À ∈ (0, 1 −

´ − ´′) is a given constant. Define the event Ωa =
{limk→∞ sups d(s,Λtk(a)) = 0}, ∀a ∈ A. For each sample

path ϖ ∈ ∩a∈AΩa, there existis some Ä ′ such that S ¦
∪s∈Λt

τ′
(a)B(s, r), ∀a ∈ A. Let Ä = max{Ä ′, Äj}. Clearly,

S ¦ ∪s∈Λtτ (a)
B(s, r) for any a ∈ A.

For any state-action pair (s, a) ∈ Λtτ and for all k g Ä +1,

consider the recursion

εtk(s, a) = (1− ¸tk(s, a))εtk−1(s, a) + ¸tk(s, a)

×
(

Btk(s, a) +Wtk(stk , atk) +Htk(stk , atk)
)

= Uε(tk : tk−1) + UB(tk : tk−1)

+ UW (tk : tk−1) + UH(tk : tk−1).

Let Ωε = {limk→∞ Uε(tk : tk−1) = 0}, Ωsp =
{limk→∞

∑tk
i=tk−1+1[

∏tk
j=i+1(1 − ¸j(s, a))]¸i(s, a) = 1},

ΩB = {limk→∞ UB(tk : tk−1) = 0} and ΩW =
{limk→∞ UW (tk : tk−1) = 0}. From Lemmas 5−8, for each

sample path ϖ ∈ ∩a∈AΩa∩Ωε∩Ωsp∩ΩB ∩ΩW , there exists

an interpolation time Ä ′j+1 g Ä such that for all (s, a) ∈ Λtτ

and k g Ä ′j+1,

εtk(s, a)

f
ÀG

4
+

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)Hi(si, ai)

and

εtk(s, a)

g −
ÀG

4
+

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)Hi(si, ai).

Next for any s ∈ S and b ∈ A, denote sb =
argmins′∈Λtτ (b)

d(s, s′). Since S ¦ ∪s′∈Λtτ (b)
B(s′, r), we

have d(s, sb) f r. It follows that Qk(s, b) − Q∗(s, b) =
Qk(s, b) − Qk(sb, b) + Qk(sb, b) − Q∗(sb, b) + Q∗(sb, b) −
Q∗(s, b) = Qk(s, b) − Qk(sb, b) + Q̃tk(sb, b) − Q∗(sb, b) +
Q∗(sb, b) − Q∗(s, b) for all k g Ä ′j+1 + 1, where in the last

step we have used the fact that Qk(sb, b) = Q̃tk(sb, b) due to

the interpolation property of Qk. Hence we have

Qk(s, b)−Q∗(s, b)

f |Qk(s, b)−Qk(sb, b)|+ Q̃tk(sb, b)−Q∗(sb, b)

+ |Q∗(sb, b)−Q∗(s, b)|

f (L+ LQ)r +
ÀG

4
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+

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(sb, b))]¸i(sb, b)Hi(si, ai)

and

Qk(s, b)−Q∗(s, b)

g −|Qk(s, b)−Qk(sb, b)|+ Q̃tk(sb, b)−Q∗(sb, b)

− |Q∗(sb, b)−Q∗(s, b)|

g −(L+ LQ)r −
ÀG

4

+

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(sb, b))]¸i(sb, b)Hi(si, ai).

This suggests that

sup
s∈S

max
b

(Qk(s, b)−Q∗(s, b)) f (L+ LQ)r +
ÀG

4
+

max
(s′,a′)∈Λtτ

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s
′, a′))]¸i(s

′, a′)Hi(si, ai)

(11)

and

inf
s∈S

min
b

(Qk(s, b)−Q∗(s, b)) g −(L+ LQ)r −
ÀG

4
+

min
(s′,a′)∈Λtτ

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s
′, a′))]¸i(s

′, a′)Hi(si, ai).

(12)

Next we derive a bound for ∥
∑tk

i=tk−1+1[
∏tk

j=i+1(1 −
¸j(s, a))]¸i(s, a)Hi(si, ai)∥Λtτ

. To this end, we note that for

any two state-action pairs (s′, a′) and (s′′, a′′) in S × A and

for any k > 0 and t ∈ [tk−1 + 1, tk],

Ht(s
′, a′)−Ht(s

′′, a′′)

=

∫

[max
b
Qk−1(y, b)−max

b
Q∗(y, b)]q(dy|s′, a′)

−

∫

[max
b
Qk−1(y, b)−max

b
Q∗(y, b)]q(dy|s′′, a′′)

=

∫

[max
b
Qk−1(y, b)−max

b
Q∗(y, b)]¿(dy),

where ¿ is a finite signed measure on S defined by ¿(·) :=
q(·|s′, a′) − q(·|s′′, a′′). By the Hahn-Jordan decomposition

theorem, there exist two disjoint measurable sets S+ and S−

with S+ ∪ S− = S such that

∥¿∥TV = ¿(S+)− ¿(S−) f 2´,

where ¿(S+) > 0 and ¿(S−) < 0 (by A2(i)). On the other

hand, since ¿(S) = ¿(S+) + ¿(S−) = 0, we have that

¿(S+) f ´. It follows that
∫

[max
b
Qk−1(y, b)−max

b
Q∗(y, b)]¿(dy)

=

∫

S+

[max
b
Qk−1(y, b)−max

b
Q∗(y, b)]d¿

+

∫

S−

[max
b
Qk−1(y, b)−max

b
Q∗(y, b)]d¿

f

∫

S+

sup
y

max
b

[Qk−1(y, b)−Q∗(y, b)]d¿

−

∫

S+

inf
y
min
b

[Qk−1(y, b)−Q∗(y, b)]d¿

+

∫

S+

inf
y
min
b

[Qk−1(y, b)−Q∗(y, b)]d¿

+

∫

S−

inf
y
min
b

[Qk−1(y, b)−Q∗(y, b)]d¿

f ¿(S+)∥Qk−1(y, b)−Q∗(y, b)∥S×A

+ inf
y
min
b

[Qk−1(y, b)−Q∗(y, b)] · ¿(S)

f ´G.

Therefore,

Ht(s
′, a′)−Ht(s

′′, a′′)

=

∫

[max
b
Qk−1(y, b)−max

b
Q∗(y, b)]¿(dy)

f ´G.

From the arbitrariness of (s′, a′) and (s′′, a′′), we know for

all t > 0,

∥Ht(s, a)∥S×A f ´G. (13)

We now use (13) to establish a bound for

∥

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)Hi(si, ai)∥Λtτ
.

By Lemma 6, the limit of the sequence

{ tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)

}∞

k=Ä ′
j+1+1

is 1 for all (s, a) ∈ Λtτ . Thus there exists an interpolation time

Äj+1 > Ä ′j+1 such that for all k g Äj+1 and any (s, a) ∈ Λtτ ,

|

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)− 1|

f
´′G

4× (2Rmax + 2LD + c)
.

It follows that for any two state-action pairs (s′, a′) and

(s′′, a′′) in Λtτ ,

∣

∣

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s
′, a′))]¸i(s

′, a′)

−

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s
′′, a′′))]¸i(s

′′, a′′)
∣

∣

f |

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s
′, a′))]¸i(s

′, a′)− 1|

+ |1−

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s
′′, a′′))]¸i(s

′′, a′′)|

f
´′G

2× (2Rmax + 2LD + c)
.
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Note that since Hi is fixed during time interval [tk−1 + 1, tk]
(due to using the same function approximator), we denote it

as H̄k. Therefore, when k g Äj+1, we have

∥

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)Hi(si, ai)∥Λtτ

= max
(s,a)∈Λtτ

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)H̄k(si, ai)

− min
(s,a)∈Λtτ

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)H̄k(si, ai)

f max
(s,a)∈Λtτ

{

sup
(s′,a′)∈S×A

H̄k(s
′, a′)

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)
}

− min
(s,a)∈Λtτ

{

inf
(s′,a′)∈S×A

H̄k(s
′, a′)

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)
}

f max
(s,a)∈Λtτ

{

( sup
(s′,a′)∈S×A

H̄k(s
′, a′)− inf

(s′,a′)∈S×A
H̄k(s

′, a′))

×

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)
}

+
∥

∥ inf
(s′,a′)∈S×A

H̄k(s
′, a′)

×

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)
∥

∥

Λtτ

f ´G+ | inf
(s′,a′)∈S×A

H̄k(s
′, a′)|

× ∥

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)∥Λtτ

f ´G

+ 2× (2Rmax + 2LD + c)×
´′G

2× (2Rmax + 2LD + c)

= (´ + ´′)G. (14)

By combining the result with (10), (11) and (12), we obtain

that

∥Qk(s, b)−Q∗(s, b)∥S×A

= sup
s∈S

max
b

(Qk(s, b)−Q∗(s, b))

− inf
s∈S

min
b

(Qk(s, b)−Q∗(s, b))

f 2(L+ LQ)r +
ÀG

2

+ ∥

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)Hi(si, ai)∥Λtτ

= ÀG+ ∥

tk
∑

i=tk−1+1

[

tk
∏

j=i+1

(1− ¸j(s, a))]¸i(s, a)Hi(si, ai)∥Λtτ

f (À + ´ + ´′)G,

where the last inequality comes from (14).

By Lemma 3, 5, 6, 7, and 8, we have P(∩a∈AΩa ∩ Ωε ∩
Ωsp ∩ ΩB ∩ ΩW ) = 1. Let · = À + ´ + ´′, then we have

∥Qk(s, b)−Q∗(s, b)∥S×A f ·G for all k g Äj+1 w.p.1. This

completes our proof. ■

IV. AN ILLUSTRATIVE EXAMPLE

We illustrate our algorithm by applying it to a machine

replacement example. The original problem is frequently used

as a testbed to evaluate the performance of algorithms for

discounted MDPs (see, e.g., [41], [42], [43]) and is adapted

to an average-reward setting in [32] and [23]. We consider

a four-dimensional version of the problem, where the state

variable s = (s1, s2, s3, s4) measures the accumulated uti-

lization of four independent machines. For each machine,

there are two admissible actions: keep the current machine

(K) or replace it with a new one (R). Thus the action set

A = {(a1, a2, a3, a4) ∈ (K × R)4} contains 16 different

actions. For each machine i ∈ {1, 2, 3, 4}, the transition

density is given by

p(s′i|si, ai) =











φi exp(−φi(s
′
i − si)), s′i g si, ai = K;

φi exp(−φis
′
i), s′i g 0, ai = R;

0, otherwise.

The immediate reward produced by any machine i is given

by r(s,K) = »isi and r(s,R) = Èi. Thus, the AROE for

machine i can be stated as follows:

J∗
i + v∗i (s) = max{Tk,i, Tr,i},

where we have defined

Tk,i := −»isi +

∫ ∞

0

φi exp(−φi(s
′
i − si))v

∗
i (s

′
i)ds

′
i,

Tr,i := −Èi +

∫ ∞

0

φi exp(−φis
′
i)v

∗
i (s

′
i)ds

′
i.

The goal is to maximize the expectation of the long-run

average reward. For comparison with the theoretical optimal

solution, we note that the optimal value function v∗i has a

closed-form expression given by

v∗i (s) =







−»i(1 + φis̄i)si +
»iφi

2
s2i , 0 f si f s̄i;

−»is̄i −
»iφi

2
s̄2i , otherwise,

where s̄i is a unique threshold such that the optimal action is

K whenever si ∈ [0, s̄i] and R if si > s̄i; see, e.g., Section

5 of [23]. Therefore, the optimal value function v∗ under our

setting is simply given by the sum of the four v∗i ’s. In our

computational experiment, we set the parameters as follows:

φ1 = 2/3, »1 = 3, È1 = 15, φ2 = 4/5, »2 = 2, È2 =
17, φ3 = 3/4, »3 = 7, È3 = 5, φ4 = 3/2, »4 = 10, È4 =
20, which leads to the thresholds s̄1 ≈ 2.65, s̄2 ≈ 3.53, s̄3 ≈
0.59, s̄4 ≈ 1.10.

To make the state space compact, we adopt the same

approach used in [42] by setting an upper bound smax = 5 on

the state values. We assume that if the i-th element of the next

state happens to be larger than smax then the i-th machine is
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replaced immediately, and a new state is drawn as if action R

were taken for the i-th machine in the previous step. It can

be seen that
∫∞

smax
p(s′|s,R)ds′ is almost negligible under our

parameter setting and thus the optimal value function of the

modified problem closely matches that of the original problem.

The proposed relative Q-learning (RQ) algorithm is im-

plemented with the following parameter values: learning rate

³t(s, a) = Nk
t (s, a)

−0.501, interpolation times tk =
∑k

i=1 i
2,

reference state s0 = (2.5, 2.5, 2.5, 2.5). We examine the

algorithm with two different shrinking ball radii: a logarithmic

decaying radius rt = C1/ log(1 + t) and a polynomially

decaying radius rt = C2(t + 1)−µ , where C1 and C2 are

positive constants. We denote the algorithms corresponding to

these two choices as RQ-log and RQ-poly, respectively. It is

easy to verify that in the latter case, Assumptions A5(i) and

A5(ii) are satisfied with 0 < µ < 1/12. So our implementation

of RQ-poly is based on setting µ = 0.083 ≈ 1/12. Regarding

C1 and C2, we recommend choosing their values to make the

radius approximately 10% of the diameter of the state space

when the algorithm terminates. The numerical results reported

here are based on the choice C1 = 13 and C2 = 3. The

learning policy of RQ is taken to be an ϵ-greedy policy with

ϵ = 0.1, that is, choosing the greedy action with respect to

Qk−1 with probability 1−ϵ and selecting a random action with

probability ϵ at every iteration step. The function approximator

is constructed by using the stochastic kriging method (see,

e.g., [44], [45]). As suggested in, e.g., [46], [47], we use the

Matérn kernel as the covariance function in the kriging model.

The initial state is set to (4, 4, 4, 4).

In addition to RQ, we have also applied three other methods:

a discretization-based heuristic variant of RVI Q-learning, the

ERVL algorithm proposed in [32], and the ARVL method

proposed in [23]. In the first method, we combine the soft-

state aggregation method of [30] with RVI Q-learning to

construct an asynchronous online algorithm called RVIQ-

SSA. It uses the transition samples generated from a learning

policy to iteratively estimate the Q-function values at a given

set of clusters (aggregate states). In the experiments, those

clusters are obtained by discretizing the state space using a

grid size of 1.0 along each dimension, and each encountered

state s belongs to the jth cluster with probability P (j|s) =
exp(−∥s−j∥2/0.01)∑
j′ exp(−∥s−j′∥2/0.01) . The Q-function estimator is then con-

structed in the form of a weighted sum
∑

j P (j|s)Q̂(j, a)

for all (s, a), where Q̂(j, a) is an estimate of the Q-value at

each cluster-action pair. In ERVL and ARVL, the iterates are

(estimated) value functions. At each iteration, both algorithms

sample N states uniformly over the state space. For each

sampled state action combination, M next states are obtained

by simulating the transition dynamics. In particular, since there

are 16 actions in this example, each state-action combination

is repeatedly simulated 16M times. These samples are used to

approximate the expectation involved in the AROE (assuming

the immediate rewards are deterministic) through either direct

sample average approximation (in ERVL) or kernel density

estimation (in ARVL). A synchronous approximate value iter-

ation step is then carried out, and an estimated value function

is subsequently constructed based on the nearest neighbor

averaging technique. In our implementation, we have used

N = 100, M = 5, and the total number of algorithm iterations

is set to K = 50. Other hyper-parameters, including the

bandwidth used in Gaussian kernel density estimation (used

in ARVL) and the number of nearest neighbors, are taken to

be the same as in [32] and [23]. To allow for a fair comparison

with ERVL and ARVL, the numbers of iterations of RQ and

RVIQ-SSA are set to N×16M×K = 100×80×50 = 400000,

which corresponds to the total number of transition samples

consumed by ERVL and ARVL.

Since all comparison algorithms are randomized, we per-

form ten independent replications for each algorithm and

denote by ṽialg the estimated value function obtained in

the i-th run of an algorithm, where i = 1, 2, . . . , 10 and

alg ∈ {RQ-poly, RQ-log, RVIQ-SSA, ERVL, ARVL}. Table

I shows the spans of the differences between the optimal

value function v∗ and the estimated value functions ob-

tained by different comparison algorithms upon termination.

Note that the results are averaged over ten replications, i.e.,
1
10

∑10
i=1∥ṽ

i
alg(s) − v∗(s)∥D, where D is a set of 1024 low-

discrepancy states selected by using the Sobol sequence on

the four-dimensional state space (cf., e.g., Chapter 5 of [48]).

Fig. 2 illustrates the convergence behavior of the five algo-

rithms by plotting the averaged span semi-norm values with

respect to the number of samples used.

TABLE I

SPANS OF VALUE FUNCTION APPROXIMATES OBTAINED BY RQ-POLY,

RQ-LOG, RVIQ-SSA, ERVL, AND ARVL (MEANS AND STAND ERRORS

BASED ON 10 INDEPENDENT REPLICATIONS).

RQ-poly RQ-log RVIQ-SSA ERVL ARVL

16.21(0.43) 22.57(0.83) 32.52(0.64) 46.24(1.05) 47.95(0.34)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
number of samples ×105

20

30

40

50

60

1 10

10 i=
1
vi al

g(
s)

v*
(s
)

D

RQ-log
RQ-poly

RVIQ-SSA
ERVL

ARVL

Fig. 2. Performance of comparison algorithms in averaged span semi-
norm.

We see that the proposed algorithm outperforms RVIQ-SSA,

ERVL, and ARVL and yields the smallest span semi-norm

values as data accumulate. Test results indicate comparable

performance of ERVL and ARVL. Since both algorithms use

a large number of transition samples at each step, whereas

RQ works with a single sample trajectory, they show a

faster initial improvement than RQ. However, both ERVL

and ARVL stop making improvements during early iterations.

We conjecture that this is mainly due to the discarding of

past sampling information in these algorithms, so that the
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constant number of transition samples used at each step (i.e.,

constant values of N and M ) may result in an estimation

error in density estimation/sample average approximation that

cannot be eliminated across the iterations. RQ, on the other

hand, is an online algorithm that fully retains past learning

data. Compared to RQ, ERVL, and ARVL, the advantage of

RVIQ-SSA lies in its computational and memory efficiencies

because the algorithm uses a constant number of aggregate

states and does not require storing historical transition data.

However, the use of the weighted average in the Q-function

approximator could lead to substantial bias in its estimation.

The performance of ERVL and ARVL could be improved by

increasing the per-iteration sample size; however, that would

result in a reduced number of algorithm iterations under a

given computing budget.

V. CONCLUSION

In this paper, motivated by RVI Q-learning, we have pro-

posed a relative Q-learning algorithm for solving average-

reward MDPs with continuous state spaces in a model-free

online manner. In particular, to achieve the transition from

the commonly studied discrete-state setting to a continuous-

state domain, the algorithm integrates an asynchronous online

averaging procedure with interpolation-based function approx-

imation. The online averaging procedure allows the estimation

error at a visited state-action pair to be eliminated by averaging

Q-value estimates at all pairs that are within its neighborhood;

whereas the function approximator offers the flexibility in

approximating the Q-function over the entire domain by inter-

polating historical data collected during the learning process.

Under appropriate conditions, we have shown the almost sure

(uniform) convergence of the sequence of function approxima-

tors to the optimal Q-function, modulo a constant value that

does not affect the determination of the optimal policy. To our

knowledge, this is the first online Q-learning based algorithm

for solving continuous-state average reward problems with a

strong convergence guarantee. A simple benchmark example

has also been presented to illustrate the algorithm, indicating

its promising performance compared to some of the existing

methods.
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