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Abstract—To increase the generalization capability of VQA
systems, many recent studies have tried to de-bias spurious
language or vision associations that shortcut the question or
image to the answer. Despite these efforts, the literature fails
to address the confounding effect of vision and language si-
multaneously. As a result, when they reduce bias learned from
one modality, they usually increase bias from the other. In this
paper, we first model a confounding effect that causes language
and vision bias simultaneously, then propose a counterfactual
inference to remove the influence of this effect. The model
trained in this strategy can concurrently and efficiently reduce
vision and language bias. To the best of our knowledge, this
is the first work to reduce biases resulting from confounding
effects of vision and language in VQA, leveraging causal explain-
away relations. We accompany our method with an explain-away
strategy, pushing the accuracy of the questions with numerical
answers results compared to existing methods that have been an
open problem. The proposed method outperforms the state-of-
the-art methods in VQA-CP v2 datasets. Our codes are available
at https://github.com/ali-vosoughi/PW-VQA,

Index Terms—Visual Question Answering (VQA), bias re-
duction, language-vision interactions, confounding effects, causal
inference.

I. INTRODUCTION

ISUAL Question Answering (VQA) systems, positioned
Vat the confluence of computer vision and natural lan-
guage processing, are designed to provide natural language
responses to queries based on both an image and a ques-
tion. The effectiveness of these systems is contingent upon
their ability to synergize visual and linguistic information,
yielding accurate and robust answers pertinent to the images
in question. However, despite advancements in integrating
language-vision modalities, a prevailing issue in many VQA
models is their propensity to shortcut directly from vision
or language inputs to answers without fully leveraging the
interplay between these two modalities [L], [2], [3]. This
tendency, known as vision or language bias, results in an
overdependence on one of these modalities and has been
extensively investigated in recent research [4]], [S], [2], [6],
(71, [3I.

To address these challenges, VQA models often resort to
forming spurious correlations. They may either base their
answers solely on the visual modality or directly link questions
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Fig. 1: The visual cognition of annotators, influenced by
linguistic factors [9], affects the formulation of questions
and selection of corresponding answers. Rubin’s vase [10]]
exemplifies how memory and experience shape an annotator’s
perception.
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to answers, thereby circumventing the necessity for compre-
hensive multimodal reasoning. A striking instance of this can
be found in a VQA dataset where the answer “tennis” to
sports-related questions is correct 60% of the time, irrespective
of the visual context [11]], [7]. This highlights a critical flaw in
these models: their tendency to forge direct, albeit superficial,
connections between questions and answers, sidestepping an
in-depth multimodal interrogation. A significant development
is the VQA-CP dataset [12], created in response to these
identified shortcuts in earlier VQA datasets [11]. The VQA-CP
dataset aims to evaluate the generalizability of VQA models
under shifting prior conditions. If a model relies on shortcuts,
it is expected to falter when faced with altered distributions
between training and test sets.

Approaches to tackle the VQA-CP challenge can be cate-
gorized into four primary methodologies. The first category
comprises methods targeting language-only biases, modifying
the language module, or utilizing a form of language prior
to suppress or control language-centric shortcuts. Examples
include isolating question-only branches or incorporating a
language prior that can be subtracted or masked within the
model [5], [2l], [6]. The second category includes methods
that focus on mitigating vision-only bias. These methods
aim to reduce visual bias or enhance visual attention by
incorporating human feedback as new visual input for training,
thereby increasing the model’s focus on visual data or reducing
contextual biases that directly link vision to the answer [13],
[14], [15]. However, both these categories often overlook the
potential influence of the other modality on the bias.

Another approach involves synthesizing new data to balance
and augment the training distribution, a strategy initially intro-
duced by the VQA-CP dataset. Most methods in this category
employ generative models to synthesize and augment visual
and linguistic data, striving for balanced distributions [16]],
(170, L8], [19], [20]. Nevertheless, these methods sometimes
neglect the core intent of the VQA-CP dataset: to challenge
models with imbalanced training and test distributions, thereby
assessing their generalization capabilities.

Lastly, we introduce a category of methods that aim to con-
currently mitigate both language and vision biases, considering
the dual modalities of vision and language for robust mul-
timodal inference. This approach recognizes the intertwined
nature of these biases and seeks a more holistic solution that
addresses the complexities of VQA systems.

Causal inference, resonating with contemporary research
addressing biases in VQA, has catalyzed diverse studies across
multiple computer vision domains. These include visual ex-
planations, scene graph generation, image recognition, and
various learning paradigms like zero-shot, few-shot, and incre-
mental learning, along with representation learning, semantic
segmentation, and vision-language tasks [21], [22]], [23]], [24]],
(250, 1260, 1271, (28], 290, [130], [16], (31, [132], [33], [34].
Counterfactual learning, in particular, has emerged as a sig-
nificant influence in recent VQA research [16]], [31], [17].

This shift towards causal reasoning underscores its impor-
tance in developing more sophisticated and unbiased VQA sys-
tems. Exploring counterfactual scenarios is especially promis-
ing for reducing biases and enhancing the reliability of VQA

models.

Drawing inspiration from the inherent biases in VQA
datasets, we propose that these biases may be rooted in the
design of the models themselves. For instance, the personal bi-
ases of data collectors, such as a preference for a specific sport
like tennis, could lead to a disproportionate representation of
related data. This, coupled with their experience and cultural
background, influences how they annotate the data [9]], [LO],
[35], [36]. Visual perception, a complex process influenced
by memory and cultural factors, can affect an annotator’s
decision-making process, as illustrated by the classic example
of Rubin’s vase (1916), shown in Figure [I] This raises a ques-
tion: Could machines also develop different perceptions based
on how they are trained? The resulting biases in preference
and perception potentially confound VQA datasets and affect
their generalizability.

We further elucidate the phenomenon of collider bias within
the paradigm of vision-language interplay. The term collider
bias refers to the situation where the existence of one variable
makes another variable appear insignificant, a concept deeply
investigated in the field of causal inference literature [37]. To
illustrate, consider the scenario where a person is identified
as a celebrity based on their wealth or physical attractiveness.
Once the person’s wealth is known, the importance of their
physical attractiveness in determining their celebrity status is
reduced. In the realm of VQA, a strong correlation between
a question and its answer can lessen the importance of visual
data in formulating the answer, thereby introducing a bias.

In response to the limitations of current models like CF-
VQA, which predominantly address language bias while often
neglecting visual information, we introduce a novel system,
Possible Worlds VQA (PW-VQA). Our approach stands in
contrast to existing methods by concurrently addressing spu-
rious correlations in both vision and language. PW-VQA
employs a causal method to mitigate the confounding effects
inherent in these two modalities. This model not only tackles
the bias issue but also recognizes that biases often stem
from datasets collected with inherent prejudices. By excluding
biases originating from cultural influences in data collection,
PW-VQA strives to remove biases in both vision and language,
thereby enriching the multimodal capabilities of the system.
Empirical evidence demonstrates that after training to remove
these biases, PW-VQA exhibits significantly reduced bias in
either language or vision modalities during testing. Notably,
PW-VQA has shown remarkable performance improvements,
especially in answering numerical questions, a challenge that
has stymied previous models.

Our contributions are as follows. 1) We propose a causal
graph separating the problem into two sub-graphs of anticausal
learning and an explain-away network. We simultaneously
model the visual and linguistic biases through the explain-
away network to distinguish between bad and good language
and vision biases. We model the experience bias of the anno-
tator as an unobserved confounder that influences the choice
of question and answer pairs. 2) We propose a counterfactual
approach to reduce these bad biases while keeping the good
ones. To the best of our knowledge, our work is the first to
propose a causal method to simultaneously alleviate language
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and vision biases. 3) We double the accuracy of the numerical
questions, which has been an open question recently [7].

II. RELATED WORK

In this section, we cover existing literature on VQA,
focusing on the various approaches developed to enhance
multimodal VQA models and the diverse strategies employed
to identify and mitigate biases.

A. Linguistic Bias in VQA

Linguistic bias in VQA, where language inputs in questions
lead to answers via shortcut learning, has garnered significant
attention. Key approaches in this area involve data augmenta-
tion strategies [38l, [39], [40l, [16]], [17], [18], [19]. Wen et al.
[41] introduced a novel technique, DDG, designed to diminish
biases in VQA models by generating and employing both
positive and negative image-question pairs for training. Other
methods include masking language inputs to prevent reliance
on textual shortcuts [S], [2l], [6] and fortifying the vision
component in VQA systems [13], [14]. Additionally, a test-
time adaptation method presented in [42] actively identifies
and mitigates biases in the test data.

An emerging trend in combating language bias involves
direct modifications at the model level, as opposed to data-
centric augmentations. This approach, which aims to struc-
turally reduce bias, is extensively discussed in works by Niu
et al. [7l], Goyal et al. [40], Agrawal et al. [12], and Nguyen
et al. [43]. These model-level interventions offer a promising
direction for creating inherently unbiased VQA systems.

B. Visual Bias in VQA

The interaction between different modes, like vision and
language, or within visual modes across different frames or
resolutions, has always been a significant issue [44], [45],
[46]. However, exploration of visual bias in VQA systems
represents a significant paradigm shift in the field, especially
given the historical predominance of language as the primary
source of bias. Recent studies have increasingly recognized
the critical role of visual biases, which have been somewhat
underrepresented in past research [8]]. These biases emerge
from VQA systems forming simplistic correlations directly
from visual contextual cues to the answers, bypassing the need
for deeper analytical processing [47]. This trend underscores
the necessity of addressing biases that arise from the learning
of specific visual elements, such as color and pixel patterns, or
the overall context of the image. Moreover, there is a growing
emphasis on the importance of accurately focusing on relevant
parts of an image, a key area where biases can manifest [47].

Cho et al. [48] put forward a groundbreaking method utiliz-
ing Generative Adversarial Networks (GANSs). Their approach
is centered on learning the bias distributions in a target VQA
model’s data, with the aim of using this insight to train the
model for greater resilience against such biases. The study
by Liu et al. [49] tackled compositional generalization by
creating a framework that enhances VQA performance through
dense interactions within and between modalities. Jing et al.

[50] suggested a dialog-like reasoning that merges reasoning
for sub-questions into the main process, using consistency
rules to ensure logical answer predictions [50]. Li et al.
[51] investigated the impact of primitives for compositional
generalization in vision-and-language tasks. They introduced
a self-supervised learning framework that provides vision-and-
language methods with semantic consistency and stability,
proving its effectiveness in tasks like video grounding over
time and visual question answering [S1]. Additionally, Zhang
et al. [52] introduced a causality-based multimodal interaction
enhancement strategy tailored for multiple-choice VQA sce-
narios. This method specifically aims to mitigate the vision-
answer bias, a critical and often overlooked component of
visual bias in VQA systems.

C. Memory Bias in VQA

Memory bias in VQA underscores the impact of human
culture, experience, and belief systems on the perception of
images and language. The way annotators, influenced by
their individual backgrounds, perceive images and interpret
questions can lead to significant biases in dataset formulation
[7]], [12]]. Such biases imply that identical images might evoke
diverse questions and answers, further complicated by the
intricacies of visual memory bias. Recent studies like those
by Liu et al. [35] and Zhang et al. [36] have delved into
this issue, highlighting that visual memory bias can be shaped
by various factors, including the language, location, time, and
cultural context of annotators.

A notable aspect of memory bias is its geographical and
cultural slant, predominantly favoring North American and
Western perspectives [35]. Current initiatives are focused on
diversifying datasets to encompass a broader range of cultures
and languages, thereby countering this skewness. Memory bias
is not only about the diversity of content but also how the
same visual stimulus can be interpreted differently. This is
exemplified in Figure [T} showcasing a visual illusion where
a single image can be perceived in multiple ways, such as
seeing a vase or two faces. These kinds of visual illusions
and memory biases introduce considerable variability in the
annotation process of VQA datasets, leading to a range of
questions and answers for the same image.

D. Causality in VQA

Causality-inspired methods in VQA have increasingly em-
ployed counterfactual and interventional techniques, focusing
on vision-language tasks. These methods have shown remark-
able efficacy in both data generation and model-based inter-
ventions, substantially enhancing the capabilities of existing
VQA models [7l], [L, [21], [530], [22], [23]. A significant
part of these efforts involves the synthesis of data pairs to
equilibrate training datasets across various models [16], [31],
[L7].

In the forefront of this domain, Zhang et al. [52]] introduced
a causality-based multimodal interaction enhancement method
specifically tailored for multiple-choice VQA scenarios, aim-
ing to reduce vision-answer biases. CopVQA [43] represents
another stride in the field, enhancing VQA generalization by
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delineating causal reasoning pathways between multimodal in-
puts and question answering. The application of counterfactual
techniques to minimize language biases in VQA is particularly
noteworthy [7]], [2], [LL].

Our approach diverges from the prevailing trend in the lit-
erature, which largely concentrates on de-biasing through data
augmentation or reducing language priors. We adopt a novel
perspective, exploring language-vision bias through the lens of
causality. This approach advocates for a more robust utilization
of multimodal information to facilitate unbiased inference,
even under conditions where training data is inherently biased.
By doing so, we aim to contribute a unique dimension to the
realm of causality in VQA, addressing the intricate interplay
between language and vision biases more holistically.

III. MOTIVATION AND BACKGROUND

Our method is motivated by Counterfactual VQA, CF-
VQA [7]], which was motivated by Reducing Unimodal Biases
for VQA, RUBI [2]. We review these two methods and their
evolution in and and then discuss their limitations
in

A. Reducing Unimodal Biases for VOA

The undirected graph of a RUBI is shown in Figure [2a
with {V,Q, K, A, M'} as set of nodes, V: image, @: question,
K: multimodal knowledge, A: answer out of a set of answers
A = {a}, M: question mask. Fq is an encoder for questions,
and Fy is for images. Consequently, a multimodal function
Fvq is used to obtain k = Fyg(v,q). An auxiliary neural
network mn, is trained to classify answers based on only
{q,a} pairs. Then, the classification head is discarded at
inference to obtain the masks m = o(nny(Fg(q))), where
o is the sigmoid function. The masks are then applied to the
multimodal classification £ ® m to reduce the language bias.

B. Counterfactual VQA (CF-VQA)

CF-VQA uses counterfactual thinking and causal inference
to improve RUBI, by only adding one learnable parameter.
The causal graph of CF-VQA is shown in Figure 2b] The
graph G = {V, £} is a Directed Acyclic Graph (DAG), where
V = {V,Q, K, A} with a set of causal edges such that if
@ — K, then @ is a direct cause of K. Moreover, () is an
indirect cause of A through the mediator K, as Q — K — A.
The causal edge assumption states that every parent is a direct
cause of all its children. The answer a can be defined in a
multi-class classifier using logits (score) Z. Therefore, for h
as a fusion function, for question ¢, image v, and multimodal
knowledge k, these scores for question-only, multimodal fused
and vision-only are:

Zq:fQ(q)a Zv:fV(v)a Zk:fVQ(Uvq)7
Zywi =W2Z4, 2y, Zy),
Denoting answer score Zg 1, as:
Zq,v,k:Z(Q:%V:'UaK:k)a (2
the total effect (TE) of V = v and @ = g on A = a, according
to [7], is defined as:

TE = Zq,v,k’ - Zq*,v*,k*7 (3)

(1

where Zg« .~ i~ is answer logits Z for counterfactual question
q*, counterfactual image v*, and counterfactual multimodal
knowledge £*. The total effect can be decomposed into natural
direct effect (NDE) and total indirect effect (TIE):

TE=TIE+ NDE. (G))
NDE for the question-only branch is Q — A by comparing
Zq71,*7k* and Zq*,v*,k*:

NDE = Zg e ir — Zge e v 5)
Finally, using (), @), and (3)), TIE will be:
TIE = Zgvk = Zgv- k> (6)

as shown in Figure Consequently, the logits Z, ,  is
parametrized as Fg: @ — A, and Fyg: (V,Q) - K — A.
The question-only and vision-only logits Z, and Z, will be

as:
7 = {Z’) = 75()
2y =c

if B=b
ifb=0"’
where B € {Q,V'}, and c as a constant, learnable feature, as

described in [7]], and z; is a counterfactual realization of Zj.
Furthermore, multimodal knowledge’s logit Z; is defined as:

7, = 2z = Fvo(v,q) ifV:vandQ:q. ®)
zp=c fV=gorQ=9g

(7

C. Limitations of Prior Methods

Addressing Visual and Language Biases in VQA: While
the predominance of language biases in VQA systems has
been extensively studied, visual bias remains relatively un-
derexplored. Recent investigations reveal that VQA systems
may bypass essential visual analysis, relying instead on con-
textual cues such as color or spatial information [47]. In
more comprehensive studies, such as those conducted on
UrbanCars and ImageNet-W datasets, the phenomenon of
multi-shortcut learning was observed, where models depend
on various spurious visual cues, overshadowing primary visual
concepts [54]. A critical challenge identified is the inadver-
tent amplification of one type of bias when attempting to
mitigate another [54]. Our work introduces a counterfactual
explain-away framework, aiming to concurrently alleviate both
language and vision-related biases, thereby enhancing the
robustness of VQA models.

Impact of Memory on Perception in VQA: The influence
of memory on visual perception is a critical aspect that shapes
the interpretation of images in VQA systems [9]. This concept
is exemplified through Rubin’s face illusion [10]], as illustrated
in Figure [I] Rubin’s theory on memory bias suggests that an
individual’s past experiences significantly shape their percep-
tion of visual information [10f], [55]. Studies further indicate
that factors like language, geographical context, and temporal
aspects can profoundly affect image interpretation [9], [36],
[35]. Our approach proposes to consider the experience of the
annotator as an unobserved confounder, thereby addressing the
issue of experience bias. This method aims to provide a more
nuanced and unbiased understanding of visual content in VQA
systems.
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(a) RUBI

(b) CF-VQA graph

ZCl.v,k Zq,v*,k*

(c) Total indirect effect

Fig. 2: VQA graphs related to RUBi and CF-VQA are shown. a) In RUBI, question ) and image V are fused through
multimodal knowledge K to obtain an answer A, while question-only mask M is applied on K; b) causal graph of CF-VQA
is shown, where () — A and V' — A are vision and language shortcuts, all V', @), and K are factual; ¢) output of VQA with
counterfactual question ) = ¢* and vision V = v* is subtracted from a regular VQA with factual V = v and @ = gq.

IV. POSSIBLE WORLDS VQA (PW-VQA)

In this section, we explain the proposed method in five
subsections. First, we simultaneously model the language and
vision bias using a causal view. Then we model experience
bias as unobserved confounders of the VQA systems. Third,
a counterfactual method is proposed in the subsequent sub-
section to solve these problems. Fourth, we propose a novel
strategy to fuse multimodal vision and language information
in VQA systems. Finally, we detail the architecture of the
proposed method.

Fig. 3: The proposed causal graph reformulates the VQA
problem by stating that a) the answer A is a cause of the
question (), and vision V, and the final estimated answer A
is achieved by fusing V' and @ information. b) The anticausal
subgraph consists of the ground-truth answer A that is a cause
of the V' and @), which leads to multimodal knowledge K. c)
The collider Q — A+ Visan explain-away network that
models the language-vision bias.

Assume that a multimodal knowledge K contains fused
information of question () and vision V used in a VQA
system. We propose the causal graph G = {V, £} with the set
of nodes V = {Q,V, K, A,/l}, which is shown in Figure
to model VQA systems.

Inspired by the anticausal learning [S6], [S7], we model the
answer A as a cause of both the images V' and question Q.
Unlike previous works [7], [2]], [1], we distinguish between the
ground-truth answer A for the training of the VQA model and
the estimated answer A when the model is used in practice
(test). Therefore, as shown in Figure , @ and V have a
causal effect on K and are also a child of the answer A.

:,{ q

a8

Fig. 4: The multimodal knowledge K = k* is counterfactual,
while Q and V are facts (Q = ¢,V = v, K = k*), then, the
natural indirect effect (NDE) is subtracted from the total effect
(TE) to obtain total indirect effect (TIE). The values V =wv
and Q = q are fact, and V =v* and Q) = ¢*, which leads to
K =Fk* are counterfactuals.

A. Collider Confounder in Vision and Language

The relationship () — A creates a spurious correlation
between the question @) directly to the answer A. Therefore,
the V. — K — A information is ignored. Contrarily the
VQA models may shortcut visual information to answer
V — K — A rather than multimodal knowledge [47]. By
looking at the subgraph shown in Figure 3k, the explain-away
network, or collider bias network simultaneously can model
vision and language bias. The relationship @) — AV
is a collider, a primitive graph structure, aka explain-away
network. Consequently, having a strong connection Q@ — A
removes the dependency of the AonV. Noteworthy that there
are useful information and harmful biases in both vision and
language. Our explain-away method aims to remove biases but
keep good information. Therefore we introduce the collider of
Q — A « V as a source of vision-language bias in VQA
models.

B. Memory Bias as an Unobserved Confounder in VQA Sys-
tems

In the context of VQA systems, our investigation highlights
a novel source of confounding bias, predominantly stemming
from the annotator’s experience during dataset preparation, as
illustrated in the proposed causal graph G. This form of bias,
termed ‘memory bias’, is exemplified by the visual illusion
challenge depicted in Figure |1} Specifically, this bias emerges
when annotators select questions () and formulate answers
A based on a visual input V, with their judgments being
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Y

|4

Fig. 5: The causal graph of the VQA where the question )
and the answer A are influenced by unobserved confounder

U.

inherently influenced by personal experiences and preferences.
This introduces an unobserved bias U, which critically impacts
the outcome.

The proposed causal graph for VQA models, incorporat-
ing this unobserved confounder, is detailed in Figure E} To
dissect the influence of this bias, we analyze various causal
paths leading to the predicted answer A. These paths include
U—>A—>Q—>K-—>AandU - A — V — A, which
directly link the unobserved bias through annotator’s answers
to the visual and question-related elements of the VQA system.
Additionally, the path U - A -V — K — A underscores
the compound effect of bias when considering both visual
and knowledge-based elements. While paths originating from
U — (@ are also present, our primary focus is on those
impacting K — A, as they are most relevant to the predictive
mechanisms of VQA models.

C. Explain-Away Fusion Strategy (EA)

We propose the following Explain-Away (EA) fusion func-
tion as follows. For parametrization, we use similar notations
as [[7]]. Therefore, the score Z, , ; which is the feature space
of the fusion K, is parametrized as Fg: QQ — /1, and Fyg:
(V,Q)— K — A.

Based on Z,, Z,,, and Z},, we define the fusion function as
follows:

(EA)

where Zg, is defined as:

Zga =0(Zy)*0(Zy)* T o (Zy)>
+0(2,)° " 0(2,) 0 (2)* "
+0(Z)* o (Z,) o (Zy)?,

with @ > 0 being a tunable parameter determined through
empirical experimentation. The choice of « influences the
balance between the contributions of each feature space, thus
affecting the model’s ability to mitigate biases effectively. Our
empirical analysis, discussed later, provides insights into the
selection of an optimal value for o that ensures a balanced
representation of both visual and linguistic aspects in the VQA
process.

1
h(quZ’UvZk‘) - o log(ZEA)7 (9)

+1

(10)

D. Unobserved Confounding Bias Reduction

Since the model relies on the fused information K of V' and
@, and as shown in Figure 4] the confounding bias of vision-
language can be removed by maximizing the total indirect

effect (TIE) by subtracting natural direct effect (NDE) of this
confounding influence from its total effect (TE) [38]:
TIE =TE — NDE 1

=h(Zy, Zy, Zi) — W24, Zy, Zy~ ), (b
where K* is a counterfactual of K, as described in (8). As
the influence of the unobserved confounding bias is subtracted
in (TT), it will block the influence of the explain-way explain-
away of vision-language and experience biases altogether. By
blocking the two paths V' — K and () — K, all influences
from unobserved confounding bias are blocked.

E. Architecture of the PW-VQA

Here we discuss the PW-VQA framework’s architecture,
shown in Figure /] The framework consists of two branches:
regular VQA, which can be of any baseline method, and the
counterfactual version of the same network and parameters,
shown as a biased branch in the figure. Four different losses
are simultaneously used during training to formulate the causal
relationship between each modality. In addition, a constant ¢
is jointly trained here to capture the natural indirect effect
of vision-language confounding biased injected during the
annotation process. Finally, in the inference stage, PW-VQA
uses the logits of regular VQA subtracted by the biased VQA
and gets a debiased answer. The letters a in this figure denote
the answer.

Training: For the training of the network, we use vision-
only branch Ly4(v,a), question-only branch L£g4(q,a), and
multimodal fusion branch Lyga(v,q,a). As illustrated in
Figure [5| given a triplet (v,q,a) where a is the ground-
truth answer of image-question pair (v, q), the branches are
optimized by minimizing the cross-entropy losses over the
scores Zg .k, Zq and Zy,: [l

Los = EVQA(U,q,a) +£QA((],CL) +£VA(U7CL), (12)
where Lyga, Lga and Lya are over Zg, i, Zg and Z,.
A learnable parameter ¢ in Eq. (7)-(8), which controls the
sharpness of the distribution of Z; - j~ is also included, as
the sharpness of NDE should be similar to that of TE [68]],
[7]. An improper ¢ would lead to the domination of TIE in
Eq. (TI) by either TE or NDE. Thus, we use KL-divergence
to estimate c:

ﬁkl Z _p(a|q7v7k) 10gp(a|q,v*,k‘*),

_ 1

|A| acA
where p(alg,v, k) = softmax(Z,, ) and p(alg,v*, k*) =
softmax(Zy = k= ). Only ¢ is updated when minimizing Ly;.
The final loss is the combination of L5 and Ly;:

Z Ecls + £kl
(v,q,a)€D
A key question arises regarding the balancing of these two loss
components in expression (I4). To explore this, we conduct
a series of ablation studies, examining the impact of different
weightings on the overall performance and learning dynamics
of the model. This investigation aims to determine the optimal
balance that maximizes the model’s effectiveness in handling
the complexities of VQA tasks.

13)

Efinal = (14)
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TABLE I: The table lists the accuracy values for the most recent studies, especially on both VQA-CP v2 and VQA v2 datasets.
We show the best-performing method with bold and the second-best-performing method with an underline. We use a dash for

the papers that miss reporting performance values on datasets.

Test set VQA-CP v2 test VQA v2 test

Methods Base Al T YN [ Num. [ Other | Al [ Y/N [ Num. [ Other

GVQA [12] - 31.30 5799 13.68 22,14 4224 7203 31.17 34.65

SAN [59 - 2496 3835 11.14 21.74 5241 70.06 39.28 47.84

UpDn [60] - 39.74 4227 1193 46.05 6348 81.18 42.14 55.66

BLIP-1 [61] 3442 5497 1448 3510 5459 70.70 40.00 46.21

BLIP-2 [62] - 3493 5221 15.15  36.10 - - - -

S-MRL [2] - 3846 4285 1281 4320 63.10 - - -

Methods based on modifying language module or using language prior:

DLR [4] UpDn 48.87 7099 1872 4557 5796 76.82 3933 4854

VGQE [63] UpDn 4875 - - - 64.04 - - -

VGQE [63] S-MRL 50.11 6635 27.08 46.77 63.18 - - -

AdvReg. [5] UpDn 41.17 6549 1548 3548 62775 79.84 4235 55.16

RUBI [2] UpDn 4423 67.05 1748 39.61 - - - -

RUBI [2] S-MRL 47.11 68.65 2028 43.18 61.16 - - -

LM 6] UpDn 48.78 72778 1461 4558 63.26 81.16 4222 5522

LM+H [6] UpDn 52.01 7258 31.12 4697 5635 65.06 37.63 54.69

CF-VQA (SUM) [7]  UpDn 5355 9115  13.03 4497 6354 8251 4396 54.30

CF-VQA (SUM) [7] S-MRL 5505 90.61 21.50 45.61 6094 81.13 43.86 50.11

GGE-DQ-tog [64] UpDn 5732 87.04 27775 49,59 59.11 7327 3999 54.39

Methods based on reducing visual bias or enhancing visual attention/grounding:

AttAlign [13] UpDn 39.37  43.02 11.89 45.00 6324 80.99 4255 5522

HINT [13] UpDn 46.73 6727 10.61 4588 63.38 81.18 4299 55.56

SCR [14] UpDn 4945 7236 1093  48.02 6220 78.80 41.60 54.50

Methods mitigating both language and vision:

LMH-+Fisher [8] UpDn 5455 7403 49.16 4582 - - - -

PW-VQA (ours) UpDn 59.06 8826 5289 4545 62.63 81.80 4390 53.01

PW-VQA (ours) S-MRL  60.26 88.09 59.13 4599 61.25 8032 43.17 5153

PW-VQA (ours) BLIP-1  49.53 8436 4538 3324 4556 6148 27.39 3842

PW-VQA (ours) BLIP-2 4584 85.17 19.16 3273 - - - -

Methods that synthesize data to augment and balance training splits:

CVL [17] UpDn 4212 4572 1245 4834 - - - -

Unshuffling [18] UpDn 4239 47772 1443 4724 68.08 7832 42.16 52.81

RandImg [65] UpDn 55.37 83.89 41.60 4420 5724 76.53 33.87 4857

SSL [19] UpDn 5759 86.53 2987 50.03 6373 - - -

CSS [16] UpDn 5895 8437 4942 4821 5991 7325 39.77 55.11

CSS+CL [66] UpDn 59.18 8699 4989 47.16 5729 6727 3840 54.71

Mutant [67] UpDn 61.72 8890 49.68 50.78 6256 82.07 4252 53.28

LMH+ECD [20] UpDn 59.92 8323 5259 4971 5738 69.06 3574 54.25

SAN UpDn S-MRL
1004 e %+EA 1004 § %+F|>EA 1004 © %+EA
® [ ]+PW-VQA m [ ]+PW-VQA o = [ ]+PwW-vQA
__ 80+ _ 80+ > __ 80+ Q
o) - g ~ 8 e 8 N 8 2 5
360{ b i z60{ 2 5 360{ o
g sl - M L2c I I - 253 g1 o EN 5 o3¢
3 40, §H il S5 g 340 & = = 40| 8 = B
< < _ < I
< o © o~ N
AL B B HI RN B HD RN BN R
All Y/N Num.  Others All Y/N Num Others All Y/N Num Others

Fig. 6: The plots show the backbones using our proposed causal framework (PW-VQA) and fusion strategy (EA). The results
are consistently improving for all three different backbones, namely, SAN [59], S-MRL [2], and UpDn [60].

Inference. For the inference, we use the debiased causal
effect for inference, which is implemented as:
TIE =TE — NDE = Zg 4, s — Zg v i+

15
= h(zq, 2v, 2x) — h(2q, 2 (15

*
v

*

k

V. EXPERIMENTS
A. Experimental Setup

In our study, we employed a robust experimental framework
to validate the efficacy of our VQA model. The experiments

were conducted using the VQA-CP v2 dataset [[12], and VQA
dataset [11], which comprises approximately 438K training
and 220K test questions, all in English. This dataset was
chosen for its comprehensive coverage of question-answer
pairs, providing a suitable benchmark for our model.

Model Backbones: Our VQA model was applied on
three core backbones: Stacked Attention Network (SAN)[59],
Bottom-up and Top-down Attention (UpDn)[60], Simplified
MUREL (S-MRL)[3]], [2]], BLIP-1[61], and BLIP-2 [62] net-
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Fig. 7: Network architecture of the proposed PW-VQA frame-
work.

works. We further explore generative model of BLIP-1, pre-
trained with web data, excels in zero-shot performance for
video language tasks, while BLIP-2 leverages a lightweight
Q-Former for multimodal representation alignment. For imple-
mentation of both BLIP-1 and BLIP-2 models, we use their
feature extractor for image and text, and use an attention layer
to obtain multimodal features. Finally, we concatenate these
features with question and image features extracted by BLIP
encoders. We then use this joint feature as a logit for the
classification layer.

Hardware Specifications: The experiments utilized
NVIDIA GeForce GTX 1080 Ti, RTX A6000, A100, and
RTX 4090 GPUs based on availability on our local servers.
This choice of hardware demonstrates the model’s adaptability
to different computational environments. It is noteworthy that
the model is operable even on a singular GeForce GTX 1080
GPU.

Training and Validation: Training durations varied based
on the backbone used: approximately 8 hours for SAN and an
average of 3 hours for both S-MRL and UpDn. The training
for BLIP models takes longer and is in the range of 12 hours.
Validation on the test split of the dataset was completed in
about 10 minutes. The model’s performance was evaluated
using accuracy as the primary metric.

Hyperparameter Optimization: A manual search was
conducted to identify optimal hyperparameters. Our empirical
findings indicated that the model does not converge for o < 1,
leading to the establishment of o > 1 as a lower bound. The
value of o = 1.5 was identified as optimal, resulting in the
best performance across multiple trials.

Training Convergence: The model consistently converged
to stable results within 22 epochs, negating the need for
additional training beyond this point. We utilized a batch size
of 256 for all experiments. Through this rigorous experimental
setup, we aimed to ensure the robustness and reliability of our
proposed VQA model, adequately addressing the challenges
posed by biases in both vision and language modalities.

B. Quantitative Results

To compare our method with the available literature on the
benchmark datasets, we list the performance values in Table. [I}
Then, to compare reasonably with the existing methods, we
divide them into four categories: 1) Methods like DLR [4],
VGQE [63]), AdvReg [5], RUBI [2], LM [6], LM+H [6], CF-
VQA[7ll, GGE-DQ-tog [64] modify language modules or use
language before suppress, control, or mask language shortcuts.
However, these methods only consider spurious language
correlations and neglect vision in their schema. 2) Some ap-
proaches, such as AttAlign [[13]], HINT [13]], SCR [14] mitigate
visual biases by loosening contextual ties to the answer or
improving visual grounding and attention via human feedback,
de-coupling shortcuts that couple vision to answer. 3) Other
approaches like LMH+Fisher [8] mitigate both language and
vision bias together, attempting to balance two modalities of
vision and language for robust multimodal inference. Our
proposed method here is in this class. 4) Methods such
as CVL [17], Unshuffling [18], Randlmg [65], SSL [19],
Mutant [67], CSS [16], CSS+CL [66], LMH+ECD [20] syn-
thesize samples and augment data to balance training and test
sets. Some of these methods also have higher accuracy than
counterparts, for instance Mutant in [I[} however, since these
methods are based on balancing distributions and violate the
main idea of the VQA-CP v2 dataset, it is not fair to compare
them with our method. We include them in our results for
inclusiveness.

As listed in Table. Il our method outperforms most of the
competing methods on the benchmark datasets, especially in
numerical questions, which was introduced as an open problem
recently [7]. Moreover, the results indicate that our method
improves the accuracy of all the S-MRL, UpDn, BLIP-1, and
BLIP-2 backbones, demonstrating that they are generalizable
to all of these architectures. Noteworthy to mention that
there are higher accuracy values for methods that augment
data. In contrast, these methods are not comparable to ours
as they do not obey the main idea of the VQA-CP v2
dataset, conducting unbiased inference under biased training.
Simulation results of our proposed EA fusion strategy and
the PW-VQA are shown in Figure [} Both the EA fusion
strategy and PW-VQA framework increase the accuracy of
all question types. Particularly, the accuracy of numerical
results with SAN as backbone increases from 12.4 to 37.6
by adding EA fusion and further increases to 57.7 by adding
the PW-VQA framework. Furthermore, the improvements are
consistent for all backbones, including SAN, S-MRL, and
UpDn. More improvements can be achieved using large pre-
trained language-vision open-ended generative models. In our
experiments, we employed the generative BLIP decoder [61]]
and CLIP encoders [69] as an exemplary model, which we
will discuss later.

C. Qualitative Results

In our qualitative analysis, we conducted simulations on
the VQA-CP v2 dataset to compare the performance of our
method against CF-VQA and traditional VQA systems. Se-
lected examples from this dataset are illustrated in Figure [§]
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Q: Is she eating?

Regular CF-VQA

42.4 yes 31.3 no

36.6 cat 299 yes

1.2 no 13.7 nothing
0.1 donut{] 5.5 none
0.1 doughnut | 2 unknown

Q: How many people are walking on the beach?

nothing
unknown

none

Regular CF-VQA Ours

3 375 3 35.2 2 40.6
4 21.8 4 29.2 3 22

1 20.2 2 26 47135
54]6.1 1434 14{]99
2445 532 5438

Q: How many doughnuts are there?

many
12

NG I R N

several

9
Q: How many giraffes are seated?

Regular CF-VQA Ours
3 403 1 342
2 40.1 0 28.9
44197 3477138
025 247126
1416 4139

Q: How many people?

Regular CF-VQA

0 26.4 4 18.4 0
3 157 0 136 1
4 13.8 7 10.4 3
6165 10 10 2
2416 64185 4

Q: What type of bench is in the picture?

Regular CF-VQA Ours
wood 49.8 bench 45.1 wooden 39.2
& wooden 35.6 wooden 18.8 wood 36.1
bench 0.8 park bench 4 0.7
metal 4 0.3 wood none 4 0.5
stone 4 0.3 brick stone 4 0.4

Fig. 8: Bar plot comparison of answer correctness probabilities in the VQA-CP v2 test split: Regular VQA, CF-VQA [,
and our method. Each bar represents the probability (out of 100%) that a given method’s answer is correct, with the red bars,
characterized by a sparse pattern, indicating ground-truth values.
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Fig. 9: The distributions of the train, test sets, the previous methods, namely regular VQA, CF-VQA [[7]], and our proposed
method are shown. Note that there is a subtle difference between “how many” questions versus questions with “numerical”

answers, which is related to the difference between recognizing

These examples demonstrate our method’s reduced suscepti-
bility to biases inherent in language and vision. For instance,
when presented with an image of a cat and a woman and
the question “Is she eating?”, our method accurately denies
the action, whereas traditional VQA incorrectly affirms it.
Notably, CF-VQA displays a pronounced bias towards the
more visually salient object (the cat) in the image, erroneously
responding with high confidence to the unrelated answer “cat”.

Furthermore, both traditional VQA and CF-VQA fail to
effectively utilize key information from questions, leading to
biased responses influenced by prominent visual elements like
foreground animals.

A critical factor in our method’s enhanced performance is
the integration of the Explain-Away (EA) fusion mechanism.
EA fusion is pivotal in our approach, ensuring a more balanced

“numerical” rather than counting ”how many”.

consideration of the image, the textual content of the question,
and the multimodal knowledge K. This balanced approach,
distinct from existing methods, allows for a harmonious inte-
gration of visual, textual, and contextual information.

Through the EA fusion, our model processes and integrates
visual cues from images, textual semantics, and contextual
understanding from shared knowledge K. This comprehensive
approach ensures that each component receives equal atten-
tion, avoiding overreliance on any single information source.
The significant impact of EA fusion is evident in our ablation
studies, which show a notable enhancement in the model’s
performance with its inclusion, particularly in the accuracy of
numerical responses.

Finally, Figure 9| presents distributions of numerical answers
across training, testing, traditional VQA, CF-VQA, and our
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model. This visualization highlights that while CF-VQA in-
herits significant biases for numerical queries from the training
dataset, our model mitigates these biases. Our approach,
through de-confounding causal inference, achieves an answer
distribution that more closely mirrors the test dataset, thereby
reducing both language and vision biases.

D. Ablation Studies

1) Evaluating Zero-Shot Performance with CLIP-BLIP
Model: This study employs the Contrastive Language-Image
Pretraining (CLIP) model, a system trained on extensive
image-text pair datasets using a contrastive loss mechanism
[69]. We integrate CLIP as a baseline in our ablation study,
focusing on large pretrained vision-language models. CLIP
serves as both a text and image encoder in our frame-
work, operating without fine-tuning. We process (v, q,a)
tuples—comprising images (v), questions (q), and answers
(a)—by tokenizing and encoding the text components (ques-
tions and answers) with CLIP, followed by normalization.
Similarly, image features are embedded via CLIP’s image
encoder and normalized. The model architecture further incor-
porates Multilayer Perceptron (MLP) layers to generate vision-
only and language-only logits, which are instrumental in our
PW-VQA method. Fusion of image and language features
is executed through concatenation, followed by MLP-based
processing for vision-language logits derivation.

For the inference phase, we utilize the Bootstrapping
Language-Image Pretraining for Unified Vision-Language Un-
derstanding and Generation (BLIP) model [61]. BLIP’s gen-
erative capabilities, tailored for open-ended visual question
answering, complement our CLIP-based approach. To ensure
the integrity of question-only logits, we introduce zero tensors
as image inputs within the BLIP framework, thereby prevent-
ing unintended image feature influence. Subsequent processing
involves normalizing and integrating CLIP-generated features
into our PW-VQA system.

Table. |lI details the performance metrics of the BLIP-CLIP
model alongside other evaluated models. Notably, BLIP-CLIP
demonstrates superior accuracy; however, it’s important to
contextualize this finding, considering BLIP and CLIP’s ex-
tensive training on vast, high-quality image-text pair datasets.
Figure illustrates the implemented CLIP-BLIP model ar-
chitecture. In our analysis, listed in Table. [lI, our PW-VQA
method demonstrated comparable performance to the CLIP-
BLIP model. This observation prompts a critical discussion
about the metrics and criteria used for comparison. Given that
the BLIP model has been extensively trained on a vast dataset
comprising over 400 million image-text pairs, its scalability
and robustness in various scenarios differ significantly from
our other backbones that we used for PW-VQA approach. This
disparity in training data volume and diversity raises questions
about the direct comparability of these models in the context
of open-ended visual question answering.

Further, the intensive training regime of BLIP could po-
tentially mask subtleties in model performance, particularly
in nuanced or less represented scenarios within its training
dataset. Therefore, a more in-depth analysis is necessary

BLIP
Answer
Generator

BLIP
Answer
Generator

Generated Answer:
Vines have grapes that
are black.

Image-Blinded

Answer: ! o
Grapes are green. : H \EIOH-Language
F—— ! ¢ Features

Question:
— What color are the
grapes?

CLIP
Text
Encoder

CLIP
Visual
Encoder

Ground Truth
Answer:
Black

Fig. 10: The architecture of CLIP-BLIP network as a baseline
for PW-VQA. We combine generative pretrained BLIP [61]]
with encoding of the CLIP [69] as a transformer-based large
vision-language model.

to understand the interaction and efficacy of the PW-VQA
method when applied to the pretrained CLIP-BLIP framework.
Future research should focus on conducting comprehensive
studies, possibly involving diverse and challenging datasets, to
rigorously evaluate the effectiveness of PW-VQA in enhancing
the generative capabilities of models like CLIP-BLIP. Such
studies should aim to dissect the models’ performance in
various scenarios, especially where training data may not have
provided sufficient representation or depth. This approach will
enable a more nuanced understanding of the strengths and
limitations of applying causal methods like PW-VQA to large-
scale, pretrained models in the domain of visual question
answering.

2) Stabilizing Logarithmic Computations in Fusion Equa-
tions: During our examination, we identified that the inclusion
of a small constant, denoted as ¢, is crucial for maintaining
consistency in the logarithmic operations integral to our fu-
sion equations. This stabilization technique addresses potential
computational instability, particularly in scenarios involving
values approaching zero. To empirically determine the optimal
value of €, a range of constants were evaluated, and their
effects were systematically analyzed. Our experimental results,
summarized in Table. illustrate the impact of varying e
on the model’s performance during both training and test-
ing phases. Additionally, Figure [IT] visually represents these
findings, providing clear insights into the stabilizing effect of
different € values.

3) Categorized Improvements on SAN, UpDn, and SMRL
Baselines: The plots in Figure [12| show performance metrics
for different methods as baseline and percent of improve-
ments compared to baseline on each class of question types
when using our proposed method, PW-VQA. In all of these
simulations, o« = 1.4 are set. As seen in Figure [12] PW-
VQA consistently improves the existing method, confirming
the generalizability of the method to several existing methods.
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TABLE II: The table lists the accuracy values for different backbones based on VQA-CP v2 and VQA v2 datasets. We use
different backbones, UpDn, S-MRL, and CLIP-BLIP, to show the effect of the backbone on the accuracy. We show the best-

performing method

with bold and the second-best-performing method with an underline.

Test set VQA-CP v2 test VQA v2 test

Methods Base Al T YN [ Num. [ Other [ Al T Y/N [ Num. [ Other
PW-VQA (ours) UpDn 59.06 88.26 5289 4545 62.63 81.80 43.90 53.01
PW-VQA (ours) S-MRL 60.26 88.09 59.13 4599 6125 80.32 43.17 51.53
PW-VQA (ours) CLIP-BLIP 76.57 9723 6939 67.72 7817 9727 6226 67.85

TABLE III: Ablation study for the impact of varying € values
on model performance in the VQA-CP v2 test set using the S-
MRL network as the backbone. This table illustrates the effect
of different e values on the accuracy and stability of the model,
offering insights into the optimal setting for € in logarithmic
computations within the fusion equations.

€ All Yes/No Number Other
1.00 x 1012 | 58.6 87.81 58.59 45.82
5.00 x 10712 | 59.51  88.51 59.47 4577
1.00 x 10~11 | 5922  87.78 58.66 45.79
5.00 x 10-11 | 5971  88.18 58.31 45.85
1.00 x 10719 | 596 88.03 59.32 45.19
5.00 x 10710 | 5931  87.07 59.44 45.02
1.00 x 10799 | 59.44  87.71 59.6 44.77
5.00 x 10799 | 58.13  86.94 57.78 43.41
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Fig. 11: Ablation of different values of epsilon on VQA-CP
v2 test set. Variations of € has a slight effect on improving
the results, though the reason may be related to computational
stability. These results are related to PW-VQA with o = 1.5
and e = {10725 x 10712,... 5 x 107%}.

4) Comprehensive Statistical Analysis of Performance Met-
rics: This ablation study presents an in-depth statistical anal-
ysis of the performance metrics, specifically focusing on the
variance and mean values of the accuracy results of our
proposed VQA method. These statistical measures are crucial
for understanding the consistency and reliability of the model
under various conditions. The variance of the accuracy results,
listed in Table. provides insights into the model’s stability
across different datasets and question types.

5) Role of Explain-Away Strategy in Accuracy and Nu-
merical Question Performance: Table |V| presents a detailed
ablation study focusing on the impact of different backbone
architectures in conjunction with our enhanced causal graph
approach. This study is critical for understanding the effi-

cacy of the proposed counterfactual mechanism in mitigating
vision-language fusion collider bias, a notable contributor to
inaccuracies in VQA systems.

In this study, we deliberately exclude the Explain-Away
(EA) fusion strategy to isolate and evaluate the intrinsic ca-
pabilities of our causal counterfactual approach. By doing so,
we aim to provide a clearer insight into the fundamental per-
formance improvements attributed solely to the causal graph
dynamics. Our results demonstrate a marked improvement in
handling vision-language associations, particularly evident in
the enhanced accuracy of responses to numerically oriented
questions. This improvement underscores the effectiveness of
our causal graph in disentangling complex vision-language
interdependencies.

6) Effect of « Variations on Performance: In our ablation
study, we examined the influence of varying the a parameter
within the PW-VQA model. This parameter, integral to our
model’s architecture, was tested across a range from 1 to 2
to understand its effect on performance. The results of this
investigation, as detailed in Table. @ indicate that an « value
of 1.4 yields optimal performance across a majority of the
tested backbones. This suggests a potential sweet spot for a in
balancing the model’s underlying mechanisms, with significant
implications for tuning the PW-VQA model for different
applications. The table further provides a comparative analysis
of performance across various backbones, highlighting the
robustness and versatility of the model at this specific « value.

7) Analyzing the Impact of Weight Parameters in the Loss
Function: Our ablation study methodically examines the in-
fluence of weight parameters wy; and w.;s within the final
loss function. These parameters control the contribution of
the Kullback-Leibler (KL) divergence loss (Lj;) and the
classification loss (L.;s). We adjust these weights to explore
their effect on model performance, focusing on the balance
between the two loss components. Following expression (14)
the final loss function is reformulated as:

»Cfinal = Z (’U7 q, a) S chls . ['cls + Wk - »Ckl (16)
This modified equation enables a detailed investigation into
the significance of each loss term in enhancing model per-
formance. Our findings, summarized in Table. |VII] indicate
that while minor variations in weights do not significantly
impact results, a critical threshold exists. Notably, the model’s
performance deteriorates when ws 1 — wy 0.0,
underscoring the necessity of a balanced trade-off between
Ly and L, for optimal outcomes.
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Fig. 12: The plots here show the performance metrics in percent for different backbones using our proposed method, PW-VQA.
All o = 1.4 are set for all these simulations. Digits on the bars are rounded up to one digit. As shown here, the proposed
method consistently improves the performance of all the backbone.

TABLE IV: Variances of the accuracy performance of our method based on five performing simulations with different random

seeds.
Dataset Base Overall Y/N Num. Other
VQA v2 S-MRL | 60.76E0-10 79 60£0-47 42 75+0.07 51 21+0.03
VQA v2 UpDn | 62.62F0-0T 81 80+0-06 43 59£0.05 53 (j9£0.01
VQA-CP v2 | S-MRL | 59.71F0-1% 87.098F024 59 41£0.6T 45 51%0.09
VQA-CP v2 | UpDn 58.70F0-20 89 19023 58 85+0.56 45 17+0.05

TABLE V: Ablation study on different backbones, namely SAN, S-MRL, UpDn, and BLIP-1 as listed here. As listed, our
proposed method is improving the results when used with all of the backbones here, and also improves as we use the fusion
and causal graph that is proposed. The fusion function is with o = 1.4 as the free parameter and based on empirical study.

All Y/N Num.  Other All YN Num.  Other All Y/N Num.  Other All Y/N Num.  Other
SAN [59. 3277 38.12 1238 35.56 UpDn [60’ 3755 4211 12.88  41.93 BLIP-1 [6] 33.60 5426 1480 3422 S-MRL [2 36.59 4071 13.17  40.85
SAN+EA 4625 6213 3758 4031 UpDn (EA) 47.02 6589 18.11 45.06 BLIP-1 (EA) 4237 7319 17.03  34.09 S-MRL (EA) 49.65 7248 2442 44.6
+PW-VQA (EA) 57.06 864 5773 4157 +PW-VQA (EA) | 5864 89.51 57.15 45.68 +PW-VQA (EA) | 46.21 84.65 1842 33.98 +PW-VQA (EA) | 59.54 8795 59.05 4583

TABLE VI: Ablation of PW-VQA « values

works well for most of the backbones.

All Y/N Num Other All Y/N Num Other
33.18 38.57 12.25 36.1 UpDn 37.69 43.17 12.53 41.72
56.23 862 57.72 40.3 a=1 57.75 89.09 5325 45.05
56.27 87.45 585 3954 a =11 5845 89.8 555 4586
56.96 86.84 58.07 41.57 a=12 57.55 89.22 57.24 43.08

529 76.87 57.67 39.95 a=13 | 57.64 89.24 54.1 45.67
57.06 86.4 5773 4157 a=14 | 58.64 89.51 57.15 4568
42.75 51.24 52.24 39.38 a =15 59.13 89.34 57.71 45.38

55.1 85.64 5831 38.39 a=1.6 | 58.59 88.18  58.08 452

56.2 86.41 58.21 41.15 a =17 | 56.96 89.07 45.16 44.78
53.85 87.36  54.65 39.3 a=1.8 | 57.09 89.34  54.69 44.83
4341 7347 5752 3449 a=19 | 5891 88.51 59.66 44.14
53.39 86.22 52.64 39.26 a =2 | 58.67 88.16 59.84 4395

TABLE VII: Ablation study results are listed for the impact
of adjusting loss term weights in the final loss function
(Expression (I4)) with parameter settings of @ = 1.5 and
Wes = 1 — wg. This table delineates the performance
variations observed when systematically altering the balance
between classification loss (L.s) and KL divergence loss
(L1), providing insights into the optimal weighting strategy
for enhanced model efficacy.

Al Y/N Num _ Other
S-MRL 3700 4139 1246 41.60
W =00 | 4649 8339 4000 3008
W =01 | 4930 8655 5701 3011
W =02 | 4454 8422 3218 27.00
W =03 | 3600 65.13 3373 2293
W =04 | 3996 8183 4524 2218
W =05 | 4282 8838 2713 2699
W =06 | 4873 8522 5777 2971
W =07 | 4848 8777 2167 33.88
W =08 | 4474 8496 2911 28.72
W =09 | 4572 8589 3305 2949
W =1.0 | 003 000 001 _ 0.06

on the final result for values ranging from 1

to 2. As shown the value of « = 1.4

All Y/N Num  Other All Y/N Num  Other

S-MRL  37.09 4139 1246 41.6 BLIP-1 34.42 5497 1448 3510
a =1 [ 5947 8857 5855 4544 a=1[4532 8465 1715 3252
a =11 5949 89.1 5895 4545 =11 14532 8484 17.66 3249
a=12 1] 59.17 8776  59.53  45.54 a =121 4541 84.84 1747 3251
a=13 | 5924 8786 59.04 4571 4525  84.68 17.04 32,61
a=14]5954 8795 59.05 4583 4621 8465 1842 3398
a=15 | 59.71 88.18 5831 4585 .S 47.00 8470 2492 33.98
a=1.6 | 5944 8802 5883 4543 K 4792 8494 3059 3379
a =17 15942 8779 5927 4524 a =17 | 4881 84.94 373 3385
a =18 | 59.26 87.5  59.56 44.8 a=18 | 4922 8464 4187 3376
a =19 | 5882 8711 5929 4431 =19 | 4953 8436 4538 3324
a =2 584 86.51 57.55  43.99 a =2 | 4832 83.78 4650 31.14

VI. CONCLUSIONS

VQA systems suffer from leveraging information only from
one modality, especially the language modality from the
given question. Many methods have been proposed to address
this kind of problem. However, the previous method didn’t
consider that biases that come from each modality are highly
confounded through the annotation process. VQA systems that
ignore this effect cannot avoid increasing the bias learned
from one modality while trying to reduce bias from another
modality. We formulate the Explain-Away effect that causes
the bias of both vision and language modalities with a novel
causal framework for VQA systems. This framework can be
implemented on the different VQA backbones and improve
their generalizability significantly. The proposed framework
successfully helps VQA systems reduce language bias with-
out increasing vision bias. Experiment results show that our
proposed method achieved state-of-the-art performance on de-
bias oriented dataset VQA-CP especially doubled the accuracy
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on numerical questions from the previous best model.
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LIMITATIONS

Our method, while demonstrating proficiency in various
scenarios, exhibits limitations, particularly in contexts re-
quiring extensive background knowledge and reasoning. This
challenge is not unique to our approach but is a common
shortfall across current VQA systems, including CF-VQA [7]
and regular VQA models, as more examples illustrated in
Figure In this figure, we compare the performance of
different methods on the VQA-CP v2 test split. The ground-
truth answers are indicated by red bars, contrasting with other
bars representing the prediction probabilities.

Dependency on Background Knowledge: A critical ob-
servation is the models’ struggle with questions necessitating
historical or contextual information. For example, accurately
responding to a question like "What year was this picture
taken?” demands knowledge of specific time periods asso-
ciated with visual elements in the image, such as sneaker
and bicycle designs. Such inquiries require the model to
infer a time range (e.g., 1960-1980) by engaging in visual
reasoning that considers both minor and significant details.
Similarly, questions like ”"What bridge is this?”” also necessitate
background information that is not readily available in the
training data.

Reasoning Limitations: In cases where reasoning is es-
sential, our method, although successful in matching the ex-
pected ground-truth answer in the dataset, reveals an inherent
limitation. For instance, in answering “How many bears are
in the picture?”, our model identifies the correct answer but
lacks the capability for the kind of reasoning a human might
employ. It operates as a multimodal system, leveraging vision
and language to classify answers, but does not engage in the
deeper reasoning processes that such questions may require.

Future Directions: These limitations highlight the need for
future VQA systems to incorporate mechanisms for contextual
reasoning and background knowledge integration. While our
method marks progress in multimodal learning, the quest for
a truly comprehensive VQA system continues.

ETHICS STATEMENT

As fundamental components in various Al applications, in-
cluding visual dialog and question-answering systems, Visual
Question Answering (VQA) systems bear significant ethical

responsibilities. The potential for these systems to inadver-
tently propagate or amplify unethical content, such as racial or
gender biases, warrants careful consideration, especially when
deployed at scale.

Potential Risks: One of the primary ethical concerns re-
volves around bias in VQA systems. Biases in training data
can lead to biased outputs, perpetuating stereotypes or unfair
representations. This risk is particularly acute in systems that
interact with diverse user populations and in contexts with
significant social implications.

Benefits and Social Impact: On the positive side, VQA sys-
tems hold tremendous potential for societal benefits, notably
in assisting individuals with disabilities or visual impairments.
By enabling visual queries through natural language interfaces,
these systems can significantly enhance accessibility and in-
dependence for many users.

Mitigation Strategies: To address these ethical challenges,
it is imperative to incorporate robust measures during the
development and deployment of VQA systems. This includes
careful curation of training datasets to minimize bias, ongoing
monitoring for unintended discriminatory patterns, and trans-
parency in algorithmic decision-making processes. Further-
more, involving diverse stakeholder groups in the development
process can provide valuable insights into potential ethical
pitfalls and user-centric solutions.
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Q: What year was this picture taken? Q: How many people are in this photo?
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: 7 Regular CF-VQA ’
fi

" . ish 32 pumpkin
7 apple 15.9 melon
food 14 orange

— apples 4] 4.3 carrot
ad fruit4] 2.7 carrots

Q: What bridge is this?
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Q: How many bears are in the image?
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Fig. 13: Qualitative comparison of VQA-CP v2 test split, our method vs. CF-VQA [7] and regular VQA are shown in these
images. Red bars denote the ground-truth one, while the other bars denote the prediction probability corresponding to their
value. A limitation of VQA models is shown with two examples where PW-VQA fails to answer correctly; however, CF-VQA
and regular VQA also fail.
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