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Accurate simulation of turbulent flows is of crucial importance in many branches of science and engineering.
Direct numerical simulation (DNS) provides the highest fidelity means of capturing all intricate physics of tur-
bulent transport. However, the method is computationally expensive because of the wide range of turbulence
scales that must be accounted for in such simulations. Large eddy simulation (LES) provides an alternative.
In such simulations, the large scales of the flow are resolved, and the effects of small scales are modelled. Re-
construction of the DNS field from the low-resolution LES is needed for a wide variety of applications. Thus
the construction of super-resolution methodologies that can provide this reconstruction has become an area
of active research. In this work, a new physics-guided neural network is developed for such a reconstruc-
tion. The method leverages the partial differential equation that underlies the flow dynamics in the design
of spatio-temporal model architecture. A degradation-based refinement method is also developed to enforce
physical constraints and to further reduce the accumulated reconstruction errors over long periods. Detailed
DNS data on two turbulent flow configurations are used to assess the performance of the model.
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1 INTRODUCTION

Direct numerical simulation (DNS) of the Navier-Stokes equations is a brute-force computa-
tional method and is the method with the highest reliability for capturing turbulence dynamics [21].
The computational cost of such simulations is very expensive for flows with high Reynolds num-
bers. Large eddy simulation (LES) is a popular alternative, concentrating on the larger scale
energy-containing eddies and filtering the small scales of transport [44]. In this way, LES can be
conducted on coarser grids as compared to DNS, but obviously with less fidelity [40].
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Machine learning, including super-resolution (SR) methods [41], have been advocated as
a means of reconstructing highly resolved DNS from LES data. These methods have shown
tremendous success in reconstructing high-resolution data in various commercial applications.
The majority of current SR models use convolutional network layers (CNNs) [2] to extract
representative spatial features and transform them through complex non-linear mappings to re-
cover high-resolution images. Starting from the end-to-end convolutional SRCNN model [15],
several investigators have explored the addition of other structural components such as skip-
connections [1, 12, 47, 47, 61, 62], channel attention [61], adding adversarial training objectives
[10, 11, 28, 32, 46, 50, 51, 53], and more recently, Transformer [42]-based SR methods [17, 18, 34,
37, 49, 59, 63].

Given their success in computer vision, SR methods are becoming increasingly popular in tur-
bulence reconstruction [14, 19, 20, 35, 51, 57]. Despite their popularity, these methods face some
limitations when it comes to representing continuous flow dynamics in the spatial and temporal
fields using discrete data samples. Consequently, they can learn spurious patterns between sparse
observations, which often lack generalizability. Additionally, the training of SR models is hindered
by the scarcity of high-fidelity DNS data due to the required high computational cost of such
simulations.

In this work, a novel method termed the “continuous networks using differential equa-
tions” (CNDE) is developed to improve the SR reconstruction. This development is by leveraging
the underlying physical relationships to guide the learning of generalizable spatial and temporal
patterns in the reconstruction process. The method consists of three components: the Runge-
Kutta transition unit (RKTU), the temporally enhancing layer (TEL), and degradation-based
refinement. The RKTU structure is designed based on the governing partial differential equa-
tions (PDEs) and is used for capturing continuous spatial and temporal dynamics of turbulent
flows. The TEL structure is designed based on the long-short-term memory (LSTM) [24] model
and is responsible for capturing long-term temporal dependencies. The degradation-based refine-
ment is to adjust the reconstructed data by enforcing consistency with physical constraints.

Model appraisal is made by considering detailed datasets pertaining to two turbulent flow con-
figurations: (1) a forced isotropic turbulent (FIT) flow [38] and (2) the Taylor-Green vortex
(TGV) flow [5]. The results of the consistency assessments demonstrate the capability of the CNDE
in terms of the reconstruction performance over space and time. The effectiveness of each compo-
nent of the methodology is demonstrated qualitatively and quantitatively.

2 RELATED WORK
2.1 Super-Resolution

Single image super-resolution (SISR) via deep learning has been the subject of many inves-
tigations in computer vision. These methods derive their power primarily from the utilization
of convolutional network layers [2], which extract spatial texture features and transform them
through complex non-linear mappings to recover high-resolution data. One of the earliest SR meth-
ods for SISR is SRCNN [15], which learns an end-to-end mapping between coarse-resolution and
high-resolution images by employing a series of convolutional layers. Another scheme is the skip-
connection layers [1, 12, 45, 47, 62], which enable the bypassing of abundant low-frequency infor-
mation and emphasize the relevant information to improve the stability of the optimization process
in deep neural networks. Several investigators have explored the adversarial training objective by
using the generative adversarial network (GAN) for SISR. For example, the SRGAN model [32]
stacks the deep residual network to build a deeper generative network for image super-resolution
and also introduces a discriminator network to distinguish between reconstructed images and real
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images using an adversarial loss function. The ultimate goal is to train the generative network in a
way that the reconstructed images cannot be easily distinguished by the discriminator. One major
advantage of SRGAN is that the discriminator can help extract representative features from high-
resolution data and enforce such features in the reconstructed images. Several variants of SRGAN
are given in References [10, 11, 28, 46, 50, 51, 53].

The Transformer [48] has revolutionized natural language processing (NLP) by introduc-
ing self-attention mechanisms, allowing it to efficiently process long-range dependencies in the
sequences of data. This method can effectively capture contextual information from the entire
input sequence, leading to significant advancements in various NLP tasks like machine transla-
tion, sentiment analysis, and so on. The Transformer has also been introduced into the SISR prob-
lem [17, 18, 34, 37, 42, 49, 59, 63]. For example, Yang et al. [59] developed the TTSR model, which
uses a learnable texture extractor to extract textures from low-resolution images and reference
high-resolution (HR) images to recover target HR images. Lu et al. [37] developed the ESRT
model, which optimizes the original Transformer to achieve competitive reconstruction perfor-
mance with low computational cost.

2.2 Super-Resolution for Turbulent Flows

There is a significant interest in developing SR techniques for high-resolution flow reconstruc-
tions. Fukami et al. [19, 20, 35] created an improved CNN-based hybrid DSC/MS model to explore
multiple scales of turbulence and capture the spatio-temporal turbulence dynamics. Liu et al. [35]
developed another CNN-based model MTPC to simultaneously include spatial and temporal in-
formation to fully capture features in different time ranges. Xie et al. [57] introduced tempoGAN,
which augments a GAN model with an additional discriminator network along with new loss
functions that preserve temporal coherence in the generation of physics-based simulations of fluid
flow. Deng et al. [14] demonstrated that both SRGAN and ESRGAN [51] can produce good recon-
structions. Yang et al. [60] created an FSR model based on a back-projection network to achieve
three-dimensional (3D) reconstruction. Xu et al. [58] introduced a Transformer-based SR method
to build the SRTT model for capturing small-scale details of turbulent flow.

2.3 Physics-guided Machine Learning

Recent studies have shown promise in integrating physics into machine learning models for im-
proved predictive performance [56]. These methods typically enforce physics in the loss func-
tion [8, 13, 22, 23, 26, 43] or use simulated data for pre-training and augmentation [7, 9, 23, 25, 36].
Hanson et al. [22] introduced ecological principles as physical constraints into the loss function
to improve the lake surface water phosphorus prediction. Karpatne et al. [13] developed a hybrid
machine learning and physics model to guarantee that the density of water at a lower depth is
always greater than the density at any depth above. Jia et al. [26] and Read et al. [43] extended
this idea by including an additional penalty for the violation of the energy conservation law. In the
flow data reconstruction, Chen et al. [8] constructed a PGSRN method to enforce zero divergences
of the velocity field in incompressible flows. Despite the promise of these methods, they may lead
to slow convergence in optimization and performance degradation, especially when the physical
relationships are complex or have uncertain parameters.

A means of imposing the physics is by considering the PDEs that govern the physical phenom-
ena. In some cases, however, direct integration of the governing PDEs using standard numerical
methods [54] can become prohibitively expensive. An alternative is to solve PDEs via neural op-
erators [4, 16, 33]. For example, Li et al. [33] introduced the Fourier neural operator (FNO)
to model PDEs for learning the mappings between infinite-dimensional spaces of functions us-
ing the integral operator. The integral operator of this approach is restricted to convolution and
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Underlying Physics:
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Fig. 1. The overall structure of the CNDE method.

instantiated through a linear transformation in the Fourier domain. However, the major limitation
of neural operators for flow data reconstruction lies in their lack of explicit knowledge about the
specific form of the underlying PDE (Naiver—Stokes equation). Neural operators directly learn the
relation between input data and outputs without incorporating the intrinsic structure and physics
encoded in the PDE. This can lead to inefficiencies and challenges in effectively capturing complex
flow dynamics. An alternative direction is to embed the physics equations or relationships in the
modeling structure [3, 29, 39]. One such example is the encoding of the Navier—Stokes equation in
arecurrent unit, as demonstrated in our previous work [3]. However, this method may accumulate
errors in long-term predictions, and it does not consider the use of LES data in reconstructing DNS
data within the recurrent unit.

3 PROBLEM UNDER INVESTIGATION

In this work, the transport of unsteady, three-dimensional turbulent flows is the subject of main
consideration. In all cases, the flow is assumed to be Newtonian and incompressible with a con-
stant density. In the formulation, the space coordinate is identified by the vector x = x, y, z,
and the time is denoted by t. The velocity field is denoted by V(x, t), with its three components,
u(x,t), v(x,t), w(x,t), along the three flow directions x, y, z, respectively. The pressure, the den-
sity, and the dynamic viscosity are denoted by p(x,t), p(x, t), and v, respectively. The latter two
are assumed constant. The (dummy) parameters Q(x, ¢) (as a vector), and/or Q (as a scalar) are
used to denote a transport variable.

All of the flows considered are statistically homogeneous. High-resolution DNS and lower-
resolution LES data are considered on Ny X Ny X N;, and M, X M, x M, grid points, respectively.
A box filter [27] is employed to create the LES data from the original DNS. All of the statistical
averages, including the Reynolds-averaged values are obtained by data ensembled over the entire
domain. In this way, the ensemble averages, denoted by an over-bar are defined by

1 Ny Ny N
t)= ——— 47 .9 k’t > 1
Q(t) NxxNnyzZ;ka ) M
suitable for homogeneous flows. In the training process, the available DNS data are at a regular
time interval &, as Qd = {Qd(t)} within the time {to, ty+J, ..., + KJ}. The objective is to predict

high-resolution DNS data after the historical data, at time {t, + (K +1)J, . . ., fo + MJ}. The variable
Q!(x,y, z, t) represents the low-resolution LES data at timestep ¢. Since the LES data can be created
at a lower computational cost, they are used for both training and testing periods and at a higher
frequency. The variable Ql = {Ql (t)} denotes LES data within the time range [z, ty + MJ].

The CNDE framework consists of two structural components: the RKTU, and the TEL. The train-
ing is done in two phases: supervised super-resolution training, and degradation-based refinement.
These are shown in Figure 1 and are described in order below.
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Fig. 2. The RKTU based on Naiver-Stokes equation for reconstructing turbulent flow data in the spatio-
temporal field. Qs , and Q;,, denote the spatial and temporal derivatives, respectively, at each intermediate
timestep.

3.1 Runge-Kutta Transition Unit

The datasets Q pertaining to turbulent flows consist of the transport variables that interact with
each other and evolve temporally and spatially. The traditional temporal models, e.g., LSTM [24],
rely on large and consecutive training samples to capture the underlying patterns over time. How-
ever, the amount of high-fidelity DNS data is often limited. The RKTU structure is developed for
reconstructing flow variables over a long period, given an initial DNS sample Q¢ at ¢, and frequent
low-resolution LES data samples Q. The prediction follows an auto-regressive process in which

the predicted DNS Qd(x, y,z, ) at time ¢, and frequent LES data Q' from the current time to the

next interval [£,t + §] are used to predict the DNS at next timestep Qd(x, y,z, 1+ 0).

The RKTU is based on the RungeaASKutta (RK) discretization method [6]. The principal idea
is to leverage the continuous physical relationship described by the underlying PDE to bridge the
gap between the discrete data samples and the continuous flow dynamics. The scheme can be
applied to any dynamical systems governed by deterministic PDEs. Consider the PDE of the target
variables Q as expressed by

Q, =1(.Q:0). )

where Q, denotes the temporal derivative of Q, and f(t, Q; ) is a non-linear function (parameter-
ized by coefficient 0) that summarizes the current value of Q and its spatial variations. The turbu-
lence data follow the Navier—Stokes equation for an incompressible flow. Thus, for Q = V(x, t),

V-Q=o,
£(Q) = - /—I)Vp +vAQ - (Q- V)Q. 3)

The term V denotes the gradient operator and A = V-V on each of the components of the velocity.
The independent variable ¢ is omitted in the function f(-), because f(Q) in the Navier-Stokes equa-
tion is for a specific time ¢ (same with ¢ in Q,). Figure 2 shows the overall structure of the method
and involves a series of intermediate states {Q(z,0), Q(¢,1),Q(z,2),...,Q(t, N)}. The temporal
gradients are estimated at these states {Q, (,Q, 1,Q, ,,...,Q, y}. Starting from Q(t,0) = Q(¢),
the RKTU estimates the temporal gradient as Q, , and then moves Q(t) toward the gradient direc-
tion to create the next intermediate state Q(t, 1). The process is repeated for N intermediate states.
For the fourth-order RK method, as employed here, N = 3.
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For the starting data point Q(t), an augmentation mechanism is adopted by combining the DNS
and LES data, Q(t) = W9Q%(t) + W!Q!(t), where W¥ and W' are trainable model parameters,
and Q/(t) is the up-sampled LES data with the same resolution as DNS. The RKTU estimates the
first temporal gradient Q, , = f(Q(t)) using the Navier-Stokes equation and computes the next
intermediate state variable Q(¢, 1) by moving the flow data Q(¢) along the direction of temporal
derivatives. Given frequent LES data, the intermediate states Q(t, n) are also augmented by using
LES data Q'(t,n), as Q(t,n) = W4Q(t, n) + W'Q! (¢, n), and they follow the same process to move
Q(t) along the estimated gradient Q, , to compute the next intermediate states Q(t,n + 1),

Q1) = Q) + 5L,
Q(t.2) = Q1) + 521 @

2
Q(t,3) = Q(t) +6Q, ,.

The temporal derivative Q, ; is then computed from the last intermediate state by f(Q(t, 3)).
According to Equation (4), the intermediate LES data Q!(t, n) are selected as Q' (t,1) = Q' (t+5/2),
Ql(t, 2) = Ql(t + 6/2), and Ql(t, 3) = Ql(t + 9). Finally, RKTU combines all the intermediate
temporal derivatives as a composite gradient to calculate the final prediction of next step flow
data Qpyry(t + 6),

N
Qricru(t +8) = Q1) + ) wnQy s (5)
n=0

where {wn}f:]=1 are the trainable model parameters.

The RKTU requires the temporal derivatives in the Navier-Stokes equation. The RKTU esti-
mates the temporal derivatives through the function f(-). According to Equation (3), the evaluation
of f(-) requires explicitly estimation of the first-order and second-order spatial derivatives. One of
the most popular approaches for evaluating spatial derivatives is through finite difference meth-
ods (FDMs) [54]. However, the discretization in FDMs can cause larger errors for locations with
complex dynamics. The RKTU structure, as depicted in Figure (2), utilizes CNN layers to replace
the FDMs. The CNNs have the inherent capability to learn additional non-linear relationships from
data and capture the spatial derivatives required in the Navier-Stokes equation. After estimating
the first-order and second-order spatial derivatives, they are used in Equation (3) to obtain the
temporal derivative Q, .

The padding strategies for CNNs also need to be considered. Standard padding strategies (e.g.,
zero padding) do not satisfy the spatial boundary conditions of the flows considered here. These
conditions describe how the flow data interact with the external environment. With the assump-
tion of homogeneous turbulence, periodic boundary conditions are imposed on all three flow di-
rections. Thus, periodic data augmentation is made for each of the six faces (of the 3D cubic data)
with an additional two layers of data before feeding it to the model.

3.2 Temporally Enhancing Layer

The RKTU can capture the data in the spatial and temporal field between a pair of consecutive
data points, but it may cause large reconstruction errors in the long-time prediction if the time
interval § is large. Temporal models, such as LSTM [24], and temporal convolutional network
(TCN) [31] are widely used to capture the long-term dependencies in time-series prediction. In this
case, the LSTM model is incorporated in a TEL to further enhance the RKTU to capture long-term
temporal dependencies. This TEL structure can be replaced by other existing temporal models
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Fig. 3. Details of CNDE for reconstructing Q. Parts (a) and (b) depict two different approaches to incorpo-
rating the TEL component. The solid lines represent the forwarding process in CNDE-based methods. The

. ad . .
blue dashed lines represent the reconstructed flow data Q" as used as input for the reconstruction of the
next timestep.

such as TCN. Figure 3 shows two different approaches for integrating the TEL structure with the
RKTU structure. In the first enhancing method shown in Figure 3(a), the RKTU output flow data
Qrkry are fed to the TEL structure, which is essentially an LSTM layer. After further processing

A

d
through the TEL structure, the model produces the reconstructed flow data Q (t). Given the true
DNS data Qd(t) in the training set, the reconstructed loss Lecon can be expressed using the mean
squared error (MSE) loss,

Lreeon = MSE(Q (1), Q% (1)). ©)

The second method uses the TEL structure to complement the output of the RKTU structure,
i.e,, learning the residual of the RKTU output, as shown in Figure 3(b). In the training process,
both true DNS data Q7 at time {t,...t + (K — 1)8} and RKTU output Qpyryy are used to produce
the corresponding temporal output feature QTEL at time {t + 6,...,t + Kd}. Then in the testing
process, this method uses only the initial true DNS data Q¢ in time t + K& and the next series of
predicted DNS data Qd as the DNS input to generate Qg . Finally, this method adopts a linear
combination to combine the RKTU output Qpyrr; and corresponding TEL output Q- to obtain
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~d .
the final reconstructed output Q ', which can be represented as

~d . A

Q" (t) = Wy Qpgru(t) + w; Qrp, (1), 7)
where w! and w! are trainable parameters. Finally, the reconstructed loss Lyecon can also be repre-
sented by Equation (6).

3.3 Physical Constraints and Refinements

3.3.1 Physical Constraints. For a more accurately reconstructed field, some additional con-
straints are imposed on the data. Two such constraints are imposed by considering the consistency
of (i) the mean velocity field and (ii) the kinetic energy of turbulence. For (i), the loss function Lyean

ad . .
between reconstructed data Q" and true DNS data Q¢ is considered,

—  ad
Linean = |Qd -Q ®)
For (ii), the kinetic energy,], defined as

1
K = E(u2 + 0%+ w?), 9)
is monitored. For this, the loss function is Lyinetic iS
nd
Lignetic = 1K (QY) =K (Q"), (10)

where % (Q?) and W(Qd) denote the kinetic energy of Q¢ and Qd, respectively. The overall loss
function £ is

L = a9 Lrecon + @1 Limean + %2 Liinetic, (11)
is considered in which @, 1, and a; represent the hyperparameters to control the balance amongst
the three constituents.

3.3.2 Degradation-based Refinement. As shown in Figure 3, the scheme preserves the physical
constraints in the training process and also employs these constraints in the degradation-based
test-time refinement process. The objective is to mitigate accumulated errors and structural dis-
tortions over long-term prediction by enforcing the physical consistency. The refinement process
includes the same set of the loss function: the degradation loss Lgcs, the equal-mean loss Lo
and the kinetic energy loss L;{metic loss. Since it is not possible to access true DNS data during the

. . ~d .
testing phase, the difference between true DNS Q¢ and the reconstructed data Q" cannot be di-
rectly minimized. Thus, to protect the overall structure of flow data, a reverse degradation process

. . . . ~d
is employed by using a separate convolutional network for mapping reconstructed data Q  to the

N Al
corresponding low-resolution LES data Q . The loss L4z between Q and real LES data Qlis

Al
Lieg = MSE(Q', Q). (12)
Also, the mean values from the true DNS cannot be used in the equal-mean loss function. There-
fore, the corresponding values from the LES data are used as an approximation. As such, the equal-

Ad
mean loss £ between the reconstructed flow data Q" and the true LES data Q can be directly

minimized,

’
mean

’ -7 ’\_d
‘Emean = |Ql - Q | (13)
Similarly, the exact kinetic energy of flow data is not available during the testing period. These
values are taken from the DNS in the training data,

L xinetic = 1K Q1) — K. (14)
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The final refinement loss function is in the same format £" = a9 Lgeg + 1L mean + @2L kinetic-
The loss £ is adopted to directly adjust the state of reconstructed data for 10 epochs at each
test-time timestep and yield an improved reconstruction performance.

4 MODEL APPRAISAL
4.1 Flows Considered

To assess the performance of the proposed methodology, the datasets pertaining to two turbulent
flows are considered: a FIT flow [38] and the TGV [5] flow. In both cases, the mean velocity is zero,
V(t) = 0, and the Reynolds number is large enough for the flow to exhibit turbulent characteristics.

The FIT data [38] are publicly available from the Johns Hopkins University. This dataset contains
the original DNS of forced isotropic turbulence on a 1,024 X 1,024 X 1, 024 collocation points. The
flow is forced by injecting energy into the flow at small waver numbers. The DNS data contain
5,024 timesteps with time intervals of 0.002 s and includes both the velocity and the pressure
fields. The original DNS data are downsampled to 64 X 64 X 64 grids. The LES data are created on
16 X 16 X 16 grids. The loss L kinetic is not considered for this flow.

The TGV [5] is an incompressible flow. The evolution of the TGV includes vorticity stretching
and the consequent production of small-scale, dissipating eddies. A box flow, with a cubic periodic
domain of [—, 7] (in all three directions), is considered, with the following initial conditions:

u(x,y,z,0) = sin(x) cos(y) cos(z),
v(x,y,2,0) = —cos(x) sin(y) cos(z), (15)
w(x,y,2z,0) = 0.

The LES and DNS resolutions are 32 X 32 X 65 and 128 X 128 X 65, respectively. Both LES and
DNS data are produced along the 65 equally spaced grid points along the z axis.

4.2 Comparative Assessments

4.2.1 CNDE Method and Baselines. The performance of the CNDE method is evaluated and
compared with several existing methods for image SR and turbulent flow downscaling. Specifi-
cally, the proposed CNDE-based methods, CNDE-E (enhancing-based TEL method) and CNDE-R
(residual learning-based TEL method),! were implemented. Additionally, four popular SR methods,
namely SRCNN [15], RCAN [61], HDRN [47], and SRGAN [32]; two popular dynamic fluid down-
scaling methods, DCS/MS [19] and FSR [60]; and FNO [33] are used as baselines. To better verify
the effectiveness of each of the model’s components, four additional baselines are included: con-
volutional transition network (CTN), RKTU, CNDEp-E, and CNDEp-R. The CTN is created by
combining SRCNN and LSTM [24]. CNDEp-E and CNDEp-R are similar to CNDE-E and CNDE-R,
but they are created without using the degradation-based refinement process.

By comparing the CTN with the RKTU, the objective is to demonstrate the advantages of the
RKTU in spatio-temporal DNS reconstruction. By comparing the RKTU with the CNDEp-based
methods, the goal is to show the effectiveness of introducing the TEL structure. The advantages
of the refinement process are demonstrated by comparing the CNDEp-based and CNDE-based
methods.

4.2.2  Experimental Designs. The proposed methods and the baselines are tested on both the FIT
and the TGV datasets. The models are trained by using the FIT data from a consecutive one-second
period with a time interval 6 = 0.02 s and a total of 50 timesteps and then apply the trained model
into the next 0.4-s period (a total of 20 timesteps) for performance evaluation. For the TGV dataset,

IThe source code is at https://drive.google.com/drive/folders/15PhF_q1HcJpXZIvknR1mMbd8hbkxBbT_?usp=share_link
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the models use a consecutive 40-s period with a time interval § = 2 s for training and the next 40
s of data for testing.

The performance of DNS reconstruction is evaluated by using two different metrics, structural
similarity index measure (SSIM) [52] and dissipation [55]. SSIM is used to appraise the similar-
ity between reconstructed data and target DNS on three aspects—luminance, contrast, and overall
structure. The higher value of SSIM indicates better reconstruction performance. The dissipation
operator is used to assess the performance of capturing the flow gradients. The dissipation of each
of the three components of the velocity vector (u, v, and w) are evaluated. The dissipation operator

is defined by
a0\* (80\* (00)\*
X(Q)EVQ~VQ=(6—S) +(a_§) +(a_§) . (16)

The dissipation is used to measure the difference of flow gradient between the true DNS and
generated data. This is represented by | y(Q%) — x(O%)|. The lower value of this difference indi-
cates better performance. Compared with our previous work [3], the performance assessment is
expanded by considering a new pixelwise evaluation metric (dissipation) and a physical validation
method based on the kinetic energy.

4.2.3 Environmental Settings and Implementation Details. The method is implemented via Ten-
sorflow 2 with a GTX3080 GPU. The model is first trained in 500 epochs with ADAM optimizer [30]
from an initial learning rate of 0.001. In the refinement step, the learning rate is lowered to 0.0005,
and the training rate is iterated by 10 epochs. All the hidden variables and gating variables are in
32 dimensions. The values of ag, a1, and «; are set as 1, 0.1, and 0.1, respectively.

4.3 Reconstruction Performance

4.3.1 Quantitative Results. Table 1 and Table 2 summarize the average performance over the
first 10 timesteps in the testing phase on both the FIT dataset and the TGV dataset. Compared with
the baselines, CNDE-based methods perform the best in both evaluations obtaining the highest
SSIM value and lowest dissipation difference. Several observations are made: (1) When comparing
the CNDE-based methods with SR baselines, the DCS/MS, FNO, and FSR models, it is observed
that these baseline methods cannot recover the overall flow well and get worse performance in
terms of SSIM and dissipation difference. (2) Compared with the SRCNN, the CTN, which uses
the LSTM model, shows a significant improvement in both evaluations. This confirms the effec-
tiveness of a temporal model (e.g., LSTM) in capturing temporal dependency. (3) The comparison
among the CTN, RKTU, CNDEp-based methods, and CNDE-based methods, indicates significant
improvements by incorporating each of the three components (RKTU, TEL, and refinement). In
particular, the refinement method brings the most significant improvement in terms of SSIM and
dissipation differences.

4.3.2  Temporal Analysis. In the temporal analysis of the FIT dataset, the performance for re-
construction is measured for each step during a 0.4-s period (20 timesteps) in the testing phase.
The performance change using the SSIM and the dissipation difference is shown in Figures 4
and 5, respectively. These figures indicate that (1) with larger time intervals between training
data and prediction data, the performance becomes worse. In general, the CNDE-based methods
are more stable over a long period and show a much better performance than other methods.
(2) The temporal model (e.g., LSTM) results in significant improvements in long-term predictions.
(3) The CNDE-based methods outperform the CNDEp-based methods, which demonstrate the ef-
fectiveness of test-time refinement in reducing the prediction bias in long-term prediction. (4)
The CNDEp-based methods yield a better performance after the 5th timesteps compared with the
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Table 1. Reconstruction Performance (Measured by SSIM, and
Dissipation Difference) on (u, v, w) Channels by Different

Methods in the FIT Dataset

Method SSIM Dissipation Difference
SRCNN | (0.859, 0.851, 0.851) _ (0.301, 0.303, 0.303)
RCAN (0.861, 0.859, 0.859)  (0.299, 0.301, 0.300)
HDRN (0.861, 0.860, 0.862)  (0.298, 0.298, 0.297)
FSR (0.861, 0.860, 0.861)  (0.299, 0.297, 0.296)
DCS/MS | (0.861, 0.862, 0.862)  (0.298, 0.295, 0.294)
SRGAN | (0.862, 0.861,0.863)  (0.296, 0.294, 0.294)
FNO (0.874, 0.875, 0.874)  (0.265, 0.266, 0.273)
CTN (0.881, 0.880, 0.881)  (0.253, 0.254, 0.254)
RKTU (0.898, 0.899, 0.898)  (0.260, 0.261, 0.259)
CNDEp-E | (0.909,0.909, 0.907)  (0.244, 0.243, 0.245)
CNDEp-R | (0.904, 0.905,0.905)  (0.249, 0.248, 0.248)
CNDE-E | (0.927,0.921,0.922)  (0.193,0.194, 0.197)
CNDE-R | (0.921,0.919, 0.920)  (0.196, 0.196, 0.200)

The performance is measured by the average results of the first 10
timesteps.

Table 2. Reconstruction Performance (Measured by SSIM, and
Dissipation Difference) on (u, v, w) Channels by Different Methods
in the TGV Dataset

Method SSIM Dissipation Differencex10
SRCNN | (0.602, 0.603, 0.626) (0.083, 0.087, 0.079)
RCAN (0.627, 0.622, 0.631) (0.073, 0.074, 0.071)
HDRN (0.638, 0.638, 0.641) (0.072, 0.072, 0.068)
FSR (0.646, 0.648, 0.649) (0.070, 0.073, 0.066)
DSC/MS (0.647, 0.649, 0.649) (0.070, 0.071, 0.065)
SRGAN (0.661, 0.658, 0.666) (0.068, 0.067,0.058)
FNO (0.645, 0.646, 0.648) (0.072, 0.071, 0.072)
CIN (0.623, 0.624, 0.627) (0.093, 0.096, 0.087)
RKTU (0.708, 0.708, 0.688) (0.049, 0.046, 0.043)
CNDEp-E | (0.724, 0.723, 0.708) (0.046, 0.041, 0.039)
CNDEp-R | (0.720, 0.719, 0.701) (0.046, 0.045, 0.040)
CNDE-E | (0.938, 0.918, 0.876) (0.031, 0.032, 0.026)
CNDE-R | (0.917, 0.909, 0.877) (0.033, 0.034, 0.028)

The performance is measured by the average results of the first 10

timesteps.

temporal baseline CTN model. This indicates the advantage of the RKTU structure in the long-
term prediction. (5) The CNDEp-E slightly outperforms the CNDEp-R in the long-term prediction.
A similar observation is made by comparing two versions of CNDE-based methods.

In Figures 6 and 7, the results for the TGV are presented. A better performance of the model
developed here is indicated via the SSIM and dissipation differences. Several observations are made:
(1) The CNDE-based methods using refinement perform much better than CNDEp-based methods
and DCS/MS. Moreover, the performance of the CNDEp-based methods becomes worse than the
baseline DCS/MS after the fifth timestep. This is because of the variability of TGV data over larger
time intervals (§ = 2 s) and the testing data are very different from the initial data point. This causes
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Fig. 4. Change of SSIM values produced by different models from the 1st (7 s) to 20th (7.4 s) timesteps in the
FIT dataset.
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Fig. 5. Change of dissipation difference by different models from the 1st (7 s) to 20th (7.4 s) timesteps in the
FIT dataset.
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Fig. 7. Change of dissipation difference produced by different models from the 1st (80s) to 20th (120s)
timesteps in the TGV dataset.

the CNDEp-based methods to fail in capturing the correct flow dynamic without refinement. It also
indicates the advantages of the refinement method for adjusting the state of flow data in the long-
term prediction. (2) The CTN almost fails to capture the flow dynamics after the fifth timestep, and
thus the CTN is not suitable for this dataset.
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Fig. 8. Reconstructed w channel by each method on a sample testing slice along the z dimension in the FIT
dataset. The reconstruction results are shown at the 1st (7 s), 5th (7.1s) 10th (7.2 s), and 20th (7.4 s) in (a)—(f),

(g)-(1), (m)=(r), and (s)-(x), respectively.

4.3.3 Visualization. In Figures 8, the reconstructed data are shown at multiple (1st, 5th, 10th,
and 20th) timesteps after the training period. For each timestep, the slices of the w component at a
specified z value are shown. In the 1st step, both the CNDE-based methods and the baseline CTN
model yield ideal reconstruction results. This is because the test data are similar to the training
data at the last timestep. In contrast, the baseline DSC/MS [19] leads to a poor performance starting
from early time. Beginning at the 5th timestep, the CNDE-based methods perform better than the
baselines. A more significant difference is observed at the 20th timestep. All the baselines almost
fail to capture the correct flow transport pattern. The CNDE-based methods yield a much better
performance in the late stage. Similar observations are made on the TGV dataset as shown in
Figure 9.

4.3.4  Validation via Physical Metrics. The model performance is also assessed via of long-term
prediction of the turbulent kinetic energy. Figure 10 show the energies corresponding to the tar-
get DNS, and the reconstructed flow data by the baselines and the CNDE-based methods for both
the FIT and the TGV flows. The results in Figure 10(a) for the FIT dataset indicate the follow-
ing: (1) The CNDE-based methods in general perform better than the baseline method DCS/MS
and CTN. Even without using the refinement process, the CNDEp-based methods outperform the
DCS/MS and CTN models. CNDE-based methods can follow the underlying physical rule well
in the long-term prediction. (2) The performance of CNDEp-based methods becomes very poor

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 1, Article 17. Publication date: January 2024.



17:14 S. Chen et al.

(a) LES Upsampling. (b) DCS/MS. (c) CTN. (d) CNDE-E. (e) CNDE-R. (f) Target DNS.

(g) LES Upsampling.  (h) DCS/MS. (i) CTN. (j) CNDE-E. (k) CNDE-R. () Target DNS.

(m) LES Upsampling.  (n) DCS/MS. (o) CTN. (q) CNDE-R. (r) Target DNS.

(s) LES Upsampling. (t) DCS/MS. (u) CTN. (v) CNDE-E. (w) CNDE-R. (x) Target DNS.

Fig. 9. Reconstructed w channel by each method on a sample testing slice along the z dimension in the TGV
dataset. The reconstruction results are shown at the 1st (80 s), 5th (90 s), 10th (100 s), and 15th (110 s) in

(@)—(f), (g)-(I), (m)—(r), and (s)-(x), respectively.
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Fig. 10. Change of kinetic energy produced by the reference DNS and different models in both the FIT and
the TGV datasets, respectively.

after the 8th timestep. This is because the accumulated error gets amplified in every timestep. The
results in Figure 10(b) yield similar conclusions.

5 SUMMARY AND CONCLUDING REMARKS

A novel SR methodology, termed CNDE, is developed to reconstruct high-resolution flow data
in spatial and temporal fields. The model is used in the setting of unsteady, incompressible,
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Newtonian turbulent flow under spatially homogeneous conditions. The SR method is to generate
the high-resolution DNS field from low resolution, LES data. An RKTU is developed to leverage the
physical knowledge embodied in the Navier—Stokes equation to capture the spatial resolution and
the temporal dynamics of the flow. A TEL is constructed to capture long-term temporal dynam-
ics. A degradation-based refinement method is developed to adjust the reconstructed data over
time by enforcing the consistency with physical constraints. The performance of the model is as-
sessed in the setting of two flow configurations via flow visualization and statistical analysis. The
results demonstrate the superiority of the CNDE for spatio-temporal reconstruction of the flow.
The model’s constituents, the RKTU and the refinement methods can be used as building blocks
to enhance existing deep learning models.

Despite its demonstrated capabilities, there are two limitations associated with the CNDE model
in its current form. (1) The CNN layers are used to estimate spatial derivatives, which can intro-
duce bias due to the approximation and due to data overfitting. (2) The method is, thus far, tailored
and appraised for specific flows. Therefore, its generality cannot be warranted for other appli-
cations; especially in the absence of sufficient DNS data. Future work is recommended to find
alternative ways to evaluate the spatial derivatives more accurately and to improve the model’s
transferability.
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