
EP-ORAM: Efficient NVM-Friendly Path Eviction
for Ring ORAM in Hybrid Memory

Mehrnoosh Raoufi
University of Pittsburgh

mraoufi@cs.pitt.edu

Jun Yang
University of Pittsburgh

juy9@pitt.edu

Xulong Tang
University of Pittsburgh

xulongtang@pitt.edu

Youtao Zhang
University of Pittsburgh

zhangyt@cs.pitt.edu

Abstract—Recent studies showed that only ORAM (oblivious
RAM) can securely protect memory access patterns (i.e., data
privacy) on modern computer systems. Ring ORAM is a promis-
ing ORAM protocol as it demands O(1) memory accesses for
servicing each user memory request. However, Ring ORAM
exhibits low memory utilization, i.e., its memory requirement
is 4.8× of the protected user space. While adopting NVM
(non-volatile memory) can alleviate the memory requirement,
a simple implementation tends to introduce large performance
degradation, preventing its adoption in practice.

In this paper, we propose EP-ORAM, an NVM-friendly Ring
ORAM implementation on DRAM/NVM hybrid memory. EP-
ORAM is developed based on two key observations: (1) for
tree-based Ring ORAM memory organization, saving bottom
levels in NVM can dramatically reduce the DRAM memory
requirement; (2) the tradeoffs among Ring ORAM operations
expose design opportunities without security compromise. We,
therefore, propose to save the bottom levels of the ORAM tree
in NVM and shorten the path of EvictPath operation, which not
only mitigates the number of NVM writes but also speeds up the
execution. Our experimental results show that, under the design
constraints of similar performance as the baseline that saves two
bottom levels in NVM, EP-ORAM helps to save three levels in
NVM, achieving 50% DRAM space reduction. In addition, EP-
ORAM reduces the NVM writes by 15%.

Index Terms—ORAM, security, access pattern, hybrid memory

I. INTRODUCTION

For modern computer systems, it is challenging to protect
the memory access patterns between CPU and untrustwor-
thy main memory. While CPU can be secured with low
overhead [1], according to JEDEC memory standard, the
memory device commands and addresses are communicated in
plaintext between the on-chip memory controller and memory
chips. Studies have shown that it demands ORAM (oblivious
RAM) [2] to prevent information leakage from memory access
patterns.

Among recent ORAM schemes [3], [4] that successfully
reduced the protocol overhead to O(logN), where N is the
number of protected data blocks, Ring ORAM [4] is a
promising design. While its overall overhead remains O(logN),
Ring ORAM achieves O(1) overhead for online accesses, i.e.,
the overhead to service user memory requests. Thus, Ring
ORAM services user requests faster and improves the program
performance, e.g., 2.7× improvement over Path ORAM [3].
The protocol maintenance operations are expensive but they
are not always on the critical path.

However, Ring ORAM faces one major limitation, i.e., its
low memory utilization. For a typical setting, the required
DRAM space is 4.8× of the protected data [4]. Ring ORAM
organizes the data blocks in a tree structure: each tree node,
referred to as a bucket, consists of Z slots each of which
can save one data block or dummy block. The low memory
utilization comes from saving two types of dummy blocks.
(1) When servicing a user memory request, Ring ORAM
identifies the target tree path and fetches one block from
each bucket along the path. Ring ORAM reserves S slots per
bucket holding dummy data so that a bucket can service up
to S accesses without reshuffling. (2) A data block, after its
access, is randomly mapped to a different tree path. To prevent
mapping to a tree path that has no empty slot, Ring ORAM
doubles the number of memory slots that can hold user data.
Therefore, on average, a tree bucket can hold (Z-S)/2 user data
blocks. For a typical setting Z=12, S=7, the DRAM memory
requirement of Ring ORAM is 4.8× of the protected user data.

To alleviate the low memory utilization in Ring ORAM,
Cao et al. [5] proposed to shrink the bucket size such that the
S dummy slots overlap with the slots that can save user data,
which reduces the DRAM space by 34%. Raoufi et al. [6]
proposed to exploit the dead blocks in the ORAM tree, which
reduces the DRAM space by 22%. Unfortunately, even with
these designs, the DRAM space requirement remains high.

With the fast advances of NVM (non-volatile memory) tech-
nologies, e.g., ReRAM (Resistive Memory) [7] and STT-RAM
(Spin-Transfer Torque Memory) [8], an alternative strategy
to address the high DRAM space demand is to use NVM.
In particular, for a DRAM/NVM hybrid memory system, if
allocating the last two levels of the ORAM tree in NVM and
the rest of the levels in DRAM, the required DRAM space can
be reduced by 75%. However, NVM often suffers from large
memory access latency, allocating too many levels, e.g., six
levels, in NVM [9] can lead to 70% performance degradation.
Given the performance of Ring ORAM is already 2.2× slower
than the no-ORAM implementation, the large performance
degradation makes an aggressive hybrid design less appealing.

In this paper, we study the tradeoffs in DRAM/NVM
hybrid design as well as among the Ring ORAM operations.
By exploiting the design space exposed by these tradeoffs,
we propose EP-ORAM, an efficient and NVM-friendly path
eviction scheme to mitigate the high DRAM demand in Ring
ORAM. In the following, we summarize our contributions.

20
23

 6
0t

h
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
79

-8
-3

50
3-

23
48

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

56
92

9.
20

23
.1

02
47

71
4

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:19:18 UTC from IEEE Xplore. Restrictions apply.

• We study the interactions among different Ring ORAM
operations. In particular, EvictPath (the operation to
reshuffle tree paths) determines the stash size, the fre-
quency of bucket level reshuffles, and the number of
memory writes. We further identify the under-utilized
middle levels of Ring ORAM. It exposes the opportunity
to reduce the overhead of maintenance operations in Ring
ORAM, in particular, the stash size.

• We propose EP-ORAM to exploit the design space ex-
posed by our studies. EP-ORAM carefully partitions the
ORAM tree between DRAM and NVM and shortens the
path length during EvictPath operation, which not only
reduces the number of NVM writes but also speeds up
the operation.

• We evaluate the proposed design. Our experimental re-
sults show that, under the design constraints of no security
compromise and similar performance as the baseline that
saves two bottom levels in NVM, EP-ORAM helps to
save three levels in NVM, achieving 50% DRAM space
reduction. In addition, EP-ORAM reduces the NVM
writes by 15%.

II. BACKGROUND

A. Attack Model

In this paper, the trusted computing base only includes
the processor on-chip, and everything off-chip is untrusted
including memory bus and memory modules, similar to those
in the literature [3], [4], [10]. The processor encrypts any data
before writing to off-chip memory and decrypts the data after
reading from the off-chip device. Ring ORAM is adopted to
protect the memory access pattern of the user program running
in the trusted computing base.

B. Ring ORAM Basics

Ring ORAM is a tree-based ORAM protocol that organizes
data blocks in memory in a full binary tree. Each tree node is
a Z-slot bucket. Each slot can hold either a real or a dummy
block. In Ring ORAM, each bucket dedicates S slots for
reserved dummy blocks, and the remaining Z ′ = Z − S can
hold real or dummy blocks. Similar to that in Path ORAM,
half of the entire Z ′ entries in the tree can hold real blocks so
that there are enough empty slots for random remapping. If
the ORAM tree has L levels, it has (2L − 1)×Z slots. There
are 2L−1 paths from the root to the leaves. Each bucket also
keeps a metadata block indicating the location of real blocks
in the bucket and a valid flag for each block. It also maintains
a counter to indicate how many times the bucket has been
accessed. Fig. 1 depicts an example of a Ring ORAM tree
with three levels.

A user data block is randomly mapped to a path in the
tree. The mapping, referred to as Position Map, is in the
protected space while the subset of frequently used entries
is saved in a position map cache in the trusted base. When
the user program requests a data block A, ORAM controller
looks up Position Map to identify the path on which block A
resides, accesses path l, retrieves block A, and saves block A

ORAM Controller
ORAM Tree

Trusted
Untrusted

Stash

path l

ReadPath EvictPath

Position Map
A è path l

A

EarlyReshuffle

Fig. 1. Ring ORAM tree example with L = 3.

in a small buffer called Stash within the trusted base. Ring
ORAM keeps block A in the Stash until it is written back
to the ORAM tree by one of the maintenance operations.
There are mainly four operations; ReadPath, EarlyReshuffle,
EvictPath, and BackgroundEvict. ReadPath is considered the
online access that services the user program request. Whereas,
the other three are maintenance operations to free the stash
and refresh the buckets. We elaborate on these Ring ORAM
operations as follows.

ReadPath. It is the path access that is to service the user
memory request. The ORAM controller, after identifying the
mapping from block A to path l, first accesses the metadata
blocks of all buckets along path l to determine the exact
location of block A. It then reads one valid block per bucket on
path l — one bucket provides block A while each of the other
buckets provides a valid reserved dummy block. Ring ORAM
then updates the metadata of all buckets and marks all read
blocks as invalid. Ring ORAM randomly maps block A to a
new path, and updates Position Map and Stash accordingly.
The user program can resume the execution after ReadPath.

EarlyReshuffle. It reshuffles a bucket on-demand. The
bucket counters along path l are incremented during ReadPath.
If any counter reaches S, Ring ORAM needs to reshuffle the
bucket, assuming it runs out of valid reserved dummy blocks.
To reshuffle a bucket, Ring ORAM reads the entire bucket,
reshuffles/encrypts the data blocks, and writes them back to
the tree. The blocks accumulated in the stash may be written
back during the EarlyReshuffle operation.

EvictPath. It reshuffles all buckets along one path. It reads
all the buckets along a path, reshuffles/encrypts them, and
writes them back to the tree. The blocks accumulated in the
stash may be written back during the EvictPath operation. Ring
ORAM schedules one EvictPath after five online accesses in
a typical setting [4]. Note that paths are chosen based on
a reverse-lexicographic order so the path to be reshuffled is
public information.

Since each bucket contains at most Z ′ real data blocks, Ear-
lyReshuffle and EvictPath read Z ′ blocks but write Z blocks.
Both operations update the metadata block accordingly.

BackgroundEvict. If the stash is full, Ring ORAM invokes
BackgroundEvict to prevent the protocol from failing. This
is achieved by issuing dummy ReadPath that reads a valid

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:19:18 UTC from IEEE Xplore. Restrictions apply.

dummy block per bucket from a randomly selected path.
BackgroundEvict ensures the stash occupancy does not in-
crease until the next EvictPath arrives. BackgroundEvict keeps
issuing dummy ReadPath operations until sufficient EvictPath
operations are executed to reduce the stash occupancy below
the threshold. BackgroundEvict operation converts protocol
correctness problem to a performance problem [3], [5].

III. EP-ORAM

In this section, we first discuss our key observations and the
design space challenges. We then elaborate on the EP-ORAM
scheme to address them.

A. Tradeoffs of Adopting ORAM in DRAM/NVM Memory

As explained in Section II, the ORAM tree is a full binary
tree so its capacity grows exponentially. In this tree, the
capacity of the last level is equal to the capacity of all the
prior levels. In other words, if we save the last two levels
of the ORAM tree in NVM, we can save 75% of DRAM
space. NVM often suffers from large memory access latency,
allocating too many levels, e.g., six levels, in NVM [9] can
lead to 70% performance degradation. Given the performance
of Ring ORAM is already 2.2× slower than the no-ORAM
implementation, the large performance degradation makes an
aggressive hybrid design less appealing.

g c c m c f o m n x a l x 2 6
4 d e e b w a l b m w r f c a m i m a f o t r o m a v g

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6

Slo
wd

ow
n

 H y b r i d - N V M 4 H y b r i d - N V M 3 H y b r i d - N V M 2

Fig. 2. Slowdown of Ring ORAM in hybrid memory compared to DRAM
(Hybrid-NVMx indicates saving x bottom levels in NVM).

Assume upgrading a 4-channel DRAM to a DRAM/NVM
hybrid system, we reserve one memory channel for NVM
traffic. Given NVM accesses are slower than DRAM ones,
we expect to experience a modest performance slowdown
in such system. Fig. 2 shows the slowdown of ORAM on
different hybrid configurations over the DRAM-only baseline.
On average, Hybrid-NVM4 incurs 1.35× slowdown. Whereas,
Hybrid-NVM3 and Hybrid-NVM2, on average, incur 1.19×
and 1.10× slowdown respectively. If we bound the tolerable
performance degradation to 10%, Hybrid-NVM2 is the only
configuration that has an acceptable performance.

Another obstacle to adopting ORAM in a hybrid setting
is the NVM writes imposed by the ORAM protocol. In
a non-secure baseline each user memory request incurs at
most one NVM write access. However, with ORAM, many
more NVM writes are incurred per user program memory
request. We studied the average number of NVM writes per
user memory request for ORAM on different hybrid settings.
Our experimetal results showed that Hybrid-NVM4, Hybrid-
NVM3, and Hybrid-NVM2, on average, incur 17.7×, 13.3×,
and 8.8× NVM writes per user request, respectively. While
NVM write endurance has improved significantly in recent

years, for example, ReRAM has 109 write endurance, i.e.,
10× better than that of PCM [11]. However, more than one
order of magnitude NVM write increase could still be a big
concern for the hybrid memory system.

In summary, modest performance degradation and
modest NVM writes may be tolerable for a hybrid
memory system. As such, we set 10% performance
degradation and 10× NVM write increase as the design
constraints. From the above discussion, we choose
Hybrid-NVM2 as the baseline for comparison, i.e., saving
the last two levels of the ORAM tree in NVM.

B. Tradeoffs among Ring ORAM Operations

The three types of Ring ORAM maintenance operations
help to tune the protocol to run smoothly. In particular,
EvictPath flushes the blocks in the stash and resets the counters
along the path. The frequency of EvictPath plays a key role
in the design.

If we execute EvictPath less frequently, we expect to see
more blocks accumulate in the stash and the counters of
more buckets reach S, which triggers more EarlyReshuffle
operations. However, EarlyReshuffle also flushes blocks from
stash, though less effectively. If we execute EarlyReshuffle
more frequently, we accordingly have more opportunities to
flush the blocks in the stash.

BackgroundEvict serves as the last mechanism to ensure
protocol correctness though it tends to introduce larger over-
head. While we target minimizing the number of Back-
groundEvict, the existence of BackgroundEvict operation ex-
poses a large design space that we can explore across different
Ring ORAM maintenance operations.

C. Under-utilized Middle Levels in Ring ORAM Tree

As mentioned in Section II, on average, half of Z ′ entries in
one bucket can hold real data, and the rest is filled by dummy
blocks to ensure correctness. However, for one bucket at a
given time, it may contain zero to Z ′ real block.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 40 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Ut
iliz

ati
on

L e v e l
Fig. 3. Bucket utilization across Ring ORAM tree levels (Utilization=1.0
means saving Z′ blocks in one bucket).

We conducted an experiment to measure the average bucket
utilization across different tree levels and reported the results
in Fig. 3. From the figure, we found that the bottom levels
are highly utilized because they constitute the majority of the
capacity. The top levels also have high utilization because they
have high concentration of path overlaps [10]. For example, a
block in the stash can be written back to the root regardless of

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:19:18 UTC from IEEE Xplore. Restrictions apply.

its path mapping (because all paths overlap at the root). As we
move from the root to the middle levels, the utilization drops.
Saving more blocks in these levels would be beneficial.

D. The EP-ORAM Design

To exploit the observations that we made in the preceding
sections, we propose EP-ORAM, as shown in Fig. 4. EP-
ORAM consists of two key parameters (k, h), where k
indicates the number of bottom levels to be saved in NVM;
and h indicates the path length that EvictPath is to reshuffle.
(0, 24) is the all-DRAM Ring ORAM implementation while
(2, 24) is the baseline that saves the two bottom levels of the
ORAM tree in NVM. Here, the ORAM tree has 24 levels,
indicating it has 12 GB memory space, i.e., it protects 2.5 GB
of user data.

h
Levels

. . .

. . .

. . .

.

DRAM

NVM

. . .

Full PathShort Path

k
Levels

L - k
Levels

m short paths n full paths

EvictPath Timeline

Fig. 4. An overview of the EP-ORAM design in hybrid memory system.

By choosing h < 24, EvictPath exhibits two types of path
reshuffles. They differ by the number of buckets to be read,
re-encrypted, and written back.

• Full Path: This is the default EvictPath operation in Ring
ORAM. It reads all buckets along one tree path, i.e., L×
Z ′ blocks, flushes the stash blocks if possible, and re-
encrypts and writes L × Z back to the path. All bucket
counters along the path are reset after this operation.

• Short Path: This is similar to full path but only applies
to the top h levels. That is, the buckets in top h levels
are read, re-encrypted, and written back. The last L− h
levels are left untouched.

The k and h values. For a DRAM/NVM hybrid system,
k and h are two independent meta parameters. That is, it is
possible to partially reshuffle a short path that consists of
only DRAM levels, or be extended to the NVM level. On
the one hand, by having the short path consisting of only
DRAM levels, the partial reshuffle is fast and incurs zero NVM
writes. However, for a DRAM/NVM hybrid system that has
an independent memory channel for NVM, the NVM memory
channel stays idle during the long EvictPath, which wastes
the memory parallelism that can be potentially exploited to
improve the effectiveness of the design. On the other hand,

extending the short path to the NVM level incurs more NVM
writes. It could become a major concern if the number of
NVM write is too high.

Short/Full path pattern. There are two direct impacts of
adopting short path EvictPath: (1) The buckets from bottom
L − h levels are left untouched and thus their counters are
not reset. There is an increasing possibility of triggering
EarlyReshuffle operations. (2) The blocks in the stash that may
be flushed to the bottom levels can now be flushed to L − h
and above levels. This effectively increases the utilization of
these levels. Due to their limited sizes, there is a possibility
the blocks may not be flushed and thus stay in the stash
longer. An overflow of the stash may trigger BackgrounEvict
and degrades the overall performance. For this purpose, we
propose to conduct m short path EvictPath and then n full
path EvictPath and repeat continuously, as shown in Fig. 4.
Note, there are five ReadPath operations between every two
EvictPath invocations, the same as the baseline Ring ORAM.

To ensure the same security protection as that of the baseline
Ring ORAM implementation, the invocation of short path
EvictPath cannot be on-demand. That is, we need to statically
decide a fixed pattern and apply it to all benchmarks.

Intuitively, the bigger the m value is, the more we reduce
the number of NVM accesses. However, a big m value leads to
a higher chance of increased space utilization of middle levels
and possible stash overflow. We will study these parameters
in the experiment section.

E. Security Analysis

In this section, we discuss how EP-ORAM preserves the
same security guarantee as Ring ORAM.

In all tree-based ORAMs, the security guarantee is that path
accesses are indistinguishable so that an attacker cannot infer
any information about the user program requests. EP-ORAM
does not affect the online access i.e. ReadPath operation so
these path accesses remain indistinguishable the same way
they were in Ring ORAM.

Regarding EvictPath operation, path lengths of evicted paths
are changed in EP-ORAM but they follow a fixed pattern.
Note that in Ring ORAM EvictPath operations are statically
scheduled in a reverse-lexicographic order. Therefore, what
path is going to be evicted next is public information. In the
same manner, in EP-ORAM, it is public information what
paths are going to be accessed in full or short length. This
pattern is fixed during the execution and remains the same for
all programs. Therefore, EP-ORAM does not leak any extra
information to the attacker.

EarlyReshuffle activation is also public knowledge. Any
bucket that is accessed S times is going to be reshuffled. EP-
ORAM does not change EarlyReshuffle operation and thus
leaks no extra information.

While EP-ORAM potentially increases the utilization in the
middle tree levels, the change of the overall utilization is
known but the utilization for a given bucket, i.e., how many
real data blocks saved in this bucket, remains unknown to the

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:19:18 UTC from IEEE Xplore. Restrictions apply.

attackers. From what an attacker can observe from the outside,
all blocks in a 12-entry bucket remains indistinguishable.

In summary, EP-ORAM preserves the security guarantee of
Ring ORAM.

IV. EVALUATION

We used trace-based simulation to evaluate EP-ORAM,
similar to those in the literature [5], [6], [10], [12]. We used the
Pin tool [13] for collecting traces from SPEC CPU2017 [14].
For each benchmark, we gathered 40 million memory access
traces after skipping the warm-up phase. We ran each trace
repeatedly to form a 400 million trace to place the ORAM tree
into a stable state. We fed the last million accesses to USIMM
[15] for DRAM access simulation. We modeled a 4-issue OoO
(out-of-order) 3.2GHz processor with 160 ROB entries; a 4-
channel memory with one channel is dedicated to NVM. We
adopted ReRAM as the NVM and added a fixed latency of
tWR = 200ns derived from [11] to simulate NVM accesses in
USIMM. Table I lists the rest of the system configurations.

TABLE I
SYSTEM CONFIGURATION.

ORAM Configuration Processor Configuration

ORAM tree 24 levels L1 D-cache 2-way 256 KB
Tree top cache 10 levels L2 (LLC) 8-way 2 MB
Block size 64B Mem channels 3 DRAM, 1 NVM
Stash entries 300 NVM ReRAM (109 writes)

Following the typical setting in [4], we modeled a 24-level
Ring ORAM tree with Z=12, and Z ′=5, S=7. Given that each
block is a 64B, the total ORAM tree size is (224−1)×12×64B
= 12 GB. Only 50% of all Z ′ entries contain user data. Thus,
the protected user space is 2.5 GB. We cached the top 10 levels
of the tree on-chip [10]. We evaluated the following schemes.

• All-DRAM: it implements Ring ORAM with all tree
levels being stored in DRAM.

• Hybrid-NVM2: it implements Ring ORAM with 2 levels
in NVM and the rest of the levels in DRAM.

• EP-ORAM: it implements Ring ORAM and adopts EP-
ORAM with k=3, and h=21. The short/full path pattern
is that it uses m = ∞, and n=0.

A. DRAM Space, NVM Traffic and Performance Analysis

Fig. 5 compares the DRAM space demand for different
schemes. From the figure, EP-ORAM reduces DRAM demand
to only 1.5 GB, exhibiting 50% and 87.5% reductions over
Hybrid-NVM2 and All-DRAM, respectively. This greatly al-
leviates the DRAM space demand in Ring ORAM designs.

A l l - D R A M H y b r i d - N V M 2 E P - O R A M0
2 G
4 G
6 G
8 G

1 0 G
1 2 G
1 4 G

1 . 5 G B
3 G B

DR
AM

 Sp
ac

e (
GB

) 1 2 G B

Fig. 5. DRAM space demand of different schemes.

EP-ORAM achieves large DRAM savings under the design
constraints in Section III-A, i.e., 10% performance slowdown

g c c m c f o m n x a l x 2 6
4 d e e b w a l b m w r f c a m i m a f o t r o m a v g

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

No
rm

ali
ze

d N
VM

 W
rite

s

Fig. 6. NVM writes reduction of EP-ORAM compared to Hybrid-NVM2.

g c c m c f o m n x a l x 2 6
4 d e e b w a l b m w r f c a m i m a f o t r o m a v g

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4

Slo
wd

ow
n

 H y b r i d - N V M 2 E P - O R A M

Fig. 7. Performance comparison of EP-ORAM and Hybrid-NVM2.

over All-DRAM, and 10× user memory requests. Fig. 6 re-
ports the number of NVM writes in EP-ORAM with the result
being normalized over Hybrid-NVM2. On average, EP-ORAM
reduces the NVM write traffic by 15%. This reduction comes
mainly from that short path EvictPaths generate no NVM
writes. However, the number of EarlyReshuffles for buckets
in NVM increases as bucket counters are not frequently reset.
The reduction overweighs the increase when k=3. The number
of NVM writes in EP-ORAM is 7.7× user memory requests.
Fig. 7 reports the slowdown of Hybrid-NVM2 and EP-ORAM
over All-DRAM baseline. On average, Hybrid-NVM2 and EP-
ORAM incur 10% and 8% slowdowns over All-DRAM.

B. EP-ORAM Design Exploration

In this section, we study how different design choices affect
EP-ORAM. Fig. 8 compares the number of NVM writes using
different m and n values, with the result being normalized
over Hybrid-NVM3 (i.e., saving the bottom 3 levels in NVM,
and no EP-ORAM). The shaded portion of each bar indicates
the amount of writes from EvictPath while the rest comes
from EarlyReshuffle. For each configuration mAnB indicates
m=A, and n=B. From the figure, with increasing m values,
the number of NVM writes from EvictPath decreases whereas
that from EarlyReshuffle increases. On average, the total
number of NVM writes decreases as we enlarge m value. In
particular, m∞n0 reduces the NVM writes to 58% of those in
Hybrid-NVM3. Fig. 9 compares the execution time of different
configurations of EP-ORAM with the result being normalized
over Hybrid-NVM3. From the figure, m∞n0 performs the
best and reduces the execution time by 10%.

However, we observed that lbm has more NVM writes and
larger slowdown at m∞n0 over those at m50n1. This is due
to more invocations of expensive BackgroundEvict operations.

The k, h parameters in EP-ORAM design are independent.
Fig. 10 compares the following configurations: Hybrid-NVM4
and EP-ORAM with k=4, h=21. Hybrid-NVM4 incurs 35%
slowdown compared to All-DRAM. EP-ORAM reduces this
degradation to 11% on average. While it is slightly over our
design constraint (10% performance degradation), it reduces

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:19:18 UTC from IEEE Xplore. Restrictions apply.

the DRAM space by 93.75% over All-DRAM, or 768MB
rather than 12GB in All-DRAM.

g c c m c f o m n x a l x 2 6
4 d e e b w a l b m w r f c a m i m a f o t r o m a v g

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

No
rm

ali
ze

d N
VM

 W
rite

s

 m 2 n 1
E v i c t P a t h
E a r l y R e s h u f f l e m 1 0 n 1 m 5 0 n 1 �����

Fig. 8. NVM writes reduction with different configurations of EP-ORAM
compared to Hybrid-NVM3.

g c c m c f o m n x a l x 2 6
4 d e e b w a l b m w r f c a m i m a f o t r o m a v g

0 . 7

0 . 8

0 . 9

1 . 0

No
rm

ali
ze

d E
xe

 Ti
me m 2 n 1 m 1 0 n 1 m 5 0 n 1 �����

Fig. 9. Performance improvement with different configurations of EP-ORAM
compared to Hybrid-NVM3.

g c c m c f o m n x a l x 2 6
4 d e e b w a l b m w r f c a m i m a f o t r o m a v g

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6

Slo
wd

ow
n

 H y b r i d - N V M 4 E P - O R A M (k = 4 , h = 2 1)

Fig. 10. Comparing EP-ORAM and Hybrid-NVM4 slowdown.

C. Utilization Analysis

To study the impact of EP-ORAM on bucket utilization,
we repeated the experiment in Fig. 3 with EP-ORAM. Fig.
11 summarizes the results. From the figure, EP-ORAM makes
better use of middle levels. There is a spike at level 20 because
Ring ORAM aggressively writes blocks to the bottom level
and levels 23 and 20 are the bottom levels for the full path
and short path EvictPath, respectively.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 40 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

 E P - O R A M
 B a s e l i n e

Ut
iliz

ati
on

L e v e l
Fig. 11. Bucket utilization of EP-ORAM and the baseline across levels.

V. MORE RELATED WORK

Liu et. al. proposed PS-ORAM [16] to offer efficient crash
consistency for ORAM protocols adopted in NVM. Che et. al.
optimized channel imbalance in Ring ORAM due to online
accesses [17]. IR-ORAM [10] optimizes Path ORAM by
exploiting low-utilized levels to reduce the path length. There

are also other optimizations proposed on top of Path ORAM
that may be adopted to Ring ORAM [12], [18], [19].

VI. CONCLUSION

In this paper, we propose EP-ORAM to enable efficient
adoption of Ring ORAM in DRAM/NVM hybrid memory.
EP-ORAM partitions the ORAM tree such that bottom levels
are stored in NVM to save DRAM space. EP-ORAM identifies
an opportunity in existing tradeoffs among Ring ORAM oper-
ations to shorten the EvictPath operation. EP-ORAM achieves
50% DRAM space saving and reduces NVM writes by 15%.

ACKNOWLEDGEMENTS

We thank all anonymous reviewers for their constructive
comments. This work is supported in part by NSF grants
#2011146, #1910413, #2154973, #1725657, and a startup
funding from the University of Pittsburgh.

REFERENCES

[1] I. Corp., Intel Software Guard Extensions, 2014. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/topics/software-
guard-extensions.html

[2] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious rams,” in STOC, 1987.

[3] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path oram: An extremely simple oblivious ram protocol,”
in CCS, 2013.

[4] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and
S. Devadas, “Ring ORAM: closing the gap between small and large
client storage oblivious RAM,” IACR, 2014.

[5] D. Cao, M. Zhang, H. Lu, X. Ye, D. Fan, Y. Che, and R. Wang, “Stream-
line ring oram accesses through spatial and temporal optimization,” in
HPCA, 2021.

[6] M. Raoufi, J. Yang, X. Tang, and Y. Zhang, “AB-ORAM: Constructing
adjustable buckets for space reduction in ring oram,” in HPCA, 2023.

[7] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee,
F. T. Chen, and M.-J. Tsai, “Metal–oxide rram,” Proceedings of the
IEEE, 2012.

[8] E. Chen, D. Lottis, A. Driskill-Smith, D. Druist, V. Nikitin, S. Watts,
X. Tang, and D. Apalkov, “Non-volatile spin-transfer torque ram (stt-
ram),” in DRC, 2010.

[9] W. He, F. Wang, and D. Feng, “H2oram: Low response latency optimized
oram for hybrid memory systems,” in ICCD, 2020.

[10] M. Raoufi, Y. Zhang, and J. Yang, “IR-ORAM: Path access type based
memory intensity reduction for path-oram,” in HPCA, 2022.

[11] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu,
and Y. Xie, “Overcoming the challenges of crossbar resistive memory
architectures,” in HPCA, 2015.

[12] R. Wang, Y. Zhang, and J. Yang, “Cooperative path-oram for effective
memory bandwidth sharing in server settings,” in HPCA, 2017.

[13] I. Corp., Pin - A Dynamic Binary In-
strumentation Tool, 2012. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/articles/pin-a-
dynamic-binary-instrumentation-tool.html

[14] SPEC CPU 2017 Benchmark Suite, 2017. [Online]. Available:
https://www.spec.org/cpu2017

[15] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. H. Pugsley, A. N.
Udipi, A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “Usimm : the
utah simulated memory module,” 2012.

[16] G. Liu, K. Li, Z. Xiao, and R. Wang, “Ps-oram: Efficient crash
consistency support for oblivious ram on nvm,” in ISCA, 2022.

[17] Y. Che, Y. Hong, and R. Wang, “Imbalance-aware scheduler for fast and
secure ring oram data retrieval,” in ICCD, 2019.

[18] C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, and S. Devadas,
“Freecursive oram: [nearly] free recursion and integrity verification for
position-based oblivious ram,” in ASPLOS, 2015.

[19] R. Wang, Y. Zhang, and J. Yang, “D-oram: Path-oram delegation for
low execution interference on cloud servers with untrusted memory,” in
HPCA, 2018.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on May 13,2024 at 14:19:18 UTC from IEEE Xplore. Restrictions apply.

