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Abstract: We present an updated set of Carboniferous Sr, C and O isotope stratigraphies based on the existing
literature, given the importance of chemostratigraphy for stratigraphic correlation in the Carboniferous. The
Carboniferous 87Sr/86Sr record, constructed using brachiopods and conodonts, exhibits five first-order phases
beginning with a rapid decline from a peak value of c. 0.70840 at the Devonian–Carboniferous boundary to
a trough (0.70776–0.70771) in the Visean followed by a rise to a plateau (c. 0.70827) in the upper Bashkirian.
A decline to c. 0.70804 follows from the lowermost Gzhelian to the close of the Carboniferous. Contempora-
neous carbonate δ13C records exhibit considerable variability between materials analysed and by region,
although pronounced excursions (e.g. the mid-Tournaisian positive excursion and the end-Kasimovian negative
excursion) are present in most records. Bulk carbonate δ13C records from South China and Europe, however, are
generally consistent with those of brachiopod calcite from North America in terms of both absolute values and
trends. Both brachiopod calcite and conodont phosphate δ18O document large regional variability, confirming
that Carboniferous δ18O records are invalid for precise stratigraphic correlation. Nevertheless, significant pos-
itive δ18O shifts in certain intervals (e.g. mid-Tournaisian and the Mississippian–Pennsylvanian transition) can
be used for global correlation.

Supplementary material:Age-updated geochemical data used to build the figures are available at https://doi.
org/10.6084/m9.figshare.c.5215784

Isotope stratigraphy can be used for correlation and
dating of sedimentary successions (e.g. Montañez
et al. 1996; Saltzman et al. 2000; Chen et al. 2018;
Garbelli et al. 2019), and thus it becomes increas-
ingly important for searching for Global Stratotype
Sections and Points (GSSPs). Isotope stratigraphy
can also be used to identify stratigraphic complete-
ness and discontinuities (Glumac and Spivak-
Birndorf 2002; Chen et al. 2011; Z.Wang et al. 2020)
and spatial variability in biogeochemical cycling of
certain isotopes (e.g. Schiffbauer et al. 2017; Monta-
ñez et al. 2018). Therefore, isotope stratigraphy of
different elements (e.g. Sr, C and O) is fundamental
to integrative stratigraphic studies as well as Earth
surface system studies.

Marine fossil taxa such as conodonts, foramini-
fers, fusulinids and ammonites are commonly used
as index fossils for GSSPs of the Carboniferous
(Wang et al. 2019). These fauna are, however,
often facies dependent, thus hampering efforts for
effective stratigraphic correlation (e.g. Groves et al.
2012; J. Chen et al. 2016; Cózar et al. 2019). Sea-
water δ13C and 87Sr/86Sr values recorded in low-
temperature marine precipitates are considered to
have high potential for stratigraphic correlation and

for defining GSSPs (e.g. Saltzman et al. 2000,
2014; Chen et al. 2018; Garbelli et al. 2019).
Although there are several existing Carboniferous
87Sr/86Sr, δ13C and δ18O records for Euramerica
and South China, these records are characterized
by considerable variability in spatial and/or tempo-
ral resolution and by the differing types of material
analysed (e.g. Mii et al. 1999, 2001; Grossman
et al. 2008; Brand et al. 2012; Chen et al. 2018;
Montañez et al. 2018). In this paper, we review the
existing Carboniferous Sr, C and O isotope stratigra-
phies with emphasis on intervals characterized by
pronounced isotopic perturbations.

Strontium isotope stratigraphy

Seawater strontium isotopic composition (87Sr/86Sr)
represents a mixture of two main sources: continent-
derived, more radiogenic weathering flux and
mantle-derived, less radiogenic volcanic and hydro-
thermal fluxes (Palmer and Edmond 1989; Davis
et al. 2003; Allègre et al. 2010). Given the long res-
idence time (2–5 myr) of Sr in the oceans relative to
the short oceanic mixing time (1–1.5 kyr), at any
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given time, seawater is thought to be homogeneous
with respect to 87Sr/86Sr. Exceptions, however, may
include marginal-marine and estuarine settings with
reduced salinities (e.g. Ingram and Sloan 1992;
Sharma et al. 2007; Bryant et al. 2015; Montañez
et al. 2018). Thus, with this caveat in consideration,
seawater 87Sr/86Sr has good potential for dating and
correlating normal marine successions worldwide,
particularly when biostratigraphy is limited and for
those stratigraphic intervals characterized by a high
rate of change in 87Sr/86Sr (e.g. Saltzman et al.
2014; Garbelli et al. 2019). Uncertainty in 87Sr/
86Sr-based numerical age dating is dependent both
on the uncertainty of the 87Sr/86Sr calibration
curve and on the rate of change in the 87Sr/86Sr
curve (McArthur et al. 2012). For example, a more
precise age can be obtained if the uncertainty of the
calibration curve is small and the rate of change in
87Sr/ 86Sr is rapid for a given time interval, whereas
usage of 87Sr/86Sr for age dating and stratigraphic
correlation is invalid for intervals with invariable
87Sr/86Sr values or with a low rate of change.

Choice of material and diagenesis

For the use of the Sr isotope proxy, however,
caution should be taken with respect to the choice
of pristine material that can faithfully record the
seawater isotopic signature. Given the high suscept-
ibility of carbonates to diagenetic alteration and
potential contamination of measured 87Sr/86Sr ratios
by radiogenic Sr (87Sr) contributed from detrital
aluminosilicate phases during acid digestion, bulk
carbonates are not the preferential material for
constructing palaeoseawater 87Sr/86Sr when other
diagenesis-resistant biogenic (calcitic and phos-
phatic) materials exist. Nevertheless, marine-
cemented bulk carbonate is the most abundant of
the available materials for Sr isotope studies through-
out Earth history, and in particular there is no avail-
able fossil material in the Precambrian. Thus,
carbonates have long been investigated for preserva-
tional potential and by acid leaching methods for
87Sr/86Sr work. Based on comparison studies of
contemporaneous conodont (Saltzman et al. 2014)
and bulk carbonate (Edwards et al. 2015) 87Sr/86Sr
from the Ordovician in North America, Edwards
et al. (2015, p. 1275) suggested that bulk carbonates
may faithfully record seawater 87Sr/86Sr if the sam-
ples meet certain screening criteria such as [Sr]
.300 ppm and ‘minimal thermal alteration, with
burial temperatures less than c. 150°C’. However, a
one-on-one comparison of brachiopods and bulk car-
bonate 87Sr/86Sr suggests that caution should be
taken when using cut-off levels of contents and ratios
of major and trace elements (e.g. [Sr] and [Mn]) as
screening measures (Zaky et al. 2019). On the other
hand, a sequential carbonate leaching approach was

recently developed to isolate the least diagenetically
altered carbonate phases from detrital aluminosili-
cate Sr contamination (Bellefroid et al. 2018).
Their bulk limestone 87Sr/86Sr values, obtained
using the sequential leaching method on samples of
Mid-Carboniferous Bird Spring carbonates (Arrow
Canyon, Nevada, USA), were near identical to the
coeval, well-preserved calcite brachiopod 87Sr/86Sr
values (Bellefroid et al. 2018). Lastly, well-
preserved, early marine cements are considered to
more faithfully record seawater 87Sr/86Sr (cf. Zhou
et al. 2020). Application of early marine cements,
however, requires that specific lithofacies (e.g. grain-
stone and microbialites) occur in the succession
of interest and the use of systematic diagenetic
screening and micro-drilling techniques. Diagenetic
screening typically involves a stepwise process of
plane-light petrography, scanning electron micros-
copy, cathodoluminescence microscopy, and major
and trace element evaluation.

Diagenetically screened brachiopods are widely
regarded as ideal material for developing 87Sr/86Sr
as well as for δ13C and δ18O records (e.g. Bruck-
schen et al. 1999; Mii et al. 1999, 2001; Veizer
et al. 1999; Grossman et al. 2008; Prokoph et al.
2008; Brand et al. 2009, 2012; Garbelli et al.
2019; Zaky et al. 2019). However, continuous and
high temporal resolution sampling of brachiopods
is not possible in many stratigraphic successions,
although near continuous sampling of brachiopods
at the metre to sub-metre scale is plausible for certain
stratigraphic intervals in some carbonate successions
(Brand et al. 2012; W.-Q. Wang et al. 2020). Fur-
thermore, composite isotopic records of brachiopods
can be compromised by uncertainties in stratigraphic
correlation between sections and regions (Korte and
Ullmann 2018).

Conodonts, fossil teeth of nektonic animals, are
present in nearly all the Paleozoic marine succes-
sions of either shallow- or deeper-water depositional
environments, in contrast to benthic brachiopods,
which mostly lived on shallow-water shelves.
Thus, conodonts have the potential to provide an
optimum medium for reconstruction of continuous
records of 87Sr/86Sr. Besides, conodonts are also
regarded as being the most resistant to diagenesis
based on evaluation of oxygen isotopes (Wenzel
et al. 2000; Joachimski et al. 2009), despite the
absence of diagenetic evaluation techniques compa-
rable to those applied to carbonates. Previous studies
have shown that conodonts with relatively low to
even high colour alteration index (CAI ≤4–5) may
preserve pristine seawater geochemistry if properly
chemically treated (Ruppel et al. 1996; Armstrong
et al. 2001; John et al. 2008; Saltzman et al. 2014;
Dudás et al. 2017; Chen et al. 2018; Montañez
et al. 2018), whereas others show that conodonts
can have more radiogenic 87Sr/86Sr values than
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coeval, well-preserved brachiopods (e.g. Woodard
et al. 2013; Korte and Ullmann 2018). Conodonts
from epicontinental and marginal sea settings may
further complicate the construction of seawater Sr
isotope records as their 87Sr/86Sr values are influ-
enced by sea-specific environmental processes (e.g.
riverine influx, long residence times of water masses,
evaporation and enhanced stratification) (Montañez
et al. 2018). Furthermore, conodonts extracted
from shales may be problematic given that the high
content of easily exchangeable radiogenic Sr in
clay minerals can potentially alter the depositional
signal (Ebneth et al. 1997). In contrast, conodonts
extracted from a limestone matrix (with much less
radiogenic Sr) generally show similar or lower val-
ues compared to coeval brachiopods (e.g. Saltzman
et al. 2014; Dudás et al. 2017; Chen et al. 2018),
suggesting that conodonts have high potential for
87Sr/86Sr studies. Where differences occur in
87Sr/86Sr values between presumed coeval cono-
donts and brachiopods, these differences could be
due to uncertainties of stratigraphic correlation and
age assignment for individual samples, or they
could ‘reflect real differences in how conodonts
and brachiopods preserve seawater 87Sr/86Sr’ (Saltz-
man et al. 2014, p. 1563).

Carboniferous 87Sr/86Sr trend

The existing Carboniferous seawater 87Sr/86Sr
record, reconstructed from bulk carbonates and bra-
chiopod calcite (Denison et al. 1994b; Bruckschen
et al. 1999), remains moderately resolved, limiting
its chronostratigraphic and proxy potential. The res-
olution of the existing record reflects stratigraphic
uncertainties and discontinuities, inaccurate correla-
tion among multi-basin records, limited biostrati-
graphic (temporal) resolution and variable degrees
of diagenetic alteration (Cummins and Elderfield
1994; Denison et al. 1994a; Bruckschen et al.
1999; Veizer et al. 1999; McArthur et al. 2012;
Edwards et al. 2015). In contrast, the conodont
87Sr/86Sr record from a continuous carbonate slope
succession (Naqing, South China) (Chen et al.
2018) exhibits substantially less variability between
contemporaneous samples and generally good con-
sistency with the lower limit of a compilation of
brachiopod 87Sr/86Sr data (Prokoph et al. 2008),
except for a significant offset between proxy values
in the interval between 330 and 320 Ma (Fig. 1).
Given the superiority of both brachiopods and cono-
donts in recording the seawater 87Sr/86Sr, the gener-
ally overlapping values of the two archives suggest a
robust seawater signature.

The Carboniferous 87Sr/86Sr trend based on bra-
chiopods and conodonts shows generally five phases
through time (Fig. 1) that are broadly consistent with
those presented in the Geological Time Scale 2012

(McArthur et al. 2012). Differences do exist in abso-
lute values within certain intervals reflecting the use
of only biogenic material in the compilation pre-
sented here. In the first phase, 87Sr/86Sr values at
c. 360 Ma, proximal to the Devonian–Carboniferous
boundary (358.9 Ma), define a peak (c. 0.70840) for
much of the Devonian and Mississippian periods
(McArthur et al. 2012). The 87Sr/86Sr subsequently
declines rapidly (average rate of 0.000043/myr) and
near linearly over a c. 15 myr period, from peak val-
ues down to c. 0.70776 at 345 Ma (lowermost
Visean). Phase 2 is a trough in 87Sr/86Sr values
and persists over c. 11 myr of the Visean (345–
334 Ma), with values decreasing slightly from
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Fig. 1. Carboniferous 87Sr/86Sr record constructed
using brachiopod dataset (compiled by Prokoph et al.
2008) and conodont dataset (Chen et al. 2018). The
trend line (black) is LOESS regression with 2.5 and
97.5% bootstrapped errors (orange shading). I–V are
the five phases of Carboniferous 87Sr/86Sr first-order
trend discussed in the main text. Ages of all
geochemical data are normalized to those of the
International Chronostratigraphic Chart (version 2019;
http://www.stratigraphy.org). D, Devonian; F,
Famennian; Miss, Mississippian; Penn, Pennsylvanian;
Kasi, Kasimovian; L, Lower; M, Middle; U, Upper.
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0.70776 to 0.70771 in the upper Visean. In the third
phase, 87Sr/86Sr increases over a c. 16 myr period
(334–318 Ma) of the Serpukhovian through Bashkir-
ian from c. 0.70771 to c. 0.70827. There is, however,
a short-lived decline from 0.70795 to 0.70788
between 331.7 and 330.4 Ma, close to the Visean–
Serpukhovian boundary. To what degree this decline
is robust needs to be further tested by high temporal
resolution data. A fourth phase is defined by a
87Sr/86Sr plateau, which exists over a c. 15 myr
period (318–303 Ma) of the upper Bashkirian to low-
ermost Gzhelian, with an average value of c.
0.70827. In the final phase, 87Sr/86Sr declines
through the remainder of the Carboniferous from
the plateau to a value of c. 0.70814 at the Carbonif-
erous–Permian boundary (298.9 Ma).

Carbon isotope stratigraphy

The carbon isotopic composition of marine carbon-
ates (δ13Ccarb) has been extensively analysed from
successions ranging in age from Precambrian to the
present, and is widely used as a tool for stratigraphic
correlation, particularly for periods with pronounced
positive or negative excursions (Saltzman and Tho-
mas 2012). δ13Ccarb values, however, are influenced
not only by carbon cycle–climate perturbations, but
also by a number of local to regional factors such
as mineralogical variability, differences in circula-
tion and residence times of water masses, vital
effects, salinity, as well as diagenesis (Algeo et al.
1992; Patterson and Walter 1994; Panchuk et al.
2005; Swart and Eberli 2005; Batt et al. 2007;
Swart 2015; Schiffbauer et al. 2017; Li et al.
2018). Stratigraphic hiatuses may also mask original
δ13Ccarb stratigraphic features or trends (Glumac and
Spivak-Birndorf 2002; Saltzman et al. 2004b; Chen
et al. 2011; Roark et al. 2017; Maharjan et al. 2018a;
Z. Wang et al. 2020). It has been suggested that
δ13Ccarb excursions of greater magnitude than 1 to
2‰ are those that can be more confidently used for
global stratigraphic correlation (Saltzman and
Thomas 2012). Furthermore, detailed sedimentolog-
ical and petrographic study provide the necessary
framework in which to evaluate the most robust
δ13Ccarb data.

Carboniferous δ13Ccarb trend

Many studies have evaluated the temporal and spa-
tial variability in δ13Ccarb through the Carboniferous,
in particular in North America and Russia. These
studies are based on brachiopod calcite (e.g. Popp
et al. 1986; Grossman et al. 1993, 2008; Bruckschen
et al. 1999; Mii et al. 1999, 2001; Brand et al. 2012)
and bulk carbonates (e.g. Saltzman 2002, 2003a, b,
2005; Batt et al. 2007; Dyer et al. 2015; Maharjan

et al. 2018a). Over the last decade, new records of
Carboniferous δ13Ccarb have been developed based
on bulk or micro-drilled carbonates from South
China (Buggisch et al. 2011; Qie et al. 2011, 2016;
Liu et al. 2015, 2017; Yao et al. 2015; J. Chen
et al. 2016; Tian et al. 2020). δ13Ccarb records from
North America, Russia, and South China, however,
exhibit moderate to poor agreement (Fig. 2). For
example, bulk carbonate δ13C values of c. 3‰
(VPDB, Vienna Pee Dee Belemnite) during the
upper Visean to Serpukhovian in South China and
Europe (Fig. 2a) are much higher than the coeval
δ13C values in between −2‰ and 2‰ in the Antler
foreland basin and Arrow Canyon, North America
(Fig. 2b). Such large differences in the coeval
δ13Ccarb values certainly make carbon isotopes inva-
lid for stratigraphic correlation. In addition, there are
large differences in the absolute δ13Ccarb, trends in
regional records, and magnitude of δ13C changes
of records within North America as well as between
continents (e.g. Batt et al. 2007; Grossman et al.
2008). The disparity in carbonate δ13C for any
given interval most likely reflects the aforemen-
tioned local to regional variability in palaeoenviron-
mental and diagenetic conditions and processes that
imprint seawater δ13C signals (Brand et al. 2009;
Swart 2015). It is also likely that uncertainties in
stratigraphic correlation and age assignment between
regions account for some of the disparity in datasets.
For example, precise stratigraphic correlation
between successions in the eastern Palaeo-Tethys
Ocean (e.g. South China) and those in the eastern
Panthalassic Ocean (e.g. Midcontinent of North
America) has long been problematic due to the dif-
ferent conodont biofacies in the Mississippian and
palaeogeographical endemism in Pennsylvanian
conodonts as a result of closure of the Rheic Ocean
(Wang et al. 2019). That said, carbonate δ13C data-
sets indicate that on the longer term during the Car-
boniferous, δ13C rose rapidly from c. 0 to 1‰ to c. 5
to 7‰ in the earliest Mississippian, remaining high
overall (c. 3–6‰) through the remainder of the Car-
boniferous and earliest Permian (i.e. the duration of
the Late Paleozoic Ice Age), with superimposed rel-
atively short-lived positive and negative excursions
(Fig. 2; Saltzman 2003b; Grossman et al. 2008; Bug-
gisch et al. 2011; Brand et al. 2012). The degree to
which the shorter-term excursions are robust glob-
ally is under evaluated.

Mid-Tournaisian positive δ13Ccarb excursion

A pronounced positive excursion in δ13Ccarb (with
peak values of c. 5–7‰) occurs in the middle Tour-
naisian Stage (roughly during the Siphonodella
isosticha andGnathodus punctatus/G. typicus cono-
dont zones) and has been reported globally, referred
to as the TICE (Fig. 2; Mii et al. 1999; Saltzman
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2002, 2003a, 2005; Saltzman et al. 2004a; Katz et al.
2007; Buggisch et al. 2008; Yao et al. 2015; Qie
et al. 2016;Maharjan et al. 2018a). The TICE is con-
temporaneous with a positive excursion in brachio-
pod and conodont δ18O, suggesting major cooling
and onset of glaciation (Mii et al. 1999; Buggisch
et al. 2008). The TICE is also coincident with a neg-
ative excursion in carbonate δ238U (Cheng et al.

2020) and a positive excursion in carbonate-
associated sulfate δ34S and organic matter δ15N.
These geochemical records suggest widespread oce-
anic anoxia associated with enhanced burial of
organic C and pyrite, and water-column denitrifica-
tion (Yao et al. 2015; Maharjan et al. 2018a, b;
Cheng et al. 2020). There are, however, uncertainties
with respect to the shape of the δ13C curve, which
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Fig. 2. Carbonate δ13C exhibiting substantial variability regionally and between materials analysed through the
Carboniferous. Trend lines (black) are LOESS regressions with 2.5 and 97.5% bootstrapped errors (orange shading).
The mid-Tournaisian positive isotope excursion (TICE; blue arrows) and end-Kasimovian negative isotope excursion
(orange arrows) are delineated by all curves except for the Russian Platform. (a) Bulk carbonate δ13C from South
China (Buggisch et al. 2011; Liu et al. 2015; Qie et al. 2016) and Euramerica (Buggisch et al. 2008). Trend line
based on South China data. (b) Bulk carbonate δ13C from Arrow Canyon, Nevada (Saltzman 2003a, b) and the
Antler foreland basin, Idaho (Batt et al. 2007) used in The Geological Time Scale 2012 (Saltzman and Thomas 2012).
Trend line based on all bulk carbonate data. Contemporaneous brachiopod δ13C from Arrow Canyon (Brand et al.
2012) for comparison. (c) Brachiopod δ13C from North America: Midcontinent (Grossman et al. 2008) and Arrow
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Saltzman (2003a, b) and of Grossman et al. (2008) that are compressed (upward by c. 4 myr) and shifted (downward
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TICE as in (a). Calibration of ages and abbreviations as in Figure 1.
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defines either single or double spikes during the
TICE (see Maharjan et al. 2018a). Delineating
the spatio-temporal architecture of the TICE is criti-
cal to better understanding the origin of this
global C perturbation as well as for high-resolution
stratigraphic correlation. Better delineation of the
TICE architecture requires additional studies on
stratigraphically expanded and near-continuous
successions, which are also characterized by high-
resolution biostratigraphy and/or high-precision
U–Pb dating.

Mid-Carboniferous δ13Ccarb trend

A positive δ13Ccarb shift (by c. 1.5–3‰) across the
mid-Carboniferous boundary (i.e. Mississippian–
Pennsylvanian boundary, MPB) has long been
recognized in δ13Ccarb records defined using calcite
brachiopods (Popp et al. 1986; Grossman et al.
1993, 2008; Bruckschen et al. 1999; Mii et al.
1999, 2001), although there are relatively sparse
δ13Ccarb data or even δ13Ccarb stratigraphic gaps
associated with the MPB interval. A relatively con-
tinuous brachiopod δ13Ccarb record fromArrow Can-
yon exhibits a rapid increase in δ13Ccarb, from
relatively low values (0.5–1‰) to background val-
ues (c. 3‰), immediately prior to the MPB (Fig.
2b; Brand and Brenckle 2001; Brand et al. 2012).
Moreover, a high-resolution, composite bulk carbon-
ate δ13C record from six Euramerican sections indi-
cates a c. 2‰ increase through the middle (c. 3‰)
to upper Serpukhovian (c. 5‰), leading up to the
MPB (Buggisch et al. 2008). In contrast, a high-
resolution δ13Ccarb time series developed from strati-
graphically continuous carbonate slope successions
in South China reveals only a c. 0.5–1.0‰ increase
in δ13Ccarb across the MPB (Fig. 2a; Tian et al.
2020). Some of the spatial variability in the magni-
tude of increase in δ13Ccarb across the MPB has
been attributed to differing intensity of upwelling in
the various regions due to differing palaeogeography
(Mii et al. 2001; Liu et al. 2015; Tian et al. 2020).

In contrast, Saltzman and Thomas (2012) identi-
fied a negative δ13Ccarb excursion in the upper Serpu-
khovian (to the lowermost Bashkirian), recorded in
bulk carbonates from western Laurentia (Fig. 2b;
Saltzman 2003b) and recognized in a bulk δ13Ccarb
composite record developed using deeper-water
carbonate ramp successions in east–central Idaho
(Batt et al. 2007). Batt et al. (2007) argued that
their bulk δ13Ccarb composite record is not compro-
mised by subaerial exposure or meteoric diagenesis,
and their bulk δ13Ccarb compares well with a subset
of coexisting brachiopod δ13C values. The latest Ser-
pukhovian and MPB interval in the Arrow Canyon
succession, SE Nevada, however, has been shown
to include multiple subaerial exposure surfaces
(Bishop et al. 2009, 2010). On the other hand, low

δ13Ccarb values in the upper Serpukhovian interval
of the Russian Platform brachiopod record
(Fig. 2d) may reflect vital effects of the Strophome-
nata brachiopod, Gigantoproductus (e.g. Bruck-
schen et al. 1999; Garbelli et al. 2014). Overall,
the Russian record shows more scattering and con-
tains a greater proportion of lower δ13Ccarb and
δ18Ocarb values than the brachiopod-based δ13Ccarb
record from Laurentia (Grossman et al. 2008;
Brand et al. 2012). There are no obvious analogous
low values in the bulk carbonate δ13Ccarb records
from South China (Buggisch et al. 2011) and Europe
(Buggisch et al. 2008; Campion et al. 2018), or the
Laurentian brachiopod records (Grossman et al.
2008). One consideration, however, is that climate
simulations for the Carboniferous and early Permian
(Montañez and Poulsen 2013; Heavens et al. 2015)
indicate intensified upwelling on the eastern margin
of the Panthalassan Ocean that would provide
13C-depleted seawater into the western regions of
palaeotropical Laurentia and could explain the over-
all lower δ13Ccarb values of western Laurentian
records (Saltzman 2003b; Batt et al. 2007) relative
to those of the USMidcontinent and Palaeo-Tethyan
locales (Buggisch et al. 2008; Grossman et al. 2008;
Tian et al. 2020).

End-Kasimovian negative δ13Ccarb excursion

A pronounced negative δ13Ccarb excursion (by c.
2‰) occurs at the end-Kasimovian (Streptognatho-
dus zethus or Idiognathodus naraoensis conodont
zone), recorded in particular in the South China car-
bonate slope succession (Fig. 2a), although recogniz-
able in the bulk carbonate and brachiopod δ13Ccarb
records from Laurentia and Russia (Fig. 2). This
short-lived negative δ13Ccarb excursion is superim-
posed on an overall rise in δ13Ccarb that spans the
early Pennsylvanian to early Cisuralian (Buggisch
et al. 2011). The negative excursion was, however,
not formally identified until the recent GSSP search
for the base of the Gzhelian in South China (Qi et al.
2020). The end-Kasimovian negative δ13Ccarb excur-
sion, if proven worldwide, can serve as a reliable tool
for chemo-stratigraphic correlation of the Kasimo-
vian–Gzhelian boundary and as a powerful auxiliary
stratigraphic marker for the GSSP of the Gzhelian
base. The cause and consequences of the carbon per-
turbation at the end of the Kasimovian are now under
study.

Oxygen isotope stratigraphy

Oxygen isotope ratios (δ18O) preserved in marine
authigenic carbonates (e.g. early marine cement)
and marine carbonate or phosphate fossil skeletons
are primarily dependent on temperature and δ18O
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of the ambient seawater (Epstein et al. 1953). Sea-
water δ18O is in turn influenced by changes in conti-
nental ice volume and salinity, which is controlled
largely by local evaporation/precipitation ratios
and surface runoff fluxes to epicontinental seas or
oceans. An increase in δ18O recorded in sedimentary
archives can be interpreted as cooling, increased
salinity and/or continental ice build-up, whereas a
decrease may reflect warming, decreased salinity
and/or deglaciation. Rapid changes in seawater
δ18O or temperature can be recorded in δ18O values
of marine authigenic and biogenic carbonates and
could possibly be used as chemo-stratigraphic mark-
ers for regional and global correlation but solely pro-
vided that the seawater signal is not overprinted by
subsequent geological processes.

Choice of material and diagenesis

Bulk carbonates are easily altered with respect to
their δ18O by diagenetic fluids (Veizer and Hoefs
1976), and therefore they cannot be used for recon-
struction of seawater δ18O, although bulk carbonate
δ18O values are often used to evaluate the potential
of diagenetic alteration on δ13Ccarb (e.g. Algeo
et al. 1992; Swart 2015; J. Chen et al. 2016; Cui
et al. 2017). Articulate calcitic brachiopods, which
are widely distributed in Phanerozoic strata, are com-
posed of dense microstructures and low-Mg calcite,
which are relatively resistant to diagenetic alteration
(Compston 1960; Lowenstam 1961; Popp et al.
1986; Veizer et al. 1986; Brand et al. 2012; Garbelli
et al. 2012; Casella et al. 2018). They are thus
regarded as the preferential material for reconstruc-
tion of seawater δ18O, particularly for the Paleozoic.
Nevertheless, a suite of literature shows that kinetic
and vital fractionation effects of brachiopods may
also influence their oxygen (and carbon) isotopic
composition regarding (non) equilibrium with ambi-
ent seawater (e.g. Auclair et al. 2003; Batt et al.
2007; Yamamoto et al. 2010; Cusack et al. 2012;
Garbelli et al. 2014; Rollion-Bard et al. 2016,
2019), and thus as articulated in the ‘Sr isotope strat-
igraphy’ section, careful assessment of preservation
is still necessary before interpreting the data as pri-
mary seawater signals.

As an alternative, conodont apatite has been
increasingly used to reconstruct the Paleozoic sea-
water δ18O trends over the last two decades (e.g.
Wenzel et al. 2000; Joachimski and Buggisch
2002; Joachimski et al. 2006; Trotter et al. 2008;
Sun et al. 2012; B. Chen et al. 2013, 2016; Bartlett
et al. 2018; Jin et al. 2018; Montañez et al. 2018).
Biogenetic phosphates are thought to be more resis-
tant to diagenetic alteration than biogenetic car-
bonates (e.g. Wenzel et al. 2000; Joachimski et al.
2009), which may be attributed to extremely slow
rates of oxygen isotope exchange between

phosphates and water at ambient temperatures via
inorganic reactions (Blake et al. 1997). Diagenetic
alteration is, however, still possible when the oxygen
exchange is mediated by enzymes (Zazzo et al.
2004) or at high temperatures (Pucéat et al. 2004).
Unfortunately, diagenetic evaluation methods for
calcitic shells are found to have limited application
to conodont apatite (Buggisch et al. 2008). Further-
more, conodonts are assumed to be nektonic animals
that could have thrived in both deep- and shallow-
water settings (Orchard 1996; Lai et al. 2001), in
contrast to brachiopods that normally lived in benthic
habitats of relative shallow-water settings. Cono-
donts, unlike benthic brachiopods, could also easily
swim to their preferred settings, and thus a given
taxa could record invariant seawater-temperature sig-
nals, although secular changes in seawater tempera-
ture should be discernible as long as glacio-eustatic
and/or salinity changes were minimal (cf. W.-Q.
Wang et al. 2020). Therefore, different habitats of
conodonts need be considered when using their
δ18O records to reconstruct seawater temperatures
or seawater δ18O as a proxy of the magnitude of gla-
cio-eustasy (Hermann et al. 2015).

Carboniferous δ18O trends

The Carboniferous witnessed dramatic glaciation in
the southern hemisphere (Gondwana) (Isbell et al.
2003, 2012; Fielding et al. 2008; Montañez and
Poulsen 2013; Griffis et al. 2018, 2019), with large
magnitude δ18O shifts interpreted to record major
climatic cooling and/or ice volume changes (e.g.
Popp et al. 1986; Grossman et al. 1993; Mii et al.
1999, 2001; Joachimski et al. 2006; Buggisch
et al. 2008; B. Chen et al. 2016). The most complete
Carboniferous δ18O records are composite and built
primarily on brachiopods from the North American
Midcontinent and the Russian Platform (Fig. 3a
and b; Mii et al. 1999, 2001; Grossman et al.
2008), whereas continuous conodont apatite δ18O
records are constructed mainly based on data from
South China and Europe (Fig. 3c; Buggisch et al.
2008; B. Chen et al. 2016; Montañez et al. 2018).
It is notable that the compilation of Carboniferous
conodont δ18O records exhibits large regional differ-
ences (Fig. 3c), with data from a more open-water
setting (South China) yielding overall higher and
less variable values compared to those from epicon-
tinental seas (US Midcontent and Donets Basin,
Ukraine). These differences may be attributed to spa-
tial variability in seawater salinity and thus seawater
δ18O gradients in epicontinental seas relative to the
more open waters of South China (Rosenau et al.
2014; Joachimski and Lambert 2015; Montañez
et al. 2018). However, differential diagenetic over-
print on conodonts from different basins cannot be
excluded, although systematic diagenetic screening
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is not plausible. In the overlapping interval (upper
Visean to lower Serpukhovian), the South China
and Europe conodont δ18O records show a c. 2‰
offset, which may be a consequence of the regional
differences in seawater salinity and regional climate.
Nevertheless, all of the δ18O records, including the
Donets epicontinental sea record (Fig. 3c), delineate
two major, widely recognized trends: (1) a positive
shift in the middle Tournaisian (358.9–350 Ma) and
(2) a positive shift across the MPB (c. 325–320 Ma).

Mid-Tournaisian positive δ18O shift

Mii et al. (1999) found a major increase in δ18O from
−5‰ to −2‰ (VPDB) in the middle Tournaisian
(358.9–350 Ma) based on brachiopods from North

America (Fig. 3a), which was interpreted as evidence
of climate cooling and ice build-up (Mii et al. 1999).
This shift, however, was not confirmed by the δ18O
record from the Russian Platform due to lack of time-
equivalent brachiopods (Fig. 3b). Grossman et al.
(2008) considered that the positive δ18O shift may
reflect an increase in regional seawater δ18O as a
result of excessive evaporation in North American
epicontinental seas. A similar increase (by c. 2‰,
Vienna Standard Mean Ocean Water (VSMOW))
in conodont apatite δ18O was subsequently found
in low-latitude Euramerican sections (Fig. 3c; Bug-
gisch et al. 2008), suggesting that the positive δ18O
shift is a global phenomenon. This δ18O increase is
coincident with a significant δ13C positive excursion
(TICE). The concurrent δ13C and δ18O excursions
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et al. 2008) and Arrow Canyon, Nevada (Brand et al. 2012). Trend lines based on Midcontinent data. Note, the lighter
grey squares represent a subset δ18O of Grossman et al. (2008) that are shifted (downward by c. 2.2 myr) based on
correlation by the TICE. (b) Brachiopod δ18O from the Russian Platform (Grossman et al. 2008). (c) Conodont δ18O
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are in good agreement with the widely held interpre-
tation that increased organic carbon burial (Saltzman
2003b; Saltzman et al. 2004a) resulted in lowered
atmospheric pCO2 and triggered climate cooling
(Mii et al. 1999; Buggisch et al. 2008).

Mid-Carboniferous positive δ18O shift

A pronounced increase in brachiopod δ18O has long
been observed across the MPB in Euramerica
(Fig. 3a and b; Mii et al. 1999, 2001; Grossman
et al. 2008; Brand et al. 2012), which is also recorded
in conodont apatite δ18O from several Euramerican
basins (Buggisch et al. 2008; Montañez et al.
2018) and from a carbonate slope succession from
South China (B. Chen et al. 2016) (Fig. 3c), indicat-
ing that it is of global significance. The δ18O increase
coincides with a major glacio-eustatic fall recorded
in low-latitude successions (Eros et al. 2012a, b;
Tian et al. 2020) and the occurrence of widespread
glacial depositional records in southern Gondwana
(Gulbranson et al. 2010; Isbell et al. 2012), suggest-
ing significant climate cooling combined with ice
build-up across the MPB interval (Mii et al. 1999;
Buggisch et al. 2008; Fielding et al. 2008; B. Chen
et al. 2016). It has been hypothesized that MPB cool-
ing was caused by increased burial of organic car-
bon, implied by previously reported large increases
(by c. 3.0‰) in δ13Ccarb (e.g. Popp et al. 1986; Mii
et al. 2001). However, there is no significant increase
in δ13C of bulk carbonates across the MPB from the
Great Basin, USA (rather a negative excursion;
Fig. 2b) (Saltzman 2003b) or from the Qian-Gui
Bain, South China (Tian et al. 2020). Instead, a sig-
nificant rise in 87Sr/86Sr (Chen et al. 2018) slightly
predates the rise in δ18O (B. Chen et al. 2016), sug-
gesting that climate cooling might have been trig-
gered mainly by enhanced silicate weathering
driven by the influence of the Hercynian Orogeny
on erosion rates and precipitation and surface hydrol-
ogy (Goddéris et al. 2017; Richey et al. 2020), rather
than increased burial of organic carbon (Tian et al.
2020).

Concluding remarks

The Carboniferous saw the main pulses of Earth’s
penultimate icehouse, which was a time of low atmo-
spheric pCO2, extensive glaciation, major tectonic
reconfiguration, radiation of palaeotropical rainfor-
ests, and a series of climatic and biotic perturbations.
Carboniferous isotope geochemistry and stratigra-
phy play an important role in better understanding
these events and their impacts on palaeoclimate
and palaeoceanography as well as on biosphere.
However, there are a number of environmental,
vital and diagenetic factors that can imprint global

marine isotopic signatures, which are archived in
low-temperature precipitates (carbonates and phos-
phates). Prior to stratigraphic correlation or chrono-
stratigraphic dating of successions worldwide using
Sr, C and O isotopes, diagenetic screening of pristine
material as well as evaluation of overall depositional
settings (e.g. seawater circulation and salinity, palae-
obathymetry, and depositional and regional climate
processes) should be carefully considered. In most
cases, diagenesis increases the 87Sr/86Sr ratios of
low-temperature precipitates given the presence of
easily exchangeable radiogenic Sr in sediment,
although shifts to less radiogenic values has been
documented. We take the LOESS regression line
of brachiopod and conodont 87Sr/86Sr data as the
smoothed 87Sr/86Sr curve, but there is a big cloud
of more radiogenic data (above the regression line),
especially for the interval between the upper Tour-
naisian to the upper Visean. Caution should be
taken particularly when dealing with a small dataset
for stratigraphic correlation. Large regional differ-
ences in carbonate δ13C and δ18O and phosphate
δ18O datasets hamper using absolute values for
stratigraphic correlation or dating. That said, the
existence of multiple, widely recorded and signifi-
cant excursions in Sr, C and O isotope compositions
(e.g. the mid-Tournaisian and end-Kasimovian) offer
high potential for stratigraphic correlation. Further
refinement of these Sr, C and O isotope records
through the Carboniferous, in particular if integrated
with efforts to radioisotopically date or astrochrono-
logically constrain the successions, can provide not
only robust tools for stratigraphic correlation but
also fundamental datasets for biogeochemical mod-
elling of Earth’s penultimate icehouse.
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