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Cooperative Perception With V2V Communication
for Autonomous Vehicles

Hieu Ngo ", Hua Fang

Abstract—OQOcclusion is a critical problem in the Autonomous
Driving System. Solving this problem requires robust collaboration
among autonomous vehicles traveling on the same roads. However,
transferring the entirety of raw sensors’ data among autonomous
vehicles is expensive and can cause a delay in communication. This
paper proposes a method called Realtime Collaborative Vehicu-
lar Communication based on Bird’s-Eye-View (BEV) map. The
BEV map holds the accurate depth information from the point
cloud image while its 2D representation enables the method to
use a novel and well-trained image-based backbone network. Most
importantly, we encode the object detection results into the BEV
representation to reduce the volume of data transmission and make
real-time collaboration between autonomous vehicles possible. The
output of this process, the BEV map, can also be used as direct
input to most route planning modules. Numerical results show that
this novel method can increase the accuracy of object detection
by cross-verifying the results from multiple points of view. Thus,
in the process, this new method also reduces the object detection
challenges that stem from occlusion and partial occlusion. Addi-
tionally, different from many existing methods, this new method
significantly reduces the data needed for transfer between vehicles,
achieving a speed of 21.92 Hz for both the object detection process
and the data transmission process, which is sufficiently fast for a
real-time system.

Index Terms—Autonomous vehicle, object detection, vehicle-to-
vehicle communications.

I. INTRODUCTION

HE goal of an autonomous driving system (ADS) is for
T the autonomous vehicle (AV) to operate without additional
human input [1]. As such, the AVs can leverage arange of sensors
for environment perception as well as receiving and integrating
other vehicles’ perceptions for predicting and planning their
navigation.

AVs have the potential to change the future of transportation
by leading to safer roads, less traffic congestion, reduced park-
ing, and positive economic impacts on society [2]. However,
there are multiple barriers toward autonomous driving, with the
most notable one being the safety of passengers. In this paper,
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our goal is to increase the safety of ADS by leveraging V2V
communication to achieve a more complete perception of the
environment, especially for occluded objects and blind spots.

In an ADS, the AV detects the environment using its sensors.
The two most notable sensors used for object detection are
camera sensors and light detection and ranging sensors (LI-
DARs). Camera data are utilized to mimic the human visual
ability to see the world. However, this approach has problems
in detecting range and distance, a crucial characteristics of
vehicular sensing. Monocular stereo vision (taking pictures with
one camera) is unable to detect accurate range and distance.
Binocular stereo vision (two cameras) and multi-view stereo
vision can use pictures from different angles to form 3D objects
and their ranges but matching corresponding points is difficult
or computationally expensive. On the other hand, LIDAR can
directly obtain the distance information of vehicles, pedestrians,
obstacles, and road infrastructure. [3]

In ADS, one of the biggest problems is occlusion [4]. A critical
challenge of object detection, particularly for the ADS, is the
problem of blind spots and occlusion, which are restricted by the
line of sight and field of view of AVs.When objects are partially
or entirely occluded from the Line-of-Sight of the camera and
LIDAR) sensors, it is difficult and even impossible for most
deep learning neural networks to detect and track the occluded
objects [5]. Therefore, the AVs cannot detect them in time to plan
a new route and avoid collisions, which can lead to hazardous
situations for passengers. For example, in Fig. 1, the ego vehicle
(EV, vehicle A) cannot “see” the bicyclist using camera or
LIDAR as the bicyclist is occluded by the bus. However, vehicle
B on the other side of the road can easily see this bicyclist and
send the information to the EV. As such, the EV A can avoid a
potential accident in case the bicyclist tries to cross the road.

Collaborative Vehicle-to-Vehicle (V2V) communication can
be a potential solution for these occlusion scenarios as multiple
AVs can communicate for a more comprehensive perception of
the environment. A V2V network is a system designed to trans-
mit safety information among AVs to facilitate warning about
impending crashes. Thus, an AV can leverage the information
from other vehicles in the fleet to be aware of the occluded
objects and plan for a new and safer navigation route.

In a V2V network, the AVs’ sensors collect the environment
information from different perspectives and integrate them to-
gether which can minimize or even eliminate the occlusion prob-
lem. However, sending a data stream of raw data collected from
all sensors (camera, radar, LIDAR, and GPS signal) is inefficient
and unscalable due to the huge volume (large datasets from sen-
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Fig. 1. A bicyclist is occluded by the bus from vehicle A point of view but
can be sensed by vehicle B on the other side of the street.

sors, especially LIDAR), variety (incorporating multiple types
of sensors), and the required velocity (real-time system) of data
in ADS [6]. In the KITTI dataset, the laser scanner pins at 10
frames per second and captures approximately 100 k points per
cycle [7]. The cameras (4 cameras) in the KITTI dataset are also
triggered at the same rate as the laser scanner, 10 frames per
second, with the images’ dimensions of 1382 x 512 pixels. In
total, if the AVs collect only the LIDAR and cameras data with
the same settings, the total data size to transfer the data from one
AV to another goes up to 26.7 GB/s

Furthermore, the fusion of multiple point cloud data is not a
trivial problem as it requires precise location in the 3D space
of LIDAR scanner to perform the transformation of the LIDAR
data from different Point Of Views (POV) into one POV [8].
Therefore, to keep the benefit of collaboration in real-time V2V
systems, we propose a Real-time Collaborative Vehicular Com-
munication (RTCVC) framework. RTCVC is a BEV map-based
LIDAR encoding to communicate the object detection results
of vehicles in the same fleet. This 2D representation of LIDAR
can provide accurate depth information from LIDAR technology
while still accessing the maturity of established, well-trained
RGB image-based object detection models in the field. Further-
more, the compactness of this representation allows vehicles to
communicate effectively in real time and BEV maps also serve
as directinput to most route planning modules without additional
complex modifications [9], [10], [11]. All these factors make our
proposed method effective in a real-time system. The technical
contribution of this paper is proposing a method for combining
object detection results collaboratively between AVs to enable
real-time collaboration of V2V system.
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Our paper is structured as follows: Section II presents the
background and related work of object detection in autonomous
vehicles; Section III describes our proposed method, RTCVC,
including the communication scheme and the object detection
modules; Section IV tests the accuracy and speed of our pro-
posed method using simulations and experiments; and Section V
discusses and concludes this paper.

II. BACKGROUND

Object detection is a technology in computer vision that deals
with detecting instances of objects such as vehicles, pedestrians,
and buildings in digital images or LIDAR images [12]. It has a
critical role in scene understanding and environment perception.
Therefore, object detection has been widely used in many fields,
especially for ADS.

A. Object Detection

An object detector typically has two layers: the backbone
network and the baseline [13]. The first layer is the backbone
network (feature extractor). A backbone network takes images
as input and outputs the feature maps of the corresponding input
image [14]. It is usually an object classification network minus
the last fully connected layers. For backbone networks, there is
a tradeoff between accuracy and efficiency. Deeper and densely
connected backbones such as Resnet [15], AmoebaNet [16],
and ResNeXt [17] provide better accuracy, whereas shallower
and sparsely connected backbones such as MobileNet [18],
MobileNetV2 [19], ShuffleNet [20], and Xcepttion [3] provide
faster inference time. Additionally, improved and newly de-
signed versions of basic classification networks are also utilized
to meet specific requirements of object detection tasks, such as
DetNet [21] and Fishnet [22].

After the backbone is the feature selection process. Feature
selection is the process of selecting a subset of input variables.
This dimensional reduction help improve the data redundancy,
the computation load, over-fitting, and the accuracy of the ma-
chine learning methods [23].

Feature selection in LIDAR images would remove variables
that are highly correlated [24], [25]. For example, in the point
cloud LIDAR image, a few thousand data points are reflected
from the same vehicle. Using features extracted from these
points can better represent this vehicle and save memory as well
as processing time. The dependent points of this feature provide
no extra information about data and only serve as noises for
the object detection models. By removing the dependent points,
we can significantly reduce the amount of data and improve
object detection performance. Additionally, contrary to highly
correlated data points, there may exist data points that have no
correlation to the environment perception in ADS [26]. Thus,
these variables also serve as noises and introduce bias into
the system. Therefore, applying feature selection helps remove
redundant data and minimize the amount of important data to be
transmitted during V2V communication.

There are two main categories of object detectors: two-stage
detection with a “coarse-to-fine” process and one-stage detection
with a “complete in one step” process [27]. In a two-stage
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detector, The two stages are Region of Interest (ROI) proposal
generation and feature extraction by ROI Pooling (ROIPool). In
the second stage, the features are extracted by ROIPool from the
candidate boxes to be used in classification and bounding-box
regression. The first stage is called a Region Proposal Network
(RPN), which proposes the object bounding boxes. Some works
that represent the development of CNN-based two-stage detec-
tors are MFR-CNN [28], FII-CenterNet [29], R-CNN [30], Fast
R-CNN [31], Faster R-CNN [32], and Mask R-CNN [33].

Contrary to the two-stage detector, a one-stage detector di-
rectly proposes the predicted boxes from the input and does
not have a region proposal stage. Examples of the one-stage
detectors used in smart vehicular system includes [34], [35],
SSD [36], DSSD [37], YOLO [38], YOLO V3 [39], and Reti-
naNet [40]. In conclusion, the two-stage detectors usually have
higher localization and object detection accuracy, while the
one-stage detectors are more time efficient and have higher
inference speeds.

B. Related Work

For point cloud data, there are different strategies for 3D
object detection, including multi-view, voxel, and point-based
methods.

Multi-view methods work by integrating multiple sensors.
MV3D [41] merges the BEV and front view from LIDAR data
with the RGB image to generate 3D bounding box predictions.
AVOD [42] improves upon MV3D by merging the features
in the region proposal network (RPN) phase instead of the
refinement phase. Some limitations of these methods include
detecting small objects and detecting multiple objects in the
same direction.

Some methods used voxel-based representation [42], [43],
[44], [45]. In [45], the non-empty voxels are encoded with
statistical quantities of the points within the voxel. On the other
hand, [46] uses binary encoding for each voxel. PIXOR [44]
encodes the voxel with occupancy. Whereas, SECOND [47] uses
sparsely embedded convolutional layers for parsing the voxel
representation. Aside from this, pseudo-images are also used as
the representation after voxelization in PointPillars [48]. These
methods all project the sparse point cloud into a more compact
voxel representation. The drawback is that the point number in
each voxel is limited, thus leading to information loss.

There are also many two-stage detectors with high accuracy.
Fast Point R-CNN [49] uses the two-stage detector framework
to utilize the volumetric representation for initial predictions
and then further refine them with a raw point cloud. STD [50]
generates proposal features, uses Pointspool to transform them
into amore compact representation and predicts the 3D bounding
boxes in the second stage. The high accuracy of these methods
comes from a better recall rate. However, due to a longer infer-
ence time, they are not viable in a real-time system. Therefore,
in this paper, we propose a one-stage framework with better
accuracy and time efficiency.

Additionally, data representation and compression are also
other important components, which can determine whether an
ADS can be collaborative in real time [51]. Therefore, we
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Algorithm 1: BEV Map Matching.

Input : Ego vehicles’ BEV map M; m pairs of BEV
maps (H, W, 3) and their GPS location
1 Use the transformation matrix T on all the transferred
BEV map M;
2 while there are non-stitched BEV maps M, do
3 Let M’ be M
4 Adding the additional part of M; to M’ to update
M’

5 Cross verify all similarly detected object and their
new confidence interval
6 Mark any detected object from M; that is different
from M’ for further processing in the route
planner

7 end
Output: Return M’

also propose the communication scheme and data encoding
associated with our method, RTCVC, to enable a real-time
collaborative autonomous vehicular system.

III. METHODOLOGY

As mentioned, the proposed method in this paper is to utilize
the advantage of Bird’s-Eye-View (BEV) map in collaborative
communication to help in occluded object detection, which is
an important challenge in ADS.

A. BEV Map-Based V2V Collaboration

A BEV map is a map that represents the top-down view
of the surrounding environment of the ego vehicle (EV). In a
typical autonomous driving stack, the behavior prediction and
planning are generally completed using the BEV map because
height is less important whereas BEV can represent most of
the information needed for an AV. A BEV map also is much
smaller in size compared to the LIDAR point cloud and will be
communicated much faster with other AVs in the network.

The BEV map is encoded by height, intensity, and density,
where each point on the 2D grid correlatestoa0.1 m x 0.1 mcell.
The point cloud data contains a set of data points in a 3D space,
which is collected using LIDAR. These data can be divided into
a 2D grid of 0.1 x 0.1 m cell. As such, The height feature for
each cell of the BEV map is calculated as the maximum height
of the points in a cell. Similarly, the intensity is the reflectance
value of the point with the maximum height. Finally, the density
indicates the number of points in each cell. Therefore, a BEV
map have dimensions similar to that of an RGB image, with
height and width but instead of red, green, and blue value, it has
height, intensity, and density value. Thanks to accurate depth
information from LIDAR, the point cloud contains the accurate
location of all points in the cloud relative to the ego vehicle. The
depth information is preserved during the process of encoding
the BEV map.

The method we propose in this paper is called RTCVC
(Real-time Collaborative Vehicular Communication), which uti-
lizes the compact nature of BEV maps to communicate the
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Fig. 2. Proposed RTCVC BEV framework. This graph illustrates the pipeline of the object detection process of the vehicle in the network. A vehicle senses
the environment using its sensors. These data are used as input for the RTCVC object detection module, which outputs a BEV map M encoded with the detected
objects and the vehicle’s GPS location. Each vehicle will then send this BEV map M to all neighboring vehicles in the network. After receiving these BEV maps,
the ego vehicle applies Algorithm 2 to combine the BEV maps with the cross-verification of the detected objects.

GPS locations of the sending vehicles to make a final BEV
map

e Step 6: Each vchicle uses its own final BEV to make a

navigating decision.

This process is also described in Algorithm 2 and Fig. 2 .

There are two steps in the process of combining the BEV
maps, which are described in Algorithm 1. The first step is
stitching the additional 2D area of the BEV map to the main
map. The second step is cross-verifying and/or adding additional
detected objects from other BEV maps.

In the first step described in Algorithm 1, we utilize the GPS
signal to align the maps together. Let x and y be the coordinates
of the EV in the BEV map. {z;, y;} is the set of coordinates of
the set of vehicles i in the network. Let M be the BEV map of
the EV with the vehicle’s coordinates (x, y) at the center (0, 0)
of the map and { M, } be the set of BEV maps transferred to the
EV. To combine these BEV maps, we apply the transformation

Algorithm 2: return BEV Map M’ With Detected Objects
Use for Navigation Planning.

Input: LIDAR data at time t; transferred BEV maps
from collaborative vehicles with object detections
results and their GPS location received at time t

1 Use deep learning-based object detection model to
detect vehicles, pedestrians, cyclists, . .. using LIDAR
data.

2 Make a BEV map M using the LIDAR data and object
detection results.

3 Using Algorithm 1 to apply BEV map stitching to get
the final BEV map M’

Output: Return BEV map M’ with detected objects used
for navigation planning

environmental perception of neighboring vehicles. The RTCVC
framework is a framework for collaborative object detection in
V2V networks. When an AV is isolated, there is no collaboration.
The collaboration starts when vehicles from the same network
are in proximity to each other, which enables communication.
The communication method can be done using millimeter wave
frequency bands for faster throughput. After the communication
starts, the RTCVC collaborative framework can be activated.
Each vehicle in the network still runs its own object detection
modules. The process of RTCVC is as follows:
e Step 1: Each AV iuses its own collected LIDAR point cloud
data and projects it onto the 2D grid to create a BEV map.
e Step 2: The BEV map is used as input to detect objects and
predicts bounding boxes for these objects
e Step 3: The bounding boxes are encoded into the BEV map
e Step 4: Each AV i sends a copy of this BEV map to all AVs
in the network along with their GPS location.
e Step 5: Each AV i uses the collection of its own BEV map
along with these newly acquired m pairs of BEV maps plus

matrix T:

—;
—Yi
1

10
T=7{0 1 €))

00
To each BEV map M. After this, we will stitch the additional
arca to the BEV map. Specifically, let’s define the main BEV
map with the dimensions of (H, W, 3) where H, W are the height
and width of the map, and the 3 layers are the height, intensity,
and density of an area on the map. Additional BEV maps will
provide a bigger area of perception, giving the main BEV map
abigger H’, W’.

In the second step, we cross-verify and/or add the additional
detected objects to the main BEV map. After the object detection
step, the BEV map contains not only the top-down view of the
environment but also the detected objects’ center coordinates;
length, width, and height; their heading angle, and semantic label
if provided. The cross-verification process serves to increase the
confidence interval. Especially, the difference in detected results
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such as that of occlusion or misidentification will be used in the
route planning process. The route planner can choose to either
slow down or do other precautious actions in these cases to
minimize the risk of accidents while waiting for new or updated
information on the environment.

Thus, this method works very well for the partially and
entirely occluded objects from the ego vehicle when it has
extra information from surrounding vehicles. Particularly, in
situations where occlusion happens due to Non-line-of-sight
(NLOS) when a vehicle cannot see the whole or part of an object,
but another vehicle can from a different perspective, the BEV
map from the transmitting vehicles can be integrated into the
ego vehicles’ BEV map and help reinforce or add the detection
of the occluded object to the main BEV map. Not only does it
help in occlusion, but this method can also increase the detection
accuracy of vehicles in cases where the accuracy is not high.

Moreover, by using the BEV map (2D data) and not point
cloud data (3D data), we also make it easier to fuse the views
from multiple data sources, which can be extremely difficult and
computationally expensive in the point cloud data case [52].

In the numerical analysis section, we will further explore the
effectiveness and speed of the proposed RTCVC method using
real data and experiments. Overall, using empirical methods, the
RTCVC method showed that it increases the accuracy of object
detection, especially for occluded objects. Using experiments,
we also show that the RTCVC method significantly reduce the
transmission load with less than 400 times the transferred data
of compressed LIDAR data (LAZ compression). Thus, making
this method possible in real time, with a frequency of 21.92 Hz.

B. RTCVC BEV Map-Based Object Detection

For object detection, the proposed RTCVC can work with
a multitude of object detection modules that are suitable to
the ADS. For this proposed method, we use a RTCVC BEV
map based object detection built upon a Resnet-based Keypoint
Feature Pyramid Network (KFPN) in a RTM3D model for object
detection [53], [54]. The difference of our proposed RTCVC
method from the RTM3D model is that instead of using the RGB
images from the camera as the input, we input the BEV map that
is encoded by height, intensity, and density of the 3D LIDAR
point clouds. This help leverage the precise depth information
of the LIDAR data using a 2D image object detection module.
Thus, we can have a faster inference time than using the point
cloud data while having a higher accuracy of well-trained 2D
object detection modules.

The backbone network we use is Resnet-18 [15] with a
down sample factor S = 4. The input is a single BEV map
M € RW>*H>3_ The feature maps of the low levels are also
concatenated and a 1 x 1 convolutional layer is added for di-
mension reduction before the upsampling layers. The bottleneck
of Resnet is then upsampled by three bilinear interpolations and
a 1l x 1 convolutional layer. After these upsampling layers, the
resulting channels are 256, 128, and 64.

The Keypoint Feature Pyramid Network (KFPN) [53] is used
to detect scale-invariant key-points in the point-wise space. A
normal Feature Pyramid (FPN) extracts the features from a
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pyramid of features map at different scales and use them for
object detection. A keypoint FPN are used to detect multi-scale
2D box in different pyramid layers, we need to use KFPN to
detect mutli-scale 3D box at different scales. Assuming that we
have F scale feature maps. For each scale feature map f, we
resize f to a scale feature map with a maximal size f . Thus,
all F scale feature maps f have the same size f . We can obtain
the soft weight of the key point feature map by applying the
softmax operation. Finally, the scale score is the linear sum of
all the resized scale maps’ soft weights:

Sscore = Z f © softmax(f) (2)
f

The output of our model includes the center coordinates of the
detected objects; the length, width, and height of the bounding
box; and the heading angle of the bounding box. The goal of our
BEV-based KFPN is to detect these 7 features of an object in
the scene to detect the bounding box surrounding the object.

The detection head uses the center coordinates (c,, ¢y, ¢.), the
length, width, and height (1, w, h) of the bounding box, and the
heading angle in radians (6) of the bounding box as the target.
The main center key point is used to connect all features. The
heatmap of the main center is defined as C' € [0, 1]W/S*H/SxG
where G is the number of object categories. This heatmap
of the main center is trained using focal loss. The focal loss
function applies a modulating term to the cross entropy loss to
focus on learning the hard negative example. Thus, it reduces
the affect of class imbalance during training, such as that in
object detection [40]. The heading angle 6 defines the rotation
of an object. To find the heading angle, we use the Multi-Bin
based method [55] for orientation regression. One bin is used to
classify the probability of cosine and sine of local angle. This
bin is used to generate the feature map O € RH/S*W/5x8 with
two bins. The dimension D € R/5*W/Sx3 of the objects are
trained using the balanced L;Loss [56]. Finally, the z coordi-
nates Z € RH/S*W/Sx1 are also regressed using the balanced
L Loss.

The training of the method then works to minimize the focal
loss and detect the keypoints. As a result, for each object in a
BEV map M, there are 7 features representing this object, includ-
ing its categories, center coordinates, length, width, and height
of the bounding box, and the heading angle of the bounding box.

The novelty of this method is utilizing the efficiency and
maturity of image-based object detection methods for LIDAR
images. The precise depth information of the LIDAR helps
increase the accuracy of the detection. Most importantly, the
compactness of BEV maps reduces the bulk of object detection
computation as well as communication cost. Thus, we can have
a fast enough inference time and accuracy to use in a real-time
ADS.

IV. NUMERICAL ANALYSIS

In this section, we test both the effectiveness of our proposed
method in detecting occluded objects as well as its inference
speed using simulations and experiments.
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Backbone Featurg Pyramid

Cc Concatenation

Keypoint FPN

Further layer
Upsampling

Skip Connecting

Fig. 3. Object detection model that takes BEV map as input. The backbone
networks process the input BEV maps and extract features. The feature Keypoint
Feature Pyramid selects features and passes them for detection.

A. Occluded Object Detection

In this section, we aim to test the use case of BEV map-based
collaborative detection in V2V communication, with a focus on
solving partial occlusion and full occlusion due to non Line-
of-sight(LOS). Particularly, we focus on the scenarios where
the occlusion appears because of other objects as opposed to
occlusion due to weather conditions such as snow, rain, and
fog. The data we are using come from the KITTI dataset [7].
To simulate the collaborative communication between two AV,
we take the LIDAR point cloud and image instance of the same
vehicle at two different time stamps. In this way, we can imagine
these as two vehicles operating on the same road at the same time.
The time stamps distance is chosen such that, if these are two
separate vehicles, they would be in line-of-sight and within the
range of 10- 30 m. Thus, we can ensure that the cases discussed
here are realistic and the communication be- tween the vehicles
can be assumed due to the line- of-sight and distance.

In this simulation, we use our proposed method RTCVC
described in section 3 to detect the object using a compact
representation of the LIDAR point cloud — BEV map (H, W,
3). For demonstration, the detected objects are projected onto
the image for better understandability and interpretability. The
BEV map is also included and used as the mean to communicate
the detection results between vehicles. In Figs. 4 and 5, we
examine the first case where the frame in Fig. 4, including the
image and BEV map, is taken approximately 0.7 s earlier than
Fig. 5. Therefore, in a real world scenario, the vehicle A would
be right behind of vehicle B. Assume vehicle A to be the ego
vehicle (EV), we observe that it cannot detect the pedestrian who
is standing right behind the white van. This situation can be very
dangerous because the time window for decision is very small if
the pedestrian decides to walk toward the driving lane. However,
from the front vehicle B point of view, it can clearly detect the
pedestrian and noted it on the BEV map as ‘“Pedestrian”. With
the information given by the BEV map of the front vehicle, the
ego vehicle, EV A in Figs. 3 and 5, has more time and space
to make a better decision on its speed and direction in the next
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1=EVA 2 = Black SUV

Fig. 4. Example case where the bicyclist is occluded from one vehicle’s view
but not the others’.The EV A is traveling in a cured road. The EV can detect the
Black SUV and the white van in the front. This frame is taken approximately
0.7 s earlier than Fig. 5, which makes the EV to be behind vehicle B in a real
world scenario.

1=EVA
3 = White Van

2 = Black SUV
4 = Bicyclist

Fig. 5. Vehicle B is traveling in the front of EV A. Both vehicle A and B can
detect the black SUYV, the white van on the right. However, EV A cannot detect
the bicyclist coming from the front, occluded from the curved road. Vehicle B
can detect the bicyclist and transfer this information through BEV to vehicle A.

0.5-1 s. In Figs. 6 and 7, similarly, we examine the case where
the first frame in Fig. 6 is taken 1.1 s earlier from the frame in
Fig. 7. In this situation, vehicle B detect a bicyclist riding in the
opposite direction on the same road whereas the EV A cannot.
Similarly in this scenario, collaboration between the two AVs
is much needed to avoid accident. Furthermore, in a real world
situation where the front vehicle is physically in front of the ego
vehicle, it is even more difficult to detect the bicyclist in time
before he gets near.
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2=Carl
4 = White Van

Fig.6. Example case where the pedestrian is occluded from one vehicle’s view
but not the others’. The EV A is traveling in a straight road. The EV can detect
the car 1, car 2, and the white van ahead. This frame is taken approximately 1.1 s
earlier than Fig. 7, which makes the EV to be behind vehicle B in a real world
scenario.

2=Carl
4 = White Van

Fig.7. Vehicle B is traveling in front of the EV A. Vehicle A can detect car 1,
car 2, and the white van on the right. Vehicle B, however, also detect a pedestrian
behind the white van and car 3 further in the front.

Based on these scenarios, we can see that the collaboration
using detection results encoded in BEV map can increase the
accuracy of detection results and help tremendously in occlusion
cases.
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TABLE I
ACRONYMS

ADS Autonomous Driving System

AV Autonomous Vehicle

\PAY Vehicle-to-Vehicle

BEV Bird’s-Eye-View

EV Ego Vehicle

FPN Feature Pyramid Network

KFPN Keypoint Feature Pyramid Network

RGB Red, Green, Blue

ROI Region of Interest

ROIPool ROI Pooling

RPN Region Proposal Network

LOS Line-of-sight

NLOS Non-Line-of-sight

LIDAR Light Detection and Ranging

POV Point Of Views

T Transformation Matrix used for BEV maps
H Height

w Width

S Down sample factor

f scale feature map

f scale feature map with a maximal size

F number of scale feature maps

M BEV map before stitching

M; transferred BEV from collaborating vehicle
M’ Final BEV map after stitching

cz,Cy,Cz  center coordinates of bounding box

I, w, h length, width, and height of the bounding box
0 the heading angle of detected object

C Heatmap of the main center

G Number of object categories

(0] Feature map for heading angle regression
D dimensions of objects

Z z coordinates

B. Processing Time and Data Size for Transmission in RTCVC

In this section, we simulate the processing time and data size
for transmission in the scenarios in Section IV and show that
our method can work in a real-time system.

Besides detection accuracy, another critical factor for ADS is
the processing and transmission time. The speed must be fast in
order to satisfy the requirements of a real-time driving system.
Thus, we aim to provide numerical analysis on the processing
time of BEV map-based object detection as well as the data size
and transmission time of BEVs map.

In Table I, we compare the file size of the raw camera data,
the LIDAR data, the BEV map, and our proposed method of
sending the BEV maps with camera data used in the simulation
above. These numbers are based upon the KITTI dataset that
we used to run our tests. The BEV map keeps the important
depth information from the LIDAR data. On the other hand, the
detection results from the camera data can provide additional
information to the ego vehicle such as traffic sign, road surface
markings, etc..

For simulation, we consider both use cases of 4G and 5G
network. Ideally, the V2V network will use a fast 5G network to
communicate to each other. However, in cases of area where 5G
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FILE S1ZES AND TRANSMISSION TIME COMPARISON IN 4G AND 5G NETWORK

TABLE I

FOR BEV MAPS, CAMERA DATA, AND LIDAR DATA

File size Transmission using Transmission using

Method (lt/[bs‘)l z 4G network 5G network

; (14 Mbps) (100 Mbps)
BEV 1.1 0.0758 s 0.0106 s
maps
Camera (4 8.5 0.6065 s 0.0849 s
cameras)
LIDAR 28000.0 2000.0000 s 280.0000 s
point cloud
LAZ
LIDAR 4000.0 285.7000 s 40.0000 s
Ours (BEV 9.6 0.6823 s 0.0955 s
map + Camera)

network is not available, we will also make a simulation using
the 4G network. In this simulation, we use the average speed
for a 4G network at 14 Mbps. On the other hand, a 5G network
speed can range from 50 Mbps to over 1 Gbps. For this paper,
we use a sub-6 GHz 5G (mid-band), the most common band,
at 100 Mbps for this numerical experiment. The BEV map size
is the same as that of a RGB image, with the size of 1382 x
512 pixels. Similarly, the data size of the cameras’ images is
also calculated by multiplying the size of a 1382 x 512 pixels
image with 4 to match with the setup of the KITTI dataset.
Finally, the LIDAR scanner is capturing approximately 100 k
points per cycle. Using the LAS formats, it’s approximately 28
bytes per point. Additionally, we can also compress it using
the LAZ format (laszip), which has a compression ratio of 7:1.
With these information, we can calculate the transmission time
needed for each data type, listed in Table I. Using this setup, we
can easily see that sending the raw LIDAR is impractical as even
in a faster 5G network with a speed of 100 Mbps and the LIDAR
data is compressed, it still takes 40 seconds to send the full data.
In the KITTT setup, both the camera and laser scanner capture
information at a rate of 10 Hz, or 0.1 s between each frame.
Therefore, it is impossible to have proper collaboration between
using the compression methods above when the transmission
time significantly outweighs the capture speed.

In Table IT, we compare the processing time of LIDAR-based
object detection methods including IPOD [57], F-ConvNet [58],
STD [50], Point RCNN [59], Fast Point R-CNN [49], SEC-
OND [47], HRI-Voxel FPN [60], Point Pillars [48], PIXOR++
[61], and HVNet [62] with our method, an object detector using
the RTM3D network structure with BEV map input, BEV map
input, Resnet18 backbone, and BEV-map based collaborative
perception. On top of this, we also simulate the process of
transmitting the detection results in a BEV map, which includes
both the encoded detection results and the GPS location. We
can see that even with the transmission of the BEV map in a 5G
network, our method still has a competitive processing time, at
0.0456 seconds, faster than all the compared two-stage detectors
as listed in Table II. The methods we compared with include
IPOD [57], F-ConvNet [58], STD [50], PointRCNN [59], Fast
Point R-CNN [49],.Furthermore, it is also very close to the
one-stage detector such as SECOND [47], HRIVoxelFPN [60],
PointPillars [48], PIXOR++ [61], HVNet [62], and RTM3D
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TABLE III
PROCESSING TIME COMPARISON. ALL METHODS USE LIDAR INPUT. THE
METHODS ARE DIVIDED INTO TWO TYPES: TWO-STAGE AND ONE-STAGE

DETECTORS
Type Method Time
IPOD [57] 0.2000 s
Two- F-ConvNet [58] 0.4760 s
stage STD [50] 0.0800 s
PointRCNN [59] 0.1000 s
Fast Point R-CNN [49] 0.0600 s
SECOND [47] 0.0500 s
HRI-VoxelFPN [60] 0.0200 s
One- PointPillars [48] 0.0235 s
stage PIXOR++ [61] 0.0286 s
HVNet [62] 0.0322 s
RTM3D (Resnet18) [53] 0.0350 s
Proposed RTVC 0.0456 s
method RTCVC +Camera 0.1305 s

[11] methods with the fastest one at 0.02 s and slowest one at
0.05 s.

In the KITTI dataset, the laser scanner spin at 10 frames per
second. The cameras are also triggered at 10 frames per second
to match the laser scanner. Therefore, each frame of image is
0.1 s away from each other (10 Hz) and any method that needs
more than this time will not be viable for a real-time system.
Using the results from Table II, it takes only 0.0456 s for our
method to detect the object and send the BEV map results to
another vehicle. Therefore, it is completely practical to use our
method in a real-time system with a setup like that of the KITTI
dataset. This method can also potentially work at the frequency
of 21.92 Hz, which means the laser scanner and the cameras
can capture the environment at a higher speed, up to double the
current capture rate of KITTL

Overall, compared to other methods, our proposed method
RTCVC can achieve a fast reference time for a real-time system,
high accuracy, and most importantly, much better accuracy at
detecting occluded objects, which is a challenge for most object
detection modules.

V. CONCLUSION

In this paper, we proposed RTCVC, a collaborative envi-
ronment perception method for autonomous driving system.
RTCVC uses BEV map-based object detections and encode the
detected results onto the BEV to communicate these results with
other vehicles. The BEV map is a compact 2D representation of
LIDAR point cloud. This representation helps us to utilize the
accurate depth information from LIDAR, which is difficult for
camera data. The 2D form also enable us to use mature, well-
trained image-based object detection network such as Resnet.
Furthermore, since BEV map is a popular input for many route
planning networks, our method does not need to modify the out-
puts of the network before passing them to route planner. Due to a
significant reduction in volume of communication, RTCVC can
establish real-time collaboration between autonomous vehicles,
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which is difficult in other methods due to the transmitting delay
between vehicles. Thus, our method helps reduce the problem
of occlusion and partial occlusion in the autonomous driving
system, a challenging problem in ADS without collaboration.
Using simulation, we show that this method can increase the
accuracy of object detection, especially in occlusion cases due
to NLOS. Furthermore, using experiments and the setup in our
simulation, we showed that this method can be used in areal-time
system, at a reference time of up to 21.92 Hz.
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