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ABSTRACT

In this study, we present an efficient integral decomposition approach called the restricted-kinetic-balance resolution-of-the-identity (RKB-
RI) algorithm, which utilizes a tunable RI method based on the Cholesky integral decomposition for in-core relativistic quantum chemistry
calculations. The RKB-RI algorithm incorporates the restricted-kinetic-balance condition and offers a versatile framework for accurate com-
putations. Notably, the Cholesky integral decomposition is employed not only to approximate symmetric large-component electron repulsion
integrals but also those involving small-component basis functions. In addition to comprehensive error analysis, we investigate crucial condi-
tions, such as the kinetic balance condition and variational stability, which underlie the applicability of Dirac relativistic electronic structure
theory. We compare the computational cost of the RKB-RI approach with the full in-core method to assess its efficiency. To evaluate the
accuracy and reliability of the RKB-RI method proposed in this work, we employ actinyl oxides as benchmark systems, leveraging their prop-
erties for validation purposes. This investigation provides valuable insights into the capabilities and performance of the RKB-RI algorithm

and establishes its potential as a powerful tool in the field of relativistic quantum chemistry.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0161871

I. INTRODUCTION

In quantum chemistry calculations utilizing the in-core algo-
rithm with an atomic orbital (AO) basis, the memory storage
requirement for four-index two-electron repulsion integrals (ERIs)
scales as N*, where N represents the number of basis functions.
To address the challenge posed by the rapid scaling of memory
requirements, a commonly employed approach in electronic struc-
ture calculations is the utilization of the resolution-of-the-identity
(RI) formalism, which approximates the 4-index ERI tensor as a
product of two 3-index tensors.' "' Several approaches have been
developed to construct the three-index RI tensors, with the Cholesky
decomposition'” *' and density fitting”~ ** techniques being the
most popular.

The density fitting approach, although relatively straightfor-
ward to implement, relies on pre-optimized atom-centered auxiliary
basis sets. Unfortunately, this method often introduces uncontrolled
errors that scale with the size of the system. On the other hand,
the Cholesky decomposition technique offers a more robust alter-
native to density fitting. It constructs the auxiliary basis on-the-fly,

eliminating the dependence on standard fitting basis sets. More-
over, the accuracy of the Cholesky decomposition can be adjusted
based on a user-defined threshold for any atom-centered basis set.
However, the Cholesky decomposition method is more intricate
to develop and requires extensive optimization to achieve optimal
performance.'”

Since the initial implementation of the Cholesky decomposi-
tion formalism by Beebe and Linderberg,'” numerous schemes have
been proposed to enhance its efficiency. One notable advancement
in this direction was introduced by Aquilante et al., who devised
a two-step algorithm involving the determination of the Cholesky
vectors followed by the construction of the 3-index ERI tensors.'’
Subsequently, Folkestad et al. optimized this approach by apply-
ing the density fitting formalism in the construction of the 3-index
ERI tensors.” Recently, the two-step algorithm is further improved
by the “dynamic-ERI” algorithm that tracks, saves, and reuses the
important ERIs, discarding the non-essential ones.”’

While the RI approach has demonstrated its effectiveness in
nonrelativistic quantum chemistry calculations, its potential appli-
cation in two-component and four-component relativistic electronic
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theory has remained largely unexplored. The challenge arises from
the need to effectively handle basis functions that exhibit diverse
characteristics, including those associated with both large and small
components.””*" In order to reduce the computational cost of rel-
ativistic electronic structure methods, RI with density fitting has
been introduced.”””® However, the employment of RI in relativis-
tic electronic structure methods raises concerns due to potential
uncontrolled errors introduced by the density fitting approxima-
tion. Particularly, it is uncertain whether the application of RI can
guarantee the fulfillment of physical and mathematical conditions,
such as the variational stability, within the realm of relativistic
methods.””**"

In this paper, we present a methodological advancement
toward the development of an accurate and versatile RI technique
for relativistic electronic structure theory. Specifically, we introduce
the implementation of the Cholesky integral decomposition tech-
nique, which offers tunability and provides a systematic framework
to assess the validity of RI in Dirac-Coulomb electronic structure
methods, including numerical errors and their origins. Moreover,
our objective is to investigate the extent to which the relativistic RI
approach satisfies the variational stability in four-component meth-
ods. This research paves the way for utilizing approximate relativistic
integrals within the context of Dirac—-Coulomb electronic structure
methods.

Il. METHODOLOGY

A. Relativistic integrals for Dirac-Coulomb
four-component calculations

The wave function of the Dirac equation in the four-spinor
representation is

Y= > (1)

where ¢" and ¢° denote spinors of the large (L) and small (S) com-
ponent, respectively. The four-spinor molecular orbitals can also be
expressed in a two-spinor basis as

N
=2 D Gurplo @
T u=1
S N S S
$=2. 2 Cur.pXur>
T =
7€ {a,p}, (3)

where N is the number of spatial orbitals. The large component
spinor basis can be expressed as

X 0
Pl Kl 7 B @
0 Xu

where x, is the large-component spatial basis function. The small-

component basis can be obtained from the large component basis
via the restricted-kinetic-balance (RKB) condition, which ensures
the correct nonrelativistic limit of the positive energy states,” »20.27

1
X:T = ﬂg ‘P Xﬁr- (5)
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Here, m represents mass of the electron, and ¢ and p are the speed of
light and linear momentum operator, respectively. o is the vector of
Pauli matrices.

The primary challenge in constructing the relativistic
Dirac-Coulomb Hamiltonian lies in the computation of two-
electron repulsion integrals within the atomic orbital (AO) basis.
This involves calculating three distinct integral classes: a sym-
metric all large-component integral (u“v'[x"AL), a symmetric
all small-component integral (u°v*|x°A%), and a mixed large-
and small-component integral (°v*|x*A"), which does not have
symmetry between electrons 1 and 2. The Mulliken notation is
employed to denote these two-electron integrals. When applying the
RKB condition [Eq. (5)] within the Dirac equation, the computation
of (4°v*|x*AF) and (1°v*|«°1°) integrals requires the calculation of
two-center and four-center integral derivatives. This process gives
rise to integral forms, such as (Vy - Vv|kd) (scalar product) and
(Vu x Vv[xA) (cross product), where the L or S notation on basis
functions is no longer needed as they are all large-component basis
functions.

Due to the fact that the basis set must also describe negative-
energy states, it is important to use uncontracted basis sets in the SCF
calculations so that this condition is fulfilled. The use of contracted
large- and small-component functions from atomic Dirac-Hartree-
Fock (DHF) calculations (atomic balance’!) may lead to violation of
the separation of the positive- and negative-energy states.’

Recent advancements utilizing the Pauli quaternion represen-
tation have achieved a minimum floating-point count algorithm for
constructing the relativistic Hamiltonian in spin- and component-
separated forms.”” This approach allows for density-integral
contraction directly using one-component scalar integrals. The
Cholesky integral decomposition method introduced in this work
is developed within the framework of relativistic Dirac-Coulomb
Hamiltonian construction using the Pauli quaternion representa-
tion. In other words, scalar integrals are Cholesky-decomposed
directly and employed in the Hamiltonian construction process.

B. Cholesky decomposition for relativistic
Dirac-Coulomb integrals

A symmetric, positive semi-definite electron repulsion inte-
gral (ERI) matrix M can be approximated using the Cholesky
decomposition technique as

M,uv,m\ = (‘MV|KA) 4 Z Lﬁva:A = (LLT);N,KA) (6)
PeB

where L}, is P-th component of the Cholesky vector matrix L and
B contains all selected Cholesky pivots.

The Cholesky vectors are generated iteratively per index pair
(uv) using a pivoting procedure,'® which starts with an empty 5 fol-
lowed by setting the initial values of the residual diagonal elements
as (uv|uv) = (uv|uv). At each iteration, a new Cholesky pivot P = kA
corresponding to the largest residual diagonal element is selected,
and the new Cholesky vector is described as

LP _ (.“V‘P) B ZRGB Lﬁng
" (PIP)

7)
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where after every iteration, P is added to B, and the residual diagonal
elements are updated as

(wvluv) = (uluv) - (Lf)*. )

This continues until the predefined Cholesky threshold 7 becomes
greater than the largest diagonal element.

In the two-step algorithm” to generate Cholesky vectors, the
first-step involves determination of the Cholesky pivot set with-
out computing the complete Cholesky vectors. This is followed by
expressing Eq. (6) as an inner projection in a resolution-of-the-
identity (RI) approach,

My m Y, (@lP)(J)pp(Plkd), ©)
P’ ,PeB
Jppr = (P|P), PP eB (10)

The Cholesky vectors can be formed by Cholesky decomposing
J=QQ,

Liy= Y (ulP)(Q " )pps an

P'eB

where Q is a lower triangular matrix and Q= (QT)_I.

As mentioned in Sec. II A, the construction of the
Dirac-Coulomb Hamiltonian involves the computation of three
integral types: (uv|kA) or (LLILL), (VuVvlkd) or (SS|LL),
and (VuVv|VxVA) or (SS|SS). It is straightforward to apply
the Cholesky decomposition method to the symmetric large-
component-only integrals (LL|LL) as this is equivalent to its applica-
tion in nonrelativistic theory. Determining the appropriate strategy
for obtaining Cholesky vectors for the (SS|LL) integrals is not as
clear-cut as this matrix is not symmetric. Decomposing the (SS|SS)
integrals, which are also symmetric, is considerably more work than
decomposing the (LL|LL) integrals due to the need to compute
fourth-order integral derivatives.

A simple strategy is to use the Cholesky pivots obtained for
the symmetric large-component-only integrals (LL|LL) to compute
Cholesky vectors for all unique terms in small-component integrals,

Ly = > (@P')(Q ) (12)
PeB
(avlkA) = Y LisL, (13)
PeB
(#lkA) = Y LisLis, (14)
PeB

where j=Vu. It is important to note that the same small-
component Cholesky vectors Lf—:{, are used for calculating the (SS|SS)
integrals without any additional computational cost as required in
the exact formalism. In the subsequent discussion, we will refer to
this technique as the Restricted-Kinetic-Balance Resolution-of-the-
Identity (RKB-RI) approach with Cholesky integral decomposition.

This simple strategy relies on the fact that the large-component
atomic basis for the most part adequately covers the small-
component atomic basis: the s functions are a good representation
of the basis for the small component of the p, , spinors, the p func-
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tions are a good representation of the basis for the small component
of the 51/, spinors, and so on. The only functions present in the small-
component basis that are not present in the large-component basis
are the functions of the highest angular momentum. However, as
the Cholesky vectors represent the density and not directly the basis
functions themselves, most of the density described by these high
angular momentum functions is covered by the Cholesky vectors.
For the part that is not covered, the small component is sufficiently
small that the error is also small.

C. Error analysis for relativistic Cholesky integral
decomposition

A unique advantage of Cholesky integral decomposition is that
it builds the auxiliary basis on-the-fly to any order of accuracy for
any basis set and any chemical system. In other words, the Cholesky
decomposition approach is versatile and the accuracy is tunable via
a user-defined threshold 7.

Using M to represent the difference between the exact matrix
M and approximate Lﬁva:A, the error in Cholesky decomposition for
the large-component (LL|LL) integrals can be computed according
to the Cauchy-Schwarz inequality,'®

2 ~ ~
(M,uv,x)n) < M[dv,;w : MKA,KA < TZ- (15)

Thus, 7 provides an upper-bound to the maximum error of the
Cholesky decomposition approximation for the (LL|LL) integral.

However, the same analysis cannot be applied to determine the
error in the (SS|LL) integrals due to their asymmetric nature. To
estimate the accuracy of the Cholesky decomposition approximation
for (SS|LL) integrals, we describe the difference in the exact and the
residual ERI matrix as

Mg = Mpgja — > Lis Lo, (16)
PeB

followed by application of the Cauchy-Schwarz inequality

—~ 2 —~ —~ —~ ~
(Mus0)” < Moo - Masa < Moo - 7 < max (|Mpsga|) - 7

Muogr = Mango = Y LiLiy. (17)
PeB

Equation (17) suggests that the error in the (SS|LL) integrals
is not bounded by the large-component Cholesky threshold 7.
The same applies for the (SS|SS) integrals. It is important to
note that since these errors are not bounded, there is a possi-
bility of variational collapse during four-component calculations.
To assess the suitability and reliability of the RKB-RI approach in
four-component Dirac-Coulomb calculations, Sec. 11T will utilize
numerical benchmarks for validation.

Ill. RESULTS AND DISCUSSION

All calculations are performed with a development version of
the Chronus Quantum software package.”® The speed of light uti-
lized is 137.035999 074 a.u. The uncontracted ANO-RCC-VDZP*
basis set was utilized, resulting in 239 basis functions with up to
f orbital angular momentum for Au atom. Convergence thresholds
of 107 a.u. in energy and 1077 a.u in densities and gradients were
used.
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A. Accuracy of RKB-RI with Cholesky decomposition

When employing the RKB-RI approximation to estimate rel-
ativistic two-electron integrals, it is possible that the SS density is
not adequately described by the large-component Cholesky vectors.
Thus, there is an extra source of error over the error in the large-
component integral decomposition, as discussed in Sec. II B. Here,
we investigate this issue to ensure that calculations with the RKB-RI
approximations provide accurate and reliable results.

Table I shows the total four-component Hartree-Fock energy
computed using the Dirac-Coulomb Hamiltonian with the RI for-
malism for an isolated Au atom with an uncontracted ANO-RCC-
VDZP basis at different Cholesky thresholds. Increasing the thresh-
old leads to an increased error in the ground state energies of the Au
atom compared to the energy computed using full electron repulsion
integrals (ERIs). The RKB-RI approach produces energies slightly
lower than those obtained using full 4-index integrals for some
values of 7. However, this behavior is commonly observed in RI
approaches within nonrelativistic theory, and the RKB-RI approach
remains highly reliable and robust, making it an excellent choice for
accurate energy calculations.

In contrast to nonrelativistic calculations, where only a sin-
gle type of ERI (LL|LL) is typically considered, the use of the
Dirac-Coulomb Hamiltonian involves additional ERIs, namely,
(SS|LL) and (SS|SS). These ERIs have a prefactor of ﬁ and

mc)?
w, respectively, in the energy expression, where m represents
the mass of the electron and ¢ denotes the speed of light. The con-
struction of these ERIs from several scalar integrals adheres to the
principles of the RKB condition.

Table 1I shows the mean integral values and mean absolute
errors of different scalar integrals at a Cholesky-decomposition
threshold of 7=107". Integrals involving scalar products of
the small-component bases, including (V, - V,)(uv|kd) and
(Vu - Vi)(Vi- Va)(uv]rd), representing direct Coulombic inter-
actions for large-small and small-small components of the
wave function, produce larger mean absolute errors than the
(LLILL) integral. This is understandable as the auxiliary Cholesky-
decomposition bases are constructed using the large-component

TABLE |. Errors in the ground state energies of an Au atom computed using the
Cholesky-decomposed four-component Dirac—Coulomb Hartree—Fock theory with an
uncontracted ANO-RCC-VDZP basis (total 239 basis functions) at different Cholesky-
decomposition thresholds, relative to exact integrals.?:

T Auxiliary basis RI energy (Ej;) RI errors (Ej,)
107° 1908 —19035.579 061 628 8 1.3x1078
1078 1727 -19035.5790616610 -1.9x 107°
1077 1593 -19035.5790618391  —-2.0x 107
10°° 1474 ~19035.579 055 212 6 6.4x107°
107° 1298 —19 035.578 985 937 5 7.6 x107°
107 1090 —19 035.578 036 725 7 1.2x107°
1073 881 —19 035.574 049 534 3 50x 1073
1072 635 —19 035.325 003 680 7 2.5%x 107!
107! 322 —19027.295 741 948 7 8.3 x 10*°

*Dirac-Coulomb Hartree-Fock energy using exact integrals: —19035.579 061 6419 Ej,.
®Numerical grid (Ref. 38) —19035.595 10 E;,.

ARTICLE pubs.aip.org/aipl/jcp

TABLE II. Mean integral value (MIV) and mean absolute errors (MAE) of all
Dirac-Coulomb scalar integrals computed at Cholesky-decomposition threshold of
7=10"* for Auy with a fully uncontracted ANO-RCC basis (594 basis func-
tions). Integrals involving small-component, (SS|LL) and (SS|SS), have been

. ‘| . g
scaled with prefactors of ano)? and @ respectively. The four-component

Dirac-Coulomb Hartree-Fock energies are as follows: Egyact = —38 071.189 901 Ej,
and AEg = 1.3 x 1073 Ey,.

Block ERI component MIV MAE
(LL|LL):
(uv]x)) 1.7x107* 1.7x107°
(SS|LL):
(Vu - Vo) (pv]d) 1.6x107> 41x107°
(Vi x V) x(uv]xd) 13x107° 79x 107"
(V% V) (uvlrd) 13x107° 79x 107"
(V% )z (uvlrd) 13x107 67x107"
(88/SS):
(Vi Vo) (Vi - V) (uvkd) 49 x10°  92x107°
(Vux V,)x(Ve- V) (uvfd)  41x107" 8.6x 1077
(Vi x V) (Ve V) (pvld)  41x107" 8.6x 1077
(Vi x V2)2(Vie - Va) (pvled)  41x107" 7.3x1077
(Vi x V)x (Ve x V)x(pvlrd) 3.0x 107" 25x107°
(Vi x Vo)x (Ve x W)y (uvled)  1L7x107" 24x107°
(Vi x Vo)x (Ve x V)2 (v|ed) 1.7x107" 2.0x107°
(Vi x Vo)y (Ve x V), (pvled)  3.0x 107" 2.5x107°
(Vi x Vo)y (Ve x Va)z(pv|d) 17 x 1070 2.0x107°
(Vu x V)o(Vie x Va)(pv]kd) 3.0x 1070 1.7 x107°

basis that cannot form the complete set to map small-component
bases to the auxiliary bases. The error is the largest for the full scalar
product of the (SS|SS) term. Nevertheless, they fall below the pre-
dicted errors calculated according to Eq. (17), as shown in Table S1
in the supplementary material.

B. Computational cost analysis

The main advantage of using RKB-RI integrals is that it avoids
recomputation of 4-index ERIs by storing 3-index Cholesky vec-
tors and forming the Hamiltonian matrix directly in memory, i.e.,
in-core algorithm. Table IIT shows the relative timings along with
the individual cost for Coulomb (J) and exchange (K) contrac-
tions in each SCF iteration using different in-core algorithms for Ag,
simulated using a moderate-sized basis.

When comparing the two algorithms, it is evident that the
4-index in-core Fock-build is faster than the RKB-RI formalism.
Taking a closer look at the in-core timings, we observe that the com-
putation of RKB-RI Coulomb J terms is significantly faster than the
corresponding 4-index Coulomb build. This is primarily due to the
reduction in scaling, transitioning from Ni,, when using 4-index
integrals to Ng,gNaux With the RKB-RI formalism for the Coulomb
J build. However, it is important to note that the exchange K con-
traction with RKB-RI integrals scales as Ny, Naux, which can be
computationally more demanding compared to the Ni;; scaling of
the 4-index in-core formalism when Nayx > Npasis.

Upon analyzing the computational costs associated with each
Fock matrix block, it becomes evident that the all small-component
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TABLE lIl. Cost® comparison of in-core 4-index and in-core RKB-RI algorithms using
ANO-RCC-VDZP basis (364 basis functions”).

4-Index in-core RKB-RI in-core

Fock matrix block  Total J K Total J K

FI 1.00 033 067 169 001 1.68
F* 071 -+ 071 656  --- 6.56°
F* 1454 3.83 1071 2696 0.05 2691

Cost is measured relative to the large-component block F** calculation with 4-index
integrals.

"The Cholesky-decomposition threshold is 107, resulting in 1558 auxiliary bases.
“The SL block of the Fock matrix has exchange contribution only.

block F** incurs significantly higher expenses compared to other
blocks. This increased cost primarily arises from the additional con-
tractions involving the (SS|SS) integrals, as illustrated in Table 1.
Enhancing the computational efficiency by employing RKB-RI for
the small-large component block of the Fock matrix F** proves
to be more challenging, given its exclusive reliance on exchange
interactions.

These observations highlight the trade-offs in performance
between the different algorithms employed. The choice between
4-index and RKB-RI in-core approaches depends on the specific
computational requirements, memory size, and the nature of the
Hamiltonian (e.g., J vs K).

C. Benchmark: Properties of actinyl oxides

In this section, we benchmark the performance of the RKB-
RI algorithm using Cholesky vectors for three actinyl oxides: UO3",
NpO3*, and PuO3". In addition to the absolute ground state ener-
gies, we also focus on other properties, such as the potential energy
surfaces (PESs), equilibrium bond lengths, and atomization ener-
gies. We use the four-component Dirac-Coulomb Hartree-Fock
calculations as our reference for comparison. All calculations were
performed with linear geometries with experimental bond lengths

ARTICLE pubs.aip.org/aipl/jcp

of 1.76, 1.75, and 1.74 A for U-O, Np-O, and Pu-O, respec-
tively.”” An uncontracted ANO-RCC-VDZP basis and a Cholesky-
decomposition threshold of 7 = 107 were used for all present cal-
culations. Computational results presented herein are not compared
to experiments because these benchmark studies are intended for the
sole purpose of determining the accuracy of RKB-RI relative to the
exact method.

1. Ground state energies

Table IV presents the errors in the ground state energies com-
puted with the approximate RKB-RI integrals. As expected, the
errors decrease with tighter threshold consistently for all the actinyls.
The different signs of the errors signify that the RKB-RI technique
for Dirac-Coulomb Hartree-Fock is not variational or bound from
below by the exact result using 4-index integrals. The major con-
tribution to the overall error stems from the (LL|LL) component,
whereas the smaller errors of the (SS|LL) to (SS|SS) can be explained
due to their contributions of the order of Ciz and C%, respectively,
to the total Dirac-Coulomb energy. A fraction of the errors in
the small-component energies also comes from the projection of
the large-component Cholesky vectors on to the small-component
one. Fortunately, we do not observe a variational collapse at higher
thresholds, which validates the success of the RKB condition in this
Cholesky decomposed relativistic formalism.

2. Potential energy surface

In Fig. 1, we present the potential energy surface (PES) plots
obtained using both the exact 4-index integrals and the RKB-RI
integrals. It is worth noting that, overall, the two methods yield
qualitatively similar PES plots for all the oxides. However, there
are quantitative differences that can be observed, with discrepan-
cies of ~0.002 to 0.003 a.u. Among the oxides, the largest deviation
is observed for PuO3*, particularly around the equilibrium point.
The differences in energy calculations for this system are more
pronounced compared to the other oxides.

To provide further insight, Table V presents the equilibrium
bond lengths obtained from the PES scans for the three actinyl
oxides. Notably, the RKB-RI method exhibits the highest error for

TABLE IV. Analysis of the errors in the ground state energies of a series of actinyl oxides, UO3*, NpO2*, and PuO3*,
computed using the four-component Dirac—-Coulomb Hartree—Fock theory with an uncontracted ANO-RCC-VDZP basis (438

basis functions) and Cholesky-decomposed RKB-RI integrals.

Component-wise RKB-RI errors (Ej,)

System 7  Auxiliary basisno.  Errors (Ej) (LL|LL) (SS|LL) (8S]SS)
107 1858 21x107° 19 x107° 2.0x107* 3.6%x107°
uo¥ 1070 2363 1.3 x107* 14x107*  -6.6x107° 6.1x1078
1070 4078 9.5x 107 9.1x 107 60x1071" -—20x1071
1074 1864 1.9x107° 1.8x107° 1.9x107* 33x107°
NpO3* 107° 2361 l4x107* 14x107*  -2.1x1077 9.0 x 1078
107° 4082 —52x107° -44x107° -50x107 —30x107°
107* 1862 20x1073 1.9 x 1073 1.6 x 107 2.8x%x107°
PuO3* 1077 2370 1.4 x 107 14x107*  -1.9x1077 6.9 %1078
107° 4081 52x107° 57%x107°  -3.0x107% -—20x107%
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FIG. 1. Potential energy surface plots for a series of actinyl oxides, UO%*, NpO§+, and PuO%*, computed using the four-component Dirac-Coulomb Hartree—Fock theory
with an uncontracted ANO-RCC-VDZP basis and Cholesky-decomposed RKB-RI integrals.

TABLE V. Equilibrium bond lengths for a series of actinyl oxides, UO%*, Np02+,

and PuO%* , computed using the four-component Dirac-Coulomb Hartree—Fock the-
ory with an uncontracted ANO-RCC-VDZP basis and Cholesky-decomposed RKB-RI
integrals.

System Exact (A) RKB-RI (A) Errors (A)

uos* 1.6450 1.6497 470 x 1073
NpO3* 1.6319 1.6318 -1.00 x 107
PuO3* 1.6132 1.6129 -3.00 x 107

UO;3*, with a discrepancy of ~0.005 A. On the other hand, the errors
for the remaining two oxides are of the order of ~107* A, indicating
a comparatively lower level of deviation. Despite variations in the
PES plots, the essential characteristic of the bond lengths remains
consistent.

Our next set of tests involved computing the atomization ener-
gies of the actinyl oxides into 2 x O?~ and the respective An(VI)
ions, as shown in Table VI. The atomization energies increase
with increasing atomic number of the actinide atom, although the
RKB-RI errors do not seem to follow any particular trend. Over-
all, RKB-RI errors in the atomization energies are of the order
~107* eV, with UO3* producing the highest error (~0.005 eV), but
still well below the chemical accuracy.

TABLE VI. Ground state bond atomization energies of three actinyl oxides com-
puted as AE = 2 x E(Oz’) +E(An(VI)) - E(AnO%*), computed using the four-
component Dirac-Coulomb Hartree-Fock theory with an uncontracted ANO-RCC-
VDZP basis and Cholesky-decomposed RKB-RI integrals.

System Exact (eV) RKB-RI (eV) Error (eV)

uos* 178.907 654 9 178.902 670 2 -4.98 x 107°
NpO3* 182.636 063 3 182.635 2112 -852x 107"
PuO3* 186.544 183 9 186.548 446 7 426 x 1073

IV. CONCLUSIONS AND PERSPECTIVE

In this work, we introduce the implementation of the two-
step Cholesky decomposition technique to aid in the in-core
relativistic four-component Hamiltonian-build using resolution-
of-the-identity within the restricted-kinetic-balance condition
(RKB-RI). We presented a recipe that uses large-component
Cholesky pivots for computing RKB-RI integrals involving small-
component bases and associated error-analysis techniques for
different Dirac-Coulomb integral components.

In order to thoroughly evaluate the capabilities and accu-
racy of the Cholesky-decomposed RKB-RI algorithm, we conducted
benchmark calculations to assess its performance in various aspects,
including ground state energies, potential energy scans, equilibrium
bond lengths, and atomization energies for a series of actinyl oxides.
The results indicate that while there may be discernible differ-
ences in computed energy values between the 4-index and RKB-RI
algorithms, the calculated chemical properties, particularly the equi-
librium bond lengths and atomization energies, exhibit a high degree
of agreement between the two methods. The absence of variational
collapse or prolapse in the computed energies is a significant aspect
that affirms the stability of the RKB-RI approach in four-component
calculations.

The cost analysis conducted demonstrates that the Cholesky-
decomposed RKB-RI algorithm offers several advantages. First, it
reduces the storage requirements for integrals, thereby optimizing
memory usage. Additionally, it significantly decreases the compu-
tational cost associated with Coulomb contraction, compared to
utilizing 4-index integrals. However, it is important to note that the
exchange part of the Hamiltonian build using RKB-RI can be more
computationally demanding when the number of Cholesky vectors
surpasses the number of large-component basis functions.

SUPPLEMENTARY MATERIAL

The supplementary material includes predicted and observed
maximum errors for Au,.
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