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ABSTRACT

Changes in DNA methylation with age are observed across the tree of life. The stereotypical nature of these
changes can be modeled to produce epigenetic clocks capable of predicting chronological age with
unprecedented accuracy. Despite the predictive ability of epigenetic clocks and their utility as biomarkers in
clinical applications, the underlying processes that produce clock signals are not fully resolved, which limits
their interpretability. Here, we develop a computational approach to spatially resolve the within read
variability or “disorder” in DNA methylation patterns and test if age-associated changes in DNA methylation
disorder underlie signals comprising epigenetic clocks. We find that epigenetic clock loci are enriched in
regions that both accumulate and lose disorder with age, suggesting a link between DNA methylation
disorder and epigenetic clocks. We then develop epigenetic clocks that are based on regional disorder of DNA
methylation patterns and compare their performance to other epigenetic clocks by investigating the
influences of development, lifespan interventions, and cellular dedifferentiation. We identify common
responses as well as critical differences between canonical epigenetic clocks and those based on regional
disorder, demonstrating a fundamental decoupling of epigenetic aging processes. Collectively, we identify
key linkages between epigenetic disorder and epigenetic clocks and demonstrate the multifaceted nature of
epigenetic aging in which stochastic processes occurring at non-random loci produce predictable outcomes.

INTRODUCTION be linked as average methylation values of individual
cytosines are reported to drift from hyper- or hypo-
methylated (e.g., >80%, <20%) states to more
intermediate levels (e.g., 20-80%) with age [5].

However, the extent to which age-associated changes to

Changes in DNA methylation with age, a component of
“epigenetic aging”, are widely observed across the tree
of life. Age-associated DNA methylation patterns

manifest as two general phenomena; one leading to
stereotypical shifts in mean methylation levels at
individual cytosines that can be modeled to predict
individual age with high accuracy [1], and the other
leading to increased variability or “disorder” in DNA
methylation states due to the erosion of the epigenetic
landscape [2—4]. These phenomena are hypothesized to

the DNA methylome reflect distinct or similar
underlying processes remains unresolved.

Over the last decade, dozens of epigenetic clocks have
been developed for a range of taxonomic groups
including humans [6], rodents [7], fish [8], birds [9],
and trees [10]. Epigenetic clocks are typically
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constructed as linear models that predict chronological
age or age-related phenotypes using mean methylation
levels from a relatively small number of individual
cytosines. The rate of epigenetic aging, measured as the
discrepancy between chronological age and epigenetic
age estimates, is associated with environmental
conditions [6], life history traits (e.g., age at first
menarche [11] and menopause [12]), and has become a
widely used indicator of biological age and attendant
disease risk [1, 13, 14]. More recently, epigenetic clocks
have been applied to wunderstanding epigenetic
rejuvenation events occurring either naturally during
early embryonic development or as a consequence of
cellular reprogramming. Whereas epigenetic age
estimates of induced pluripotent stem cells (iPSCs) are
typically reset to zero [6], transient treatments with
Yamanaka factors that do not fully induce
dedifferentiation also reduce epigenetic age estimates
and have been recognized as a promising anti-aging
therapeutic avenue [15]. Kerepesi, et al. (2021) have
also reported a period of epigenetic rejuvenation
occurring during early development in which epigenetic
age estimates decrease after conception until reaching a
“ground zero” state coinciding with gastrulation [16].
Yet, age estimates derived from epigenetic clocks may
not fully capture other facets of epigenetic aging, and
here, we integrate multiple measures of age-associated
DNA methylation patterns to examine these phenomena
more broadly.

The mechanistic underpinnings of epigenetic clock
signals are still unclear, but with millions of CpG
dinucleotides in the genome [17], and minimal overlap of
individual CpGs included across different epigenetic
clocks [18], the “ticking” of epigenetic clocks is
suggested to be the product of a more general epigenetic
maintenance system than can be reflected by the clock
sites alone [1]. Commonly referred to as epigenetic
“drift”, the failure of this maintenance system has many
references in the recent literature [2, 5, 19-22]. Yet,
despite an abundance of reports examining age-related
epigenetic drift [5, 21, 23], a consensus definition is
lacking, with studies often defining drift to mirror the
analytical approach employed [24]. For example,
“epiallele  frequency” [25], “discordance” [26],
“disorder” [3], “entropy” [27], and “heterogeneity” [3]
have all been used to assess epigenetic drift and reflect
different analytical approaches. Perhaps the most
inclusive definition of epigenetic drift is a change in the
status of DNA methylation over time [21, 23]. Yet,
according to this definition, even programmed changes
which guide developmental processes could be
considered epigenetic drift, and it is likely more useful to
define epigenetic drift as a stochastic, rather than a
deterministic change in methylation states. One popular
approach for assessing stochastic changes in methylation

is using Shannon’s Entropy [28]. Originating in
information theory, this metric measures the amount of
uncertainty in an occurrence or event. However, when
applied to DNA methylation, Shannon’s Entropy simply
reflects average methylation values (whether genome
wide or at a specific CpG) and is also likely influenced
by heterogeneity among cells. Heterogeneity of
epigenetic patterning within cells requires analyzing
single cells or in the case of bisulfite sequencing
experiments, can be inferred from linked CpGs occurring
on individual reads [3, 29].

Herein, we apply novel read-based strategies to resolve
age-associated epigenetic disorder across the mouse
genome. By considering methylation states between
individual CpGs and their immediate neighbors, we
directly assess epigenetic disorder and investigate its
relationship to epigenetic clock signals, embryonic
development, lifespan interventions, and cellular
reprogramming. Borrowing from the conceptual
framework of Waddington’s epigenetic landscape, we
hypothesize that low levels of epigenetic disorder
characterize robust epigenomic states and that gains in
disorder occurring with age lead to “erosion” of this
landscape [2, 22, 30-32]. We find that approximately
30% of the genome is disproportionately affected by
age-related epigenetic disorder. Loci which act as
predictors in conventional epigenetic clocks based on
mean methylation levels appear to be enriched in regions
that both accumulate and lose disorder with age,
suggesting a direct link between epigenetic disorder
dynamics and clock signals. We subsequently develop
epigenetic clocks based on our regional disorder (RD)
metric and compare age predictions with those produced
using conventional epigenetic clocks and those based on
entropy. Upon exploring the influences of development,
lifespan interventions, and cellular dedifferentiation, we
identify similarities as well as clear divergence between
epigenetic clock signals based on either mean DNA
methylation or regional DNA methylation disorder.
Contrary to predictions based on prior studies, we find
that disorder increases during early development and
global levels of disorder are unaffected after cellular
rejuvenation. Collectively, our findings suggest that
DNA methylation disorder dynamics are a key
contributor to epigenetic clock signals, yet also highlight
a fundamental decoupling of disorder dynamics from
canonical epigenetic aging that is likely to inform the
potential of lifespan intervention strategies.

MATERIALS AND METHODS
Data acquisition

Reduced representation bisulfite sequencing (RRBS)
data from 255 mouse samples were acquired from
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NCBI's Sequence Read Archive (Accession:
PRINA319643). Individuals ranged in age from 0.67 to
35 months, and represented both sexes, four strains
(DW/J x C3H/HEJ)/F2, (C57BL/6] x BALB/cByJ)/F2,
B6D2F1 and C57BL/6), and two diets (standard and
caloric restriction). This dataset included methylomes
from whole blood samples, induced pluripotent stem
cells (iPSCs) derived from kidney (n = 3) and lung
(n = 3), as well as the fibroblasts they were derived
from (n = 3 lung, n = 3 kidney). Sample collection and
library preparation methods are detailed in [33].

Data processing

Raw sequence reads were trimmed of low-quality
sequences using Trim Galore! (v0.6.5, options: --paired
—1rbs —quality 25 —illumina). Trimmed reads were then
aligned in paired end mode to a bisulfite index of the
latest version of the mouse genome (GRCm39) using
Bismark (v0.22.3), with mapping efficiency ranging
from 54-70% among samples. Following alignment,
reads were sorted by genomic coordinate, and
converted to human readable SAM files using the
Samtools (v1.10) functions ‘sort’” and ‘view’,
respectively. The methylation call strings from each
read were extracted in R (v3.6.1) using a custom
R script. Reads with less than 2 CpGs were removed
from the analysis. Each CpG within a methylation call
string was then scored based on whether its
methylation status matched the methylation status of its
nearest neighbors. Because the first and last CpG on a
string has only one nearest neighbor, the maximum
disorder score is one (1), while each CpG in the
internal part of a string has two nearest neighbors (one
upstream and one downstream), giving a maximum
disorder score of two (2).

Calculation of disorder

The proportion of disordered neighbor pairs (PDN) was
calculated on a per read basis by taking the proportion
of neighbor pairs within the read that were disordered
(i.e. methylation state differed) over the total number of
neighbor pairs within the read. Practically, this was
calculated as follows:

PDN = S4m of disordered neighabor pairs

sum of totalneighabor pairs

Calculation of regional disorder and methylation

Due to differences in coverage across individuals, we
normalized our metric of disorder across 200 bp
windows of the genome, subsequently referred to as
regional disorder (RD; Figure 1A). To measure RD, we
binned the genome into 200 bp windows using the

Bedtools (v2.26.0) function ‘makewindows’ and used
the Bedtools ‘map’ function to average the per-read
PDN, methylation, and CpG density for all reads for
which >51% of the read mapped to a specific window,
preventing reads from being represented in more than
one region. Regional methylation (RM) was calculated
using the mean proportion of methylated cytosines
within each region. Regions with less than five reads
per sequencing run were excluded from analysis, and
data from separate sequencing runs were merged
together on a per individual basis using a weighted
average based on the number of reads from each run.
We then removed regions which were not present in at
least 80% of all 255 samples.

Calculation of regional entropy

Regional entropy (RE) was calculated for each 200 bp
window as follows:

RE =—RM xlog2(RM)—(1—-RM)xlog2(1-RM)
Age-associated disorder, methylation, and entropy

To test if disorder increased with age, we selected a
subset of whole blood methylomes from 153 male,
C57BL/6 mice fed a standard diet, with individuals
ranging from 0.67 to 35 months of age. Using this
subset, we performed individual Spearman correlations
between age and both RD and RM with a false
discovery rate (FDR) correction for multiple
comparisons using the corr.test function from the
package psych in R [34]. Regions with a correlation
coefficient >0.5 and an FDR corrected p-value < 0.05
were considered to gain disorder or methylation with
age, and those with a correlation coefficient <—0.5 and
p-value < 0.05 were considered to lose disorder or
methylation with age.

Calculation of global disorder

For each sample we calculated global disorder using the
mean RD values of those regions passing the filtering
approach outlined above, which allowed us to directly
compare disorder between individuals despite
differences in coverage or depth of coverage across the
genome. We also calculated global disorder using only
regions which displayed any modest gain disorder with
age (correlation coefficient >0.25; n = 45,668) and only
regions which lost disorder with age (correlation
coefficient <—0.25; n = 3,789). We then modeled the
relationships between all three global disorder metrics
and age using the lme package in R, and age-adjusted
global disorder was calculated using the residuals from
the quadratic relationship between global disorder
and age.
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Genomic enrichment of age-associated disorder

We then classified each 200 bp region by its genomic
localization according to annotations of genes, introns,
exons, CpG density, promoters, enhancers, transcription
factor (TF) binding sites, CTCF binding sites, polycomb
repressive complex 2 targets (PRC2), and Petkovich
epigenetic clock sites [33]. Coordinates for genes,
introns, and exons were used as listed by the most
recent Refseq annotation of the mouse genome
(GRCm39) with genes considered as the entire interval
between transcription start and end coordinates.
Coordinates of promoters, enhancers, TF binding sites
and CTCF binding sites were determined using the
Expression and Regulation annotation track from
UCSC Genome Browser (GRCm39), CpG density was
calculated using the average number of CpGs per
informative read over the 100 possible CpGs per region,
and PRC2 target genes were determined by previously
published ChIP-seq data of PRC2 subunit binding in
mouse ESCs [35], with any gene binding at least one
PRC2 subunit being considered a PRC2 target.
Coordinates from the Petkovich epigenetic clock [33]
were translated to the current mouse genome annotation
using NCBI’s coordinate remapping service. Overlap
between the 200 bp regions and each genomic category
(at least 1 bp) was determined using a custom R script.
Genomic enrichment was determined using binomial
tests using all other covered loci as a background.

Gene ontology

Genes in regions determined to gain or lose RD with
age were split into lists and compared against the
background (all represented genes) for gene ontology
enrichment using gProfiler. Genes spanning multiple
age-associated regions were only counted once per gene
list.

CpG methylation

Merged alignment files for each sample were also used
to produce CpG methylation matrices using
Bioconductor’s MethylKit. Individual cytosines from
opposite strands were merged into single CpGs
(destrand = TRUE). Only CpGs which were covered at
a depth of 10x reads across all 153 male, C57BL/6,
standard diet samples were retained for further analysis.

Clock optimization

To compare our measures of disorder with epigenetic
aging, we developed four different epigenetic clocks
based on RD, RM, RE, and CpG methylation as
predictors of chronological age. We used the glmnet
package in R to select predictors using elastic net

regularized regression and a leave-one-out cross
validation (LOOCV) approach to assess model
performance. Alpha values for each model were set to
0.5 (true elastic net) and lambda was cross validated
across all samples in the training set for each individual
model. Age estimates from test samples (i.e., remaining
individuals not used to train the model) were used to
assess the error of the clocks. To assess robustness of
individual predictor sites, we extracted predictors from
each model and determined the proportion of the 153
data-type-specific clocks each was included in. The
robustness of CpG clocks was assessed by assigning
individual CpGs to their respective genomic region,
with each region being counted only once per clock
iteration (i.e. multiple clock sites per region were not
multiply counted.) We then determined the overlap
between selected clock regions between RM, RD, RE,
and CpG clocks.

Representative clock building

While LOOCV approaches provide a more inclusive
estimate of predictive power, they do not provide
a singular model appropriate for downstream
applications. Thus, we constructed an additional set of
clocks by randomly splitting samples into a training set
(n=14) and a test set (n = 39), which consisted of 2 or
3 individuals from each age class. We refer to these
models as the “representative” clocks for each data type
(Supplementary Figure 1), and the same training and
test set were used for every data type.

Testing the effects of lifespan interventions

We then tested the effects of three lifespan
interventions: caloric restriction beginning at 14-weeks
of age, knock out of growth hormone receptor (GHR),
and dwarfism using the representative clocks. The
dataset consisted of 22 male and female individuals
from mouse strain Snell Dwarf (DW/J x C3H/HEJ)/F2,
split between Snell Dwarf (mutation in Pit-1 gene;
n = 10) and their respective controls (“Snell Dwarf
Control”; n = 12), 26 male and female individuals from
strain (C57BL/6]J x BALB/cBylJ)/F2, split between
GHR knock out (GHRKO, n = 11) and GHR wild type
(GHR WT, n = 15), 22 male B6D2F1 mice, split
between standard diet (z = 10) and caloric restriction
(n=12), and 20 male individuals from line C57BL/6 on
a calorie restricted diet. Specific details of lifespan
extending treatments can be found in Petkovich, et al.
(2017) [33]. We calculated age adjusted global disorder,
RD, RM, and RE as described above, and extracted
CpG methylation information for each individual and
then applied our representative epigenetic clocks from
each data type to acquire epigenetic age estimates. Data
from individuals experiencing lifespan interventions
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was handled exactly as described above and any
missing predictor was assigned a zero value so as to be
dropped from the model. Differences between
treatments were determined using a one-way ANOVA.

Disorder during de-differentiation and development

We analyzed DNA methylomes from mouse iPSCs and
their respective lung (n = 6) or kidney (n = 6) fibroblast
precursors. Specific details regarding the de-
differentiation of fibroblasts can be found in Petkovich,
et al. (2017) [33]. Datasets for the analysis of
methylation dynamics across embryonic development
were acquired from SRA accessions PRINA150129 and
PRINA221793. Methods for sample preparation and
sequencing in these datasets are detailed in Kerepesi,
et al. (2021) [16] and Smith, et al. (2012) [36],
respectively. Sample selection and filtering for loci
comprising the Stubbs epigenetic clock [7] was
modeled after the epigenetic clock methods in Kerepesi,
et al. (2021) [16] to reproduce reported results with the
traditional CpG-based approach. This included removal
of samples retaining the polar bodies, as well as those
derived from pre-fertilization gametes and ESCs. A
similar sample-selection strategy was utilized for the
region-based metrics, but the filtering strategy instead
followed that outlined earlier in this paper for RD,
RM, and RE. Overall, 36 samples were included in the
window-based analyses, and 38 in the CpG-based
Stubbs clock (due to differences in filtering
requirements  between the two  approaches).
Developmental stages represented in the ‘early’
developmental group ranged from zygote to ICM
(approximated to 0.5-3.5 days after [16]), with the
‘late’ group consisting of embryonic  and
extraembryonic tissue from E6.5 and E7.5 embryos.

Age adjusted global disorder, and epigenetic age
estimates for embryonic samples were calculated using
representative RD, RM, RE clocks and the Stubbs CpG
clock [7] as described for the lifespan intervention
experiments. As data originated from two different
datasets and consisted of different tissues than those
used to train representative clocks, age adjusted global
disorder and epigenetic age predictions were normalized
within their respective datasets. Differences between the
epigenetic ages of iPSCs were determined using a two-
way ANOVA with cell type (iPSC or fibroblast) and
tissue (kidney or lung) as predictors. To further
investigate the role of disorder during development and
de-differentiation, we performed two-tailed #-tests to
determine differences in RD occurring after de-
differentiation (fibroblast vs iPSC), or across
development. For this analysis, we grouped both
fibroblast types (kidney and lung) to compare against
the iPSCs, as well as grouping the developmental

datasets into early (E0.5-3.5) and late (E6.5-7.5)
development. Given the especially low sample size for
the iPSC dataset (n = 12), we also removed any regions
with missing values. P-values from #-tests were
corrected using FDR, via the function p.adjust in R.
Significant differences between groups were determined
by an adjusted p-value < 0.05 and a mean difference in
disorder between groups of at least |0.1|. Significant
differences in disorder were then further characterized
into regions which gained disorder during development
or de-differentiation, and regions which lost disorder
during development or de-differentiation. To determine
the effect size of any given region on epigenetic age
prediction, we took the mean difference between groups
(either de-differentiation or development) at that region
and multiplied it by the beta value for that region used
in the RD epigenetic clock model. The effect size for
each region was then normalized to the percent of the
total effect size for the clock.

Data availability

The data that support the findings of this study are
openly available in NCBI’s Sequence Read Archive
(Accession: PRINA319643). Examples of custom R
scripts used to calculate regional disorder are available
on GitHub (https:/github.com/embertucci/epigenetic-
disorder).

RESULTS

Disorder in DNA methylation patterns are strongly
correlated with age on a regional and global scale. Of
the 249,015 regions assessed, RD was significantly
correlated with age in 76,353 regions (30.7%), with RD
increasing with age in 70,094 genomic regions (91.8%;
Figure 1B) and decreasing with age in 6,259 genomic
regions (8.2%; Figure 1B). The average RD across all
regions, or global disorder, increases with chronological
age according to a quadratic relationship (R? = 0.51,
p < 2.2e-16; Figure 1C). Consistent with increases and
decreases in RD being driven by distinct processes,
regions experiencing increases in RD (cor >0.25)
display a quadratic relationship to age (R> = 0.74,
p < 2.2e-16; Figure 1D), whereas regions experiencing
decreasing RD (cor <0.25) display a linear relation with
age (R>=0.77, p < 2.2e-16; Figure 1E).

With the exception of the Y chromosome, every
chromosome incurs significant age-related
accumulation of RD (Figure 1F). Given that more than
30% of the genome experiences age-associated RD,
only sites with a p-value < 0.05 and a correlation
coefficient greater >0.5 (n = 4149) or <-0.5 (n = 286)
were considered as age-associated for enrichment
tests, with all other regions considered background
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(n = 244,580). Regions accumulating RD with age were
significantly enriched in genes (p < 2.2e-16; Figure 1G)
and promoters (p < 2.2e-16; Figure 1H), depleted in
enhancers (p < 2.2e-16; Figure 1I), enriched in PRC2
target genes (p < 2.2e-16; Figure 1J), and depleted in
both transcription factor (p = 0.00015; Figure 1K) and
CTCF (p = 1.35e-12; Figure 1L) binding sites. Although
enrichment scores were less robust, regions losing
RD with age were significantly enriched in genes
(p = 8.725e-05; Figure 1G), promoters (p = 7.073e-11;
Figure 1H), and PRC2 target genes (p = 0.020; Figure
1J) and were depleted in enhancers (p = 0.030; Figure
1I). The mean CpG density did not differ in age-
associated regions when compared to background
(Figure 1M). Genes which accumulate disorder with age
(n = 1,635) were significantly enriched in 552 different
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biological processes (GO:BP) with the most significant
terms relating to nervous system development and
differentiation (Supplementary Table 1; Figure IN).
Genes losing disorder with age (n = 197) were enriched
in 14 different biological processes, with the most
significant terms relating to multicellular organismal
development (Supplementary Table 2; Figure 1N).

We next examined the relationship between RD and
regional averages of Shannon’s Entropy, a commonly
used measure of epigenetic drift. Regional entropy
(RE) is calculated directly from mean methylation
values, and thus has a strong relationship to regional
methylation (RM), even when regional values are
averaged across all individuals (Figure 2A). However,
in loci where RE reaches its maximum (RE = 1, mean
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Figure 1. Epigenetic disorder increases across the murine lifespan. (A) Diagram of the approach for measuring regional disorder
(RD). (B) Density of all genomic regions assessed with respect to their Spearman correlation coefficients between RD and age. (C) The
relationship between global disorder and age in mice. (D) Average RD across all regions that gain disorder with age (correlation coefficient
>0.25), or (E) lose disorder with age (correlation coefficient <-0.25. (F) Manhattan plot of the distribution of FDR corrected p-values of the
relationship between RD and age. Red line marks a commonly used genome wide significance value of p = 5 x 1078. Enrichment of age
associated RD in genes (G), promoters (H), enhancers (I), PRC2 target genes (J), transcription factor binding sites (K), CTCF binding sites (L),
and average CpG density (M). (N) The six most significant gene ontology biological processes (GO:BP) for regions gaining or losing disorder
with age. Regions which gain disorder with age are shown in blue and regions which lose disorder with age are shown in red.
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methylation = 50%), RD spans from fully ordered to
fully disordered (RD = 0-1). We found that the
relationship between average RD and average RE is
best explained by a quadratic relationship (R> = 0.83,
p <2.2e-16; Figure 2B) with increasing RE generally
indicating increases in RD. While the relationship
between global RD and global RE does not change with
age (Supplementary Figure 2), the relationship becomes
increasingly variable at greater values of RE
(Supplementary Figure 3). Age dependent changes to
RM and RD are linked as 78.7% (n = 38,926) of regions
experiencing modest age-associated RD (cor > |0.25])
also incur modest age-associated RM (cor > ]0.25));
however, the remaining 21.3% (n = 10,531) of age-
associated changes in RD do not correspond with RM,
and 34.1% (n = 20,152) of age-associated RM occur
independently of changes in RD (Figure 2C).

We also aimed to understand how signals underlying
epigenetic clocks relate to epigenetic disorder.
Interestingly, there is a clear enrichment of Petkovich
epigenetic clock loci in regions which increase and
decrease in RD with age (Figure 3A), with the absolute
correlation coefficient of RD and age being
significantly higher in Petkovich epigenetic clock
regions when compared to those not included in the
clock (p < 2e-16; Figure 3B). However, 37 of the 90
total clock CpGs fall into the same 200 bp genomic
region. To more thoroughly resolve the relationship
between epigenetic clock signals and epigenetic
disorder, we built a series of epigenetic clocks based on
CpG, RM, RE, and RD states. Over the 153 LOO
iterations for each clock type, there was no difference in
absolute error across clocks, suggesting that each
methylation metric is capable of predicting
chronological age with equivalent accuracy (Figure 3C).
Similarly, there was no difference in the mean

absolute error produced by the representative clocks
(Supplementary Figure 1).

To further compare the influence of methylation context
on clock composition, we assessed the overlap of loci
incorporated into each clock type as well as the
frequency in which they were selected (referred to as
robustness). Of the LOO iterations, the CpG clocks
selected 312 different regions with an average
robustness of 0.11 (Figure 3D), RM clocks selected 106
different regions with an average robustness of 0.05
(Figure 3E), RE clocks selected 330 different regions
with an average robustness of 0.11 (Figure 3F), and RD
clocks selected 483 different regions with an average
robustness of 0.13 (Figure 3G). Interestingly, the mean
absolute RD correlation coefficients for age were
significantly higher for CpG, RM, RE and RD clock
regions when compared to non-clock regions (CpG p <
2e-16, RM p < 2e-16, RE p < 2e-16, RD p < 2e-16;
Figure 3H-3K). The majority of clock sites (86.5%)
were specific to each clock type; however, seven
regions were selected across all clock types. Pan-clock
regions are all associated with genes (Map10, Nlrp5-ps,
Rasef, Rnf220, Evx2, Gm21297, and Apbal), with five
(71%) regions located within promoters, and all
increase in disorder with age (Figure 3L). While all four
datatypes produce low errors in age prediction (Figure
3C), the discordance of chronological age with the age
prediction (or “delta epigenetic age”) is highly
correlated with age adjusted global disorder in all
datatypes (CpG R? = 0.09, p = 7.53e-05; RM R? = 0.07,
p =0.0007, RE R?=0.12, p = 6.89¢-06, RD R? = 0.18;
p = 3.00e-08; Figure 3M).

We then tested the influence of common lifespan
manipulations on epigenetic age estimates across
different clock types. Caloric restriction led to a
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reduction in age-associated RD, but the effect varied
across strains. Male C57BL/6 mice fed a calorie
restricted diet had significantly younger epigenetic ages
when compared to controls as determined by all clock
types (CpG p = 0.00043, RM p = 2.16e-07, RE p =
4.62e-06, RD p = 5.75e-08; Figure 4A). However, mean

age adjusted global disorder appeared unaffected (p =
0.62; Figure 4B). Conversely, male B6D2F1 mice fed a
calorie restricted diet only had significantly younger
epigenetic ages as determined by the RM epigenetic
clock (CpG p = 0.46, RM p =0.018, RE p = 0.073, RD
p = 0.39; Figure 4C). However, there was a slight trend
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for calorie restricted individuals to have greater mean
age adjusted global disorder when compared to mice on
a standard diet (p = 0.097; Figure 4D). Genetic
interventions which extend lifespan resulted in a general
decrease in epigenetic age. Snell Dwarf mice had
significantly younger epigenetic ages when compared to
controls according to the RD and RM clocks, but not
the CpG or RE clocks (CpG p = 0.078, RM p = 0.0059,
RE p = 0.23, RD p = 0.011; Figure 4E). Snell Dwarf
mice also showed reduced mean age adjusted global
disorder compared to control mice (p = 0.027; Figure
4F). GHR knock out also resulted in significantly
younger epigenetic ages according to the RM and RE
clocks, but not the CpG or RD clocks (CpG p = 0.088,
RM p =0.0080, RE p =0.031, RD p = 0.64; Figure 4G),
and no difference in age adjusted regional disorder was
observed between GHRKO and control mice (p = 0.39;
Figure 4H).

We next investigated the impacts of cellular
dedifferentiation on epigenetic disorder by comparing
DNA methylomes of iPSC cells and their differentiated
precursors. A significant reduction in epigenetic age
predictions after dedifferentiation was observed across
all clock types except for RE (CpG p = 7.11e-08, RM p
=3.41e-06, RE p = 0.20, RD p = 3.93e-08; Figure 5A).

A C57BL/E:Calorie Restricted &) C57BL/6:Standard Diet B
kK
* ¥k . o
: * K % 3 .
_ . = g
c = 0.01
2 3
£ s
g ° g
2 0.00
< 1]
P 8
2 -5 P
[a] 3-0.01
<

-10 CpG RM RE RD

E Snell Dwarf & Snell Dwart Control F
*
8 o010
) $k * 2
(%]
£ 5 a
5 5
E éa S 0005 ]
o]
o .
2 . B
0 3 -
2 T 0000 u
[7] Y .
o )
<
-5 -0.005

CpG RM RE RD Snell Dwart  Control

Calorie Restricted Standard

O

Delta Age (months)

@

Delta Age (months)

Interestingly, there was no difference in the global
disorder between kidney or lung fibroblasts when
compared to their respective iPSCs (p = 0.28; Figure
5B). Given that dedifferentiation led to a reduction in
epigenetic age estimates but did not affect global
disorder, we sought to identify those regions in which
RD is affected by dedifferentiation. Upon comparing
RD across all fibroblasts and iPSCs, 26,512 regions
significantly increase in RD after differentiation and
19,419 regions significantly decrease in disorder after
dedifferentiation, but these regions do not
disproportionately acquire age-associated RD relative to
background (Figure 5C). Interestingly, the influence of
dedifferentiation on RD epigenetic clock estimates are
driven by differences in RD at just several clock sites
(Figure 5D), with four regions contributing 35.7% of
the overall effect.

Consistent with a previous report identifying an
epigenetic rejuvenation event occurring during early
development [16], we observed a significant decrease in
epigenetic age predictions occurring between
embryonic days 4 and 6 using the Stubbs CpG
methylation epigenetic clock [7] (CpG p = 1.32e-08;
Figure 5E) and the RM clock (RM p = 0.0019; Figure
5F). Conversely, we observe a significant increase in
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Figure 4. Epigenetic disorder is influenced by lifespan extending manipulations. The effect of caloric restriction in C57BL/6 mice
on (A) epigenetic age predictions from each data type and (B) age-adjusted global disorder. The effect of caloric restriction in BED2F1 mice
on (C) epigenetic age predictions from each data type and (D) age-adjusted global disorder. Comparison of Snell dwarf and control mice on
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lower quartiles, and maximum and minimum. Outliers beyond 1.5 interquartile range are plotted.
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epigenetic age predictions during early embryonic
development when using the RD and RE clocks (RD
p = 3.81e-05; RE p = 1.90e-08; Figure 5G, 5H). In
addition, global disorder is strongly increased during
development (Figure 5I). Upon comparing RD across
all samples from embryonic days 0.5-3.5 (n = 24) and
embryonic days 6.5-7.5 (n 12), 31,687 regions
significantly increase in RD during development and
368 regions significantly decrease in RD during
development. These regions were not significantly
enriched in regions with age-associated RD (Figure 5J).
Similar to our findings examining the influence of de-
differentiation, the predictions of the epigenetic clock
appear to be driven strongly by differences in RD at just
several clock sites, with one region having a total effect

size of 2.51 months, contributing 14.6% of the
difference in ages between groups (Figure 5K). Given
that the clock has 86 of the regions included as
predictors represented, we would expect each region to
contribute just 1.16% to the overall effect size.

DISCUSSION

Epigenetic drift is broadly hypothesized to be a primary
contributor to epigenetic aging. However, drift is a
multifaceted phenomenon encompassing both stochastic
and deterministic processes and is unlikely to be fully
captured by a single metric. In this study, we report an
approach for spatially resolving genomic patterns of
DNA methylation disorder, which is distinct from
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measures of both average methylation and entropy.
Age-associated changes in regional disorder (RD) are
found in approximately one third of the genome and
generally reflect the accumulation of disordered
methylation; however, the opposite pattern is observed
in a subset of regions in which DNA methylation
patterns become more ordered with age. Given that
epigenetic drift or disorder is thought to be driven in
part by stochastic processes, we hypothesize that the
directionality of changes in RD represent different
functional pathways. Yet, the specific biological
mechanisms that mediate losses of RD with age remain
unclear. Age-associated gains and losses of RD were
disproportionately observed in coding regions,
promoters, and regions harboring PRC2 target genes,
and age-associated increases in RD were strongly
enriched in developmental genes, especially those
functioning in neural development. These gains in
disorder with age support the deleteriome model of
aging [37], wherein small deleterious errors accumulate
in the epigenome without effect until later in life, when
epigenomic stability is compromised [2]. We suggest
that disorder accumulates across the genome until it
reaches a critical threshold — this may explain why the
majority of regions across the genome are characterized
by relatively low disorder (RD <0.5; data not shown).
The value of this hypothetical threshold and the factors
which contribute to the accumulation of disorder have
the potential to explain the rate of aging and possibly
maximum lifespan across species [32].

Consistent with the hypothesis that disorder in DNA
methylation patterns underlies signals in conventional
CpG clocks (i.e., those based on mean CpG methylation
levels), we find that loci comprising clocks constructed
using RD, RM, RE, and CpG contexts are all enriched
for regions in which disorder changes with age, and loci
which are shared across clocks are involved biological
processes such as cell cycle, tumor suppression, and
development. Interestingly, Evx2 is shared across all
clock contexts, and is frequently reported as being age-
associated across a variety of vertebrate species
[38—41]. However, we identify notable distinctions and
minimal overlap across clock contexts. For example,
while a subset of CpGs selected as predictors in an
epigenetic clock were enriched in regions with age-
associated disorder, many CpG clock sites also fell into
regions lacking age-associated changes in disorder.
Thus, while disorder underlies some components of
traditional CpG epigenetic clocks, other components
may be attributed to other processes like coordinated
changes in methylation or cell type composition. By
contrasting the effects of caloric restriction, genetic
manipulations, cellular reprogramming, and
development across different clock types, we further
identify both similarities and clear distinctions

according to DNA methylation context and genomic
scale. For example, while traditional lifespan extending
treatments, such as caloric restriction, broadly affect RD
epigenetic clocks, there is no observable effects on
global disorder. This may be because the magnitude of
the effect of caloric restriction is too small to be seen
when averaged across the entire genome. Similarly,
while CpG and RM clocks demonstrate a “ground zero”
occurring during mid-development [16], we see an
increase in RE and RD clock predicted ages during the
same period, suggesting that average methylation states
may not fully reflect how the DNA methylome changes
throughout development. Collectively, these findings
demonstrate the connections between epigenetic drift
and other aspects of epigenetic aging, while also
highlighting a complexity that should be considered
when assessing read outs from epigenetic clocks alone.

In mice, global disorder changes with age according to a
quadratic function, with decreases in disorder occurring
rapidly earlier in life prior to a steady increase with age.
This pattern is consistent with previous findings of a
quadratic relationship between global DNA methylation
entropy and age in the naked-mole rat [42]. The initial
high level of global disorder suggests that development,
as well as aging, may be characterized by a
disorganized epigenetic landscape — possibly due to a
transitionary period between methylation states. Given
the dynamic nature of the DNA methylome during
development [6, 43, 44], it is likely that RD metrics,
like other measures of DNA methylation that provide
temporal snapshots, capture this transition as high
disorder. While data from embryonic samples suggest
that disorder increases during early development, the
trajectory of global disorder throughout development,
and whether it corresponds with previous findings of an
epigenetic “ground zero” during development [16], will
require a more complete developmental series to fully
resolve.

Age estimates derived from epigenetic clocks are ideal
for predicting chronological age (i.e., forensics,
conservation and management applications [45, 46]) as
well as identifying the consequences of accelerated
epigenetic aging (i.e., biomarkers in biomedical
approaches [1]). Yet, collapsing mean methylation
levels into a single value presents challenges for
understanding the drivers and biological pathways
responsible for epigenetic aging. Given the push
towards targeted, high-throughput approaches (e.g.,
bead-based assays) for acquiring data on age-associated
methylation [38, 47], critical biological information is
missed. While CpG level resolution has been integral in
developing our understanding of epigenetic aging,
clocks built using regionally averaged methylation
perform with similar accuracy to those trained on
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individual CpGs. We further demonstrate that the effect
size of individual clock sites varies widely, and thus,
changes in methylation states of just one or several
clock loci can be misinterpreted as wholesale changes in
epigenetic age. This is important especially when age
estimates are compared across studies and different
datasets. For example, we report that a single RD clock
region accounted for nearly 10% of the difference in age
estimation between fibroblasts and iPSCs. While the
age predictions generated corroborate previous findings
[6, 33], the inclusion (or exclusion) of this single region
vastly changes our interpretation of the effects of de-
differentiation on epigenetic age. Thus, using epigenetic
clocks of any kind gives us a narrow, and potentially
easily skewed, understanding of epigenetic aging at the
genomic scale.

Overall, this study provides robust empirical evidence
that epigenetic drift, as measured by epigenetic
disorder, accumulates with age in non-random places of
the mouse genome. Our analyses suggest that epigenetic
disorder underlies aspects of traditional epigenetic
clocks and highlights critical gaps in our interpretation
of epigenetic aging. Although more work needs to be
done to better resolve the drivers of epigenetic disorder
— we provide an empirical basis for testing assumptions
about this emerging phenomenon.
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Supplementary Figure 1. Representative epigenetic clocks from each datatype. (A, B) show results for the epigenetic clock
constructed using CpG methylation data, (C, D) show results for the epigenetic clock constructed using regional methylation (RM) data, (E,
F) show results from an epigenetic clock based on regional entropy (RE) data, and (G, H) show results from the epigenetic clock based on
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Supplementary Figure 3. Variation in average regional disorder increases with increasing values of average regional entropy.
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Supplementary Tables

Supplementary Table 1. Gene ontology results from regions with age-associated gains in disorder.

Source GO term name GOID Adjusted p-value
GO:MF  DNA-binding transcription factor activity, RNA polymerase II-specific GO:0000981 1.76E-28
GO:MF  DNA-binding transcription factor activity G0:0003700 7.58E-28
GO:MF  sequence-specific double-stranded DNA binding GO:1990837 5.72E-23
GO:MF  double-stranded DNA binding G0:0003690 4.64E-21
GO:MF  sequence-specific DNA binding GO:0043565 1.37E-20
GO:MF  RNA polymerase II transcription regulatory region sequence-specific DNA binding GO:0000977 1.79E-20
GO:MF  transcription regulator activity GO:0140110 5.41E-20
GO:MF transcription cis-regulatory region binding G0O:0000976 7.85E-19
GO:MF transcription regulatory region nucleic acid binding GO:0001067 1.17E-18
GO:MF  RNA polymerase Il cis-regulatory region sequence-specific DNA binding G0O:0000978 1.70E-17
GO:MF  cis-regulatory region sequence-specific DNA binding GO:0000987 2.57E-17
GO:MF  binding GO:0005488 8.47E-17
GO:MF  protein binding GO:0005515 1.12E-15
GO:MF  DNA-binding transcription activator activity GO0:0001216 1.01E-11
GO:MF  DNA-binding transcription activator activity, RNA polymerase II-specific G0O:0001228 1.31E-11
GO:MF  gated channel activity G0:0022836 1.80E-11
GO:MF  DNA binding G0:0003677 8.54E-09
GO:MF  ion channel activity GO:0005216 8.80E-09
GO:MF  voltage-gated cation channel activity G0:0022843 1.21E-08
GO:MF  channel activity GO:0015267 2.18E-08
GO:BP  nervous system development GO:0007399 9.36E-84
GO:BP  neurogenesis G0:0022008 1.71E-68
GO:BP  system development G0:0048731 4.56E-67
GO:BP  multicellular organism development GO:0007275 3.14E-65
GO:BP  generation of neurons GO:0048699 4.99E-63
GO:BP  anatomical structure development GO:0048856 4.01E-61
GO:BP  neuron differentiation GO:0030182 3.05E-60
GO:BP  multicellular organismal process G0:0032501 5.25E-58
GO:BP  developmental process G0:0032502 5.17E-57
GO:BP  anatomical structure morphogenesis G0O:0009653 1.15E-54
GO:BP  cell-cell signaling GO:0007267 1.09E-50
GO:BP  central nervous system development GO0:0007417 4.10E-48
GO:BP  neuron development GO:0048666 2.56E-47
GO:BP cell differentiation GO0:0030154 5.75E-45
GO:BP  cell development GO:0048468 9.25E-45
GO:BP  cellular developmental process GO:0048869 1.71E-44
GO:BP  neuron projection development GO:0031175 2.60E-41
GO:BP  animal organ development GO0:0048513 3.67E-41
GO:BP  brain development GO:0007420 2.06E-40
GO:BP  head development GO0:0060322 4.07E-40
Top 20 terms from molecular function (MF) and biological process (BP) based on significance values are shown.
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Supplementary Table 2. Gene ontology results from regions with age-associated losses in disorder.

Source GO term name GO ID Adjusted p-value
GO:MF protein binding GO:0005515 0.00063605
GO:MF binding GO:0005488 0.00159718
GO:MF protein kinase activity GO:0004672 0.00357349
GO:MF phosphotransferase activity, alcohol group as acceptor G0:0016773 0.01376325
GO:MF transferase activity GO0:0016740 0.04052106
GO:BP developmental process G0:0032502 0.00019855
GO:BP anatomical structure development G0:0048856 0.00021537
GO:BP multicellular organismal process G0:0032501 0.00032362
GO:BP anatomical structure morphogenesis G0:0009653 0.00042435
GO:BP response to stimulus G0:0050896 0.00074356
GO:BP signal transduction GO0:0007165 0.0017411
GO:BP regulation of cellular process G0:0050794 0.0030705
GO:BP cellular response to stimulus GO:0051716 0.0044849
GO:BP signaling G0:0023052 0.00807516
GO:BP cell communication GO:0007154 0.01493627
GO:BP regulation of biological process G0:0050789 0.01644778
GO:BP biological regulation G0:0065007 0.02094827
GO:BP intracellular signal transduction G0:0035556 0.03178697
GO:BP multicellular organism development G0:0007275 0.04073998
GO:MF protein binding GO:0005515 0.00063605
GO:MF binding GO:0005488 0.00159718
GO:MF protein kinase activity G0:0004672 0.00357349
GO:MF phosphotransferase activity, alcohol group as acceptor GO0:0016773 0.01376325
GO:MF transferase activity GO:0016740 0.04052106
GO:BP developmental process G0:0032502 0.00019855
GO:BP anatomical structure development G0:0048856 0.00021537
GO:BP multicellular organismal process G0:0032501 0.00032362
GO:BP anatomical structure morphogenesis G0:0009653 0.00042435
GO:BP response to stimulus G0:0050896 0.00074356
GO:BP signal transduction GO:0007165 0.0017411
GO:BP regulation of cellular process GO0:0050794 0.0030705
GO:BP cellular response to stimulus GO:0051716 0.0044849
GO:BP signaling G0:0023052 0.00807516
GO:BP cell communication GO:0007154 0.01493627
GO:BP regulation of biological process G0:0050789 0.01644778
GO:BP biological regulation G0O:0065007 0.02094827
GO:BP intracellular signal transduction G0:0035556 0.03178697
GO:BP multicellular organism development G0:0007275 0.04073998
Terms from molecular function (MF) and biological process (BP) are shown.
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