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Abstract—Quantum computing has rapidly evolved in recent years and
has established its supremacy in many application domains. While matter-
based qubit platforms such as superconducting qubits have received
the most attention so far, there is a rising interest in photonic qubits
lately, which show advantages in parallelism, speed, and scalability.
Photonic qubits are best served by the paradigm of measurement-based
quantum computation (MBQC). To deliver the promise of measurement-
based photonic quantum computing (MBPQC), the photon cluster state
depth and photon utilization are two of the most important metrics.
However, little attention has been paid to optimizing the depth and
utilization when mapping quantum circuits to the photon clusters. In
this paper, we propose a compiler framework that achieves automatic
and dynamic depth and utilization optimizations. Our approach consists
of an MBPQC mapping mechanism that maps optimized measurement
patterns on a cluster state and a cluster state pruning strategy that
removes all possible redundancies without impacting the circuit functions.
Experimental results on five quantum benchmark with three different
qubit numbers indicate our approach achieves an average of 63.4%
cluster depth reduction and 22.8% photon utilization improvements.

Index Terms—Quantum Computer, Compiler

I. INTRODUCTION

The emerging field of quantum computing has embraced rapid
development in the past decade, including the announcement of quan-
tum supremacy [1]. As a promising computing paradigm, quantum
computing has shown its advantages over classical computers in
many applications such as integer factorization [17] and database
search [8]. While the primary focus in quantum computing so
far has been on matter-based platforms such as super-conducting
[1] and trapped-ion [7] qubits, which can be categorized as gate-
based quantum computers (GBQC), there is an increasing interest in
photonic quantum computers (PQCs) which leverages measurement-
based quantum computing (MBQC)—referred to as measurement-
based photonic quantum computing (MBPQC) here. PQCs show
advantages in parallelism, speed, and scalability [5] and do not require
a cryogenic environment. Moreover, PQCs can be easily and securely
networked with the help of fiber optic channels [6].

At a high level, quantum computing uses quantum circuits to
implement quantum algorithms. A quantum circuit is comprised of a
series of unitary quantum evolutions called quantum gates. In GBQC,
which is widely adopted by superconducting quantum computers,
quantum gates are sequentially applied to randomly initialized qubits,
followed by measurements to obtain the computation results. In
contrast, MBQC leverages local measurements on qubits that are in
highly entangled resource states called cluster states [15] to perform
unitary evolution [5]. The measurements process and propagate
logical information forward along the resource cluster state, thereby
accomplishing the computation.

PQCs use MBQC because photons are flying qubits, and the
same photons cannot be statically retained to perform multiple
quantum gates as in the GBQC model. Also, unlike GBQC qubits,

a photonic qubit is destroyed once measured and cannot be re-
initialized. MBQC, thankfully, does not require quantum gates or
reuse of the same qubits after measurement. MBQC only requires
each qubit in a resource cluster to be active for a relatively short
time until it is measured. Also, cluster states of many photons can
be generated efficiently [18]. These reasons make MBQC the most
suitable computational paradigm for photonic qubits.

Two important metrics are related to MBPQC: i) cluster depth
and ii) photon utilization. While the cluster depth depends on the
mapping of a quantum circuit to MBPQC, a larger than required
cluster depth has several issues that warrant careful optimization
of the mapping to minimize cluster depth where possible. These
include a greater possibility of photon loss with a larger cluster state
and wastage of photon resources in the cluster states. The wasteful
photons do not contribute to the quantum algorithm implemented
in MBPQC but introduce additional detection noise associated with
measurement. Quantum computing compiler frameworks have been
designed primarily for GBQC, whereas MBPQC requires specialized
compilers that carefully optimize these two metrics, for which only
a few prior works are known.

In this paper, we comprehensively study cluster depth and photon
utilization when mapping quantum circuits to MBPQCs. We observe
a significant amount of photons that do not contribute to the quantum
algorithm (i.e., they are wasted in the cluster states). We also
observe that baseline mapping from the circuit to the cluster state
is agnostic to the PQC characteristics and misses opportunities for
depth reduction and utilization improvement. The major contributions
of this paper can be summarized as follows:
• We provide a detailed analysis of the cluster depth and photon

utilization when mapping quantum circuits to cluster states. It
quantifies the deficiencies in existing mapping strategies and reveals
the opportunities when performing photon-aware mapping.

• We design a compiler framework that automatically and dynam-
ically achieves the optimized circuit for cluster state mapping.
The proposed framework includes the following features. First, it
maps a quantum algorithm onto a cluster state using a series of
optimizations. Second, it removes redundancy without affecting the
circuit’s correctness.

• We use five quantum benchmarks with different numbers of qubits
to evaluate the proposed framework. Experimental results indicate
that the proposed approach, on average, reduces 63.4% of the cluster
depth and improves 22.8% of the photon utilization.

II. PHOTONIC PROCESSORS AND OPPORTUNITIES

In this section, we introduce the basics of MBPQCs, including
photonic cluster state and measurements. Then, we qualitatively and
quantitatively reveal the opportunities and urgent need to develop a
compiler framework for MBPQCs.
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Fig. 1. Example of cluster states

A. Photonic Cluster State

The first step of MBPQC is to prepare a cluster state, which is a
highly entangled multipartite quantum resource state. A cluster state
is represented as a graph state |G⟩ that includes N vertices (qubits)
and a set of edges E that form a regular lattice, e.g., a square lattice.
To prepare an entangled cluster state |G⟩, all N qubits are initially
assigned with state |+⟩, and Controlled Z (CZ) gates are applied
to any two qubits connected by an edge [5]. Large-scale entangled
cluster states have been demonstrated with photonic qubits [18]. In
the rest of this paper, we focus on cluster states with photons. Fig. 1
shows an example of building a cluster state with three rows and a
cluster depth of five. The 2-D cluster state is shown to be universal
in quantum computation [16]. While an arbitrary single-qubit gate
shown in Fig. 2(a) can be implemented on a 1-D cluster state, it is
not universal because it cannot implement two-qubit gates.

A cluster state requires at least 2n− 1 rows to realize an n-qubit
quantum circuit [16]. In this paper, we refer to qubit rows as the
rows that store the logical qubits, and supported rows as the rows
between qubit rows as shown in Fig. 1. Since the number of rows
is fixed for a given number of qubits, the size of the cluster state is
only proportional to its depth (x-axis length). In general, preparing a
smaller (i.e., shallow depth) cluster state for MBPQC is relatively
easier and typically requires fewer probabilistic fusion operations
compared to preparing a larger (i.e., high depth) cluster state [18].

Also, once prepared, a larger cluster state suffers from higher error
rates as compared to a smaller one since there is a greater probability
of a photon being lost due to transmission losses in optical fiber.
Moreover, even those photons that are not actually a part of the
computation would still have to be measured off from the cluster,
which, due to imperfect optical detection efficiencies, can introduce
more noise in the propagated logical quantum information [18]. Thus,
reducing the cluster depth lowers the error rate as well as saves
resources. In the rest of the paper, we use cluster depth as the metric
to quantify the depth of the cluster state.

B. MBQC on photonic cluster state

In MBPQC, the unitary quantum gates can be realized using a
series of local measurements in a certain basis and order. In this
section, we first show how measurements can realize the one-qubit
and two-qubit gates. Then, we show how the z measurement is used
in MBPQC. Due to lack of space, we refer the readers to [16]
for formal mathematical proofs. Finally, we show how to use these
measurements to realize quantum circuits in the photonic cluster state.

In MBPQC, five measurements in a chain can realize an arbitrary
single-qubit rotation. In quantum computing, any unitary operation
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Fig. 2. The measurements pattern for quantum gates in MBQC

on a single qubit can be decomposed into the combination of three
rotation gates [13]:

R[α, β, γ] = RX [α]RZ [β]RX [γ] (1)

where the RX and RZ are rotations about the x-axis and z-axis.
In MBPQC, the qubit rotation can be realized by measuring the

qubits on the x-y plane with angle θ. The measurement on the x-y
plane is an x measurement or a y measurement when the measurement
angle θ is 0 or π

2
, respectively. The first measurement in an arbitrary

rotation is to prepare the input state |in⟩. The second, third, and fourth
measurements correspond to rotations about the x-axis, z-axis, and x-
axis, respectively. The measurements angles from photon p1 to photon
p4 are as follows: 0, −θ(−1)S1 , −θ(−1)S2 , and −θ(−1)S1+S3 . S1

to S3 are the measurement outcomes for photons p1 to p3. After the
four measurements, the quantum state of photon p5 will be:

R′ = σS2+S4
x σS1+S3

z R (2)

where σx and σz are the Pauli matrices. Note that the σS2+S4
x σS1+S3

z

is the random byproduct produced by the measurements from photons
p1 to p4. The fifth measurement is used for byproduct correction.
Prior works have shown that the byproduct can be propagated and
corrected at the end of the cluster state [16]. Hence, the quantum
gates before the end of the circuit do not require the byproduct
correction measurements. The input photon of a quantum gate is
then placed at the output location of the previous gate. This may
form consecutive x measurements that can be removed (details are
discussed in Section III-A).

The realization of an arbitrary rotation is shown in Fig. 2(a).
Note that the arbitrary rotations can be adjusted to implement other
common unitary evolution gates, e.g., the H and identity gates. In the
H gate, y measurements are applied to photons p2 to p4. In MBPQC,
any even number of x measurements form an identity gate, also called
a wire. The patterns of these quantum gates are shown in Fig. 2.

Similarly, one can use measurements to implement two-qubit
gates. Fig. 2(d) shows the measurement pattern for the CNOT gate.
Specifically, photons p1 and p9 are inputs with x measurement while
photons p7 and p15 are used for byproduct corrections, which are
only required at the end of the circuit. Another example is a unique
measurement pattern shown in Fig. 2(f) that combines a CP gate
and a SWAP gate shown in Fig. 2(e). This combines a Controlled
Phase (CP) gate with an additional SWAP gate. The measurement
angles of photons p3, p6, and p10 are based on the rotation phase and
the previous measurement results. The simulation pattern becomes a
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Fig. 3. Example of a quantum circuit.

SWAP gate or a CZ gate with a SWAP gate when the measurement
angles are 0 or π, respectively. This means the SWAP gate is not
required to be decomposed into three CNOT gates in MBPQC.

Another important characteristic of MBPQC is the z measurements
and consecutive even number x measurements (i.e., wires) in the
cluster state. First, as discussed above, the z measurement in MBPQC
is not used to realize quantum gates but to remove photons from the
cluster state. It destroys entanglement between photons and makes
them ineffective for realizing a circuit [16]. Second, wires are used to
“glue” neighboring photons to pass quantum information from left to
right in the cluster. As a result, both the wire and the z measurements
can be seen as “redundant” in MBPQC because they do not contribute
to the real implementation of quantum algorithms. Thus, in the rest
of the paper, we use photon utilization to quantify the number of
photons not involved in z measurement and wires. We also show how
our proposed optimizations improve photon utilization in MBPQC.

Fig. 3 shows a simple example of MBPQC. This is a 2-qubit
quantum circuit with qubits q0 and q1. Specifically, an H gate is
applied to qubit q0, and a CNOT gate is applied between the q0
and q1 qubits. The wires are inserted to match the H gate so the
bottom part of the CNOT gate does not shift to the left. The rest of
the photons on the supported row are then removed by applying z
measurements. The redundancy includes all z measurements and the
wires. The utilization and depth are given in this example.

C. Related work

Many compiler-guided optimizations for quantum computers have
been proposed [12], [14]. However, these works are designed for
GBQCs, and they are not suitable for photonic quantum computers.

Firstly, existing works aim to reduce the number of CNOT gates
due to their high error rate. Most CNOT gates are generated due to
the decomposition of SWAPs and other two-qubit gates since CNOT
is the only supported two-qubit gate in the IBM superconducting
quantum computers. However, the SWAP and other two-qubit gates
in MBPQC (shown in Fig. 2(e)) can be realized using their own
measurement patterns and do not need to be decomposed into CNOT
gates. Using the current compiler for MBPQC would lead to even
more CNOT gates generated from gate decomposition, which results
in more measurements and a larger cluster state.

Second, the existing works do not consider the special quantum
gate patterns of MBPQC. For example, the CP gate in MBPQC comes
with an additional SWAP gate, and the special CNOT pair, which
will be discussed in section III-A, has its unique structure as shown
in Fig. 4(d). These patterns lead to a different optimization space
compared to other quantum computers. Since the existing compiler
framework is incapable of the MBPQCs, there is an urgent need for
a compiler specific to MBPQC.

III. PHOTONIC QUANTUM COMPUTER COMPILER FRAMEWORK

In this paper, we set to reduce the photonic cluster depth and
improve photon utilization. To this end, we propose an automatic

compiler framework that conducts cluster-aware mapping from the
quantum algorithm to the cluster state. Specifically, the proposed
framework consists of the following techniques: i) A mapping
mechanism that utilizes circuit commutation to search for special
CNOT pairs, reduce SWAP gates, and improve circuit parallelism.
ii) A cluster state pruning approach that removes all the redundancy
without affecting the circuit function.

A. Optimization Opportunities for MBPQC

We use Fig. 4 to illustrate the optimization opportunities in
MBPQC.
Opportunity-I: Our first optimization motivation stems from the
observation that two adjacent dependent gates can sometimes be
switched by commutation. However, the two equivalent-function
circuits may have different cluster depths and photons utilization.

For example, Fig. 4(a) shows a pair of two CNOT gates marked
in two boxes. They are on three neighboring physical qubits. When
mapping the circuit to cluster state, the corresponding circuit depth is
16, and the photon utilization is 28.8% (Fig. 4(c)). In contrast, if we
switch the two CNOT gates in Fig. 4(b) to form a special CNOT pair
[16], the circuit has the same functionality but the resulting cluster
depth, and photon utilization can be significantly improved (cluster
depth eight and 57.5% photon utilization in Fig. 4(d)).

Another example is that the order of logical CP gates also matters.
For example, in Fig. 4(e) and Fig. 4(f), the two circuits have the same
quantum function. However, the gate order in Fig. 4(f) can reduce
two required SWAP gates because the first CP gate also performs
an additional SWAP operation that the second CP gate needs. The
corresponding MBPQC implementation is shown in Fig. 4(g) and
Fig. 4(h). However, if option 2 is chosen in Fig. 4(e), only one
additional SWAP gate is required. Although the photon utilization
stays the same, the cluster depth was reduced from 16 to 8.
Opportunity-II: Our second optimization motivation is that consec-
utive single gates can be combined in MBPQC. Specifically, This
approach is hardly used in GBQCs because many of them do not
support the arbitrary rotation gate. However, all MBPQC support
arbitrary rotation gates as in Fig. 2(a). For example, an arbitrary
rotation gate and H gate in Fig. 4(i) are combined into only one
arbitrary rotation gate. This optimization can reduce the cluster depth
by N , where N is the number of single-qubit gates to be combined.
Opportunity-III: Our third optimization motivation is to reorder
the independent gates to enable more parallelism. For example, the
reordering of the two independent gates from Fig. 4(j) and Fig. 4(k)
results in a reduction of depth by four photons because the latter order
enables parallel execution of the CP gate and H gate. The MBPQC
implementation is shown in Fig. 4(l) and Fig. 4(m). The cluster depth
is reduced from 12 to 8, and the photon utilization is increased from
26.7% to 35%. Reordering of this nature, using CP gates, can not
benefit GBQCs because CP gates need to be decomposed into two
CNOT and three Phase gates. One of the Phase gates decomposed
from the CP gate in the GBQC always executes in parallel with the
H gate for both orders in Fig. 4(j) and Fig. 4(k).
Opportunity-IV: The last optimization opportunity is to remove the
redundancy introduced in section II-B. As discussed in section II-B,
the even number of connected x measurements are wire (identity
gate), and they are redundant because they do not perform any useful
quantum evolution. However, these patterns can not be removed
naively since they may lead to pattern misalignment. For example,
removing the wire part in Fig. 3 will destroy the functionality of
the CNOT gate. In order to maintain the functionality of quantum
circuits, the number of removed measurements in each row should
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be the same. As shown in Fig. 4(l), the wire part for each row can
be removed since it will not cause any misalignment problems.
Overall potential: The original utilization, the new utilization,
and cluster depth reduction for each of the five cases in the four
optimizations in Fig. 4 are summarized in Table I. For the redundancy
removal, we use the example in Fig. 4(l), where the redundancy
marked in the orange boxes is removed. The utilization of all single-
qubit gates is one because we assume they are implemented on a 1-D
cluster state. As shown in Table I, the cluster depths of all five cases
are reduced. Although the CP-CP commutation does not reduce the
utilization in this example, it shortens the cluster state by 50%.

TABLE I
DEPTH AND UTILIZATION IMPROVEMENT FROM OPTIMIZATIONS

Optimization type Formal utilization New Utilization Depth reduction
CNOT-CNOT pair 20.5% 41.1% 50%

CP-CP commutation 30% 30% 50%
Gate combination 1 1 N

Independent reorder 26% 35% 33.3%
Redundancy removal 26% 40% 33.3%

B. Our Approach

The proposed compiler framework consists of two stages: i) an
MBPQC mapping mechanism that utilizes opportunities I, II, and III,
and ii) a redundancy removal strategy that leverages opportunity IV
to remove all the redundancy without impacting the circuit functions.

The optimization opportunities can be discovered by using circuit
commutation [9]. Circuit commutation enables switching between
two adjacent dependent quantum gates while maintaining the same
quantum circuit function. For example, target-target and control-
control commutation. These two commutations of two-qubit gates are
shown in Fig. 4(a) and Fig. 4(e). We leverage these commutations to
realize opportunities I to III step by step.

In the initialization, an input logical quantum circuit is first trans-
formed into a Directed-Acyclic-Graph (DAG). The nodes in a DAG
represent a quantum gate, and the edges represent the dependency

between quantum gates. The quantum gates can be executed when
their dependent gates have been executed. Here, we define the nodes
without predecessors as the front layer. Hence, nodes within the same
layer can be executed simultaneously at the logic level.

Our first step searches for all possible commutations within a
window of MAX layers. If the commutation between two dependent
CP gates is possible, we check which order minimizes the number of
swap gates in the circuit. For example, the order of Fig. 4(f) is better
than the order of Fig. 4(e). If the commutations involve CNOT gates,
we then search for the two CNOT pairs as illustrated in Fig. 4(b)
and Fig. 4(d). CNOT gates that follow the pattern shown in Fig. 4(d)
can be implemented with significantly fewer photons than their naive
implementation, as shown in Fig. 4(c).

If SWAP gates are still needed after applying the first step, we
further apply a look-ahead strategy to minimize the impact of swaps
on subsequent gates as step 2. The SWAP option that is then chosen
is one that minimizes the SWAP requirement in the remaining circuit.
This can be seen in Fig. 4(e), where option 1 causes two extra swaps
to be added to the final circuit, and SWAP option 2 only requires one
SWAP. After the above two steps, we then combine the single-qubit
gate as our third step. As shown in Fig. 4(i), the consecutive single
gates can be combined into one arbitrary rotation gate.

During each of the optimization steps 1-3, we continually update
the DAG since these optimizations affect the circuit dependency
after every commutation and combination. After obtaining the final
updated DAG from step 3, we search for the best independent gate
order to optimize the parallelism of the circuit in the window of
MAX layers to optimize the depth and photon utilization further.
The examples have been discussed in opportunity III.

The pseudo-code of our mapping mechanism is shown in Algo-
rithm 1. The quantum algorithm is first transferred into a DAG D. Our
framework will check all possible commutations between each layer
l and the next MAX layer l+MAX (lines 2-4). For each possible
commutation, we apply each optimization step to a temporary DAG
D′, where D′ = D[l : l + MAX + 1] (line 6). We evaluate one
more layer because commutation happens in layer l + MAX and
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may affect the next layer l + MAX + 1. For example, the single-
qubit gate in l +MAX and l +MAX + 1 could be combined.

After commutation, the framework first searches for special CNOT
pairs in D′ and updates D′ once finding a pair (lines 7-9). If the
commutation is between two CP gates, their impact on the number
of SWAP gates will be shown as a shorter depth of D′, which will
be computed at line 16. If SWAP gates are needed in D′, the SWAP
option, which minimizes the next SWAP distance, is used (lines 10-
12). After that, the third step (lines 13-14) is applied to combine the
consecutive single gates in D′, and the fourth step (line 15) is applied
to choose the best independent gates order for each layer in D′. After
performing all the optimizations, the layers D[l : l+MAX+1] then
is replaced by the commutation D′ with the shortest depth (lines 16-
22). After optimizing D[l : l+MAX+1] for every layer l, we map
the updated DAG on a cluster state M (line 23).

Algorithm 1 MBQC mapping
Input: A quantum circuit C, qubits number q, maximum search depth MAX
Output: mapping M on a cluster state

Initialisation : DAG D of C
1: for each layer l in D do
2: if (Commutable(D[l : l + MAX]) ) then
3: Temp depth = []
4: Temp DAG = []
5: for Each commutation Commu in D[l : l + MAX] do
6: D′ = copy(D[l : l + MAX + 1])
7: if (Commu == CNOT ) then
8: update special CNOT (D′)
9: end if

10: if (gate g in D′ requires SWAPs) then
11: Minimize next SWAP (D)
12: end if
13: Combine single gate(D′)
14: Update DAG(D′)
15: Reorder independent(D′)
16: Temp depth.append(cal depth(D′))
17: Temp DAG.appned(D′)
18: end for
19: best commute = Temp DAG.index(min(Temp depth))
20: D[l : l + MAX + 1] = Temp DAG[best commute])
21: end if
22: end for
23: M = place(D)
24: return M

C. Cluster State pruning

After mapping the gates to the cluster state, we design a Cluster
State pruning strategy that leverages opportunity IV to significantly
reduce the redundancy without affecting the circuit functionality.

The approach is as follows: For each column, we look for the
consecutive pair of x and z measurements in every row. If a valid
pair is found in a row, record the column location of the pair. If
not every row has found a valid pair, search all rows in the next
column and update the column location if a new valid pair is found.
Once every row has identified a valid pair, we remove the pair at the
latest pair location so the redundant measurements are removed while
retaining the relevant functional structure. After removing the pairs
for each row, we restart the search at the current column location.
The search is done when the algorithm reaches the last column.

For example, the search starts from column 0 in Fig. 4(l), and
redundancies are found in every row except for the middle qubit row.
The location keeps increasing until the redundancy in the middle row
is found, which is in column 4. After removing the latest found pair
in each row marked with red boxes, the SWAP gate shifts left while
maintaining its structure. The search then restarts at column 4 and
will find another redundancy marked in another orange box. In this
case, 20 redundant photons are removed.
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IV. EVALUATION

A. Benchmarks and Metrics

The benchmarks we used to evaluate our proposed framework
are: Quantum Fourier transform (qft) [10], Instantaneous quantum
polynomial-time (iqp) [4], Hidden linear function (hlf) [3], Graph
state (gs) [11], and Bernstein–Vazirani (bv) [2]. The hlf, gs, and
iqp benchmarks include many CP gates, which test the ability of
our framework to order CP gates. The bv benchmarks consist of
many CNOT gates, which we can leverage to examine the ability to
discover the special CNOT pairs. The qft is a special benchmark for
which opportunities I to III cannot apply, but opportunity IV does.
Each benchmark is evaluated with 4, 5, and 7 qubits.

Two metrics we introduced above are used to evaluate the cluster
state: cluster depth and utilization. The hyper-parameter MAX is set
to 2 in our evaluation. The reason why we use this parameter will
be analyzed in section IV-C.

B. Experiment Results

Fig. 5 shows the cluster depth reduction and the photon utilization
of our approach compared against the baseline where the default
gate order of benchmarks are sequentially mapped to cluster state as
used in [16]. Here, mapping means only implementing the mapping
algorithm. Mapping+pruning is the complete implementation of our
framework.

The results show that applying the first stage optimization results
in an average of 38.6% (up to 55.6% in hlf5) cluster depth
reduction. When excluding qft, which does not have mapping
opportunities, the average depth reduction is 48.2%. After applying
both optimizations, the depth reduction is an average of 63.4% (up
to 74.3% in iqp7).

The average photon utilization increases from 20.4% to 26.2% and
43.2% after applying the mapping algorithm and the complete opti-
mization, respectively. The Cluster state pruning can vastly improve
photon utilization because it is specifically designed for redundancy
removal. As shown in Fig. 5(b), the utilization decreases with the
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Fig. 6. The compilation time overhead of MAX 3 normalized to MAX 2.

seven-qubit benchmarks. The reason is that the row number of a
cluster state is proportional to the qubit number. Some quantum
gates cannot be executed in parallel, which results in many rows of
redundancy that cannot be removed. The hlf5 and gs5 show the
best utilization because they have a dense structure to enable more
parallelism.

Table II summarizes the optimization opportunities enlargement
discussed in section III-A for benchmarks with 5 qubits. It shows the
specific optimization results that reduce the cluster depth and increase
the photon utilization. CNOT pair ratio is the number of CNOT gates
that have been paired to the total number of CNOT gates, while the
parallelism ratio is the number of quantum gates executed in parallel
to all the quantum gates. In this table, the gain is the increase in the
ratio comparing our approach to the baseline. The SWAP reduction
rate is the decreased number of SWAP gates compared to the baseline.
Similarly, the single gate reduction rate is the decreased number of
single-qubit gates compared to the baseline.

TABLE II
OPTIMIZATION OPPORTUNITIES ENLARGED

Benchmarks CNOT pair SWAPs Single gate Parallelism
ratio gain reduction rate reduction rate ratio gain

hlf5 0% 66.7% 16.7% 55.6%
gs5 0% 66.7 0% 66.7%
iqp5 0% 33.3% 9.1% 33.1%
bv5 50% 66.7% 9.1% 36.2%

C. Sensitivity and Complexity

The window size MAX would bring a worst-case complexity of
O(n2 ∗MAX!), where n is the number of qubits. Suppose gates in
MAX neighboring layers in a DAG can be switched with each other.
There is a total of n2 ∗ MAX! possible commutations. Although
a larger MAX may reduce the depth and increase the utilization
further, it will significantly increase the compilation time. Hence, we
only implement MAX 2 and 3 in our experiments.

Compared to the results shown in Fig. 5, our compiler framework
with MAX 3 only improves 3 out of the 15 benchmarks compared
to MAX 2. The depth of bv4, bv7, and iqp7 is reduced by 8.4% on
average, while the utilization is only increased by 4.5% on average.
The results for other benchmarks even do not change. Fig. 6 shows the
compilation overhead of MAX 3 normalized to MAX 2. Compared
to MAX 2, the compiler framework with MAX 3 increases the
compilation time by 3X on average, which is not a desirable trade-
off. Based on the results shown above, we set MAX as 2.

V. CONCLUSION

In this work, we have proposed our novel compiler framework for
efficiently mapping quantum circuits into MBPQC (Measurement-

Based Photonic Quantum Computation). We analyze the detailed op-
portunities available within this new cluster state-based approach and
describe how our compiler takes advantage of these opportunities to
compile a more efficient MBPQC. Specifically, our compiler achieves
an average of 63.4% cluster depth reduction and 22.8% increase in
photon utilization over our baseline, which is the current state-of-
the-art. We demonstrate these results on five different benchmarks
that vary across the number of qubits and functionality, showing our
solution’s universality.
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