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ABSTRACT: The Dirac-Coulomb-Breit (DCB) operator is widely recognized for its ability to
accurately capture relativistic effects and spin-physics in molecular calculations. However, due
to its high computational cost, there is a need to develop low-scaling approximations without
compromising accuracy. To tackle this challenge, it becomes essential to gain a deeper
understanding of the DCB operator’s behavior. This work aims to explore local integral
approximations, shedding light on the locality of the parts of the charge-current distribution
due to the small component. In particular, we propose an atomic Breit approximation that
leverages an analysis of the behavior observed in a series of gold chains. Through benchmark
studies of metal complexes, we evaluated the accuracy and performance of the proposed
atomic Breit approximation. This work provides a comprehensive understanding of the
behavior of the charge-current distribution in terms of its contributions from its AO basis
constituents, facilitating the development of low-scaling methods that strike a balance between
computational efficiency and accuracy.

1. INTRODUCTION
The Dirac-Coulomb-Breit (DCB) operator, derived from
quantum field theory with the instantaneous electron−electron
interaction, provides the most accurate description1−12 of
electron−electron interactions before going to a genuine
relativistic quantum field representation of many-electron
systems.11,13−23 This operator accounts for important
relativistic effects such as scalar relativity and spin-own-orbit,
spin-other-orbit, spin-spin, and orbit-orbit interactions.
The Dirac-Coulomb-Breit operator in the Coulomb gauge

includes the Coulomb, Gaunt (magnetic), and gauge
interactions,24
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where {i, j} are electron indices and 02 is the 2 × 2 zero matrix.
The components of the Pauli matrices σ matrices are defined
as
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The high computational cost of the relativistic integrals is
usually the limiting factor for the practical application of the
Dirac-Coulomb-Breit operator in molecular calculations. The
use of three-center density-fitting integrals partially mitigates
this issue in an in-core algorithm but is still bound by the size
of memory.25,26 In a different vein, spin separation22,23,27 of the
Dirac Hamiltonian using the restricted kinetic balance (RKB)

condition and the Dirac identity can separate the DCB
operator into scalar and spin- and orbit-dependent parts, with
the scalar relativity capturing the majority of the electron−
electron interaction.28 The full spin-separation of the Dirac-
Coulomb-Breit Hamiltonian has recently been implemented
using the Pauli quaternion basis with the RKB condition.22,23

The realization of the scalar formalism of the DCB operator
further reduces the computational cost of building the zero-
order relativistic Hamiltonian.28 Electronic structure methods
that use only the scalar part of the Hamiltonian are of a lower
computational cost than the full DCB operator because the
scalar relativistic effects need only a fraction of the relativistic
integrals. However, scalar relativistic Hamiltonians lack
important spin-dependent terms, such as spin−orbit and
spin−spin interactions.
In Equation 1, the Dirac matrices in the Breit operator

connect the large and small components for each electron, and
hence, the integrals for this operator contain two small
component functions. These are (LS|LS) type integrals; we
distinguish the Gaunt and gauge integrals in what follows. The
small component is localized near the atomic nuclei, so any
density that contains a small component function is also
localized on the nuclei. Thus, approximations with only the LS
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or SS densities that are localized on atomic centers are likely to
be good approximations.
We can also gain some understanding of why this is so from

the point of view of the operators in the modified Dirac
representation. The use of RKB to generate the small
component basis introduces a momentum operator p for
each small component basis function. Consequently, the
integrals, now taken over the large component basis, involve
modified two-electron operators.27 Since p scales as 1/r, the
modified Breit operator in these integrals scales as r−3. A
similar modification to the operator is introduced by RKB for
the Coulomb terms that involve the small component: the
modified operator for the (LL|SS) integrals scales as r−3 and
for the (SS|SS) integrals, it scales as r−5. Practically speaking,
the integrals are evaluated as derivatives of various orders of
the (LL|LL) integrals.
Time-reversal symmetry also plays a role in the Breit

interaction, as the direct contributions to the Breit energy
cancel when summed over Kramers partners (see ref 29 for
example). Only the exchange contribution remains for closed-
shell systems and systems with a single unpaired electron. If
unrestricted SCF methods are used, the cancellation is almost
but not quite complete.
The goal of this work is to propose a strategy to lower the

computational cost of calculations with the DCB operator
based on the locality of the small component. We will explore
several local integral approximations, aiming to provide a
comprehensive understanding of the locality of the contribu-
tions arising from different modified relativistic operators and
to aid in the development of low-scaling DCB methods
without a significant loss of spin physics.

2. LOCAL RELATIVISTIC INTEGRAL
APPROXIMATIONS

The following notation will be used unless otherwise specified:

• μ, ν, λ, κ: large component atomic orbitals (AOs).
• μ′, ν′, λ′, κ′: first-derivative of atomic orbitals (AOs). In

the context of the restricted-kinetic-balance (RKB)
condition ( = ·pS

c
L1

2
), the first-derivative of an

AO is related to the small component basis.
• A, B: atomic center index.

The full spin-separation of the DCB operator offers a unique
opportunity to explore the integral locality and its importance
in relativistic Hamiltonians. For the spin-separated Dirac-
Coulomb Hamiltonian under the restricted kinetic balance
(RKB) conditions in the Pauli quaternion representation,22,23

scalar integrals of the form (μν|κ′λ′) and (μ′ν′|κ′λ′) in
Mulliken notation are used in the full Hamiltonian build. The
spin-separated Breit Hamiltonian uses relativistic scalar
integrals of the form (μ′ν|κ′λ) and (μ′ν|κ′λ)3,22,23 where the
subscript “3” denotes the |r12|−3 operator for the gauge
integral.23

2.1. Atomic One-Center Approximation. The atomic
one-center (A1N) approximation explores the extreme local
limit of the Dirac-Coulomb-Breit contributions to the Fock
matrix, where relativistic integrals are computed if and only if
all four basis functions are localized on the same atom (the
(AA|AA) type integrals). Functionally this means that the DCB
operator is represented in an atomic block-diagonal form. In
this scheme, the individual components of the DCB operator
are expressed as

| |(LL SS): ( )

| |(SS SS): ( )

| |Gaunt or (LS LS): ( )

| |gauge or (LS LS) : ( )3 3

Awhen , , ,

Note that the Dirac-Coulomb contribution is separated into
the c( )0 order (LL|LL), c( )2 order (LL|SS), and c( )4

order (SS|SS) terms. The (LL|LL) term represents the classical
Coulombic interaction between large components and is kept
in its exact form without any local approximation.
The A1N approximation is similar to the atomic mean-field

(AMF) interaction where only electron−electron interactions
localized on the same atom are considered.12,30 However,
because the A1N approximation is performed on the atomic
integrals directly, it can be used in variational calculations in
which the quaternion densities are fully optimized. This is in
contrast to the AMF interaction, which uses the atomic DCB
Hamiltonian as a frozen perturbation on the system.
The A1N approximation for the relativistic integrals also

scales linearly with the number of atoms in the system, since all
terms that span multiple atoms are neglected. If a system has
multiple identical atoms, then the integrals for only one of
those atoms need to be calculated. This reduces the amount of
computation and memory needed for the formation of the
Fock matrix at the start of each SCF procedure. It is also
emphasized that the A1N approximation still formally includes
two-electron interactions but is limited to those localized on
the same atom.

2.2. Atomic Two-Center Approximation. The atomic
two-center (A2N) approximation extends the A1N approx-
imation by allowing the inclusion of integrals whose basis
functions are centered on up to two separate atoms but where
the basis functions for a given electron are always on the same
atom. Thus, it includes (AA|BB) type integrals but not (AA|
AB) or (AB|AB) type integrals, where A and B represent
atomic centers. This pushes the approximation to a slightly less
local regime where the additional individual DCB terms are
computed as follows:

| |

| |

| |

| |

(LL SS): ( )

(SS SS): ( )

Gaunt or (LS LS): ( )

gauge or (LS LS) : ( )3 3

{ } { }A Bwhen , ; ,

While it is still a local integral approximation, the A2N
approach includes interatomic interactions between pairs of
atoms. This choice results in a quadratic scaling method, with
respect to the number of atoms in the system.

2.3. Local Small-Component Approximations. The
atomic approximations detailed in the preceding sections are
designed to explore the atomic character of the relativistic
integrals. As highlighted in the Introduction, given that the
small component is primarily localized around the atomic
nuclei, a viable strategy involves constraining integrals
according to the locality of the small component. Herein,
two local small-component approximations are proposed that
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include relativistic integrals only if two small component basis
functions are localized on the same atom.
The first local small-component approximation considers

integrals with basis functions centered on a maximum of two
distinct atoms. We will refer to this type of local approximation
as SS2N, which is formally defined as

| | { } { }

| | { }

| { } { }

| { } { }

A B B

A B

A B B

A B B

(LL SS): ( ) when , , ; ,

(SS SS): ( ) when , , , ,

Gaunt: ( ) when , , ; ,

gauge: ( ) when , , ; ,3

In the (SS|SS) term, the SS2N approach is more permissive
than the A2N approximation, as it includes additional integrals,
such as the (AB|AB) and (AA|AB) types.
The SS2N approximation can be broadened to a more

inclusive model, termed SS3N, including the computation of
integrals where the large component functions span up to three
atomic centers:

| | { } { }

| | { }
| | { } { }

| | { } { }

A B C B

A B C

A B C B

A B C B

(LL SS): ( ) when , , , ; ,

(SS SS): ( ) when , , , , ,

Gaunt or (LS LS): ( ) when , , , ; ,

gauge or (LS LS) : ( ) when , , , ; ,3 3

For the (SS|SS) term, the SS3N approach adds additional
integrals, such as the (AA|BC) and (AB|AC) types.

3. RESULTS AND DISCUSSION
3.1. Computational Details. All calculations in this work

are performed with a development version of the Chronus

Quantum software package31 with the Dirac-Hartree-Fock
(DHF) method using the DCB Hamiltonian. The speed of
light utilized in this study is 137.035999074 au. All calculations
utilized the standard Gaussian nuclear model.32 The self-
consistent-field optimization is done in the Kramers unre-
stricted framework, where the lowest Ne positive energy
orbitals are singly occupied.
The uncontracted ANO-RCC basis33−35 set was used in

calculations of linear gold chains and potential energy surface
scans of Au2, Ag2, and Cu2. To create linear gold chain models,
the distance between nearest neighboring gold atoms is fixed at
2.586 Å, which is the equilibrium bond length for Au2 at the
Dirac-Coulomb level of theory.22 This resulted in 297 basis
functions per Au atom with up to h orbital angular momentum
(24s21p15d11f4g2h).

Calculations of metal hexafluorides MF6 (M = Cr, Mo, W)
and tetrahedral lutetium halides LuX4

− (X = F, Cl, Br, I) used
the uncontracted Dyall all-electron 4z basis set.36−38 Molecular
geometries of MF6 and LuX4

− can be found in the Supporting
Information.
The uncontracted ANO-RCC-VDZP basis set33,39 was used

in computational studies of actinyl systems. Linear geometries
and experimental bond lengths of 1.76 Å, 1.75 Å, and 1.74 Å
were utilized for uranyl, neptunyl, and plutonyl, respectively.40

3.2. Locality Analysis of Relativistic Operators. To
evaluate the degree of locality of relativistic integrals, we
investigate the errors linked to different terms, including (LL|
SS), (SS|SS), Gaunt, and gauge, in ground state energy
calculations of linear gold chains containing two, four, six, and
eight atoms. In this analysis, the four-component wave
function is optimized by using the full representation of the
DCB operator. The energy ΔETerm is obtained by contracting
the corresponding relativistic term ((LL|SS), (SS|SS), Gaunt,
or gauge) with the DCB-optimized four-component density
matrix.
The results using the full representation of each relativistic

term are presented in Table 1 and plotted in Figure 1. Among
the four relativistic terms examined in this study, the (LL|SS)
contribution emerges as the largest, followed by Gaunt and
gauge, while the (SS|SS) term is found to be the smallest.
Consistent with expectations, the energy contributions from all
relativistic terms exhibit an upward trend as the system size
increases. However, it is noteworthy that the increase in the
energy contribution follows a linear pattern in relation to the
system size. This observation suggests that the interactions are
short-range, which is in agreement with the nature of the
operator in the modified Dirac representation, characterized by
an r−3 or r−5 dependence. Furthermore, the four terms
demonstrate distinct growth behaviors, indicating different
localities associated with the underlying relativistic contribu-
tions.
To assess the accuracy of various local approximations, we

compute the error of each local approximation in relation to
the exact calculation:

Table 1. Ground State Energy Contributions (in au) from
the (LL|SS), (SS|SS), Gaunt, and Gauge Terms of the DCB
Operator (see Supporting Information for SCF Energies
Used in This Analysis)a

ΔEfull
(LL|SS) ΔEfull(SS|SS) ΔEfull

Gaunt ΔEfullgauge

Au2 397.67 4.59 24.17 19.05
Au4 833.26 9.30 48.35 38.09
Au6 1285.64 14.06 72.52 57.14
Au8 1749.01 18.86 96.70 76.19

aSchwarz integral screening threshold of 10−14 is used in the
calculations. The full Gaunt contribution is scaled by 1/2 in the Breit
operator.

Figure 1. Ground state energy contributions (in au) from the (LL|
SS), (SS|SS), Gaunt, and gauge terms of the full representation of the
DCB operator for linear arrays of gold at two, four, six, and eight
atoms in length.
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=

{ | | }

E E E

Term (LL SS), (SS SS), Gaunt, gauge

approx
Term

full
Term

approx
Term

where ΔEapprox
Term is the energy for the local approximation and

‘full’ is exact without any local approximations. ΔEapprox
Term is

computed by directly contracting local integrals with the exact
four-component density matrix, resulting from the calculation
using the full DCB operator. The errors for relativistic terms
are tabulated in Table 2 and plotted in Figure 2 for linear gold
chains with two, four, six, and eight atoms.
3.2.1. Locality of the Dirac-Coulomb Terms. In Table 2, we

can observe the impact of the A2N integral approximation on
the (LL|SS) term, revealing significant absolute errors in the
range of ∼0.2−2 a.u. Despite these notable absolute errors, the
percent error relative to the full (LL|SS) energy contribution
remains small (<0.12%). In contrast, the (SS|SS) A2N
approximation demonstrates excellent error control, with
absolute errors ranging from 10−5 to 10−6 a.u. and percent
errors below 0.01%.

The error in the Dirac-Coulomb terms increases significantly
when the A1N approximation is employed, exhibiting percent
errors of 12.81% and 3.82% for (LL|SS) and (SS|SS),
respectively, in the Au8 system.
When the restriction is relaxed in the SS3N and SS2N

approximations for the large-component of the (LL|SS) term,
the absolute error is significantly improved to 10−4 to 10−1 a.u.
(<0.05% percent error). This observation suggests that the
leading error in local (LL|SS) approximations comes from
forcing the locality of the large-component density. However,
the SS2N approximation only marginally improves the
absolute error associated with the (SS|SS) term, suggesting
that A2N approximation captures the leading contribution to
the total energy. When the SS3N approximation is employed
for the (SS|SS) term, the error falls below the convergence
criterion. This observation indicates that the contribution from
four-center (SS|SS) integrals is essentially zero.
The Dirac-Coulomb operator plays a crucial role as the

leading relativistic contribution with (LL|SS) representing the
interaction between the large and small components of the
system. Additionally, it is important to note that Coulombic
repulsion between internuclear small components arising from
the (SS|SS) term is crucial for accurate description of the bond
length between multiple late-row elements.41 The error
analysis shown in Table 2 suggests that both the (LL|SS)
and (SS|SS) contributions are nonlocal. More specifically, the
SS charge densities can be treated as local, but these densities
can be on different centers. The LL charge densities cannot be
treated as local. When there are multiple late-row elements,
employing drastic local approximations will lead to a significant
error in energy.

3.2.2. Locality of the Breit Terms. In Table 2, we observe
that all of the local approximations maintain a small error for
both the Gaunt and gauge term in the Breit operator, without
any significant reduction in its accuracy. The error in both
terms is much smaller than those found in the terms of the
Dirac-Coulomb operator. Figure 2 shows that the error from
all local approximations remains small throughout the whole
series, on the order of 10−5 to 10−7 au, thereby indicating the
high locality of the Gaunt and gauge terms. A comparative
analysis of all four local approximations reveals that the highly
localized approach, the A1N approximation, performs well in
capturing the majority of the energy contribution stemming
from the Breit operator.
The two distinct local approximations exhibit somewhat

different behaviors for the Breit operator. The comparison of
the local atomic A2N method with the local small-component
SS2N approach yields notable insights, especially since both
operate on an N( )2 algorithmic scale, where N is the number
of atoms. The A2N approximation enforces the atomic locality
of the current densities in the integrals, whereas the SS2N
approximation enforces the locality of small components. The
larger errors in SS2N can be attributed to the exclusion of
integrals, in which both current densities in an integral are
localized but on different atoms. Thus the locality of the
current densities in an integral is the most important
consideration, rather than the locality of the small components.

3.3. Atomic Breit Approximations. By selectively
exploiting the locality of the current densities in the Breit
integrals, an accurate low-scaling approximation can be built
for molecular systems. Data from the previous section have
shown that applying local approximations drastically reduces
the cost for every term in the DCB operator, but the accuracy

Table 2. Signed Error (in au) of the (LL|SS), (SS|SS),
Gaunt, and Gauge Terms Using Different Local
Approximations (see Supporting Information for Reference
Energies Used in This Analysis)a

Dirac-Coulomb Breit

(LL|SS) (SS|SS)b Gaunt gauge

A1N Approximation
Au2 1.6 × 101

(4.13%)
5.2 × 10−2

(1.14%)
−1.5 × 10−6 −3.3 × 10−6

Au4 7.1 × 101
(8.49%)

2.3 × 10−1

(2.44%)
4.2 × 10−6 −5.1 × 10−7

Au6 1.4 × 102
(11.04%)

4.6 × 10−1

(3.24%)
9.3 × 10−6 2.2 × 10−6

Au8 2.2 × 102
(12.81%)

7.2 × 10−1

(3.82%)
1.4 × 10−5 5.0 × 10−6

A2N Approximation
Au2 2.4 × 10−1

(0.06%)
1.2 × 10−6 −1.8 × 10−6 −3.7 × 10−6

Au4 7.5 × 10−1

(0.09%)
5.2 × 10−6 3.2 × 10−6 −1.7 × 10−6

Au6 1.4 × 10 °
(0.11%)

1.1 × 10−5 7.6 × 10−6 2.4 × 10−7

Au8 2.0 × 10 °
(0.12%)

1.7 × 10−5 1.1 × 10−5 2.3 × 10−6

SS2N Approximation
Au2 2.0 × 10−4 − 1.4 × 10−6 2.0 × 10−6

Au4 1.9 × 10−1

(0.02%)
1.3 × 10−6 7.9 × 10−6 7.6 × 10−6

Au6 4.9 × 10−1

(0.04%)
3.6 × 10−6 1.6 × 10−5 1.4 × 10−5

Au8 8.5 × 10−1

(0.05%)
6.6 × 10−6 2.5 × 10−5 2.1 × 10−5

SS3N Approximationc

Au2 2.0 × 10−4 − 1.4 × 10−6 2.0 × 10−6

Au4 8.4 × 10−4 <10−10 7.0 × 10−6 7.3 × 10−6

Au6 1.7 × 10−3 <10−10 1.4 × 10−5 1.3 × 10−5

Au8 2.6 × 10−3 <10−10 2.0 × 10−5 1.9 × 10−5

aPercent error is computed as E

E
AnN
Term

full
Term . Only percent errors that are

greater than 0.01% are shown in parenthesis. Schwarz integral
screening threshold of 10−14 is used in the calculations. bThe SS2N
and SS3N approaches are exact for the (SS|SS) term of Au2.

cThe
numerical errors using the SS3N approximation for the (SS|SS) term
are below the SCF convergence.
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loss can differ substantially between each term. In this section,
we propose an approximation scheme that minimizes the
computational cost while maintaining a high level of accuracy.
Our proposed approximation uses the least expensive local

approximation for each term that is accurate to the order of ∼1
× 10−4 a.u. (∼2.7 meV). The approximation is as follows:

= +*H H HDC
A1N
Breit (3)

where HDCd* uses the full (LL|SS) integral set with the A2N
approximation for the (SS|SS) term. We opted to utilize the
full (LL|SS) set despite the SS3N approach offering reasonable
accuracy. This decision is primarily motivated by the fact that
the computational savings achieved by the SS3N approach are
relatively marginal, amounting to less than 10%. This minor
reduction is largely attributable to the effective screening out of
a majority of the four-center integrals, which means that the
computational advantage does not sufficiently outweigh the
benefits of utilizing the full (LL|SS) integral set. Since the Breit
term (including both Gaunt and gauge contributions) is purely
atomic, the proposed Hamiltonian will be called the atomic
Breit Hamiltonian.
We tested the accuracy of the atomic Breit Hamiltonian on a

series of octahedral metal hexafluorides MF6 (M = Cr, Mo, W)
and tetrahedral lutetium halides LuX4

− (X = F, Cl, Br, I). Table
3 tabulates the atomic Breit and DCB ground state energies of
MF6. The metal center was varied to show that the
approximation can closely reproduce DCB results at various
strengths of relativistic effects. The atomic Breit Hamiltonian
consistently recovers the DCB energy within ∼5 × 10−4 a.u.

Figure 2. Signed error (in au) of the (LL|SS), (SS|SS), Gaunt, and gauge terms using local relativistic integral approximations for linear arrays of
gold at two, four, six, and eight atoms in length. Panel (a) shows the SS3N approximation, (b) the SS2N approximation, (c) the A2N
approximation, and (d) the A1N approximation.

Table 3. Ground State Energy of Transition Metal Hexafluorides Computed Using the Atomic Breit Hamiltonian and the Full
DCB Operator in a.u.a

CrF6 MoF6 WF6
DC*b + Atomic Breit −1646.4864201592 −4642.4027360282 −16736.8599690070
Full DCB −1646.4859527919 −4642.4023005053 −16736.8595610761
Absolute Error 4.7 × 10−4 4.4 × 10−4 4.1 × 10−4

% Error 2.8 × 10−5 9.4 × 10−6 2.4 × 10−6

aThe symmetry of the molecules was restricted to Oh. Absolute error (a.u.) is the unsigned difference between the two ground state energies.
Percent error is defined with respect to the full DCB result. bDC* uses the full (LL|SS) expression with the A2N approximation for the (SS|SS)
term.

Table 4. Metal 2p and Valence t2g Orbital Fine Structure
Splitting of Transition Metal Hexafluorides Computed
Using the Atomic Breit Hamiltonian and the Full DCB
operator in a.u.a

CrF6 MoF6 WF6
Metal 2p

DC*b + Atomic
Breit

0.3148801509 3.8779210220 49.2697066779

Full DCB 0.3148798716 3.8779209607 49.2697062763
Absolute Error 2.8 × 10−7 6.1 × 10−8 4.0 × 10−7

% Error 8.9 × 10−5 1.6 × 10−6 8.2 × 10−7

Valence t2g
DC*+ Atomic Breit 0.0022743010 0.0054973971 0.0181564393
Full DCB 0.0022791956 0.0055038072 0.0181641239
Absolute Error 4.9 × 10−6 6.4 × 10−6 7.7 × 10−6

% Error 2.1 × 10−1 1.2 × 10−1 4.2 × 10−2

aAll molecules were restricted to Oh symmetry. Absolute error (a.u.)
is the unsigned difference between the two results. Percent error is
defined with respect to the full DCB result. bDC* uses the full (LL|
SS) expression with A2N approximation for the (SS|SS) term.
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(∼14 meV), below the chemical accuracy. The error remained
on the same order of magnitude when increasing the atomic
number of the metal. This shows that the atomic Breit
Hamiltonian is insensitive to the atomic number. Percent
errors are greater for light molecules because their ground state
energy tends to be lower in magnitude while the atomic Breit
error remains relatively constant.
The hallmark of the DCB operator is its ability to capture

the relativistic spin physics. The assessment of the atomic Breit
Hamiltonian would be incomplete without a benchmark of
spin-derived quantities. Hence, the accuracy was also tested by
comparing the orbital fine structure splitting of MF6. Table 4
shows the fine structure splitting of the MF6 metal 2p and
valence t2g orbitals. Errors remained on a similar order of
magnitude with increasing atomic number for both sets of
orbitals. Errors were slightly higher for the valence t2g. This is
possibly due to stronger interatomic electron interaction in t2g

Table 5. Ground State Energy of LuX4
− (X = F, Cl, Br, I) Computed Using the Atomic Breit Hamiltonian and the Full DCB

Operator in a.u. The symmetry of the molecules was restricted to Td
a

LuF4− LuCl4− LuBr4− LuI4−

DC*b + Atomic Breit −14956.0830329282 −16401.6882791474 −24972.9613856172 −42999.7316668137
Full DCB −14956.0829646465 −16401.6882485021 −24972.9614276801 −42999.7316404461
Absolute Error 6.8 × 10−5 3.0 × 10−5 4.2 × 10−5 2.6 × 10−5

% Error 4.6 × 10−7 1.9 × 10−7 1.7 × 10−7 6.1 × 10−8

aAbsolute error (a.u.) is the unsigned difference between the two ground state energies. Percent error is defined with respect to the full DCB result.
bDC* uses the full (LL|SS) expression with A2N approximation for the (SS|SS) term.

Table 6. Lu 2p and t2 (4d) Orbital Fine Structure Splitting of LuX4
− (X = F, Cl, Br, I) Computed Using the Atomic Breit

Hamiltonian and the Full DCB Operator in a.u.a

LuF4− LuCl4− LuBr4− LuI4−

2p DC*b + Atomic Breit 40.7028738070 40.7035398838 40.7032207043 40.7036328291
Full DCB 40.7028731375 40.7035398482 40.7032202084 40.7036327990
Absolute Error 6.7 × 10−7 3.6 × 10−8 5.0 × 10−7 3.0 × 10−8

% Error 1.6 × 10−6 8.7 × 10−8 1.2 × 10−6 7.4 × 10−8

4d(Γ1 − Γ2) DC*+ Atomic Breit 0.3754660414 0.3751800128 0.3755814913 0.3753164491
splitting Full DCB 0.3754601634 0.3751772965 0.3755761608 0.3753132647

Absolute Error 5.9 × 10−6 2.7 × 10−6 5.3 × 10−6 3.2 × 10−6

% Error 1.6 × 10−3 7.2 × 10−4 1.4 × 10−3 8.5 × 10−4

4d(Γ2 − Γ3) DC*+ Atomic Breit 0.0004421744 0.0001117709 0.0002022306 0.0000734257
splitting Full DCB 0.0004428107 0.0001121452 0.0002028300 0.0000738457

Absolute Error 6.4 × 10−7 3.7 × 10−7 6.0 × 10−7 4.2 × 10−7

% Error 1.4 × 10−1 3.3 × 10−1 3.0 × 10−1 5.7 × 10−1

aMolecules were restricted to Td symmetry. Absolute error (a.u.) is the unsigned difference between the two results. Percent error is defined with
respect to the full DCB result. bDC* uses the full (LL|SS) expression with A2N approximation for the (SS|SS) term.

Figure 3. Splitting of d orbitals in a Td ligand field with spin−orbit
coupling. Each line represents one spin−orbital. Degenerate spin−
orbitals are grouped under irreducible representations Γn.

Table 7. Ground State SCF Energies of Three Actinyls
Computed Using the Atomic Breit Hamiltonian and the Full
DCB Operator in a.u.a

Uranyl (UO2
2+) DC*+ Atomic Breit −28164.7164285082

Full DCB −28164.7162599324
Absolute Error 1.7 × 10−4

% Error 6.0 × 10−7

Neptunyl (NpO2
2+) DC*+ Atomic Breit −28957.3138968723

Full DCB −28957.3137395559
Absolute Error 1.6 × 10−4

% Error 5.4 × 10−7

Plutonyl (PuO2
2+) DC*+ Atomic Breit −29765.3077511379

Full DCB −29765.3076211330
Absolute Error 1.3 × 10−4

% Error 4.4 × 10−7

aAbsolute error (au) is the unsigned difference between the two
results. Percent error is defined with respect to the full DCB result.

Table 8. Cost Comparison of the Full (Tfull) and Atomic
(Tatomic) Dirac-Coulomb-Breit Hamiltonian, Where Tfull and
Tatomic Are the CPU Times to Build the Four-Component
Fock Matrix in the Pauli Quaternion Basisa

Molecule Tfull/Tatomic

LuBr4−1 6.7
LuI4−1 6.5
MoF6 9.8
WF6 9.3

aSchwarz integral screening threshold of 10−14 is used in the
calculations. In the atomic Dirac-Coulomb-Breit Hamiltonian, the
Dirac-Coulomb term uses the full (LL|SS) expression with A2N
approximation for the (SS|SS) term.
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where there is significant mixing between ligand and metal
orbitals. Nevertheless, the errors are well below ∼10−5 au.
The MF6 series only tests the accuracy of the atomic Breit

Hamiltonian for varying strengths of relativistic effects for one
atom. Because interatomic electron interactions are approxi-
mated in the local approximations, we must assess the accuracy
of the atomic Breit Hamiltonian for varying atomic numbers in
ligands as well. For this, we turn to tetrahedral LuX4

− (X = F,
Cl, Br, I). Table 5 shows the atomic Breit and DCB ground
state energies for LuX4

−. Similar to MF6, the LuX4
− errors were

well within chemical accuracy and remained on the same order
of magnitude with varying ligand atomic number. Table 6
shows the orbital fine structure splitting of LuX4

− metal 2p and
metal 4d orbitals. The semicore position of the 4d orbitals
means that it experiences significant spin−orbit coupling while
being mostly shielded from the ligand field. However, a small
but non-negligible amount of ligand field splitting is still
observed in the 4d orbitals. Figure 3 shows how the 4d orbitals
split under both spin−orbit coupling and a Td ligand field. The
error for both 2p and 4d orbitals were also well within
spectroscopic accuracy and remained on a similar order of
magnitude for varying ligand atomic number.
Although the relative error of the atomic Breit approx-

imation is small in the benchmark studies using closed-shell
transition metal and rare earth complexes, its accuracy on
open-shell systems with a strong relativistic effect needs to be
tested. As such, we also analyze the accuracy of the atomic
Breit Hamiltonian for open-shell systems consisting of heavy
elements. Table 7 compares the computed total energies of
early actinyl molecules including open-shell NpO2

2+ and PuO2
2+

complexes. The results show that the absolute error of the
atomic Breit Hamiltonian remains small, on the order of 10−4

a.u. There is no significant difference in the absolute error
between the closed-shell UO2

2+ molecule and open-shell NpO2
2+

and PuO2
2+ complexes.

Table 8 shows the relative speed-up factor for building the
four-component Fock matrix using the atomic Breit Hamil-
tonian as compared with using the full Hamiltonian. The
atomic Breit Hamiltonian exhibits an impressive 6 to 10-fold
speed-up without compromising accuracy. As the number of
nearest-neighbor atomic pairs increases, the speed-up also
increases. This is understandable because the nearest-neighbor
interactions are not subject to Schwarz screening, and thus the

effectiveness of the atomic Breit approximation becomes more
pronounced.
Finally, the potential energy surface (PES) of the Cu, Ag,

and Au dimers around their local minima is plotted in Figure 4.
The data give insight into the spectroscopic properties of the
group 11 atomic dimers. A fourth order polynomial is fit to the
data to calculate the equilibrium interatomic distance as well as
the second derivative at the minimum. PESs computed using
atomic Breit and full DCB Hamiltonians are indistinguishable.
The harmonic vibrational frequencies at the minimum energy
can be obtained from the second derivative of the PES. These
values are 194.842 cm−1 for Cu2, 149.625 cm−1 for Ag2, and
159.175 cm−1 for Au2. The corresponding vibrational
frequencies for the full DCB operator are 195.007 cm−1 for
Cu2, 149.431 cm−1 for Ag2, and 159.255 cm−1 for Au2. This
indicates that the atomic Breit Hamiltonian can recover the
vibrational frequencies of these systems to within ∼0.2 cm−1 of
the full DCB representation.

4. CONCLUSION AND PERSPECTIVES
The DCB operator represents state-of-the-art in its ability to
capture relativistic effects and spin physics for molecular
systems. In this study, we presented an assessment of the
locality of integral contributions to the Fock matrix arising
from the DCB operator, using a set of low-scaling local
relativistic integral approximations, and investigated the errors
linked to the individual (LL|SS), (SS|SS), Gaunt, and gauge
terms in ground state energy calculations of linear gold chains.
Using the full calculation of all the terms, the linear trend in
energetic contributions from each term as a function of system
size suggested that the interactions are short-range in nature. In
order to establish a connection between these results and the
locality of the relativistic integral contributions, the error of
each local approximation was computed relative to the exact
calculation for each term. These approximations selectively
screen out integrals, keeping only terms where electron−
electron interactions are localized to single atoms (A1N) or
pairs of atoms (A2N), or localized to small-component
densities (SS2N or SS3N). Our observations suggest that the
Gaunt and gauge terms are very local in nature, where most of
the energy is captured by the A1N approximation. The (LL|
SS) and (SS|SS) terms on the other hand rely on more

Figure 4. Potential energy surfaces of the Cu, Ag, and Au dimers computed using the atomic Breit and full DCB Hamiltonians. The equilibrium
distance and second derivative at the minimum of the atomic Breit Hamiltonian are shown in the corresponding panels. The minimum position is
marked with a red vertical line.
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nonlocal interactions and need at least an SS2N representation
to accurately capture the energy.
These results inform the formulation of the atomic Breit

Hamiltonian, whereby by selectively exploiting the locality of
individual terms of the DCB operator, an accurate yet low-
scaling Hamiltonian can be built for molecular systems.
Benchmark studies on the atomic Breit approximation
demonstrated that this approximation can recover the energy
with remarkable accuracy, to within 1 kcal/mol (∼10−4 a.u.) of
the full DCB operator. In addition, the atomic Breit
Hamiltonian exhibits an impressive 6 to 10-fold speed-up as
compared to using the full Hamiltonian. Note that in a recent
parallel work, Quiney and co-workers reached a similar
conclusion regarding the locality of the Breit Hamiltonian.42

Moving forward, we believe that future developments in the
relativistic electronic structure theory should exploit the local
nature of certain relativistic interactions. In particular, the
locality analysis presented herein should serve as a template for
the formulation and development of accurate, yet efficient,
implementations of relativistic operators.
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