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A recent experiment has reported the first observation of a zero-field fractional Chern insulator (FCI)
phase in twisted bilayer MoTe2 moiré superlattices [J. Cai et al., Signatures of fractional quantum
anomalous Hall states in twisted MoTe2, Nature (London) 622, 63 (2023).]. The experimental observation
is at an unexpected large twist angle 3.7° and calls for a better understanding of the FCI in real materials. In
this Letter, we perform large-scale density functional theory calculation for the twisted bilayer MoTe2 and
find that lattice reconstruction is crucial for the appearance of an isolated flat Chern band. The existence of
the FCI state at ν ¼ −2=3 is confirmed by exact diagonalization. We establish phase diagrams with respect
to the twist angle and electron interaction, which reveal an optimal twist angle of 3.5° for the observation of
FCI. We further demonstrate that an external electric field can destroy the FCI state by changing band
geometry and show evidence of the ν ¼ −3=5 FCI state in this system. Our research highlights the
importance of accurate single-particle band structure in the quest for strong correlated electronic states and
provides insights into engineering fractional Chern insulator in moiré superlattices.
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Introduction.—Fractional Chern insulators (FCIs), the
analog of the fractional quantum Hall effect [1,2] in lattice
systems, feature fractional excitations with anyonic statis-
tics [3–6]. Because of its exotic nature and potential
applications in topological quantum computing [7,8], the
FCI has long been sought after in condensed matter
experiments. To find the FCI, the widely accepted approach
is to find a Chern band with significantly quenched kinetic
energy [9–13]. This can be realized in two-dimensional
(2D) moiré superlattices, which have been shown to be a
fruitful and tunable platform to explore electronic corre-
lation [14,15]. Indeed, theoretical proposals of FCIs
have been put forward in twisted bilayer graphene [16–21]
and twisted bilayer transition metal dichalcogenide
(TMD) [22–24]. Experimental evidences for FCIs has also
been found in graphene-based superlattices [25,26], albeit
at a finite magnetic field. Recently, the first observation of
the FCI in the absence of magnetic field (i.e., the fractional
quantum anomalous Hall effect) has been reported in
twisted bilayer MoTe2 at hole fillings ν ¼ −2=3 and
ν ¼ −3=5 [27]. The observation is at an unexpected large
twist angle (∼3.7°), for which the Chern bands had been
commonly believed to be too dispersive to stabilize the
FCI. The experimental observation calls for a better under-
standing of single-particle band structure of twisted TMD
bilayer as well as the emergence of the FCI in real
materials.
In this Letter, we perform large-scale density-functional

theory (DFT) calculation for the twisted bilayer MoTe2.

In contrast to previous theoretical studies, we find that the
band structure features an isolated flat Chern band that
favors FCIs. By exact diagonalization (ED) calculations,
we confirm the existence of the FCI at ν ¼ −2=3. We also
find that the ferromagnetism at ν ¼ −1=3 is much weaker
than that at ν ¼ −2=3, explaining the absence of the ν ¼
−1=3 FCI in the experiment. We further investigate the fate
of FCIs under an external electric field and find that FCIs
become unstable at E ¼ 1.26 mV=Å, which is consistent
with experimental observation. The suppression of FCIs by
external electric field is attributed to the deterioration of the
flatness of band geometry. We establish phase diagrams
with respect to the twist angle and electronic interaction,
revealing an optimal twist angle of 3.5° for the observation
of FCIs. Finally, we show evidences of the ν ¼ −3=5 FCI
state in this system. Our research highlights the importance
of accurate single-particle band structure in the quest for
strong correlated electronic states and provides insights into
engineering FCIs in moiré superlattices.
Single-particle electronic structure.—Moiré superlatti-

ces formed by twisting a bilayer introduce a long wave-
length periodic structure characterized by the moiré lattice
constant aM ¼ a=θ, where a is the lattice constant of
the original 2D layer and θ is the twist angle. This large
length scale makes it possible to model the low-energy
electronic structure with a continuum model. The valence
band edge of monolayer MoTe2 is located at the corners
of its Brillouin zone, i.e., K and K0 points. The two points
are separated by a large momentum such that K and K0
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valleys can be considered independently. Following the
experiment [27], we consider R stacking twisted bilayer
and the continuum model Hamiltonian for K valley
reads [28,29]

HK ¼
�

Hb ΔTðrÞ
Δ†

TðrÞ Ht

�
: ð1Þ

Here, Hb=t ¼ −ℏ2ðk − Kb=tÞ2=2m� þ Δb=tðrÞ is the bottom
(b) and top (t) layer Hamiltonian subjected to a moiré
potential Δb=tðrÞ ¼ 2v

P
j¼1;3;5 cos ðGj · r� ψÞ, where the

bottom (top) layer corresponds to the positive (negative)
sign. Kb=t is theK point for the bottom and top layer andGj

is the moiré reciprocal lattice vectors defined by Gj ¼
ð4π= ffiffiffi

3
p

aMÞfcos½πðj − 1Þ=3�; sin½πðj − 1Þ=3�g. The inter-
layer tunneling is dictated by threefold rotational symmetry
as ΔTðrÞ ¼ wð1þ e−iG2·r þ e−iG3·rÞ. m� ¼ 0.6me is the
effective mass (me is the bare electron mass) and
ðv;ψ ; wÞ are the free parameters in the continuum model.
The continuum Hamiltonian for the K0 valley can be
obtained by applying time-reversal symmetry to HK .
Inside each valley, the electrons are fully spin polarized
due to the large spin-valley coupling, and opposite valleys
have opposite spin due to time-reversal symmetry [30,31].
The parameters can be fixed by various approaches,

among which the simplest one is to fit from DFT calcu-
lations for bilayer MoTe2 at various stackings. This
approach is adopted by Ref. [28] and the parameters are
reproduced in Table I. The valence band structure with this
set of parameters is shown in Fig. 1(b) at twist angle 3.89°.
The topmost valence band is dispersive with bandwidth
larger than 20 meV. In addition, the two topmost bands
overlap each other in energy. Both features are unfavorable
for the emergence of FCIs.
In this Letter, we seek to establish a better understanding

of the single-particle band structure by performing large-
scale DFT calculations to take into account atomic relax-
ation, layer corrugation, and interlayer electric polarization
(details in the Supplemental Material [32]). We choose the
closest commensurate twist angle (3.89°) to the experi-
mental value and construct the moiré superlattice of MoTe2
using its monolayer unit cell with the optimized lattice
constant a ¼ 3.52 Å. The band structure of the moiré
superlattice is presented in Fig. 1(a) as red dots. The
DFT result shows significant lattice reconstruction in both
in plane and out of plane directions [Figs. 1(c) and 1(d)].
We then fit the continuum model parameters to the DFT

band structure, and the result is presented in Table I.
Compared to the parameters from Ref. [28], our parameters
features a much larger moiré potential and interlayer
tunneling, which is likely caused by the significant lattice
reconstruction [37–39], resulting in an isolated Chern band
with bandwidth of roughly 9 meV [cf. Fig. 1(a)].
Fractional Chern insulator at ν ¼ −2=3.—Having

established the existence of an isolated, relatively flat
Chern band, we investigate whether FCIs can be stabilized.
We adopt the following form of the Coulomb interaction:

Hint ¼
1

2A

X
l;l0;τ;τ0;k;k0;q

VðqÞc†lτkþqc
†
l0τ0k0−qcl0τ0k0clτk; ð2Þ

where VðqÞ ¼ e2 tanhðjqjdÞ=2ϵ0ϵjqj is the Coulomb inter-
action with dual-gate screening, A is the area of the system
(proportional to the number of k points in the calculations),
d is the distance between the twisted bilayer MoTe2 and
two symmetric metal gates, ϵ0 is the vacuum permittivity,
and ϵ is the relative dielectric constant. Here, c†lτk creates a
plane wave with momentum k at valley τ and layer l.

TABLE I. Parameters for the continuum model.

v (meV) ψ (deg) w (meV)

Local stacking approx. [28] 8.0 −89.6 −8.5
Large-scale DFT 20.8 þ107.7 −23.8

FIG. 1. Band structures for K valley calculated by continuum
model with parameters derived from our DFT calculation (a) and
parameters from Ref. [28] (b). Chern numbers for the two
topmost bands are labeled in the plot. Kohn-Sham DFT band
structure is plotted with red circles in (a), and the two DFT bands
labeled by empty circles are from the Γ valley. The twist angle is
3.89°. (c) In plane atomic displacement field in a moiré unit cell
after relaxation, and (d) shows interlayer (IL) distance for the line
cut in (c). The maximal in plane atomic displacement is 0.32 Å.
High symmetry stackings are labeled in (c). MM/XM/MX
denotes the stacking where the metal/chalcogen/metal atoms of
the top layer are directly above the metal/metal/chalcogen atoms
of the bottom layer, respectively.
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Because of spin-valley locking, τ can also be understood as
the spin label. We project the interaction onto the topmost
moiré band and carry out ED calculations.We choose ϵ ¼ 15
to make the characteristic interaction strength smaller than
the averaged energy gap. For smaller ϵ, we present the phase
diagram in the Supplemental Material [32]. While we left a
more accurate treatment to include the bandmixing for future
studies, there are evidences that FCIs can still be stabilized
even when the interaction exceeds the band gap [40,41].
The precursor to the FCI is spontaneous time-reversal

symmetry breaking. We first perform ED calculations
taking both valleys into account with a system size of
3 × 4 unit cells. We find that, over a broad range of twist
angles, the ground state for both ν ¼ −1=3 and ν ¼ −2=3
is fully valley polarized, with holes occupying only one
valley [cf. Fig. 2(a)]. Since the spin and valley indices are
coupled, full valley polarization implies full spin polari-
zation. The spin gap, defined as the energy difference
between the lowest-energy state that does not exhibit full

valley polarization and the fully valley-polarized ground
state, is shown in Fig. 2(b) for both ν ¼ −1=3 and
ν ¼ −2=3. The spin gap for ν ¼ −1=3 is much smaller
than that of ν ¼ −2=3, indicating much weaker ferromag-
netism of the former. The difference in the spin gap is
consistent with the experimental observation that ferro-
magnetism appears at ∼4.5 K at ν ¼ −2=3, whereas no
ferromagnetism is observed at ν ¼ −1=3 down to base
temperature of 1.6 K [42].
Given the large spin gap and strong ferromagnetism at

ν ¼ −2=3, we further carry out ED calculations for a single
valley, which allows us to consider a larger system with
4 × 6 unit cells.
The most important signature of the FCI is the ground

state degeneracy when the system is put on a torus [43,44].
Indeed, the ED energy spectrum shows three nearly
degenerate states, separated by an energy gap from other
states, as shown in Fig. 2(c). Under flux insertion, the three
ground states evolve into each other, exhibiting a 6π
periodicity [Fig. 2(d)]. We also calculate the many-body
Chern number [43] at this filling to be −2=3, which is
consistent with the experimental observation [27]. The
single-particle occupation number, defined as nðkÞ ¼
hc†kcki is presented in the Supplemental Material [32].
The uniformity of nðkÞ is a strong indicator favoring FCI
over charge density wave states, one of the FCI’s compet-
ing phases. The above evidences provide strong evidence to
the existence of the FCI in twisted MoTe2 at ν ¼ −2=3.

Phase diagram.—The emergence of the FCI state
depends on the dominance of electron-electron interaction
energy over single-particle kinetic energy. This ratio
between the two energy scales can be adjusted by two
factors: the single-particle bandwidth and the environmen-
tal dielectric screening of electron-electron interactions.
The most experimentally accessible knob to tune the
bandwidth is changing the twist angle. For example, in
twisted bilayer graphene, the flat band emerges at a series
of magic angles [45]. For twisted bilayer TMD systems, the
bandwidth is less sensitive to twist angles and we find
relative isolated flat bands for twist angle 3°–4°. The
screening of the electron-electron interactions can be tuned
by changing ϵ, as well as the distance between the sample
and the metal gate d: larger d leads to weaker screening of
the electron-electron interactions.
The phase diagram, as a function of θ and either ϵ or d, is

presented in Fig. 3. Within the range of the twist angle
presented in Fig. 3, the bandwidth of the topmost valence
band increases monotonically with θ. There are three
distinct phases: the FCI phase, the valley-polarized (VP)
phase, and the non-valley-polarized (NVP) phase. The
NVP phase emerges in the weak electron-electron inter-
action regime, characterized by large θ and large ϵ [see
Fig. 3(a)], or small d [see Fig. 3(b)]. For stronger
interactions, all holes occupy the same valley, which is
shown as the VP phase in Fig. 3. Our numerical evidence

FIG. 2. For a large range of twist angles, the ground state of
twisted bilayer MoTe2 is fully valley polarized, as shown in the
top of (a). The arrows represent spin, which is locked to the valley
(K and K0) degree of freedom. The bottom of (a) shows an
example of the excited state with one spin flip. The energy
difference between the lowest state with spin flip(s) and the
ground state is defined as the spin gap, shown in (b) for ν ¼ −1=3
and ν ¼ −2=3 as a function of the twist angle. The calculation for
(b) is carried out with 3 × 4 unit cells. (c) The many-body
spectrum as a function of total crystalline momentum with the
assumption of full valley polarization at ν ¼ −2=3. (d) The
evolution of ground states under flux insertion along the k2
direction. During the flux insertion, the many-body gap is
maintained. The calculation for (c) and (d) is carried out with
4 × 6 unit cells; the dielectric constant is chosen to be 15; the
distance between gate and sample is chosen to be d ¼ 300 Å; the
twist angle is 3.89°.
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suggests that the VP states are most likely metal states with
fully polarized spin, meaning they represent a half-metal
state [23]. The nature of these VP phases is left for further
studies. The FCI emerges from the VP phases at even
stronger interactions. The many-body gap for the FCI phase
has a peak at θ ¼ 3.5°, indicating an optimal twist angle for
the observation of FCIs. This optimal angle is close to the
twist angle (∼3.7°) of the device in which the FCI is
observed [27].
The effect of electric field.—An out of plane electric field

generates potential differences between the top and bottom
layers. Experimentally, it is observed that the FCI at
ν ¼ −2=3 can be suppressed by this out of plane electric
field. This observation is not necessarily surprising, since
layer potential differences will induce a topological phase
transition at the single-particle level, making the topmost
valence band topologically trivial. However, our calcula-
tions show that the FCI is suppressed well before the
single-particle topological phase transition. In Fig. 4(a),
we show that the many-body gap closes at electric field
E ¼ 1.26 meV=Å. In Fig. 4(b), we present the single-
particle band structure for E ¼ 1.39 meV=Å, where an
isolated flat Chern band can still be observed. The band-
width of the Chern band at E ¼ 1.39 meV=Å is compa-
rable to that at E ¼ 0.0 meV=Å, but the FCI is already
destroyed. In experiment, the ferromagnetism disappears
at E ∼ 5 meV=Å [27], implying the FCI is destroyed at a
smaller electric field. Our critical electric field E ¼
1.26 meV=Å is consistent with this observation.
It is well known that completely quenched kinetic energy

(i.e., vanishing bandwidth) does not ensure the existence of
the FCI, and a number of proposals [46–50] are put forward
to identify the conditions for the FCI to emerge. Many of
these proposals aim to design wave functions in a flat Chern
band such that they closely resemble the wave functions of
a Landau level. For example, since the Berry curvature Ω

and quantummetric tensor g are constant for Landau levels,
the flatness of these two quantities [46–48] in the reciprocal
space is heuristically viewed as a promising indicator for
the emergence of FCIs. In Fig. 4(c), we present the distri-
butions of Ω and trðgÞ for E ¼ 0.0 and E ¼ 1.39 meV=Å.
A serious deterioration of the flatness of the Berry cur-
vature and quantummetric tensor can be observed when the
FCI is destroyed. BothΩ and trðgÞ at E ¼ 1.39 meV=Å are
concentrated at the moiré K valley [Fig. 4(c)], which
explains the suppression of the FCI state.
Fractional Chern insulator at ν ¼ −3=5.—In addition to

the ν ¼ −1=3 state, the experimental observation also
includes the ν ¼ −3=5 state [27]. However, in our calcu-
lations, we do not observe a clear many-body gap at
ν ¼ −3=5 for the dielectric constant of ϵ ¼ 15.
Nonetheless, when the dielectric constant is increased to
ϵ ¼ 8, which is closer to the experimental value, we find
evidence for the FCI [32]. The characteristic interaction at
ϵ ¼ 8 is larger than the energy gap between the two
topmost bands, but the result can still be viewed as
supporting evidences of the existence of the FCI at
ν ¼ −3=5. We also performed ED calculations for
ν ¼ −1=5, −2=5, and −4=5 and find no clear evidence
of FCIs for ν ¼ −1=5 and −4=5. For ν ¼ −2=5, we find

FIG. 3. (a) Phase diagram as a function of twist angle and
dielectric constant at ν ¼ −2=3. d is chosen as 300 Å. (b) Phase
diagram as a function of twist angle and d at ν ¼ −2=3. ϵ is
chosen as 15. Many-body gap is shown in both (a) and (b) by
color in the FCI phase (units in meV). The FCI is identified
with 4 × 6 unit cells. Valley polarization is identified with
3 × 4 unit cells.

FIG. 4. (a) Many-body gap as a function of external electric
field at ϵ ¼ 15 and θ ¼ 3.89°. (b) Band structure at E ¼
1.39 mV=Å and θ ¼ 3.89° (the FCI is already destroyed by
the electric field). (c) Indicators for the emergence of the FCI at
E ¼ 0 mV=Å (left) and E ¼ 1.39 mV=Å (right). Ω is the Berry
curvature and trðgÞ is the trace of quantum metric tensor. The unit
for (c) is the inverse of the area of the moiré Brillouin zone.
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evidence of a FCI phase with the many-body energy gap
roughly half of that at ν ¼ −3=5.

In summary, we have presented a comprehensive theo-
retical study of the recent experimental observation of a
fractional Chern insulator at zero magnetic field in a twisted
MoTe2 bilayer. Density-functional theory calculations
reveal the existence of an isolated flat Chern band, which
allows us to confirm the existence of a ν ¼ −2=3 fractional
Chern insulator state using exact diagonalization. Phase
diagrams are presented to guide future experimental study
of fractional Chern insulators in this system, and the
suppression of fractional Chern insulators by external
electric field is studied. Our findings offer valuable insights
into the nature and properties of fractional Chern insulators
in moiré superlattices.

Note added.—We recently became aware of an independent
work on similar topics [51]. A recent ED calcula-
tion [52] based on our parameters has highlighted the
importance of remote band effects. Another recent DFT
calculation [53] using a different package has produced
similar band structures as ours.
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three-dimensional reconstructed WSe2=WS2 superlattices,
Nat. Mater. 20, 945 (2021).

[40] S. Kourtis, T. Neupert, C. Chamon, and C. Mudry, Frac-
tional Chern insulators with strong interactions that far
exceed band gaps, Phys. Rev. Lett. 112, 126806 (2014).

[41] A. G. Grushin, J. Motruk, M. P. Zaletel, and F. Pollmann,
Characterization and stability of a fermionic ν ¼ 1=3
fractional Chern insulator, Phys. Rev. B 91, 035136
(2015).

[42] Jiaqi Cai and Xiaodong Xu (private communications).
[43] Q. Niu, D. J. Thouless, and Y.-S. Wu, Quantized Hall

conductance as a topological invariant, Phys. Rev. B 31,
3372 (1985).

[44] X. G. Wen and Q. Niu, Ground-state degeneracy of the
fractional quantum Hall states in the presence of a random
potential and on high-genus Riemann surfaces, Phys. Rev. B
41, 9377 (1990).

[45] R. Bistritzer and A. H. MacDonald, Moiré bands in twisted
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