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Abstract

Inferring dependencies between mixed-type biological traits while accounting for evolution-
ary relationships between specimens is of great scientific interest yet remains infeasible
when trait and specimen counts grow large. The state-of-the-art approach uses a phyloge-
netic multivariate probit model to accommodate binary and continuous traits via a latent vari-
able framework, and utilizes an efficient bouncy particle sampler (BPS) to tackle the
computational bottleneck—integrating many latent variables from a high-dimensional trun-
cated normal distribution. This approach breaks down as the number of specimens grows
and fails to reliably characterize conditional dependencies between traits. Here, we propose
an inference pipeline for phylogenetic probit models that greatly outperforms BPS. The nov-
elty lies in 1) a combination of the recent Zigzag Hamiltonian Monte Carlo (Zigzag-HMC)
with linear-time gradient evaluations and 2) a joint sampling scheme for highly correlated
latent variables and correlation matrix elements. In an application exploring HIV-1 evolution
from 535 viruses, the inference requires joint sampling from an 11,235-dimensional trun-
cated normal and a 24-dimensional covariance matrix. Our method yields a 5-fold speedup
compared to BPS and makes it possible to learn partial correlations between candidate viral
mutations and virulence. Computational speedup now enables us to tackle even larger prob-
lems: we study the evolution of influenza H1N1 glycosylations on around 900 viruses. For
broader applicability, we extend the phylogenetic probit model to incorporate categorical
traits, and demonstrate its use to study Aquilegia flower and pollinator co-evolution.
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Author summary

We aim to learn the relationships between different biological features, or traits, observed
in related specimens that have evolved together over time. This is of great scientific inter-
est because by identifying how different traits influence each other, we gain insights into
the mechanisms underlying important biological processes. Learning the relationships
between traits across a large number of specimens is computationally challenging, particu-
larly when traits have mixed-type values (continuous and discrete). The previous best
approach utilizing a method called bouncy particle sampler (BPS) struggles with increas-
ing specimen and trait counts, resulting in unreliable estimates of trait dependencies. We
develop a more efficient approach that largely outperforms BPS, reducing the runtime of
our large-scale applications from weeks to days. We apply our method to study the evolu-
tion of HIV and influenza viruses, as well as flower and pollinator co-evolution. Our work
provides an efficient yet general way to understand the connections between mixed-type
traits, offering valuable insights into the evolution of complex biological systems.

Introduction

An essential goal in evolutionary biology is to understand the across-trait covariation observed
within biological samples, or taxa, ranging from plants and animals to microorganisms and
pathogens such as human immunodeficiency virus (HIV) and influenza. This task is difficult
because taxa are implicitly correlated through their shared evolutionary history often described
with a reconstructed phylogenetic tree. Here, tree tips correspond to the taxa themselves, and
internal nodes are their unobserved ancestors. Inferring across-trait covariation requires a
highly structured model that can explicitly describe the tree structure and adjust for across-
taxa covariation. Phylogenetic models do exactly this but are computationally challenging
because one must integrate out unobserved ancestor traits while accounting for uncertainties
arising from tree estimation. The computational burden increases when taxon and trait counts
grow large and becomes worse when traits include continuous and discrete quantities. Cybis
et al. develop the first phylogenetic method that can assess across-trait covariation while con-
trolling for a large, unknown evolutionary tree with hundreds of tips [1]. To jointly model
mixed-type traits, this approach assumes discrete traits arise from continuously valued latent
variables that follow a Brownian diffusion along the tree [2]. Assuming latent processes is a
common strategy for modeling mixed-type data and it finds uses across various fields [3-7].
Subsequent work by [8] solves an essential identifiability issue in [1] by adding specific con-
straints on the diffusion covariance. The resulting model in particular generalizes the multivar-
iate probit model [9]. The most important contribution of [8], however, is an efficient
inference scheme that achieves order-of-magnitudes efficiency gains over [1]. In this work, we
significantly advance performance compared to [8] to solve even larger problems.

Here is an intuition on why our new inference scheme, to be formally introduced in Meth-
ods section, outperforms the one by [8]. For N taxa each with P continuous or binary traits,
Bayesian inference for the phylogenetic probit model involves repeatedly sampling latent vari-
ables X from their conditional posterior, an (N x P)-dimensional truncated normal distribu-
tion. The (N x P) size of the truncated normal distribution results from having one latent
variable for each taxon and each trait. For this task, [8] develop a bouncy particle sampler
(BPS) [10] combined with an efficient dynamic programming approach that speeds up the
most expensive step in the BPS implementation. Their approach, however, fails to address
another source of computational inefficiency in posterior inference under the phylogenetic
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probit model—a high degree of correlation between X and C. [8] use a separate Hamiltonian
Monte Carlo sampler [11, HMC] to sample C and update the two sets of parameters alternately
within a random-scan Gibbs scheme [12]. The phylogenetic probit model assumes X to follow
a multivariate Gaussian distribution whose covariance matrix incorporates C. By the model’s
very design, therefore, the values in C influence the strength and direction of the correlations
between elements of X. This correlation between the two parameters slows down convergence
and mixing of the Gibbs scheme as each update of X or C is strongly influenced by the current
value of the other parameter. To address this issue, our present solution utilizes a state-of-the-
art Markov chain Monte Carlo (MCMC) method called Zigzag-HMC [13]. Unlike BPS, this
method allows a joint update of X and C through differential operator splitting [13, 14] that
generalizes the previously proposed split HMC framework based on Hamiltonian splitting [11,
15]. Zigzag-HMC can further take advantage of the same O(N) gradient evaluation strategy
developed by [8].

Our sampling scheme greatly improves the mixing of elements in C and thus provides a
reliable estimate of the across-trait partial correlation matrix R, the inverse of the correlation
matrix normalized to have unit diagonals. The partial correlation between two traits quantifies
their conditional dependence that accounts for, and hence removes confounding by, the effects
of other traits in the model. Use of partial correlations thus allow us to gain insight into poten-
tial causal pathways and help guide further research into underlying biological mechanisms.

We apply our methodology to three real-world examples. First, we re-evaluate the HIV evo-
lution application in [8] and identify HIV-1 gag immune-escape mutations linked with viru-
lence through strong conditional dependence relationships. Our findings closely match with
the experimental literature and indicate a general pattern in the immune escape mechanism of
HIV. Second, we examine the influenza HIN1 glycosylation pattern across different hosts and
detect strong conditional dependencies between glycosylation sites closely related to host
switching. Finally, we investigate how floral traits of Aquilegia flower attract different pollina-
tors, for which we generalize the phylogenetic probit model to accommodate a categorical pol-
linator trait.

Methods
Mixed-type trait evolution

We describe biological trait evolution with the phylogenetic multivariate probit model follow-
ing [8] and extend it to unordered categorical traits as in [1]. While we do not consider
ordered categorical traits in this work and leave it to future work to support such traits, the
mapping of latent variables in this case can also be found in [1]. We either know the phyloge-
netic tree .# a priori or infer it from a molecular sequence alignment S [16]. In our two large-
scale HIV and influenza applications (Results section) with available sequence data, we use a
continuous-time Markov chain evolutionary model [17] to construct p(S|.%) and so infer &
simultaneously. We refer interested readers to [16] for more details on tree sampling. When
investigating the efficiency gain of our method over [8], we utilize a fixed tree for a more direct
comparison and also to reduce the overall run-time. For our third application on flower and
pollinator co-evolution, we adopt the same fixed tree as in [18].

Consider N taxa on a tree & = (V,b) that is a directed, bifurcating acyclic graph. The node
set V of size 2N — 1 contains N tip nodes, N — 2 internal nodes and one root node. The branch
lengths b = (b4, . . ., byn_») denote the child-parent distance in real time. We observe P mixed-
type traits for each taxon. The trait data Y = {y;;} = (yeont, ydisey partition as Y™, an N x Py,
matrix of continuous traits and Y&, an N x Py;.. matrix of discrete ones. We associate with
each trait a latent variable x; € R, if the j-th trait is continuous or binary, and a (m; — 1)-
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dimensional latent vector X, = {x;,} € R™", if the trait is categorical, where m; denotes the
number of categorical classes. Continuous traits y;; can be seen as as latent variables that are
directly observed so x;; = y;;. To relate latent variables to observed discrete traits, we assume a
threshold model for binary traits and a choice model for traits with more than two classes. For

a binary trait y;;,
0 if x; <0,
Vi = gb(xij) = ) (1)
1, if x; > 0.
For a categorical trait y;;, the possible classes are {c,, ..., ij} with the reference class being c;.
We have
¢, if Xijmax < 0,
yij = gc('xij.l’ et 7xij.mj71) = A (2)
¢ if m;>1 and x;,. =%, >0,
where x;; . = max(x,;,...,x; +,”72). This data augmentation strategy is a common choice to
model categorical data [19].
After concatenating all the latent variables, for each nodei=1,...,2N -1 in F we have

Py,-dimensional latent variable X, € R with P, ,

=P .+ Zf;‘};‘(‘;fff‘ (m; —1). Asaside
note, for continuous y;; the corresponding x;; is observed, and so X; is actually a partially latent
vector. Since in our applications only a small fraction of y;; is continuous, we omit “partial” to
ease the notation.

The latent variables follow a multivariate Brownian diffusion process along F such that X;

distributes as a multivariate normal (MVN)

XiNN(Xpa(i)7bi9)vi:17"'72N_27 (3)

where X,(;) is the parent node value and the P}, X P}, covariance matrix € describes the
across-trait association. The intuition behind b, is that the further away a child node is from
its parent node (larger b;), the bigger difference between their node values. Assuming a conju-
gate root prior X,y , ~ N (i, » Q) with prior mean g, and prior variance w™'Q, we can
analytically integrate out latent variables on all internal nodes. Marginally, then, the N x Py,
tip latent variables X have the matrix normal distribution

X~ MTNNPIat(Mv T,Q), (4)

where M = (g, . . ., yO)T isan N x P}, mean matrix and the across-taxa covariance matrix Y
equals V(F) + '] [20]. The diffusion matrix V(F) is a function of branch lengths such that
its diagonal elements represent the sum of branch lengths from a tip to the root, while the oft-
diagonal elements are the branch length from the root to the most recent common ancestor of
two tips. The augmented likelihood of X and Y factorizes as

p(va‘Tvgvﬂovw) :p(le)p(X|Tan”mw)v (5)

where p(Y|X) = 1 if X are consistent with Y according to Egs (1) and (2) and 0 otherwise. Fol-
lowing [8], we decompose Q = DCD where C is a Py, X P}, correlation matrix. The diagonal
entries of C are all equal to 1, while the off-diagonal entries lie in the range of [-1, 1] and repre-
sent the correlations between pairs of latent variables and, hence, their corresponding traits.
The Py, X Py, diagonal matrix D = {0} for i = 1, . . ., P, contains the marginal standard devia-
tion of each latent variable. Importantly, since discrete traits only inform the sign or ordering
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of their underlying latent variables, certain elements of D must be set as a fixed value to ensure
that the model is parameter-identifiable [8]. Without loss of generality, we fix o;; = 1 for og;; cor-
responding to discrete traits. For continuous traits, the square of the corresponding element
(¢2) multiplied by a branch length is the marginal variance for the Brownian diffusion process
along that branch (Eq 3). In other words, this product reports the amount of trait variation
that accumulates along a branch. [8] demonstrate the necessity of this DCD decomposition,
which also allows a non-informative prior [21, LK]J] on C. For goodness-of-fit of the phyloge-
netic probit model we refer interested readers to [8] where the explicit tree modeling leads to a
significantly better fit.

A novel inference scheme

We sample from the joint posterior to learn the across-trait correlation C
p(C,D. X, FIY,S) ocp(Y[X) x p(X[C,D,F) x
p(C,D) x p(S|F) x p(F),

where we drop the dependence on hyper-parameters (Y, po, w) to ease notation. We fix g, to
be a Pp,.-dimensional zero vector and w to be 1. We then specify the priors p(C, D) and p(F)
as in [8] where p(F) is a typical coalescent tree prior on F [22] and p(C, D) = p(C)p(D). We
set independent log normal priors on D diagonals that correspond to continuous traits. We
assume an LK] prior on the Cholesky factor of C to ensure that C and Q are positive definite
and invertible. [8] use a random-scan Gibbs [12] scheme to alternately update X, {C, D} and F
from their full conditionals [16]. They sample X from an NP},.-dimensional truncated normal
distribution with BPS and deploy the standard HMC based on Gaussian momentum [23] to
update {C, D}. Instead, we simulate the joint Hamiltonian dynamics on {X, C, D} by combin-
ing novel Hamiltonian zigzag dynamics on X [24] and traditional Hamiltonian dynamics on
{C, D}. This strategy enables an efficient joint update of the two highly-correlated sets of
parameters. The improved efficiency allow us to focus on the across-trait partial correlation
matrix R = {r;}. After collecting the MCMC samples of €2, we obtain R by the standard trans-
formation [25]:

(6)

% )

Since R measures the linear relationship between pairs of variables after controlling for effects
of all other variables in the model, R usually lies in a more-constrained space than C and is
more difficult for the sampler to effectively explore its posterior distribution. We demonstrate
the improved efficiency of our method in inferring R in Results section. In the subsequent sec-
tions, we first describe how Zigzag-HMC samples X from a truncated normal and then detail
the joint update of {X, C, D}.

Zigzag-HMC for truncated multivariate normals. We outline the main ideas behind
HMC [11] before describing Zigzag-HMC as a version of HMC based on Hamiltonian zigzag
dynamics [13, 24]. In order to sample a d-dimensional parameter x = (xy, . . ., x,) from the tar-

-1
Q'=P={p}, r=-

get distribution 7(x), HMC introduces an auxiliary momentum variable p = (p,,...,p,) € R’
and samples from the product density n(x, p) = (x)7(p) by numerically discretizing the Ham-
iltonian dynamics

dx dp
5 = VK(p). 4 =-VU), (8)

where U(x) = —log n(x) and K(p) = —log n(p) are the potential and kinetic energy. In each
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HMC iteration, we first draw p from its marginal distribution (p) ~ A (0, 1), a standard
Gaussian and then approximate (8) from time ¢t = 0 to t = 7 by L = | 7/¢] steps of the leapfrog
update with step size € [26]:

p<_p+§vxlogn(x), X — x+ep, p<—p+gvxlogn(x)~ (9)

The end state is a valid Metropolis proposal that one accepts or rejects according to the stan-
dard acceptance probability formula [27, 28].
Zigzag-HMC differs from standard HMC insofar as it posits a Laplace momentum

n(p) o< I1; exp(—|pi]), i=1, ..., d. The Hamiltonian differential equations now become
dx dp
— =i _ = — 10
3 = Sien (p), " VU(x), (10)

and the velocity v := dx/dt € {1} depends only on the sign of p and thus remains constant
until one of p;’s undergoes a sign change (an “event”). To understand how the Hamiltonian
zigzag dynamics (10) evolve over time, one must investigate when such events happen.
Before moving to the truncated MVN, we first review the event time calculation for a gen-
eral 71(x) following [24]. Let 7 be the kth event time and (x (+'V), v (+'?), P (7)) is the ini-

tial state at time 7. Between 7 and t**V, x follows a piecewise linear path and the
dynamics evolve as
x2(t® 4+ 1) = x(x®) + tv(x®), v(® +1) =v(zW), e [0,7*D —B), (11)
and
t
p,(tP + 1) =p,(z¥) — / O,U[x(t®) + sv(xW)]ds fori=1,...,d. (12)
0

Therefore we can derive the (k + 1)th event time

t
) =0 4 mint, = min{pi (z¥) = / aiU{x(r(k)) + sv(r(k))} ds}, (13)

t>0 0

(k+1)

and the dimension causing this event is i* = argmin, ;. At the moment of 7", the i*th veloc-

ity component flips its sign

V() = —v (2W), (e ) = v, (cW) for j# i". (14)

Then the dynamics continue for the next interval [7k+D, kD))

We now consider simulating the Hamiltonian zigzag dynamics for a truncated MVN aris-
ing from the phylogenetic probit model.

x ~ N (u,X) subject to x € {map(x) = y}, (15)

where g and X are the mean vector and covariance matrix for the MVN and map(-) is the map-
ping from the vectorized latent variables x to y as in Eqs (1) and (2). In other words, y is the
NP-dimensional vectorized discrete data such that x € R? for d = NP,,,. Since vectorizing the
random variables under a matrix normal distribution (3) results in a MVN distribution, we
have X = Q ® Y where ® denotes the Kronecker product. The mean vector p is N copies of
the pre-specified root prior mean vector g, concatenated together.

In the setting of Eq (15), we have VU(x) = £~'x whenever x € {map(x) = y}. Importantly,
this structure allows us to simulate the Hamiltonian zigzag dynamics exactly and efficiently
[24]. We handle the constraint map(x) =y with a technique from [11] where the constraint
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boundaries embody “hard walls” that the Hamiltonian zigzag dynamics “bounce” against
upon impact. To distinguish different types of events, we define gradient events arising from
solutions of Eq (13), binary events arising from hitting binary data boundaries and categorical
events arising from hitting categorical data boundaries.

We first consider how to find the gradient event time. Starting from a state (x, v, p), by plug-
ging in VU(x) = Z™"x to Eq (13), we can calculate the gradient event time t, by first solving d
quadratic equations

t?
p=tL'(x—p)+ 52*11/, (16)

and then taking the minimum among all positive roots of Eq (16). When 7(x) is a truncated
MVN arising from the phylogenetic probit model, we exploit the efficient gradient evaluation
strategy in [8] to obtain > 7(x — w) and Z~'v without the notorious O(d*) cost to invert X. In
our application, p is a vector of all zeros since we set the root prior mean g to be all zero. If
there is prior knowledge about g, we can use another fixed value without increasing the
computational cost.

Next, we focus on the binary and categorical events. We partition x into two sets: S;, =
{x;: x; is for binary data} and S, = {x; : x; is for categorical data}. Starting from a state (x, v, p),
a binary event happens at time #;, when the trajectory first reaches a binary boundary at dimen-
sion i,

t, = |x, /v, |, i, =argmin |x/v] for I, ={i:xv, <0 and x; € S, }. (17)

i€l
Here, we only need to check the dimensions satisfying x;v; < 0, i.e., those for which the trajec-
tory is heading towards the boundary. At time #,, the trajectory bounces against the binary
boundary, and so the ith velocity and momentum element both undergo an instantaneous
flipv, < —v,,p, < —p;> while other dimensions stay unchanged.

Finally, we turn to categorical events. Suppose that a categorical trait y; = ¢, belongs to one
of m possible classes, and xy, x,, . . ., X,,,—; the underlying latent variables. Eq (2) specifies the
boundary constraints. If k = 1, the m — 1 latent variables must be all negative, which poses the
same constraint as if they were for n — 1 binary traits, therefore we can solve the event time
using Eq (17). If k > 1, we must check when and which two dimensions first violate the order
constraint x;_; = max(xy, . . ., X,,_1) > 0. With the dynamics starting from (x, v, p), the categor-
ical event time # is given by

tﬁ = ‘(xk—l - xic)/(vk—l - Vic)|7 ic = argmin ielca(|(xk71 - xi)/(vk—l - Vi)" ( )
18

for I, ={i:v,, <wv, and x, € S_},

when x; reaches x;_; and violates the constraint. To identify i. we only need to check
dimensions with v;_; < v; where the distance x;_; — x; is decreasing. At #, the two dimen-
sions involved (k — 1 and i) bounce against each other such that vy_; < —v_3, Vi — Vi
Pr-1 < —Pr-1> p;, < —P, - Note t/ is for a single y; and we need to consider all categorical
data to find the actual categorical event time f, = min, ..

We now present the dynamics simulation with all three event types included, starting from
a state (x, v, p) with x € {map(x) = y}:

1. Solve tg, ty, t. using Eqs (16), (17) and (18) respectively.

2. Determine the actual (first) event time ¢ = min{t,, #,, t.} and update x and p as in Eqs (11)
and (12) for a duration of t.
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3. Make instantaneous velocity and momentum sign flips according to the rules of the actual
event type, then go back to Step 1.

Based on the above discussion, Algorithm 1 describes one iteration of Zigzag-HMC on
truncated MVNs where we simulate the Hamiltonian zigzag dynamic for a pre-specified
duration f,. For a truncated MVN arising from the phylogenetic probit model, the most
computationally expensive step is the gradient evaluation in Line 3, where a matrix-vector
multiplication by the precision matrix ® = X" is involved. A matrix inversion to evaluate ®
directly is expensive since ® = Q™' @ Y~ ' and computing Y " has a cost of O(N?). We
adopt the dynamic programming strategy of [8] to reduce the cost of Line 3 from either
O(N?P,, + NP} ) when F is fixed, or O(N* + P} ) when F is random, to O(NP}, ). We refer
interested readers to [8] for details on the dynamic programming strategy. In brief, this
strategy avoids explicitly inverting Y by recursively traversing the tree [20] to obtain N con-
ditional densities that directly translate to the desired gradient ¢,.

Algorithm 1 Zigzag-HMC for multivariate truncated normal distributions
: function HzzTMVN (X, P, tiotal)
v «— sign(p)
Px — ®(x - p)
tremain — ttotal
while t,cpain > 0 do
> find gradient event time t4
a«— ¢,/2, b— ¢,, ¢c«— -p
7 ty < min; {minPositiveRoot (a;, b;, c;)} > “minPositiveRoot”
defined below
> find binary boundary event time

g w N

o

8: ty «— min; x;/v;, for i with x;v; < 0 and x; € Spin
> find categorical boundary event time, n. = number of categorical
traits
9: for =1, ..., n. do
10: tl—min (%, , —x, )/(v,, —v,)| for i with v, , <v, and x; € Scat
11: end for
12: t, e min, t]
> the actual event happens at time ¢
13: t « min {ty, to, tc, tremain!
14: X — X+ tV, PP - t@x — £°0,/2, @x — @x + L@,
15: if a gradient event happens at i, then
16: Vi TV,
17: else if a binary boundary event happens at i, then
18: Vi < =V, Py < —Pi
19: else if a categorical boundary event happens at i.;, i., then
20: Vieh & Vi Vi, T Vi Pigy T TRi 0 Piy, T TRy,
21: end if
22: Py — @, + 2v;Pe;
23: tremain * tremain — €

24: end while

25: return x, p

26: end function

* minPositiveRoot (a;, b;, c;) returns the minimal positive root of the
equation aix2 + b;x + ¢ = 0, or else returns +oo if no positive root
exists.

Jointly updating latent variables and across-trait covariance. The N x Py, latent vari-
ables and Py, X Py, across-trait covariance are highly correlated with each other, so individual
Gibbs updates can be inefficient. The posterior conditional of X is truncated normal and thus
allows for the efficient Hamiltonian zigzag simulation. The conditional distribution for
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covariance components C and D has no such special structure, so we map them to an uncon-
strained space and deploy Hamiltonian dynamics based on Gaussian momentum. We use a
standard mapping of C elements to real numbers [29] that first transforms C to canonical par-
tial correlations (CPC) that fall in [-1, 1] and then apply the Fisher transformation to map
CPC to the real line. We then construct the joint update of latent variables and covariance via
differential operator splitting [13, 14] to approximate the joint dynamics of Laplace-Gauss
mixed momenta.

We denote the two concatenated sets of parameters X and {C, D} as x = (xg, x.) with
momenta p = (pg, pr), where indices G and L refer to Gaussian or Laplace momenta. The joint
sampler updates (xg, pg) first, then (x1, pr), followed by another update of (xg, ps). This sym-
metric splitting ensures that the simulated dynamics is reversible and hence constitutes a valid
Metropolis proposal mechanism [13]. The LG-STEP function in Algorithm 2 describes the pro-
cess of simulating the joint dynamics for time duration 2¢ via the analytical Hamiltonian zig-
zag dynamics for (x7, p) and the approximate leapfrog dynamics (9) for (x¢, ps). Because xg
and x; can have very different scales, we incorporate a tuning parameter, the step size ratio r,
to allow different step sizes for the two dynamics. To approximate a trajectory of the joint
dynamics from ¢ = 0 to ¢ = 7, we apply the function LG-STEP m = | 1/2¢] times, and accept or
reject the end point following the standard acceptance probability formula [27, 28]. We call
this version of HMC based on Laplace-Gauss mixed momenta as LG-HMC and describe one
iteration of LG-HMC in Algorithm 2 where the inputs include the joint potential function
U(xg, x). We use LG-HMC to update {X, C, D} as a Metropolis-within-Gibbs step of our ran-
dom-scan Gibbs scheme. The overall sampling efficiency strongly depends on m, the step size
€ and the step size ratio r, so it is preferable to auto-tune all of them. We provide an empirical
method to automatically tune rin S1 File. We provide another option utilizing the no-U-turn
algorithm to automatically decide the trajectory length m [23] and call the resulting algorithm
LG No-U-Turn Sampler (LG-NUTS). We adapt the step size € with primal-dual averaging to
achieve an optimal acceptance rate [23].

Algorithm 2 One LG-HMC iteration
1: function LG-HMC (x%s;, X1, Psr Pr, U, m, €, r)
> Record the initial state

2: Xy X, X)X, Pl pe, Pl — P,
3: for i =1, ..., mdo
4: Xc, X1, Pcr Pr — LG-STEP (xs, X1, Pgr Prr €, I)
5: end for
> Calculate the acceptance probability a, where K; and K; denote the
kinetic energy based on Gaussian or Laplace momentum and |||, []2
are the L' and L? norm.
6: KD (Ip2l)/2, K g2l
7z Ks — (lpcll2)?/2, Ky « |lpclly
8: a < min{lvexp[U(x(é?x%) - U(xG7xL) + Kg + Kg — K — KL]}
> Accept or reject
9: u «— one draw from uniform (0, 1)
10: if u < a then
11: return x;, X;, Ps/ Pr
12: else
13: return x,«°,p’ p?
14: end if

15: end function
16: function LG-STEP (x;, X1, Pcs Prs €, I)

17 Xs, Pc < LeapFRroG (X5, Psr €)
18: Xx;, pr «— HzzTMVN (xX;, P, T€)
19: Xz, Pc <— LeaprFRroG (xGI Pcr 6)
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20: return x;, X;, Ps, Pr
21: end function
22: function LearFroc (X5, Pg, €)

23: pe— Ps+35V, 109 p(x)
24: X; — X; t €pc
25: ps — ps+5V,,1og p(x)
26: return x;, x;

27: end function

Results

To illustrate the broad applicability of our method, we detail three real-world applications and
discuss the scientific findings. We first apply our method to the HIV virulence application of
[8]. The improved efficiency allows us to estimate the across-trait partial correlation with ade-
quate effective sample size (ESS) and to reveal the conditional dependence among traits of sci-
entific interest. We use the same HIV data set to demonstrate that LG-HMC and LG-NUTS
outperform BPS (Section “Efficiency gain from the new inference scheme”), followed by two
more LG-NUTS applications on influenza and Aquilegia flower evolution. We conclude this
section with MCMC convergence criteria and timing results.

HIV immune escape

In the HIV evolution application of [8], a main scientific focus lies on the association between
HIV-1 immune escape mutations and virulence, the pathogen’s ability to cause disease. The
human leukocyte antigen (HLA) system is predictive of the disease course as it plays an impor-
tant role in the immune response against HIV-1. Through its rapid evolution, HIV-1 can
acquire mutations that aid in escaping HLA-mediated immune response, but the escape muta-
tions may reduce its fitness and virulence [30, 31]. [8] identify HLA escape mutations associ-
ated with virulence while controlling for the unknown evolutionary history of the viruses.
However, [8] interpret their results based on the across-trait correlation C which only informs
marginal associations that can remain confounded. Now armed with a more efficient inference
method, we direct our attention towards the across-trait partial correlation matrix R.

The data contain N = 535 aligned HIV-1 gag gene sequences collected from 535 patients
between 2003 and 2010 in Botswana and South Africa [31]. Each sequence is associated with 3
continuous and 21 binary traits. The continuous virulence measurements are replicative
capacity (RC), viral load (VL) and cluster of differentiation 4 (CD4) cell count. The binary
traits include the existence of HLA-associated escape mutations at 20 different amino acid
positions in the gag protein and another trait for the sampling country (Botswana or South
Africa). Fig 1 depicts across-trait correlations and partial correlations with posterior
medians > 0.2 (or < —0.2). Compared to correlations (Fig 1A), we observe more partial corre-
lations with greater magnitude (Fig 1B). They indicate conditional dependencies among traits
after removing effects from other variables in the model, helping to explore the causal pathway.
For example, we only detect a negative conditional dependence between RC and CD4. In
other words, holding one of CD4 and RC as constant, the other does not affect VL, suggesting
that RC increases VL via reducing CD4. The fact that RC is not found to share a strong condi-
tional dependence with VL may be explained by the strong modulatory role of immune system
on VL. Only when viruses with higher RC also lead to more immune damage, as reflected in
the CD4 count, higher VL may be observed as a consequence of less suppression of viral repli-
cation. As such, our findings are in line with the demonstration that viral RC impacts HIV-1
immunopathogenesis independent of VL [32].
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Fig 1. (A) Across-trait correlation and (B) partial correlation with a posterior median > 0.2 or < —0.2 (in color). HIV gag mutation names start with
the wild type amino acid state, followed by the amino acid site number according to the HXB2 reference genome and end with the amino acid as a
result of the mutation ("X’ means a deletion). Country = sample region: 1 = South Africa, -1 = Botswana; RC = replicative capacity; VL = viral load;
CD4 = CD4 cell count. (C) Conditional dependencies between HIV-1 immune escape mutations that affect RC or VL. Node and edge color indicates

whether the dependence is positive (orange) or negative (blue).

https://doi.org/10.1371/journal.pcbi.1011419.g001

The partial correlation also helps to decipher epistatic interactions and how the escape
mutations and potential compensatory mutations affect HIV-1 virulence. For example, we
find a strong positive partial correlation between T186X and T190X. Studies have shown that
T186X is highly associated with reduced VL [33, 34] and it requires T190I to partly compen-
sate for this impaired fitness so the virus stays replication competent [35]. The negative condi-
tional dependence between T186X and RC and the positive conditional dependence between
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T190I and RC are consistent with this experimental observation. In contrast, with the strong
positive association between T186X and T190, the marginal association fails to identify their
opposite effects on RC. Another pair of mutations that potentially shows a similar interaction
is H28X and M30X, which have a positive and negative partial correlation with VL, respec-
tively. These mutations have indeed been observed to co-occur in gag epitopes from longitudi-
nally followed-up patients [36]. Fig 1B keeps all the other compensatory mutation pairs in Fig
1A such as A146X-1147X and A163X-S165X that find confirmation in experimental studies
[37, 38].

More generally, when considering the viral trait RC and the infection trait VL, for which
their variation are to a considerable extent attributable to viral genetic variation [39], we reveal
an intriguing pattern. As in Fig 1C, when two escape mutations impair virulence, and there is
a conditional dependence between them, it is always negative. When two mutations have
opposing effects on these virulence traits, the conditional dependence between them (if pres-
ent) is almost always positive, with one exception of the negative effect between V1681 and
$357X. For example, T186X and 161X both have a negative impact on RC and the negative
effect between them suggests that their additive, or even potentially synergistic, impact on RC
is inhibited. Moreover, they appear to benefit from a compensatory mutation, T190X, which
has been corroborated for the T186X-T190X pair at least as reported above. Also for VL, the
conditional dependence between mutations that both have a negative impact on this virulence
trait is consistently negative. Several of these individual mutations may benefit from H28X as a
compensatory mutation, as indicated by the positive effect between pairs that include this
mutation, and as suggested above for H28X—M30X. This illustrates the extent to which escape
mutations may have a negative impact on virulence and the need to evolve compensatory
mutations to restore it. We note that our analysis is not designed to recover compensatory
mutations at great length as we restrict it to a limited set of known escape mutations, while
mutations on many other sites may be compensatory. In fact, our analysis suggests that some
of the considered mutations may be implicated in immune escape due to their compensatory
effect rather than a direct escape benefit.

Efficiency gain from the new inference scheme

We demonstrate that the joint update of latent variables X and the covariance matrix Q signifi-
cantly improve inference efficiency. For this purpose we use the large HIV dataset from Sec-
tion “HIV immune escape” with N = 535, Py;sc = 21, Peopye = 3, where the efficiency gain
becomes significant. Our implementations of the algorithms have been validated on smaller
truncated MVNs, on which simple rejection sampling can provide the ground truth up to
quantifiable Monte Carlo errors. The Zigzag-HMC implementation has also been validated
through the standalone implementation in an R package “htdg” [40].

We consider 4 sampling schemes BPS, Zigzag-HMC, LG-HMC, and LG-NUTS. To enable
amore direct comparison while saving computational time, we separate tree inference from
the inference for Q and X and fix F as the maximum clade credibility tree from the HIV
immune escape application. BPS and Zigzag-HMC only update X and we use the standard
NUTS transition kernel (i.e. standard HMC combined with no-U-turn algorithm) for the Q
elements. LG-HMC employs the joint update of X and Q described in Section “Jointly updat-
ing latent variables and across-trait covariance”. LG-NUTS additionally employs the No-
U-Turn algorithm to decide the number of steps and a primal-dual averaging algorithm to cal-
ibrate the step size. We set the same f;,, for BPS and Zigzag-HMC for a fair comparison. To
tune LG-HMC, we first supply it with an optimal step size € learned by LG-NUTS, then decide
the number of steps m = 100 as it gives the best performance among the choices (10, 100,
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Table 1. Efficiency comparison among different sampling schemes (BPS, Zigzag-HMC, LG-HMC, LG-NUTS). We calculate effective sample size (ESS) per hour run-
time for the elements of C, R, X, log joint density log p(X, Q), and likelihood I(X, Q). For the three multivariate parameters (C, R, X) with dimensions 276, 276, and 11,235,
respectively, we report the minimal ESS across all dimensions. We conduct three independent simulations for each method and report the ESS values in the first three
rows. We include the mean and standard deviation in the last row for each method to provide a summary of its overall performance. The bold number indicates the highest
value in each of the five columns. For BPS, given the larger number of iterations required to achieve convergence, we record one sample of X every 1,000 iterations to com-
ply with storage limitations, and report upper bounds of the actual ESS by multiplying the ESS from thinned samples by 1,000.

ESS/hour C(276d) R(276d) X (11,235d) log p(X, Q) 1I(X,Q)
BPS 6.05 1.46 < 760* 0.56 0.56

5.86 241 <670 0.52 0.52

0.55 0.49 <100 0.42 0.43

4.16(3.13) 1.45(0.96) - 0.5(0.07) 0.5(0.07)
Zigzag-HMC 13.75 2.23 1480 4.42 4.44

7.79 2.36 1057 5.38 5.38

14.9 2.53 927 5.16 52

12.15(3.82) 2.37(0.15) 1155(289) 4.99(0.5) 5.01(0.5)
LG-HMC 8.26 7.33 4.92 4.79 4.81

7.11 8.59 7.76 5.09 5.1

7.44 6.49 446 5.33 5.34

7.6(0.59) 7.47(1.06) 5.71(1.79) 5.07(0.27) 5.08(0.26)
LG-NUTS 1.31 1.29 1.69 0.7 0.7

11.93 7.52 6.37 1 1.06

7.77 6.09 2.64 2.71 2.72

7.01(5.35) 4.97(3.26) 3.57(2.47) 1.47(1.09) 1.49(1.07)

* The ESS estimates after 1/1000 thinning are 0.76, 0.67, 0.10

https://doi.org/10.1371/journal.pcbi.1011419.t001

1000). We conduct 3 independent simulations for each sampling scheme and report the per-
run-time ESS for 5 parameters—the across-trait correlation C, partial correlation R, latent var-
iable X, log joint density log p(X, Q) and log likelihood I(X, Q). C and R are of primary scien-
tific interest as they provide insights into correlation structure among the traits. Examining
ESS of the highest dimensional parameter X is also important for diagnostic purposes. ESS’s of
log p(X, Q) and I(X, Q) help us additionally evaluate how well the samplers explore the target
distribution overall. As reported in Table 1, BPS is outperformed by the three other samplers
in terms of efficiency for all five parameters. While a formal theoretical analysis is beyond the
scope of this work, we provide an empirical explanation for the different performances of BPS
and Zigzag-HMC in S2 File. LG-HMC achieves the highest per run-time ESS for R, resulting
in a 5x speed-up compared to BPS. The result also highlights that inferring R is more challeng-
ing than inferring C, with the elements of R generally having lower ESS, but the difficulty can
be largely eliminated by jointly updating X and Q through LG-HMC and LG-NUTS. Although
Zigzag-HMC achieves much higher ESS for X than LG-HMG, the latter performs best in the
most difficult and critical task of updating R. Compared to LG-HMC, LG-NUTS exhibits
lower efficiency and higher variance across the 3 runs, likely due to the No-U-Turn algorithm’s
tendency to require some extraneous leapfrog steps [41, 42]. We also provide the histograms

for the per run-time ESS of R elements in S1 Fig. Based on our findings, we recommend using

LG-HMC with multiple choices of hyper parameters (m, €), with a good starting point being

(100, 0.01), or the auto-tuned LG-NUTS.

Glycosylation of Influenza A virus HIN1

Influenza A viruses of the HIN1 subtype currently circulate in birds, humans, and swine [43-
45], where they are responsible for substantial morbidity and mortality [46, 47]. The two
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surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) interact with a cell surface
receptor and so their characteristics largely affect virus fitness and transmissibility. Mutations
in the HA and NA, particularly in their inmunodominant head domain, sometimes produce
glycosylations that shield the antigenic sites against detection by host antibodies and so help
the virus evade antibody detection [48-51]. On the other hand, glycosylation may interfere
with the receptor binding and also be targeted by the innate host immunity to neutralize
viruses. Therefore there must be an equilibrium between competing pressures to evade
immune detection and maintain virus fitness [52, 53]. The number of glycosylations that leads
to this balance is expected to vary in host species experiencing different strengths of immune
selection. Despite decades of tracking IAV's evolution in humans for vaccine strain selection
and recent expansions of zoonotic surveillance, the evolvability and selective pressures on the
HA and NA have not been rigorously compared across multiple host species. Here, we exam-
ine the conditional dependence between host type and multiple glycosylation sites by estimat-
ing the posterior distribution of across-trait partial correlation while jointly inferring the IAVs
evolutionary history.

We use hemagglutinin (H1) and neuraminidase (N1) sequence data sets for influenza A
HIN1 produced by Trovéo et al. as described in [54]. We scan all H1 and N1 sequences to
identify potential N-linked glycosylation sites, based on the motif Asn-X-Ser/Thr-X, where X
is any amino acid other than proline (Pro) [55]. We then set a binary trait for each sequence
encoding for the presence or absence of glycosylations at a particular amino acid site. We keep
sites with a glycosylation frequency between 20% and 80% for our analysis. This gives six sites
in H1 and four sites in N1. We include another binary trait for the host type being mammalian
(human or swine) or avian, so the sample sizes are N =964, P =7 (H1) and N=896,P=5
(N1).

The six H1 glycosylation sites consist of three pairs that are physically close (63/94, 129/163,
and 278/289, see Fig 2). Sites 63 and 94 are particularly close to each other, though distances
will vary slightly with sequence. A negative conditional dependence suggests glycosylation at
two close sites may be harmful for the virus (63/94 and 278/289) while a positive effect between
two sites suggests a potential benefit (63/129 and 94/278). We detect a negative conditional
dependence between mammalian host and glycosylation site 94 and 289. Avian viruses have a
stronger tendency to have site 289 glycosylated (Fig 2).

In N1, glycosylations are more strongly correlated than H1 (Fig 3). Two pairs of glycosyla-
tion sites have a positive conditional dependency in between (50/68 and 50/389) and two pairs
(44/68 and 68/389) have a negative one. We omit a structural interpretation since all sites but
389 are located in the NA stalk, for which no protein structure is available. There is a positive
conditional dependence between mammalian host and glycosylations at sites 44 and 68. None
of the avian lineages has glycosylation site 44 while most swine and some human lineages have
it. Similarly, glycosylation at site 68 is present in most swine and human lineages but only in
avian lineages circulating in wild birds, not those in poultry.

Aquilegia flower and pollinator co-evolution

Reproductive isolation allows two groups of organisms to evolve separately, eventually forming
new species. For plants, pollinators play an important role in reproductive isolation [56]. We
examine the relationship between floral phenotypes and the three main pollinators for the col-
umbine genus Aquilegia: bumblebees, hummingbirds, and hawk moths [18]. Here, the pollina-
tor species represents a categorical trait with three classes and we choose bumblebee with the
shortest tongue as the reference class. Fig 4 provides the across-trait correlation and partial
correlation. Compared to a similar analysis on the same data set that only looks at correlation
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Fig 2. (A) Across-trait partial correlation among H1 glycosylation sites and host type with a posterior median > 0.2 or < —0.2 (in color and number).
(B) HA structure of a 2009 HIN1 influenza virus (PDB entry 3LZG) with six glycosylation sites highlighted. Site 278 and 289 are in the stalk domain
and all others are in the head domain. (C) The maximum clade credibility (MCC) tree with branches colored by the posterior median of the latent
variable underlying H1 glycosylation site 289. The heatmap on the right indicates the host type of each taxon.

https://doi.org/10.1371/journal.pchi.1011419.g002

or marginal association [1], partial correlation controls confounding and indicates the condi-

tional dependencies between pollinators and floral phenotypes that can bring new insights.
For example, we observe a positive marginal association between hawk moth pollinator and

spur length but no conditional dependence between them. The marginal association matches
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Fig 3. (A) Across-trait partial correlation among N1 glycosylation sites and host type with a posterior median > 0.2 or < —0.2 (in color and number).
(B)(C) The maximum clade credibility (MCC) tree with branches colored by the posterior median of the latent variable underlying N1 glycosylation site
44 and 68.

https://doi.org/10.1371/journal.pcbi.1011419.g003

with the observation that flowers with long spur length have pollinators with long tongues [18,
57]. The absence of a conditional dependence makes intuitive sense because hawk moth’s long
tongue is not likely to stop them from visiting a flower with short spurs when the other floral
traits are held constant. In fact, researchers observe that shortening the nectar spurs does not
affect hawk moth visitation [58]. Similarly, the positive partial correlation between orientation
and hawk moth also finds experimental support. The orientation trait is the angle of flower
axis relative to gravity, in the range of (0, 180). A small orientation value implies a pendent
flower whereas a large value represents a more upright flower [59]. Due to their different mor-
phologies, hawk moths prefer upright flowers while hummingbirds tend to visit pendent ones.
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Fig 4. Across-trait correlations (A) and partial correlations (B) with posterior medians > 0.2 or < 0.2 (in color). BB = bumblebee.
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Making the naturally pendent Aquilegia formosa flowers upright increases hawk moth visita-
tion [59]. These results suggest that partial correlation may have predictive power for results
from carefully designed experiments with controlled variables.

MCMC setup and convergence assessment

We run all simulations on a node equipped with AMD EPYC 7642 server processors which
possess 48 cores and 96 threads, with a base clock speed of 2.3 GHz. For every MCMC run, the
minimal effective sample size (ESS) across all dimensions of X and R after burn-in is above
100. As another diagnostic, for our two large-scale applications on HIV-1 and HIN1 influenza,
we run three independent chains and confirm the potential scale reduction statistic R for all
partial correlation elements falls between [1, 1.03], below the common criterion of 1.1 [60]. To
reach a minimal ESS = 100 across all R elements, the post burn-in run-time and number of
MCMC transition kernels applied for the joint inference are 21 hours and 1.3 x 10° (HIV-1),
113 hours and 7.9 x 107 (H1), 76 hours and 1.4 x 10® (N1). These run-times suggest the diffi-
culty of our large-scale inference tasks where besides the main challenge of sampling {X, C, D},
updating the many tree parameters with Metropolis-Hastings transition kernels also takes a
large number of iterations. To reduce the computational burden associated with tree inference,
one practical approach is to utilize a set of pre-computed trees and incorporate tree swaps
within the MCMC transition kernel.

Discussion

Learning how different biological traits interact with each other from many evolutionarily
related taxa is a long-standing problem of scientific interest that sheds light on various aspects
of evolution. Towards this goal, we develop a scalable solution that significantly improves
inferential efficiency compared to established state-of-the-art approaches [1, 8]. Our novel
strategy enables learning across-trait conditional dependencies that are more informative than
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the previous marginal association based analyses. This approach provides reliable estimates of
across-trait partial correlations for large problems, on which the established BPS-based
method struggles. In two large-scale analyses featuring HIV-1 and HINI1 influenza, the
improved efficiency allows us to infer conditional dependencies among traits of scientific
interest and therefore investigate some of the most important molecular mechanisms underly-
ing the disease. In addition, our approach incorporates automatic tuning, so that the most
influential tuning parameters automatically adapt to the specific challenge the target distribu-
tion presents. Finally, we extend the phylogenetic probit model to include categorical traits
and illustrate its use in examining the co-evolution of Aquilegia flower and pollinators.

We leverage the cutting-edge Zigzag-HMC [13] to tackle the exceedingly difficult computa-
tional task of sampling from a high-dimensional truncated normal distribution in the context
of the phylogenetic probit model. Zigzag-HMC proves to be more efficient than the previously
optimal approach that uses the BPS, especially when combined with differential operator split-
ting to jointly update two sets of parameters X and Q that are highly correlated. The improved
efficiency allows us to obtain reliable estimates of the conditional dependencies among traits.
In our applications, we find that these conditional dependencies better describe trait interac-
tions than do the marginal associations. It is worth mentioning that another closely related
sampler, the Markovian zigzag sampler [61], or MZZ, may also be appropriate for this task but
provides lower efficiency than Zigzag-HMC [24]. While Zigzag-HMC is a recent and less
explored version of HMC, BPS and MZZ are two central methods within the piecewise deter-
ministic Markov process literature that have attracted growing interest in recent years [62, 63].
Intriguingly, the most expensive step of all three samplers is to obtain the log-density gradient,
and the same linear-order gradient evaluation method [8] largely speeds it up.

We now consider limitations of this work and the future directions to which they point.
First, the phylogenetic probit model does not currently accommodate a directional effect
among traits since it only describes pairwise and symmetric correlations. However, the real
biological processes are often not symmetric but directional, where it is common that one
reaction may trigger another but not the opposite way. A model allowing directed paths is
preferable since it better describes the complicated causal network among multiple traits.
Graphical models with directed edges [64] are commonly used to learn molecular pathways
[65, 66], but challenges remain to integrate these methods with a large and randomly distrib-
uted phylogenetic tree. Toward this goal, one may construct a continuous-time Markov chain
to describe how discrete traits evolve [67, 68], but with P binary traits the transition rate matrix
grows to the astronomical size 2°. Second, though our method achieves the current best infer-
ence efficiency under the phylogenetic probit model, there is still room for improvement. In
the influenza glycosylation example, we use a binary trait indicating the host being either avian
or mammal (human or swine), instead of setting a categorical trait for host type. In fact, we
choose not to use a three-class host type trait because it causes poor mixing for the partial cor-
relation elements. We suspect two potential reasons for this. First, according to our model
assumptions for categorical traits (Eq 2), the latent variables underneath the same trait are very
negatively correlated, leading to a more correlated and challenging posterior. Second, in our
specific data sets, the glycosylation sites tend to be similar in human and swine viruses, further
increasing the correlation among posterior dimensions. One potential solution is to de-corre-
late some latent variables by grouping them into independent factors using phylogenetic factor
analysis [69, 70]. Finally, one may consider a logistic or softmax function to map latent vari-
ables to the probability of a discrete trait. This avoids the hard truncations in the probit model
but also adds another layer of noise. It requires substantial effort to develop an approach that
overcomes the above limitations while supporting efficient inference at the scale of applica-
tions in this work.
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