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ABSTRACT: The Cholesky decomposition technique is com-
monly used to reduce the memory requirement for storing two-
particle repulsion integrals in quantum chemistry calculations that
use atomic orbital bases. However, when quantum methods use
multicomponent bases, such as nuclear−electronic orbitals, addi-
tional challenges are introduced due to asymmetric two-particle
integrals. This work proposes several multicomponent Cholesky
decomposition methods for calculations using nuclear−electronic
orbital density functional theory. To analyze the errors in different
Cholesky decomposition components, benchmark calculations
using water clusters are carried out. The largest benchmark calculation is a water cluster (H2O)27 where all 54 protons are
treated quantum mechanically. This study provides energetic and complexity analyses to demonstrate the accuracy and performance
of the proposed multicomponent Cholesky decomposition method.

1. INTRODUCTION
Ab initio electronic structure methods require storing all four-
index, two-particle integrals in the in-core algorithm. However,
the N( )4 scaling, where N is the number of basis functions,
results in a major bottleneck for in-core ab initio electronic
structure calculations due to this storage requirement. To
address this issue, resolution-of-identity (RI) methods such as
the Cholesky decomposition (CD)1−9 and density fitting
(DF)10−12 techniques are used to approximate a four-index
tensor with a product of two three-index tensors, thus reducing
the need to store four-index integrals.13−23 Although both CD
and DF techniques result in similar density-integral contrac-
tions, DF requires a preoptimized auxiliary basis, whereas CD
can build the auxiliary basis on-the-fly to any order of accuracy
for any basis set and any chemical system. In other words, the
CD approach is more versatile and can also generate and
benchmark auxiliary bases for any basis sets. However, while
the DF approach is easy to code for electronic structure
methods when provided with a set of preoptimized auxiliary
bases, the implementation of CD is complex and may require
optimization to achieve optimal performance.
The primary challenge in developing an efficient CD

approach is that determining auxiliary bases or Cholesky
pivots requires traversing all two-particle integrals. This
requirement creates a dilemma because the CD method aims
to avoid storing N( )4 two-particle integrals. However,
recent advances in the two-step algorithm have significantly
improved the efficiency of the CD method.8,9 In the first step,
the auxiliary bases or CD pivots are determined on the fly, as
the two-particle integrals are generated. In the second step,

three-index integrals are computed, stored, and used in ab
initio calculations. The dynamic two-step CD algorithm tracks
and reuses integrals, leading to optimal performance with a
minimal floating-point operation count.9 This approach
represents a significant improvement over previous methods
that require storing all two-particle integrals or computing
auxiliary bases in a separate step, thus, reducing the memory
and computational requirements for CD-based calculations.
Although CD and DF have proven successful in electronic

structure calculations, their applicability and utilization in
multicomponent methods, such as nuclear−electronic orbital
(NEO) theory, have remained largely unexplored. In NEO
methods,24,25 the Coulombic interactions include those
between electrons and quantum nuclei, as well as those
between electrons and those between quantum nuclei,
resulting in three different types of two-particle integrals.
Since integrals between electrons and between quantum nuclei
are symmetric in nature, conventional CD and DF can be
directly applied. However, integrals between electrons and
quantum nuclei are asymmetric due to the different character-
istics of the electronic and nuclear degrees of freedom.
Although multicomponent DF approaches have been recently
implemented within the framework of NEO density functional
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theory,26 NEO coupled-cluster theory,27 asymmetric magnetic
integrals,28,29 and relativistic integrals,30 strategies to accurately
approximate the asymmetric integrals with CD remain
unexplored. In this work, we introduce a multicomponent
CD method with three different strategies for constructing
asymmetric two-particle NEO integrals. We conduct system-
atic studies along with time and storage complexity analyses to
benchmark the different multicomponent CD strategies. This
approach represents a significant advance toward extending the
applicability of CD to multicomponent methods, enabling
more accurate and efficient calculations within the NEO
framework.

2. METHOD
We use the following notations throughout this work:

• Lowercase letters p, q, r, s, ... are electronic basis
functions;

• Uppercase letters P, Q, R, S, ... are quantum nuclear basis
functions;

• Lowercase Greek letters α, β, ... are electronic Cholesky
bases;

• Uppercase Greek letters Γ, Θ, ... are quantum nuclear
Cholesky bases;

• κ, λ are the combined two-component Cholesky bases.
2.1. NEO Integrals. Within the NEO framework, in

addition to electrons, specified nuclei (typically protons) are
also treated quantum mechanically. Assuming there are Ne and
Nn electronic and quantum nuclear basis functions, respec-
tively, all NEO methods require three types of two-particle
integrals, written in chemist’s notation as follows:

|pq rs M( ) pq rs, (1)

|PQ RS M( ) PQ RS, (2)

|pq RS M( ) pq RS, (3)

where lower p, q, r, s and upper-case letters P, Q, R, S represent
electronic and nuclear basis functions, respectively. Equation 1
(dimension Ne

2 × Ne
2) and eq 2 (dimension ×N Nn

2
n
2) are

symmetric rank-four tensors and are related to the repulsion
between electrons and between quantum nuclei, respectively.
Equation 3 gives rise to the Coulombic attraction between
electrons and quantum nuclei and has an asymmetric
dimension of Ne

2 × Nn
2.

2.2. Multicomponent CD. Given a symmetric four-index
matrix M, such as those representing repulsion integrals
between electrons (eq 1) and between quantum nuclei (eq 2),
the CD, like other RI approaches, seeks to approximate the full
rank-four tensor as a product of rank-three tensors

| = *pq rs M L L( ) pq rs pq rs, , ,
(4)

where = { }L , . . . are the Cholesky vectors and
= { }, . . . are the Cholesky bases (auxiliary bases). In

the two-step CD algorithm, the first step determines the
Cholesky bases and the second step computes the Cholesky
vectors . To compute the Cholesky vectors, the Coulombic
interaction matrix of the Cholesky basis, Jαβ = (α|β), is
Cholesky-decomposed according to J = KKT, where K is a
lower triangular matrix. Note that for a complex-valued matrix,
the transpose becomes the conjugate transpose.

Using the RI relationship, the four-index two-particle
repulsion integrals can be written as follows:

| | |pq rs pq rsJ( ) ( )( ) ( )
,

1

(5)

Since the inverse of the Cholesky-decomposed J can be written
as J−1 = K−TK−1, where K K( )T T 1, the Cholesky vectors in
eq 4 can be formed as follows:

= |L pq K( )( )pq,
T

,
(6)

2.2.1. Symmetric NEO Integrals. For NEO systems, the
two-particle integral matrices Mpq,rs (eq 1, Ne

2 × Ne
2) and MPQ,RS

(eq 2, Nn
2 × Nn

2) are symmetric rank-four tensors and are
related to the repulsion between electrons and between
quantum nuclei, respectively. Application of the CD method
to symmetric rank-four tenors is straightforward, leading to
electronic ( e and e) and nuclear ( n and n) Cholesky
bases and vectors, which can be used to build the electronic
and nuclear parts of the Hamiltonian. See ref 9 for details on
the two-step CD algorithm for symmetric rank-four tensors.

2.2.2. Asymmetric Multicomponent NEO Integrals. The
two-particle integrals between electrons and quantum nuclei
(eq 3) form an asymmetric rank-four tensor Mpq,RS with
dimension Ne

2 × Nn
2, which makes the RI relationship (eq 5)

not directly applicable. In this work, we explore three RI
strategies to generate rank-three CD vectors for asymmetric
NEO integrals.

2.2.2.1. Single One-Component RI. In the single one-
component RI approach, either electronic or nuclear Cholesky
bases, but not both, are used in the RI equation for asymmetric
integrals. For example, when electronic Cholesky bases are
used, the asymmetric integral can be approximated as follows:

| = | |

= *

pq RS M pq RS

L L

J( ) ( )( ) ( ) (7)

(8)

pq RS

pq RS

,
,

1

, ,

e

e

where the nuclear Cholesky 3-index tensor is defined as
follows:

= |L RS K( )( )RS ,
T

e (9)

This strategy has been previously employed in NEO coupled-
cluster calculations, utilizing the DF technique.27

2.2.2.2. Double One-Component RI. The second algorithm
that we propose to approximate the asymmetric (pq|RS)
integrals uses both the electronic and the nuclear Cholesky
bases. Since the dimensions of the two Choleksy basis sets can
be different, a second RI matrix is needed. As such, this
approach is referred to as the double one-component RI
method. In this approach, both (pq|rs) and (PQ|RS) integrals
are Cholesky-decomposed, and the resulting Cholesky bases e
and n are used via a double one-component RI procedure to
compute the asymmetric (pq|RS) NEO integrals
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| | | |

= |

= |

pq RS pq RS

J

J

J J( ) ( )( ) ( )( ) ( )

( )

( )

, ,

1 1

e n

(10)

which can be rewritten as the following working expressions:

| *pq RS L A L( ) pq RS, ,

e n (11)

= |L pq K( )( )pq,
T

,

e (12)

= |L RS K( )( )RS ,
T

,

n (13)

= |A K K( ) ( )( )1 T

e n (14)

It should be noted that both e and n are precomputed
from Cholesky-decomposed (pq|rs) and (PQ|RS) integrals, and
thus only AαΓ needs to be evaluated in the double one-
component RI approach for approximating (pq|RS).
2.2.2.3. Two-Component RI. In the previous two asym-

metric RI approaches, only a one-component (either electronic
or nuclear) Cholesky basis is used at a time. The third
algorithm that we propose is a two-component RI, where the
union of the electronic and nuclear Cholesky bases is used in a
single RI procedure. The union of the electronic and nuclear
Cholesky bases is defined as =c e n, giving rise to the
two-component Cholesky basis. The asymmetric NEO
integrals can be expressed in this two-component Cholesky
basis as follows:

| | |

= *

pq RS pq RS

L L

J( ) ( )( ) ( ) (15)

(16)pq RS

,

1

, ,

c

c

= |L pq K( )( )pq,
T

,

c (17)

= |L RS K( )( )RS ,
T

,

c (18)

Here, the two-component Coulombic interaction matrix J is
defined as follows:

| |

| |

i
k
jjjjjj

y
{
zzzzzz

( ) ( )

( ) ( ) (19)

and the only additional quantity that needs to be computed is
the (α|Γ) matrix.
2.3. Storage and Time Complexity. One of the main

benefits of RI-based methods is their ability to reduce integral
storage from a 4-index tensor to a 3-index tensor, which can be
kept in memory and reused throughout the calculation without
the need for recomputation, unlike the AO-direct algorithm.
Table 1 enumerates the theoretical storage complexity of the
RI-based NEO methods, focusing on multicomponent
asymmetric (pq|RS) integrals, as symmetric electronic and

nuclear integrals can be computed using well-established CD
approaches. Note that the storage requirements for pure
nuclear and electronic CD vectors are | |N( )n

2
n and

| |N( )e
2

e , respectively, for all RI methods. Table 1 suggests
that storing asymmetric nuclear−electronic integrals in a NEO
calculation requires significantly less memory compared to the

N N( )e
2

n
2 storage required for conventional 4-index integrals.

This reduction in storage is observed when | | Ne e
2 and

| | Nn n
2 for one-component RI methods, and when

| | + | | Ne n e
2 and | | + | | Ne n n

2 for the two-compo-
nent RI approach.
The time complexity analysis for the multicomponent CD

method for mean-field calculations, such as Hartree−Fock and
density functional theory (DFT) in the NEO framework, is
presented in Table 2. This table compares the time complexity

of the CD-based methods to the conventional Fock-build
approach that does not use the RI approximation. The time
complexities for constructing the pure nuclear and electronic
Coulomb matrices using the RI-based methods are | |N( )n

2
n

and | |N( )e
2

e , respectively. Similarly, the time complexities for
building the pure nuclear and electronic exchange matrices are

| |N( )n
3

n and | |N( )e
3

e , respectively, for the RI-based
methods.
In Table 2, we analyze only the computational cost

associated with building the nuclear−electronic part of the
Fock matrix. However, the computational cost (FLOP count)
for building the full Hamiltonian matrix using RI-based
methods may not be more advantageous than the conventional
4-index integral approach. This is mainly due to the increased
computational cost for the exchange part of the Hamiltonian
build,31 which cannot be avoided for the pure electronic and
nuclear parts of the Hamiltonian in a Hartree−Fock or hybrid
DFT NEO calculation. For the nuclear−electronic block of the

Table 1. Additional Storage Requirement for Storing
Cholesky-Decomposed Asymmetric NEO (pq|RS) Integrals

RI algorithm nuclear−electronic integral storagea

conventional without RI N N( )n
2

e
2

one-component electronic RI | |N( )n
2

e

one-component nuclear RI | |N( )e
2

n

double one-component RI | || |( )n e

two-component RI + | | + | |N N(( )( ))e
2

n
2

e n

a| | is the number of Cholesky bases.

Table 2. Time Complexity for Building the Nuclear−
Electronic Part of the Fock Matrix

RI algorithm nuclear−electronic Fock-build FLOPSa

conventional without RI N N( )e
2

n
2

one-component electronic RI | | + | |N N( )e
2

e n
2

e

one-component nuclear RI | | + | |N N( )e
2

n n
2

n

double one-component RI | | + | || | + | |N N( )e
2

e e n n
2

n

two-component RI | | + | | + | | + | |N N( ( ) ( ))e
2

e n n
2

e n

a| | is the number of Cholesky bases.
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Hamiltonian, there is no exchange contribution, and Table 2
shows that the computational cost (Coulomb only) is
significantly reduced when | | Ne e

2 and | | Nn n
2 for

one-component RI methods. The two-component RI method
exhibits computational advantages when the sizes of sets e

and n satisfy the conditions: | | + | | Ne n e
2 and

| | + | | Ne n n
2. Thus, RI-based methods can be more

advantageous for the nuclear−electronic block of the Fock
matrix than for the full Hamiltonian matrix.
Based on the analyses presented in Tables 1 and 2, it is

evident that RI-based integral storage and Hamiltonian build
can significantly accelerate large NEO calculations when the
number of Cholesky bases is much smaller than the number of
orbital pairs. One of the unique advantages of the CD-based RI
approach is that the accuracy of the integral approximation can
be tuned up to the exact condition by setting a CD threshold
of τ during the evaluation of the CD basis. Therefore, the time
and storage complexity of the CD-based method also depends
on the desired level of accuracy. Overall, these findings suggest
that the CD-based RI approach is a promising method for
accelerating large-scale NEO calculations while maintaining
high accuracy.

3. RESULTS AND DISCUSSION
All three proposed multicomponent CD algorithms are
implemented in a development version of the Chronus
Quantum software.32 We performed benchmark calculations
using the NEO density functional theory (NEO-DFT)
approach on the eigen isomer of the protonated water tetramer
( +H O9 4 , Figure 1) for the complexity and accuracy analyses.

All nine protons in this system were treated quantum
mechanically with the PB5-G protonic basis set,33 and the
correlation consistent cc-pVQZ basis set34 was used for the
electrons. We also calculated the formation energy of a
(H O)2 27 cluster using NEO-DFT to showcase the computa-
tional capabilities of the multicomponent CD approach. The
PBE electronic correlation functional35 and the epc17-2
electron−proton correlation functional36 were used for all
NEO-DFT calculations. The self-consistent-field procedure is
considered converged when the root-mean-square electronic/
protonic density difference falls below 10−8 a.u. and the energy
difference between two consecutive steps falls below 10−10 a.u.

3.1. Storage Analysis. Table 3 presents the integral
storage requirements for the NEO calculations of the

protonated water tetramer ( +H O9 4 , Figure 1), where all nine
protons are treated quantum mechanically. The system
consists of 498 electronic and 495 protonic basis functions,
necessitating 1470 GB of memory to store all four-index two-
particle integrals. In contrast, by setting the electronic and
nuclear CD threshold to τ = 10−6, the storage requirements for
all NEO CD vectors are significantly reduced to 19.7−20.6,
13.6, and 40.4 GB for one-component RI, double one-
component RI, and two-component RI approaches, respec-
tively. By increasing the CD threshold, the number of selected
Cholesky bases decreases, leading to a decrease in the memory
required to store the CD 3-index tensor. The CD storage
requirement is reduced by almost 2 orders of magnitude for
the one-component RI approach at τ = 10−4 compared to
storing the conventional 4-index tensors.

3.2. Numerical Accuracy Analysis. The previous section
demonstrates that using the CD approach can significantly
reduce the memory required for storing NEO integrals.

Figure 1. Eigen isomer of a protonated water tetramer.

Table 3. Integral Storage for the Eigen Isomer of the
Protonated Water Tetramer +H O9 4

Conventional without RI

4-index tensor storage (GB)

(pq|rs) (PQ|RS) (pq|RS) total

492.0 480.3 486.1 1470.2
One-Component Electronic/Protonic RI

τ | |e | |n CD tensor storage (GB)

Lpq,α LPQ,Γ LRS,α Lpq,Γ totale totaln
10−4 2226 2592 4.4 5.1 4.4 5.1 13.9 14.6
10−5 2783 2880 5.5 5.6 5.5 5.7 16.6 16.9
10−6 3665 3159 7.3 6.2 7.2 6.3 20.6 19.7

Double One-Component RI

τe τn | |e | |n CD tensor storage (GB)

Lpq,α LPQ,Γ Aα,Γ total

10−4 10−4 2266 2592 4.4 5.1 0.05 9.5
10−5 2880 5.6 0.05 10.1
10−6 3159 6.2 0.06 10.7

10−5 10−4 2783 2592 5.5 5.1 0.06 10.7
10−5 2880 5.6 0.06 11.2
10−6 3159 6.2 0.07 11.8

10−6 10−4 3665 2592 7.3 5.1 0.08 12.4
10−5 2880 5.6 0.08 13.0
10−6 3159 6.2 0.09 13.6

Two-Component RI

τe τn | |e | |n CD tensor storage (GB)

Lpq,α LPQ,Γ Lpq,κ LRS,κ total

10−4 10−4 2266 2592 4.4 5.1 9.6 9.4 28.5
10−5 2880 5.6 10.1 10.0 30.2
10−6 3159 6.2 10.7 10.6 31.8

10−5 10−4 2783 2592 5.5 5.1 10.7 10.5 31.8
10−5 2880 5.6 11.2 11.1 33.5
10−6 3159 6.2 11.8 11.6 35.2

10−6 10−4 3665 2592 7.3 5.1 12.4 12.3 37.0
10−5 2880 5.6 13.0 12.8 38.7
10−6 3159 6.2 13.5 13.4 40.4
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However, a crucial question that arises is how the use of CD
integrals impacts the numerical accuracy of NEO calculations.
To address this question, we conducted a comprehensive
analysis of the accuracy of NEO calculations for the protonated
water tetramer ( +H O9 4 , see Figure 1), as a function of the CD
threshold.
The accuracy of the CD-based method for NEO calculations

is assessed in Table 4 by comparing the total NEO-DFT
energy obtained using the CD method with that obtained
using the AO-direct algorithm with full 4-index integrals.
Various calculations were performed, utilizing only electronic
(pq|rs), protonic (PQ|RS), or electronic/protonic (pq|RS) CD
integrals while keeping the other integral types in the full 4-
index form. For instance, when assessing the accuracy of the
electronic/protonic (pq|RS) CD integral approximation, the
pure electronic (pq|rs) and protonic (PQ|RS) integrals were
maintained in their exact full 4-index form. This investigation
aimed to analyze the error magnitudes associated with the CD
approximation for different types of integrals. The energy error
presented in Table 4 was evaluated using the total NEO-DFT
energy calculated using the same fully converged electronic
and protonic density matrices computed with 4-index integrals.
This procedure ensures that the same set of converged
electronic and protonic densities are used for each calculation

to enable a fair and consistent comparison of the CD-based
methods. We also present the errors using fully converged SCF
results for all calculations in the Supporting Information.
Table 4 shows that the difference in total NEO-DFT energy

decreases as the CD threshold τ is lowered for calculations
using only electronic (pq|rs) or protonic (PQ|RS) CD integrals
while keeping the electronic/protonic integrals in their exact 4-
index form. Notably, the effect of the electronic (pq|rs) CD
threshold τe on the total energy is more pronounced than that
of the protonic (PQ|RS) CD integrals. This is because
electronic densities are more delocalized than protonic
densities and are, therefore, more sensitive to the quality of
the underlying RI approximation. For protonic CD, the error
in energy is already below 10−8 a.u. with τn = 10−4. Both the
electronic (pq|rs) and protonic (PQ|RS) CD approximations
exhibit an asymptotic behavior, approaching the exact energy
from below as the CD threshold decreases. This behavior can
be attributed to the positive-definite nature of the CD error in
the electronic and protonic repulsion terms. As the CD
threshold is tightened, the error in the CD approximation
decreases, resulting in a more accurate representation of the
electronic and protonic repulsion energies.
We also investigated the accuracy of the CD approximation

for the asymmetric multicomponent electronic/protonic (pq|

Table 4. Signed Energy Error Using Different RI Methods with Different Thresholds for the Eigen Isomer of the Protonated
Water Tetramer +H O9 4

a

One-Component Electronic/Protonic RI

τ | |e | |n δE (a.u.)

(pq|rs) (PQ|RS) (pq|RS)e (pq|RS)p
10−4 2226 2592 −4.3 × 10−5 −4.9 × 10−9 −1.5 × 10−3 −6.7 × 10−4

10−5 2783 2880 −4.0 × 10−6 −1.1 × 10−9 1.0 × 10−4 2.9 × 10−4

10−6 3665 3159 −4.6 × 10−7 −9.5 × 10−10 −3.7 × 10−6 4.3 × 10−4

Double One-Component RI

τe τn | |e | |n δE (a.u.)

(pq|rs) (PQ|RS) (pq|RS)
10−4 10−4 2266 2592 −4.3 × 10−5 −4.9 × 10−9 −2.2 × 10−3

10−5 2880 −1.1 × 10−9 −1.2 × 10−3

10−6 3159 −9.5 × 10−10 −1.1 × 10−3

10−5 10−4 2783 2592 −4.0 × 10−6 −4.9 × 10−9 −5.7 × 10−4

10−5 2880 −1.1 × 10−9 3.9 × 10−4

10−6 3159 −9.5 × 10−10 5.3 × 10−4

10−6 10−4 3665 2592 −4.6 × 10−7 −4.9 × 10−9 −6.8 × 10−4

10−5 2880 −1.1 × 10−9 2.9 × 10−4

10−6 3159 −9.5 × 10−10 4.2 × 10−4

Two-Component RI

τe τn | |e | |n δE (a.u.)

(pq|rs) (PQ|RS) (pq|RS)
10−4 10−4 2266 2592 −4.3 × 10−5 −4.9 × 10−9 1.0 × 10−7

10−5 2880 −1.1 × 10−9 −7.4 × 10−9

10−6 3159 −9.5 × 10−10 −4.7 × 10−8

10−5 10−4 2783 2592 −4.0 × 10−6 −4.9 × 10−9 7.9 × 10−8

10−5 2880 −1.1 × 10−9 1.6 × 10−8

10−6 3159 −9.5 × 10−10 1.4 × 10−8

10−6 10−4 3665 2592 −4.6 × 10−7 −4.9 × 10−9 1.6 × 10−8

10−5 2880 −1.1 × 10−9 1.2 × 10−8

10−6 3159 −9.5 × 10−10 9.8 × 10−9

aδE is the difference between the total NEO-DFT energy with the specified Cholesky-decomposed integrals and the total energy computed with
full 4-index integrals using the AO-direct algorithm.
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RS) integrals. In Table 4, we report the results of NEO-DFT
calculations using only the electronic/protonic (pq|RS) CD
integrals while keeping the pure electronic and protonic
integrals in their exact 4-index forms. The accuracy of the (pq|
RS) CD integral approximation varies depending on the RI
method used.
For the one-component RI approach, the electronic CD

basis [(pr|RS)e] performs slightly better than the protonic CD
basis [(pr|RS)p]. The accuracy is not improved by the double
one-component approach. The complete CD basis for the
multicomponent electronic/protonic integrals is the union of
electronic and protonic basis pairs. As a result, using the one-
component (either electronic or protonic) or double-
component RI approach is insufficient for accurately describing
the projection between electronic and protonic basis pairs.
Hence, all one-component RI approaches typically exhibit large
errors and slow convergence as the CD threshold is tightened.
To overcome this issue, it is necessary to use a multi-
component RI approach that fully accounts for the
intercomponent interactions and accurately describes the
projection between electronic and protonic basis pairs.
In Table 4, we also evaluate the performance of the two-

component RI approach for NEO-DFT calculations using only
electronic/protonic (pq|RS) CD integrals while keeping the
pure electronic and protonic integrals in their exact 4-index
forms. As both electronic and protonic CD bases are used for
the asymmetric electronic/protonic (pq|RS) integral, the
mapping between the electronic and protonic CD bases is
more complete, which leads to better accuracy. The two-
component RI approach is able to converge toward the exact
4-index result, as seen in the table. At τ = 10−6, the error in the
NEO-DFT energy using only the (pq|RS) two-component CD
basis is only 10−8 a.u. Thus, the two-component RI approach is
a viable option for reducing the memory requirements of NEO
calculations without compromising accuracy.
However, as the CD threshold is tightened, the NEO-DFT

results obtained using the asymmetric multicomponent
electronic/protonic (pq|RS) integrals exhibit nonmonotonic
convergence, with no definitive upper or lower bound on the
energy error compared to the exact result. This behavior is
observed across all of the RI strategies investigated in this
study. The reason for this phenomenon is that the energy
contribution arising from the asymmetric multicomponent
integrals is first order, as opposed to being quadratic in relation
to both the electronic and protonic density matrices. As a
consequence, the error associated with the electronic/protonic
CD integrals may not consistently decrease in a monotonic
manner as the CD threshold is tightened.
3.3. Large Case Study�27 H2O Cluster. One advantage

of using RI-based methods for NEO calculations is that they
allow for the storage of integrals in memory, making it feasible
to perform large-scale computational studies. In this work, we
showcase the effectiveness of the multicomponent CD
approach by computing the formation energy of a water
cluster consisting of 27 H2O molecules, as shown in Figure 2.
The formation energy is obtained by computing the difference
in energy between the cluster and the constituent H2O
molecules, using the following reaction:

= ×E E E

(H O) 27H O

27 (H O) ((H O) )

2 27 2

2 2 27

where E is the converged NEO-DFT energy. To generate the
initial structure of the water cluster, we used a snapshot from a
classical molecular dynamics simulation of bulk water using the
SPC/E model,37 which has a physically reasonable hydrogen
bond distribution.38,39

The formation energy of the water cluster (H O)2 27 was
computed using different electronic and protonic basis sets,
with a CD threshold τ set to 10−4 for all integrals. The two-
component RI approach was utilized, and the computed results
are presented in Table 5. For reference, the formation energy
was also computed using exact 4-index integrals in an AO-
direct algorithm with a Schwarz screening threshold of 10−12.
The total formation energy of the water cluster (H O)2 27,
computed using the two-component RI method, exhibits a
difference of ∼10−3 kcal/mol compared to the results obtained
using the 4-index exact integrals across all tested basis sets.
However, the memory requirement for storing 4-index
integrals in the largest calculation (cc-pVTZ + PB4-F1) is
154,700 GB, making this problem impractical for in-core
computation, compared to only 858 GB for the two-
component RI approach. This test suggests that the RI-based
approach is computationally advantageous over the AO-direct
approach for the system size studied here. However, the AO-
direct Fock-build approach may eventually outperform the RI-
based Fock-build approach in the large system limit.

4. CONCLUSIONS
The goal of this study was to investigate the application of the
multicomponent CD methods for NEO-DFT calculations. We
introduced and implemented three different types of CD
methods, including one-component, double-component, and
two-component RI algorithms. Benchmark calculations were
carried out on a protonated water tetramer and a large
(H O)2 27 cluster, where all protons were treated quantum
mechanically.
Our numerical analyses revealed that the energy errors

introduced by electronic and protonic CD approximations
exhibit an asymptotic behavior that is bound from above as the
CD threshold is tightened. This behavior can be attributed to
the positive definite nature of the CD error and the quadratic
energy dependence on electronic or protonic density matrices.

Figure 2. Twenty-seven water cluster model system.
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In contrast, the energy error arising from multicomponent
nuclear−electronic CD approximations is not bound from
below or above by the exact solution due to its linear
dependence on the electronic and protonic density matrices.
Our analysis revealed that while all CD methods were useful

in reducing storage requirements for in-core calculations of
two-particle integrals, only the two-component RI approach
achieved high accuracy. By using the two-component CD
integrals, our NEO-DFT calculations for the large (H O)2 27
cluster exhibited a formation energy error of only ∼10−3 kcal/
mol and a significantly decreased computational cost compared
to AO-direct calculations utilizing 4-index integrals. These
results showcase the effectiveness of the two-component CD
approach for both precise and efficient calculations within the
NEO framework.
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