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INTRODUCTION 
 
Changes in DNA methylation with age, a component of 
“epigenetic aging”, are widely observed across the tree 
of life. Age-associated DNA methylation patterns 
manifest as two general phenomena; one leading to 
stereotypical shifts in mean methylation levels at 
individual cytosines that can be modeled to predict 
individual age with high accuracy [1], and the other 
leading to increased variability or “disorder” in DNA 
methylation states due to the erosion of the epigenetic 
landscape [2–4]. These phenomena are hypothesized to 

be linked as average methylation values of individual 
cytosines are reported to drift from hyper- or hypo-
methylated (e.g., ≥80%, ≤20%) states to more 
intermediate levels (e.g., 20–80%) with age [5]. 
However, the extent to which age-associated changes to 
the DNA methylome reflect distinct or similar 
underlying processes remains unresolved. 
 
Over the last decade, dozens of epigenetic clocks have 
been developed for a range of taxonomic groups 
including humans [6], rodents [7], fish [8], birds [9], 
and trees [10]. Epigenetic clocks are typically 
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constructed as linear models that predict chronological 
age or age-related phenotypes using mean methylation 
levels from a relatively small number of individual 
cytosines. The rate of epigenetic aging, measured as the 
discrepancy between chronological age and epigenetic 
age estimates, is associated with environmental 
conditions [6], life history traits (e.g., age at first 
menarche [11] and menopause [12]), and has become a 
widely used indicator of biological age and attendant 
disease risk [1, 13, 14]. More recently, epigenetic clocks 
have been applied to understanding epigenetic 
rejuvenation events occurring either naturally during 
early embryonic development or as a consequence of 
cellular reprogramming. Whereas epigenetic age 
estimates of induced pluripotent stem cells (iPSCs) are 
typically reset to zero [6], transient treatments with 
Yamanaka factors that do not fully induce 
dedifferentiation also reduce epigenetic age estimates 
and have been recognized as a promising anti-aging 
therapeutic avenue [15]. Kerepesi, et al. (2021) have 
also reported a period of epigenetic rejuvenation 
occurring during early development in which epigenetic 
age estimates decrease after conception until reaching a 
“ground zero” state coinciding with gastrulation [16]. 
Yet, age estimates derived from epigenetic clocks may 
not fully capture other facets of epigenetic aging, and 
here, we integrate multiple measures of age-associated 
DNA methylation patterns to examine these phenomena 
more broadly. 
 
The mechanistic underpinnings of epigenetic clock 
signals are still unclear, but with millions of CpG 
dinucleotides in the genome [17], and minimal overlap of 
individual CpGs included across different epigenetic 
clocks [18], the “ticking” of epigenetic clocks is 
suggested to be the product of a more general epigenetic 
maintenance system than can be reflected by the clock 
sites alone [1]. Commonly referred to as epigenetic 
“drift”, the failure of this maintenance system has many 
references in the recent literature [2, 5, 19–22]. Yet, 
despite an abundance of reports examining age-related 
epigenetic drift [5, 21, 23], a consensus definition is 
lacking, with studies often defining drift to mirror the 
analytical approach employed [24]. For example, 
“epiallele frequency” [25], “discordance” [26], 
“disorder” [3], “entropy” [27], and “heterogeneity” [3] 
have all been used to assess epigenetic drift and reflect 
different analytical approaches. Perhaps the most 
inclusive definition of epigenetic drift is a change in the 
status of DNA methylation over time [21, 23]. Yet, 
according to this definition, even programmed changes 
which guide developmental processes could be 
considered epigenetic drift, and it is likely more useful to 
define epigenetic drift as a stochastic, rather than a 
deterministic change in methylation states. One popular 
approach for assessing stochastic changes in methylation 

is using Shannon’s Entropy [28]. Originating in 
information theory, this metric measures the amount of 
uncertainty in an occurrence or event. However, when 
applied to DNA methylation, Shannon’s Entropy simply 
reflects average methylation values (whether genome 
wide or at a specific CpG) and is also likely influenced 
by heterogeneity among cells. Heterogeneity of 
epigenetic patterning within cells requires analyzing 
single cells or in the case of bisulfite sequencing 
experiments, can be inferred from linked CpGs occurring 
on individual reads [3, 29]. 
 
Herein, we apply novel read-based strategies to resolve 
age-associated epigenetic disorder across the mouse 
genome. By considering methylation states between 
individual CpGs and their immediate neighbors, we 
directly assess epigenetic disorder and investigate its 
relationship to epigenetic clock signals, embryonic 
development, lifespan interventions, and cellular 
reprogramming. Borrowing from the conceptual 
framework of Waddington’s epigenetic landscape, we 
hypothesize that low levels of epigenetic disorder 
characterize robust epigenomic states and that gains in 
disorder occurring with age lead to “erosion” of this 
landscape [2, 22, 30–32]. We find that approximately 
30% of the genome is disproportionately affected by 
age-related epigenetic disorder. Loci which act as 
predictors in conventional epigenetic clocks based on 
mean methylation levels appear to be enriched in regions 
that both accumulate and lose disorder with age, 
suggesting a direct link between epigenetic disorder 
dynamics and clock signals. We subsequently develop 
epigenetic clocks based on our regional disorder (RD) 
metric and compare age predictions with those produced 
using conventional epigenetic clocks and those based on 
entropy. Upon exploring the influences of development, 
lifespan interventions, and cellular dedifferentiation, we 
identify similarities as well as clear divergence between 
epigenetic clock signals based on either mean DNA 
methylation or regional DNA methylation disorder. 
Contrary to predictions based on prior studies, we find 
that disorder increases during early development and 
global levels of disorder are unaffected after cellular 
rejuvenation. Collectively, our findings suggest that 
DNA methylation disorder dynamics are a key 
contributor to epigenetic clock signals, yet also highlight 
a fundamental decoupling of disorder dynamics from 
canonical epigenetic aging that is likely to inform the 
potential of lifespan intervention strategies. 
 
MATERIALS AND METHODS 
 
Data acquisition 
 
Reduced representation bisulfite sequencing (RRBS) 
data from 255 mouse samples were acquired from 
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NCBI’s Sequence Read Archive (Accession: 
PRJNA319643). Individuals ranged in age from 0.67 to 
35 months, and represented both sexes, four strains 
(DW/J × C3H/HEJ)/F2, (C57BL/6J × BALB/cByJ)/F2, 
B6D2F1 and C57BL/6), and two diets (standard and 
caloric restriction). This dataset included methylomes 
from whole blood samples, induced pluripotent stem 
cells (iPSCs) derived from kidney (n = 3) and lung  
(n = 3), as well as the fibroblasts they were derived 
from (n = 3 lung, n = 3 kidney). Sample collection and 
library preparation methods are detailed in [33]. 
 
Data processing 
 
Raw sequence reads were trimmed of low-quality 
sequences using Trim Galore! (v0.6.5, options: --paired 
–rrbs –quality 25 –illumina). Trimmed reads were then 
aligned in paired end mode to a bisulfite index of the 
latest version of the mouse genome (GRCm39) using 
Bismark (v0.22.3), with mapping efficiency ranging 
from 54–70% among samples. Following alignment, 
reads were sorted by genomic coordinate, and 
converted to human readable SAM files using the 
Samtools (v1.10) functions ‘sort’ and ‘view’, 
respectively. The methylation call strings from each 
read were extracted in R (v3.6.1) using a custom  
R script. Reads with less than 2 CpGs were removed 
from the analysis. Each CpG within a methylation call 
string was then scored based on whether its 
methylation status matched the methylation status of its 
nearest neighbors. Because the first and last CpG on a 
string has only one nearest neighbor, the maximum 
disorder score is one (1), while each CpG in the 
internal part of a string has two nearest neighbors (one 
upstream and one downstream), giving a maximum 
disorder score of two (2). 
 
Calculation of disorder 
 
The proportion of disordered neighbor pairs (PDN) was 
calculated on a per read basis by taking the proportion 
of neighbor pairs within the read that were disordered 
(i.e. methylation state differed) over the total number of 
neighbor pairs within the read. Practically, this was 
calculated as follows: 
 

 PDN = sumof disordered neighabor pairs
sumof totalneighabor pairs

 

 
Calculation of regional disorder and methylation 
 
Due to differences in coverage across individuals, we 
normalized our metric of disorder across 200 bp 
windows of the genome, subsequently referred to as 
regional disorder (RD; Figure 1A). To measure RD, we 
binned the genome into 200 bp windows using the 

Bedtools (v2.26.0) function ‘makewindows’ and used 
the Bedtools ‘map’ function to average the per-read 
PDN, methylation, and CpG density for all reads for 
which >51% of the read mapped to a specific window, 
preventing reads from being represented in more than 
one region. Regional methylation (RM) was calculated 
using the mean proportion of methylated cytosines 
within each region. Regions with less than five reads 
per sequencing run were excluded from analysis, and 
data from separate sequencing runs were merged 
together on a per individual basis using a weighted 
average based on the number of reads from each run. 
We then removed regions which were not present in at 
least 80% of all 255 samples. 
 
Calculation of regional entropy 
 
Regional entropy (RE) was calculated for each 200 bp 
window as follows: 
 

RE 2( ) (1 ) 2(1 )RM log RM RM log RM= −  − −  −  
 
Age-associated disorder, methylation, and entropy 
 
To test if disorder increased with age, we selected a 
subset of whole blood methylomes from 153 male, 
C57BL/6 mice fed a standard diet, with individuals 
ranging from 0.67 to 35 months of age. Using this 
subset, we performed individual Spearman correlations 
between age and both RD and RM with a false 
discovery rate (FDR) correction for multiple 
comparisons using the corr.test function from the 
package psych in R [34]. Regions with a correlation 
coefficient ≥0.5 and an FDR corrected p-value < 0.05 
were considered to gain disorder or methylation with 
age, and those with a correlation coefficient ≤−0.5 and 
p-value < 0.05 were considered to lose disorder or 
methylation with age. 
 
Calculation of global disorder 
 
For each sample we calculated global disorder using the 
mean RD values of those regions passing the filtering 
approach outlined above, which allowed us to directly 
compare disorder between individuals despite 
differences in coverage or depth of coverage across the 
genome. We also calculated global disorder using only 
regions which displayed any modest gain disorder with 
age (correlation coefficient ≥0.25; n = 45,668) and only 
regions which lost disorder with age (correlation 
coefficient ≤−0.25; n = 3,789). We then modeled the 
relationships between all three global disorder metrics 
and age using the lme package in R, and age-adjusted 
global disorder was calculated using the residuals from 
the quadratic relationship between global disorder  
and age. 
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Genomic enrichment of age-associated disorder 
 
We then classified each 200 bp region by its genomic 
localization according to annotations of genes, introns, 
exons, CpG density, promoters, enhancers, transcription 
factor (TF) binding sites, CTCF binding sites, polycomb 
repressive complex 2 targets (PRC2), and Petkovich 
epigenetic clock sites [33]. Coordinates for genes, 
introns, and exons were used as listed by the most 
recent Refseq annotation of the mouse genome 
(GRCm39) with genes considered as the entire interval 
between transcription start and end coordinates. 
Coordinates of promoters, enhancers, TF binding sites 
and CTCF binding sites were determined using the 
Expression and Regulation annotation track from  
UCSC Genome Browser (GRCm39), CpG density was 
calculated using the average number of CpGs per 
informative read over the 100 possible CpGs per region, 
and PRC2 target genes were determined by previously 
published ChIP-seq data of PRC2 subunit binding in 
mouse ESCs [35], with any gene binding at least one 
PRC2 subunit being considered a PRC2 target. 
Coordinates from the Petkovich epigenetic clock [33] 
were translated to the current mouse genome annotation 
using NCBI’s coordinate remapping service. Overlap 
between the 200 bp regions and each genomic category 
(at least 1 bp) was determined using a custom R script. 
Genomic enrichment was determined using binomial 
tests using all other covered loci as a background. 
 
Gene ontology 
 
Genes in regions determined to gain or lose RD with 
age were split into lists and compared against the 
background (all represented genes) for gene ontology 
enrichment using gProfiler. Genes spanning multiple 
age-associated regions were only counted once per gene 
list. 
 
CpG methylation 
 
Merged alignment files for each sample were also used 
to produce CpG methylation matrices using 
Bioconductor’s MethylKit. Individual cytosines from 
opposite strands were merged into single CpGs 
(destrand = TRUE). Only CpGs which were covered at 
a depth of 10× reads across all 153 male, C57BL/6, 
standard diet samples were retained for further analysis. 
 
Clock optimization 
 
To compare our measures of disorder with epigenetic 
aging, we developed four different epigenetic clocks 
based on RD, RM, RE, and CpG methylation as 
predictors of chronological age. We used the glmnet 
package in R to select predictors using elastic net 

regularized regression and a leave-one-out cross 
validation (LOOCV) approach to assess model 
performance. Alpha values for each model were set to 
0.5 (true elastic net) and lambda was cross validated 
across all samples in the training set for each individual 
model. Age estimates from test samples (i.e., remaining 
individuals not used to train the model) were used to 
assess the error of the clocks. To assess robustness of 
individual predictor sites, we extracted predictors from 
each model and determined the proportion of the 153 
data-type-specific clocks each was included in. The 
robustness of CpG clocks was assessed by assigning 
individual CpGs to their respective genomic region, 
with each region being counted only once per clock 
iteration (i.e. multiple clock sites per region were not 
multiply counted.) We then determined the overlap 
between selected clock regions between RM, RD, RE, 
and CpG clocks. 
 
Representative clock building 
 
While LOOCV approaches provide a more inclusive 
estimate of predictive power, they do not provide  
a singular model appropriate for downstream 
applications. Thus, we constructed an additional set of 
clocks by randomly splitting samples into a training set 
(n = 14) and a test set (n = 39), which consisted of 2 or 
3 individuals from each age class. We refer to these 
models as the “representative” clocks for each data type 
(Supplementary Figure 1), and the same training and 
test set were used for every data type. 
 
Testing the effects of lifespan interventions 
 
We then tested the effects of three lifespan 
interventions: caloric restriction beginning at 14-weeks 
of age, knock out of growth hormone receptor (GHR), 
and dwarfism using the representative clocks. The 
dataset consisted of 22 male and female individuals 
from mouse strain Snell Dwarf (DW/J × C3H/HEJ)/F2, 
split between Snell Dwarf (mutation in Pit-1 gene;  
n = 10) and their respective controls (“Snell Dwarf 
Control”; n = 12), 26 male and female individuals from 
strain (C57BL/6J × BALB/cByJ)/F2, split between 
GHR knock out (GHRKO, n = 11) and GHR wild type 
(GHR WT, n = 15), 22 male B6D2F1 mice, split 
between standard diet (n = 10) and caloric restriction  
(n = 12), and 20 male individuals from line C57BL/6 on 
a calorie restricted diet. Specific details of lifespan 
extending treatments can be found in Petkovich, et al. 
(2017) [33]. We calculated age adjusted global disorder, 
RD, RM, and RE as described above, and extracted 
CpG methylation information for each individual and 
then applied our representative epigenetic clocks from 
each data type to acquire epigenetic age estimates. Data 
from individuals experiencing lifespan interventions 
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was handled exactly as described above and any 
missing predictor was assigned a zero value so as to be 
dropped from the model. Differences between 
treatments were determined using a one-way ANOVA. 
 
Disorder during de-differentiation and development 
 
We analyzed DNA methylomes from mouse iPSCs and 
their respective lung (n = 6) or kidney (n = 6) fibroblast 
precursors. Specific details regarding the de-
differentiation of fibroblasts can be found in Petkovich, 
et al. (2017) [33]. Datasets for the analysis of 
methylation dynamics across embryonic development 
were acquired from SRA accessions PRJNA150129 and 
PRJNA221793. Methods for sample preparation and 
sequencing in these datasets are detailed in Kerepesi,  
et al. (2021) [16] and Smith, et al. (2012) [36], 
respectively. Sample selection and filtering for loci 
comprising the Stubbs epigenetic clock [7] was 
modeled after the epigenetic clock methods in Kerepesi, 
et al. (2021) [16] to reproduce reported results with the 
traditional CpG-based approach. This included removal 
of samples retaining the polar bodies, as well as those 
derived from pre-fertilization gametes and ESCs. A 
similar sample-selection strategy was utilized for the 
region-based metrics, but the filtering strategy instead 
followed that outlined earlier in this paper for RD,  
RM, and RE. Overall, 36 samples were included in the 
window-based analyses, and 38 in the CpG-based 
Stubbs clock (due to differences in filtering 
requirements between the two approaches). 
Developmental stages represented in the ‘early’ 
developmental group ranged from zygote to ICM 
(approximated to 0.5–3.5 days after [16]), with the 
‘late’ group consisting of embryonic and 
extraembryonic tissue from E6.5 and E7.5 embryos. 
 
Age adjusted global disorder, and epigenetic age 
estimates for embryonic samples were calculated using 
representative RD, RM, RE clocks and the Stubbs CpG 
clock [7] as described for the lifespan intervention 
experiments. As data originated from two different 
datasets and consisted of different tissues than those 
used to train representative clocks, age adjusted global 
disorder and epigenetic age predictions were normalized 
within their respective datasets. Differences between the 
epigenetic ages of iPSCs were determined using a two-
way ANOVA with cell type (iPSC or fibroblast) and 
tissue (kidney or lung) as predictors. To further 
investigate the role of disorder during development and 
de-differentiation, we performed two-tailed t-tests to 
determine differences in RD occurring after de-
differentiation (fibroblast vs iPSC), or across 
development. For this analysis, we grouped both 
fibroblast types (kidney and lung) to compare against 
the iPSCs, as well as grouping the developmental 

datasets into early (E0.5–3.5) and late (E6.5–7.5) 
development. Given the especially low sample size for 
the iPSC dataset (n = 12), we also removed any regions 
with missing values. P-values from t-tests were 
corrected using FDR, via the function p.adjust in R. 
Significant differences between groups were determined 
by an adjusted p-value ≤ 0.05 and a mean difference in 
disorder between groups of at least |0.1|. Significant 
differences in disorder were then further characterized 
into regions which gained disorder during development 
or de-differentiation, and regions which lost disorder 
during development or de-differentiation. To determine 
the effect size of any given region on epigenetic age 
prediction, we took the mean difference between groups 
(either de-differentiation or development) at that region 
and multiplied it by the beta value for that region used 
in the RD epigenetic clock model. The effect size for 
each region was then normalized to the percent of the 
total effect size for the clock. 
 
Data availability 
 
The data that support the findings of this study are 
openly available in NCBI’s Sequence Read Archive 
(Accession: PRJNA319643). Examples of custom R 
scripts used to calculate regional disorder are available 
on GitHub (https://github.com/embertucci/epigenetic-
disorder). 
 
RESULTS 
 
Disorder in DNA methylation patterns are strongly 
correlated with age on a regional and global scale. Of 
the 249,015 regions assessed, RD was significantly 
correlated with age in 76,353 regions (30.7%), with RD 
increasing with age in 70,094 genomic regions (91.8%; 
Figure 1B) and decreasing with age in 6,259 genomic 
regions (8.2%; Figure 1B). The average RD across all 
regions, or global disorder, increases with chronological 
age according to a quadratic relationship (R2 = 0.51,  
p < 2.2e-16; Figure 1C). Consistent with increases and 
decreases in RD being driven by distinct processes, 
regions experiencing increases in RD (cor ≥0.25) 
display a quadratic relationship to age (R2 = 0.74,  
p < 2.2e-16; Figure 1D), whereas regions experiencing 
decreasing RD (cor ≤0.25) display a linear relation with 
age (R2 = 0.77, p < 2.2e-16; Figure 1E).  
 
With the exception of the Y chromosome, every 
chromosome incurs significant age-related 
accumulation of RD (Figure 1F). Given that more than 
30% of the genome experiences age-associated RD, 
only sites with a p-value ≤ 0.05 and a correlation 
coefficient greater ≥0.5 (n = 4149) or ≤−0.5 (n = 286) 
were considered as age-associated for enrichment 
tests, with all other regions considered background 

https://github.com/embertucci/epigenetic-disorder
https://github.com/embertucci/epigenetic-disorder
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(n = 244,580). Regions accumulating RD with age were 
significantly enriched in genes (p < 2.2e-16; Figure 1G) 
and promoters (p < 2.2e-16; Figure 1H), depleted in 
enhancers (p < 2.2e-16; Figure 1I), enriched in PRC2 
target genes (p < 2.2e-16; Figure 1J), and depleted in 
both transcription factor (p = 0.00015; Figure 1K) and 
CTCF (p = 1.35e-12; Figure 1L) binding sites. Although 
enrichment scores were less robust, regions losing  
RD with age were significantly enriched in genes  
(p = 8.725e-05; Figure 1G), promoters (p = 7.073e-11; 
Figure 1H), and PRC2 target genes (p = 0.020; Figure 
1J) and were depleted in enhancers (p = 0.030; Figure 
1I). The mean CpG density did not differ in age-
associated regions when compared to background 
(Figure 1M). Genes which accumulate disorder with age 
(n = 1,635) were significantly enriched in 552 different 

biological processes (GO:BP) with the most significant 
terms relating to nervous system development and 
differentiation (Supplementary Table 1; Figure 1N). 
Genes losing disorder with age (n = 197) were enriched 
in 14 different biological processes, with the most 
significant terms relating to multicellular organismal 
development (Supplementary Table 2; Figure 1N). 
 
We next examined the relationship between RD and 
regional averages of Shannon’s Entropy, a commonly 
used measure of epigenetic drift. Regional entropy  
(RE) is calculated directly from mean methylation 
values, and thus has a strong relationship to regional 
methylation (RM), even when regional values are 
averaged across all individuals (Figure 2A). However, 
in loci where RE reaches its maximum (RE = 1, mean 

 

 
 
Figure 1. Epigenetic disorder increases across the murine lifespan. (A) Diagram of the approach for measuring regional disorder 

(RD). (B) Density of all genomic regions assessed with respect to their Spearman correlation coefficients between RD and age. (C) The 
relationship between global disorder and age in mice. (D) Average RD across all regions that gain disorder with age (correlation coefficient 
≥0.25), or (E) lose disorder with age (correlation coefficient ≤−0.25. (F) Manhattan plot of the distribution of FDR corrected p-values of the 
relationship between RD and age. Red line marks a commonly used genome wide significance value of p = 5 × 10−8. Enrichment of age 
associated RD in genes (G), promoters (H), enhancers (I), PRC2 target genes (J), transcription factor binding sites (K), CTCF binding sites (L), 
and average CpG density (M). (N) The six most significant gene ontology biological processes (GO:BP) for regions gaining or losing disorder 
with age. Regions which gain disorder with age are shown in blue and regions which lose disorder with age are shown in red. 
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methylation = 50%), RD spans from fully ordered to 
fully disordered (RD = 0–1). We found that the 
relationship between average RD and average RE is 
best explained by a quadratic relationship (R2 = 0.83, 
p < 2.2e-16; Figure 2B) with increasing RE generally 
indicating increases in RD. While the relationship 
between global RD and global RE does not change with 
age (Supplementary Figure 2), the relationship becomes 
increasingly variable at greater values of RE 
(Supplementary Figure 3). Age dependent changes to 
RM and RD are linked as 78.7% (n = 38,926) of regions 
experiencing modest age-associated RD (cor ≥ |0.25|) 
also incur modest age-associated RM (cor ≥ |0.25|); 
however, the remaining 21.3% (n = 10,531) of age-
associated changes in RD do not correspond with RM, 
and 34.1% (n = 20,152) of age-associated RM occur 
independently of changes in RD (Figure 2C). 
 
We also aimed to understand how signals underlying 
epigenetic clocks relate to epigenetic disorder. 
Interestingly, there is a clear enrichment of Petkovich 
epigenetic clock loci in regions which increase and 
decrease in RD with age (Figure 3A), with the absolute 
correlation coefficient of RD and age being 
significantly higher in Petkovich epigenetic clock 
regions when compared to those not included in the 
clock (p < 2e-16; Figure 3B). However, 37 of the 90 
total clock CpGs fall into the same 200 bp genomic 
region. To more thoroughly resolve the relationship 
between epigenetic clock signals and epigenetic 
disorder, we built a series of epigenetic clocks based on 
CpG, RM, RE, and RD states. Over the 153 LOO 
iterations for each clock type, there was no difference in 
absolute error across clocks, suggesting that each 
methylation metric is capable of predicting 
chronological age with equivalent accuracy (Figure 3C). 
Similarly, there was no difference in the mean  

absolute error produced by the representative clocks 
(Supplementary Figure 1). 
 
To further compare the influence of methylation context 
on clock composition, we assessed the overlap of loci 
incorporated into each clock type as well as the 
frequency in which they were selected (referred to as 
robustness). Of the LOO iterations, the CpG clocks 
selected 312 different regions with an average 
robustness of 0.11 (Figure 3D), RM clocks selected 106 
different regions with an average robustness of 0.05 
(Figure 3E), RE clocks selected 330 different regions 
with an average robustness of 0.11 (Figure 3F), and RD 
clocks selected 483 different regions with an average 
robustness of 0.13 (Figure 3G). Interestingly, the mean 
absolute RD correlation coefficients for age were 
significantly higher for CpG, RM, RE and RD clock 
regions when compared to non-clock regions (CpG p < 
2e-16, RM p < 2e-16, RE p < 2e-16, RD p < 2e-16; 
Figure 3H–3K). The majority of clock sites (86.5%) 
were specific to each clock type; however, seven 
regions were selected across all clock types. Pan-clock 
regions are all associated with genes (Map10, Nlrp5-ps, 
Rasef, Rnf220, Evx2, Gm21297, and Apba1), with five 
(71%) regions located within promoters, and all 
increase in disorder with age (Figure 3L). While all four 
datatypes produce low errors in age prediction (Figure 
3C), the discordance of chronological age with the age 
prediction (or “delta epigenetic age”) is highly 
correlated with age adjusted global disorder in all 
datatypes (CpG R2 = 0.09, p = 7.53e-05; RM R2 = 0.07, 
p = 0.0007, RE R2 = 0.12, p = 6.89e-06, RD R2 = 0.18; 
p = 3.00e-08; Figure 3M). 
 
We then tested the influence of common lifespan 
manipulations on epigenetic age estimates across 
different clock types. Caloric restriction led to a 

 

 
 
Figure 2. Regional disorder is distinct from Shannon’s entropy and age-associated changes in mean methylation. (A) The 

relationship of regional entropy (RE; black line) with regional methylation and regional disorder (RD; blue dots) with regional methylation 
(RM). Data points show a single region averaged across all samples. (B) Relationship between RD and RE averaged across all samples. (C) 
Correlation coefficients of RD with age and RM with age across the 153 samples used to build the epigenetic clock. Regions which increase 
in RM or RD with age have positive correlation coefficients, regions which decrease in RM or RD with age have negative correlation 
coefficients. 
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reduction in age-associated RD, but the effect varied 
across strains. Male C57BL/6 mice fed a calorie 
restricted diet had significantly younger epigenetic ages 
when compared to controls as determined by all clock 
types (CpG p = 0.00043, RM p = 2.16e-07, RE p = 
4.62e-06, RD p = 5.75e-08; Figure 4A). However, mean 

age adjusted global disorder appeared unaffected (p = 
0.62; Figure 4B). Conversely, male B6D2F1 mice fed a 
calorie restricted diet only had significantly younger 
epigenetic ages as determined by the RM epigenetic 
clock (CpG p = 0.46, RM p = 0.018, RE p = 0.073, RD 
p = 0.39; Figure 4C). However, there was a slight trend 

 

 
 
Figure 3. Epigenetic disorder underlies epigenetic clock signals. (A) Distribution of Petkovich epigenetic clock sites (red) across 

correlation coefficients between regional disorder (RD) and age. (B) Average absolute correlation coefficient between RD and age of 
regions which are included in the Petkovich epigenetic clock (red) compared to those which are not included. (C) Error of epigenetic age 
estimates produced by leave-one-out cross validation (LOOCV) for each data type. (D–G) Manhattan plots showing the robustness for each 
region (i.e., the proportion of clocks each region was selected in) across (D) CpG methylation (black), (E) regional methylation (RM; yellow), 
(F) regional entropy (RE; light blue), and (G) RD (dark blue) contexts. (H–K) Density plots showing the distribution of clock sites for each 
data type across correlation coefficients between RD and age. (L) Overlap between regions included in epigenetic clocks produced from 
each data type. (M) Relationship between delta epigenetic age (chronological age – predicted age) and age-adjusted global disorder for 
each data type. 
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for calorie restricted individuals to have greater mean 
age adjusted global disorder when compared to mice on 
a standard diet (p = 0.097; Figure 4D). Genetic 
interventions which extend lifespan resulted in a general 
decrease in epigenetic age. Snell Dwarf mice had 
significantly younger epigenetic ages when compared to 
controls according to the RD and RM clocks, but not 
the CpG or RE clocks (CpG p = 0.078, RM p = 0.0059, 
RE p = 0.23, RD p = 0.011; Figure 4E). Snell Dwarf 
mice also showed reduced mean age adjusted global 
disorder compared to control mice (p = 0.027; Figure 
4F). GHR knock out also resulted in significantly 
younger epigenetic ages according to the RM and RE 
clocks, but not the CpG or RD clocks (CpG p = 0.088, 
RM p = 0.0080, RE p = 0.031, RD p = 0.64; Figure 4G), 
and no difference in age adjusted regional disorder was 
observed between GHRKO and control mice (p = 0.39; 
Figure 4H). 
 
We next investigated the impacts of cellular 
dedifferentiation on epigenetic disorder by comparing 
DNA methylomes of iPSC cells and their differentiated 
precursors. A significant reduction in epigenetic age 
predictions after dedifferentiation was observed across 
all clock types except for RE (CpG p = 7.11e-08, RM p 
= 3.41e-06, RE p = 0.20, RD p = 3.93e-08; Figure 5A). 

Interestingly, there was no difference in the global 
disorder between kidney or lung fibroblasts when 
compared to their respective iPSCs (p = 0.28; Figure 
5B). Given that dedifferentiation led to a reduction in 
epigenetic age estimates but did not affect global 
disorder, we sought to identify those regions in which 
RD is affected by dedifferentiation. Upon comparing 
RD across all fibroblasts and iPSCs, 26,512 regions 
significantly increase in RD after differentiation and 
19,419 regions significantly decrease in disorder after 
dedifferentiation, but these regions do not 
disproportionately acquire age-associated RD relative to 
background (Figure 5C). Interestingly, the influence of 
dedifferentiation on RD epigenetic clock estimates are 
driven by differences in RD at just several clock sites 
(Figure 5D), with four regions contributing 35.7% of 
the overall effect. 
 
Consistent with a previous report identifying an 
epigenetic rejuvenation event occurring during early 
development [16], we observed a significant decrease in 
epigenetic age predictions occurring between 
embryonic days 4 and 6 using the Stubbs CpG 
methylation epigenetic clock [7] (CpG p = 1.32e-08; 
Figure 5E) and the RM clock (RM p = 0.0019; Figure 
5F). Conversely, we observe a significant increase in 

 

 
 
Figure 4. Epigenetic disorder is influenced by lifespan extending manipulations. The effect of caloric restriction in C57BL/6 mice 

on (A) epigenetic age predictions from each data type and (B) age-adjusted global disorder. The effect of caloric restriction in B6D2F1 mice 
on (C) epigenetic age predictions from each data type and (D) age-adjusted global disorder. Comparison of Snell dwarf and control mice on 
(E) epigenetic age predictions from each data type and (F) age-adjusted global disorder. The effect of growth hormone receptor knock-out 
(GHRKO) on (G) epigenetic age predictions from each data type and (H) age-adjusted global disorder. All plots show median, upper, and 
lower quartiles, and maximum and minimum. Outliers beyond 1.5 interquartile range are plotted. 
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epigenetic age predictions during early embryonic 
development when using the RD and RE clocks (RD  
p = 3.81e-05; RE p = 1.90e-08; Figure 5G, 5H). In 
addition, global disorder is strongly increased during 
development (Figure 5I). Upon comparing RD across 
all samples from embryonic days 0.5–3.5 (n = 24) and 
embryonic days 6.5–7.5 (n = 12), 31,687 regions 
significantly increase in RD during development and 
368 regions significantly decrease in RD during 
development. These regions were not significantly 
enriched in regions with age-associated RD (Figure 5J). 
Similar to our findings examining the influence of de-
differentiation, the predictions of the epigenetic clock 
appear to be driven strongly by differences in RD at just 
several clock sites, with one region having a total effect 

size of 2.51 months, contributing 14.6% of the 
difference in ages between groups (Figure 5K). Given 
that the clock has 86 of the regions included as 
predictors represented, we would expect each region to 
contribute just 1.16% to the overall effect size. 
 
DISCUSSION 
 
Epigenetic drift is broadly hypothesized to be a primary 
contributor to epigenetic aging. However, drift is a 
multifaceted phenomenon encompassing both stochastic 
and deterministic processes and is unlikely to be fully 
captured by a single metric. In this study, we report an 
approach for spatially resolving genomic patterns of 
DNA methylation disorder, which is distinct from 

 

 
 
Figure 5. Epigenetic disorder during de-differentiation and development. (A) Epigenetic age predictions using each of the 

representative epigenetic clocks and (B) global disorder of kidney fibroblasts (black), kidney derived iPSCs (grey), lung fibroblasts (dark 
purple), and lung derived iPSCs (pink). Plot shows median, upper and lower quartiles, maximum, and minimum. Outliers beyond 1.5 
interquartile range are plotted. (C) Distribution of regions which gain (blue) or lose (red) disorder after de-differentiation across correlation 
coefficients between regional disorder (RD) and age. (D) Effect sizes of de-differentiation on the RD epigenetic clock. Stubbs CpG 
methylation (E), RM (F), RE (G), and RD (H) epigenetic clock predictions of samples during embryonic development. (I) Global disorder of 
samples during embryonic development. (J) distribution of regions which gain (blue) or lose (red) disorder during early development across 
correlation coefficients between regional disorder (RD) and age. (K) Effect sizes of development on the RD epigenetic clock. 
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measures of both average methylation and entropy. 
Age-associated changes in regional disorder (RD) are 
found in approximately one third of the genome and 
generally reflect the accumulation of disordered 
methylation; however, the opposite pattern is observed 
in a subset of regions in which DNA methylation 
patterns become more ordered with age. Given that 
epigenetic drift or disorder is thought to be driven in 
part by stochastic processes, we hypothesize that the 
directionality of changes in RD represent different 
functional pathways. Yet, the specific biological 
mechanisms that mediate losses of RD with age remain 
unclear. Age-associated gains and losses of RD were 
disproportionately observed in coding regions, 
promoters, and regions harboring PRC2 target genes, 
and age-associated increases in RD were strongly 
enriched in developmental genes, especially those 
functioning in neural development. These gains in 
disorder with age support the deleteriome model of 
aging [37], wherein small deleterious errors accumulate 
in the epigenome without effect until later in life, when 
epigenomic stability is compromised [2]. We suggest 
that disorder accumulates across the genome until it 
reaches a critical threshold – this may explain why the 
majority of regions across the genome are characterized 
by relatively low disorder (RD <0.5; data not shown). 
The value of this hypothetical threshold and the factors 
which contribute to the accumulation of disorder have 
the potential to explain the rate of aging and possibly 
maximum lifespan across species [32]. 
 
Consistent with the hypothesis that disorder in DNA 
methylation patterns underlies signals in conventional 
CpG clocks (i.e., those based on mean CpG methylation 
levels), we find that loci comprising clocks constructed 
using RD, RM, RE, and CpG contexts are all enriched 
for regions in which disorder changes with age, and loci 
which are shared across clocks are involved biological 
processes such as cell cycle, tumor suppression, and 
development. Interestingly, Evx2 is shared across all 
clock contexts, and is frequently reported as being age-
associated across a variety of vertebrate species  
[38–41]. However, we identify notable distinctions and 
minimal overlap across clock contexts. For example, 
while a subset of CpGs selected as predictors in an 
epigenetic clock were enriched in regions with age-
associated disorder, many CpG clock sites also fell into 
regions lacking age-associated changes in disorder. 
Thus, while disorder underlies some components of 
traditional CpG epigenetic clocks, other components 
may be attributed to other processes like coordinated 
changes in methylation or cell type composition. By 
contrasting the effects of caloric restriction, genetic 
manipulations, cellular reprogramming, and 
development across different clock types, we further 
identify both similarities and clear distinctions 

according to DNA methylation context and genomic 
scale. For example, while traditional lifespan extending 
treatments, such as caloric restriction, broadly affect RD 
epigenetic clocks, there is no observable effects on 
global disorder. This may be because the magnitude of 
the effect of caloric restriction is too small to be seen 
when averaged across the entire genome. Similarly, 
while CpG and RM clocks demonstrate a “ground zero” 
occurring during mid-development [16], we see an 
increase in RE and RD clock predicted ages during the 
same period, suggesting that average methylation states 
may not fully reflect how the DNA methylome changes 
throughout development. Collectively, these findings 
demonstrate the connections between epigenetic drift 
and other aspects of epigenetic aging, while also 
highlighting a complexity that should be considered 
when assessing read outs from epigenetic clocks alone. 
 
In mice, global disorder changes with age according to a 
quadratic function, with decreases in disorder occurring 
rapidly earlier in life prior to a steady increase with age. 
This pattern is consistent with previous findings of a 
quadratic relationship between global DNA methylation 
entropy and age in the naked-mole rat [42]. The initial 
high level of global disorder suggests that development, 
as well as aging, may be characterized by a 
disorganized epigenetic landscape – possibly due to a 
transitionary period between methylation states. Given 
the dynamic nature of the DNA methylome during 
development [6, 43, 44], it is likely that RD metrics, 
like other measures of DNA methylation that provide 
temporal snapshots, capture this transition as high 
disorder. While data from embryonic samples suggest 
that disorder increases during early development, the 
trajectory of global disorder throughout development, 
and whether it corresponds with previous findings of an 
epigenetic “ground zero” during development [16], will 
require a more complete developmental series to fully 
resolve. 
 
Age estimates derived from epigenetic clocks are ideal 
for predicting chronological age (i.e., forensics, 
conservation and management applications [45, 46]) as 
well as identifying the consequences of accelerated 
epigenetic aging (i.e., biomarkers in biomedical 
approaches [1]). Yet, collapsing mean methylation 
levels into a single value presents challenges for 
understanding the drivers and biological pathways 
responsible for epigenetic aging. Given the push 
towards targeted, high-throughput approaches (e.g., 
bead-based assays) for acquiring data on age-associated 
methylation [38, 47], critical biological information is 
missed. While CpG level resolution has been integral in 
developing our understanding of epigenetic aging, 
clocks built using regionally averaged methylation 
perform with similar accuracy to those trained on 
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individual CpGs. We further demonstrate that the effect 
size of individual clock sites varies widely, and thus, 
changes in methylation states of just one or several 
clock loci can be misinterpreted as wholesale changes in 
epigenetic age. This is important especially when age 
estimates are compared across studies and different 
datasets. For example, we report that a single RD clock 
region accounted for nearly 10% of the difference in age 
estimation between fibroblasts and iPSCs. While the 
age predictions generated corroborate previous findings 
[6, 33], the inclusion (or exclusion) of this single region 
vastly changes our interpretation of the effects of de-
differentiation on epigenetic age. Thus, using epigenetic 
clocks of any kind gives us a narrow, and potentially 
easily skewed, understanding of epigenetic aging at the 
genomic scale. 
 
Overall, this study provides robust empirical evidence 
that epigenetic drift, as measured by epigenetic 
disorder, accumulates with age in non-random places of 
the mouse genome. Our analyses suggest that epigenetic 
disorder underlies aspects of traditional epigenetic 
clocks and highlights critical gaps in our interpretation 
of epigenetic aging. Although more work needs to be 
done to better resolve the drivers of epigenetic disorder 
– we provide an empirical basis for testing assumptions 
about this emerging phenomenon. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 
Supplementary Figure 1. Representative epigenetic clocks from each datatype. (A, B) show results for the epigenetic clock 

constructed using CpG methylation data, (C, D) show results for the epigenetic clock constructed using regional methylation (RM) data, (E, 
F) show results from an epigenetic clock based on regional entropy (RE) data, and (G, H) show results from the epigenetic clock based on 
regional disorder (RD) data. Panel (I) indicates the number of predictors comprising each clock. 

 
 

 
 
Supplementary Figure 2. The relationship between average regional disorder and average regional entropy across the 
lifespan of mice. Samples are broken up into distinct life stages which are denoted by different colors (immature – red, mature – orange, 
middle-aged – yellow, old – green, and very old – blue). 
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Supplementary Figure 3. Variation in average regional disorder increases with increasing values of average regional entropy. 

 
  



www.aging-us.com 18 AGING 

Supplementary Tables 
 
Supplementary Table 1. Gene ontology results from regions with age-associated gains in disorder. 

Source GO term name GO ID Adjusted p-value 
GO:MF DNA-binding transcription factor activity, RNA polymerase II-specific GO:0000981 1.76E-28 
GO:MF DNA-binding transcription factor activity GO:0003700 7.58E-28 
GO:MF sequence-specific double-stranded DNA binding GO:1990837 5.72E-23 
GO:MF double-stranded DNA binding GO:0003690 4.64E-21 
GO:MF sequence-specific DNA binding GO:0043565 1.37E-20 
GO:MF RNA polymerase II transcription regulatory region sequence-specific DNA binding GO:0000977 1.79E-20 
GO:MF transcription regulator activity GO:0140110 5.41E-20 
GO:MF transcription cis-regulatory region binding GO:0000976 7.85E-19 
GO:MF transcription regulatory region nucleic acid binding GO:0001067 1.17E-18 
GO:MF RNA polymerase II cis-regulatory region sequence-specific DNA binding GO:0000978 1.70E-17 
GO:MF cis-regulatory region sequence-specific DNA binding GO:0000987 2.57E-17 
GO:MF binding GO:0005488 8.47E-17 
GO:MF protein binding GO:0005515 1.12E-15 
GO:MF DNA-binding transcription activator activity GO:0001216 1.01E-11 
GO:MF DNA-binding transcription activator activity, RNA polymerase II-specific GO:0001228 1.31E-11 
GO:MF gated channel activity GO:0022836 1.80E-11 
GO:MF DNA binding GO:0003677 8.54E-09 
GO:MF ion channel activity GO:0005216 8.80E-09 
GO:MF voltage-gated cation channel activity GO:0022843 1.21E-08 
GO:MF channel activity GO:0015267 2.18E-08 
GO:BP nervous system development GO:0007399 9.36E-84 
GO:BP neurogenesis GO:0022008 1.71E-68 
GO:BP system development GO:0048731 4.56E-67 
GO:BP multicellular organism development GO:0007275 3.14E-65 
GO:BP generation of neurons GO:0048699 4.99E-63 
GO:BP anatomical structure development GO:0048856 4.01E-61 
GO:BP neuron differentiation GO:0030182 3.05E-60 
GO:BP multicellular organismal process GO:0032501 5.25E-58 
GO:BP developmental process GO:0032502 5.17E-57 
GO:BP anatomical structure morphogenesis GO:0009653 1.15E-54 
GO:BP cell-cell signaling GO:0007267 1.09E-50 
GO:BP central nervous system development GO:0007417 4.10E-48 
GO:BP neuron development GO:0048666 2.56E-47 
GO:BP cell differentiation GO:0030154 5.75E-45 
GO:BP cell development GO:0048468 9.25E-45 
GO:BP cellular developmental process GO:0048869 1.71E-44 
GO:BP neuron projection development GO:0031175 2.60E-41 
GO:BP animal organ development GO:0048513 3.67E-41 
GO:BP brain development GO:0007420 2.06E-40 
GO:BP head development GO:0060322 4.07E-40 

Top 20 terms from molecular function (MF) and biological process (BP) based on significance values are shown. 
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Supplementary Table 2. Gene ontology results from regions with age-associated losses in disorder. 

Source GO term name GO ID Adjusted p-value 
GO:MF protein binding GO:0005515 0.00063605 
GO:MF binding GO:0005488 0.00159718 
GO:MF protein kinase activity GO:0004672 0.00357349 
GO:MF phosphotransferase activity, alcohol group as acceptor GO:0016773 0.01376325 
GO:MF transferase activity GO:0016740 0.04052106 
GO:BP developmental process GO:0032502 0.00019855 
GO:BP anatomical structure development GO:0048856 0.00021537 
GO:BP multicellular organismal process GO:0032501 0.00032362 
GO:BP anatomical structure morphogenesis GO:0009653 0.00042435 
GO:BP response to stimulus GO:0050896 0.00074356 
GO:BP signal transduction GO:0007165 0.0017411 
GO:BP regulation of cellular process GO:0050794 0.0030705 
GO:BP cellular response to stimulus GO:0051716 0.0044849 
GO:BP signaling GO:0023052 0.00807516 
GO:BP cell communication GO:0007154 0.01493627 
GO:BP regulation of biological process GO:0050789 0.01644778 
GO:BP biological regulation GO:0065007 0.02094827 
GO:BP intracellular signal transduction GO:0035556 0.03178697 
GO:BP multicellular organism development GO:0007275 0.04073998 
GO:MF protein binding GO:0005515 0.00063605 
GO:MF binding GO:0005488 0.00159718 
GO:MF protein kinase activity GO:0004672 0.00357349 
GO:MF phosphotransferase activity, alcohol group as acceptor GO:0016773 0.01376325 
GO:MF transferase activity GO:0016740 0.04052106 
GO:BP developmental process GO:0032502 0.00019855 
GO:BP anatomical structure development GO:0048856 0.00021537 
GO:BP multicellular organismal process GO:0032501 0.00032362 
GO:BP anatomical structure morphogenesis GO:0009653 0.00042435 
GO:BP response to stimulus GO:0050896 0.00074356 
GO:BP signal transduction GO:0007165 0.0017411 
GO:BP regulation of cellular process GO:0050794 0.0030705 
GO:BP cellular response to stimulus GO:0051716 0.0044849 
GO:BP signaling GO:0023052 0.00807516 
GO:BP cell communication GO:0007154 0.01493627 
GO:BP regulation of biological process GO:0050789 0.01644778 
GO:BP biological regulation GO:0065007 0.02094827 
GO:BP intracellular signal transduction GO:0035556 0.03178697 
GO:BP multicellular organism development GO:0007275 0.04073998 

Terms from molecular function (MF) and biological process (BP) are shown. 

 
 


