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ABSTRACT
We propose a novel hybrid quantum computing strategy for parallel MCMC algorithms that generate
multiple proposals at each step. This strategy makes the rate-limiting step within parallel MCMC amenable
to quantum parallelization by using the Gumbel-max trick to turn the generalized accept-reject step into
a discrete optimization problem. When combined with new insights from the parallel MCMC literature,
such an approach allows us to embed target density evaluations within a well-known extension of Grover’s
quantum search algorithm. Letting P denote the number of proposals in a single MCMC iteration, the
combined strategy reduces the number of target evaluations required from O(P) to O(

√
P). In the following,

we review the rudiments of quantum computing, quantum search and the Gumbel-max trick in order to
elucidate their combination for as wide a readership as possible.
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1. Introduction

Parallel MCMC techniques use multiple proposals to obtain
e!ciency gains over MCMC algorithms such as Metropolis-
Hastings (Metropolis et al. 1953; Hastings 1970) and its progeny
that use only a single proposal. Neal (2003) "rst develops
e!cient MCMC transitions for inferring the states of hidden
Markov models by proposing a “pool” of candidate states and
using dynamic programming to select among them. Next,
Tjelmeland (2004) considers inference in the general setting
and shows how to maintain detailed balance for an arbitrary
number P of proposals. Consider a probability distribution
π(dθ) de"ned on RD that admits a probability density π(θ)

with respect to the Lebesgue measure, that is, π(dθ) =: π(θ)dθ .
To generate samples from the target distribution π , we cra# a
kernel P(θ0, dθ) that satis"es

π(A) =
∫

π(dθ0)P(θ0, A) (1)

for all A ⊂ RD. Letting θ0 denote the current state of the
Markov chain, Tjelmeland (2004) proposes sampling from such
a kernel P(θ0, ·) by drawing P proposals "−0 = (θ1, . . . , θP)

from a joint distribution Q(θ0, d"−0) =: q(θ0, "−0)d"−0 and
selecting the next Markov chain state from among the current
and proposed states with probabilities

πp = π(θp)q(θp, "−p)
∑P

p′=0 π(θp′)q(θp′ , "−p′)
, p = 0, . . . , P . (2)

Here, if " = (θ0, . . . , θP) is the D × (P + 1) matrix having the
current state and all P proposals as columns, then "−p is the
D × P matrix obtained by removing the pth column. Tjelme-
land (2004) shows that the kernel P(θ0, ·) constructed in such
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a manner maintains detailed balance and hence satis"es (1).
Others have since built on this work, developing parallel MCMC
methods that generate or recycle multiple proposals (Frenkel
2004; Delmas and Jourdain 2009; Calderhead 2014; Yang et al.
2018; Luo and Tjelmeland 2019; Schwedes and Calderhead 2021;
Holbrook 2021). Most recently, Glatt-Holtz et al. (2022) place all
these developments in their natural measure theoretical context,
allowing one to trivially apply (1) and (2) to distributions over
discrete-valued random variables.

Taken together, these developments demonstrate the ability
of parallel MCMC methods to alleviate inferential challenges
such as multimodality and to deliver performance gains over
single-proposal competitors as measured by reduced autocorre-
lation between samples. In the following, we focus on the spec-
i"cation presented in Algorithm 1 but note that the techniques
we present may also be e$ective for generalizations of this basic
algorithm.

One need not use parallel computing to implement Algo-
rithm 1, but the real promise and power of parallel MCMC
comes from its natural parallelizability (Calderhead 2014).
Contemporary hardware design emphasizes architectures
that enable execution of multiple mathematical operations
simultaneously. Parallel MCMC techniques stand to leverage
technological developments that keep modern computation
on track with Moore’s Law, which predicts that processing
power doubles every two years. For example, the algorithm
of Tjelmeland (2004) generates P conditionally independent
proposals and then evaluates the probabilities of (2). One
may parallelize the proposal generation step using parallel
pseudorandom number generators (PRNG) such as those
advanced in Salmon et al. (2011). The computational complexity
of the target evaluations π(θp) is linear in the number of
proposals. This presents a signi"cant burden when π(·) is
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Algorithm 1 Parallel (multiproposal) MCMC (Tjelmeland
2004)
Data: Initial Markov chain state θ (0); total length of Markov

chain S; total number of proposals per iteration P; routine
for evaluating target density π(·); routines for drawing
random samples from the proposal distribution Q(θ (s), ·)
and from a P + 1 discrete distribution Discrete(π) given
some probability vector π = (π0, . . . , πP).

Result: A Markov chain θ (1), . . . , θ (S).
for s ∈ {1, . . . , S} do

θ0 ← θ (s−1); "−0 ← Q(θ0, ·); for p ∈ {0, . . . , P} do
πp ← π(θp) q(θp, "−p)

end
p̂ ← Discrete(π/πT1); θ (s) ← θ p̂;

end
return θ (1), . . . , θ (S).

computationally expensive, for example, in big data settings
or for Bayesian inversion, but evaluation of the target density
over the P proposals is again a naturally parallelizable task.
Moreover, widely available machine learning so#ware such as
TensorFlow allows users to easily parallelize both random
number generation and target evaluations on general purpose
graphics processing units (GPU) (Lao et al. 2020). Finally, when
generating independent proposals using a proposal distribution
of the form q(θ0, "−0) = ∏P

p=1 q(θ0, θp), the acceptance
probabilities (2) require the O

(
P2) evaluation of the

(P+1
2

)
terms

q(θp, θp′), but Holbrook et al. (2021a, 2021b) demonstrate the
natural parallelizability of such pairwise operations, obtaining
orders-of-magnitude speedups with contemporary GPUs. The
proposed method directly addresses the acceptance step of
Algorithm 1, while leaving the choice of parallelizing (or not
parallelizing) the proposal step to the practitioner.

While parallel MCMC algorithms are increasingly well-
suited for developing many-core computational architectures,
there are trade-o$s that need to be taken into account when
choosing how to allocate computational resources. On one end
of the spectrum, Gelman and Rubin (1992a, 1992b) demonstrate
the usefulness of generating, combining and comparing multiple
independent Markov chains that target the same distribution,
and one may perform this embarrassingly parallel task by
assigning the operations for each individual chain to a separate
central processing unit (CPU) core or GPU work-group. In this
multi-chain context, simultaneously running multiple parallel
MCMC chains could limit resources available for the within-
chain parallelization described in the previous paragraph.
On the other end of the spectrum, one may "nd it useful
to allocate resources to overcome computational bottlenecks
within a single Markov chain that uses a traditional accept-reject
step. In big data contexts, Holbrook et al. (2021a, 2021b) and
Holbrook, Ji, and Suchard (2022a, 2022b) use multi- and many-
core processing to accelerate log-likelihood and log-likelihood
gradient calculations within single Metropolis-Hastings and
Hamiltonian Monte Carlo (Neal 2011) generated chains. This
big data strategy might again limit resources available for
parallelization across proposals and target evaluations described
above.

In the presence of these tradeo$s, it is worthwhile to develop
additional parallel computing tools for parallel MCMC so that
future scientists may be better able to ,exibly assign sub-routines
to di$erent computing resources in a way that is tailored to
their speci"c inference task. In particular, we show that quantum
parallelization can be a useful tool for parallel MCMC when
evaluation of the target density represents the computational
bottleneck.

Quantum computers use quantum mechanics to store infor-
mation and manipulate data. By leveraging the idiosyncracies of
quantum physics, these computers are able to deliver speedups
over conventional computing for a relatively small number of
computational problems. Some of these speedups are very large.
Quantum computers can achieve exponential speedups over
conventional computers for some computational tasks.. Shor’s
quantum algorithm for factoring an integer N (Shor 1994) is
polynomial in log N compared to a super-polynomial classical
optimum. The HHL algorithm for solving sparse N-dimensional
linear systems (Harrow, Hassidim, and Lloyd 2009) is O

(
log N

)

compared to a classical O(N). Other algorithms deliver a still
impressive polynomial speedup. For example, the algorithms
considered in the following (Section 2.2) achieve quadratic
speedups over conventional computing, turning O(N) runtimes
into O(

√
N). Both the magnitude of quantum computing’s

successes and the relative rarity of those successes mean that
there is a general interest in leveraging quantum algorithms
for previously unconsidered computational problems. We will
show that—with the help of the Gumbel-max trick (Section B)—
established quantum optimization techniques are actually
useful for sampling from computationally expensive discrete
distributions and apply this insight to achieving quadratic
speedups for parallel MCMC.

We provide a short introduction to the most basic elements of
quantum computing in Appendix A. The interested reader may
look to Nielsen and Chuang (2010) for a canonical introduction
to quantum algorithms or Lopatnikova and Tran (2021), Wang
and Liu (2022) for surveys geared toward statisticians. In Sec-
tion 2.1, we review and compare three di$erent quantum search
algorithms that enjoy quadratic speedups over conventional
algorithms. In Section 2.2 we review the quantum minimization
algorithm of Durr and Hoyer (1996) and investigate the use
of warm-starting therein. We then combine the Gumbel-max
trick (Section B) and recent insights in parallel MCMC with the
quantum minimization algorithm to create the quantum parallel
MCMC algorithm for both continuously-valued (Section 3.2)
and discrete-valued (Section 3.3) targets.

2. Quantum Search and Quantum Minimization

Grover (1996) demonstrates how use a quantum computer to
"nd a single marked element within a "nite set of N items with
only O(

√
N) queries, and a result from Bennett et al. (1997)

shows that Grover’s algorithm is optimal up to a multiplica-
tive constant. Boyer et al. (1998) extend Grover’s algorithm to
multiple marked items or solutions, further extend it to the
case when the number of solutions is unknown and provide a
rigorous bounds on the algorithms’ error rates. Finally, Durr and
Hoyer (1996) use the results of Boyer et al. (1998) to obtain the
minimum value within a discrete ordered set. Here, we brie,y



1404 A. J. HOLBROOK

Algorithm 2 Quantum search algorithm (Grover 1996)
Data: An oracle gate Uf taking |x〉 |y〉 to |x〉 |y ⊕ f (x)〉 for a function f (x) : {0, . . . , N − 1} → {0, 1} that satis"es f (x0) = 1 for a

single x0; n + 1 = log2(N) + 1 quantum states initialized to |0〉⊗n |1〉; an integer R =
⌈
π

√
N/4

⌉
denoting the number of

Grover iterations.
Result: An n-bit binary string x0 satisfying f (x0) = 1 with error less than 1/N.
|0〉⊗n |1〉 −→ H⊗n+1 |0〉⊗n |1〉 = |h〉 |−〉; /* |h〉 = 1√

N
∑N−1

x=0 |x〉. */

|h〉 |−〉 −→ GR |h〉 |−〉 ≈ |x0〉 |−〉; /* G =
(

2 |h〉 〈h| − I
)(

I − 2 |x0〉 〈x0|
)

*/
|x0〉 −→ x0; return x0.

review these advances and provide illustrative simulations. In
Section B, the Gumbel-max trick allows us to extend these
results to the problem of sampling from a discrete distribution.

2.1. Quantum Search

Given a set of N items and a function f : {0, 1, . . . , N − 1} →
{0, 1} that evaluates to 1 for a single element, Grover (1996)
develops an algorithm that uses quantum parallelism to score
quadratic speedups over its classical counterparts. A#er only
O(

√
N) evaluations of f (·), Grover’s algorithm returns the x ∈

{0, 1, . . . , N − 1} satisfying f (x) = 1 with high probability.
Compare this to O(N) requirement for the randomized classical
algorithm that must evaluate f (·) over at least N/2 items to
obtain the same probability of detecting x. The algorithm takes
the state |0〉⊗N |1〉 as input and applies Hadamard gates to each
of the individual N + 1 input qubits. The resulting state is

|h〉 |−〉 =
(

1√
N

N−1∑

x=0
|x〉

)
1√
2

(|0〉 − |1〉) = 1√
N

N−1∑

x=0
|x〉 |−〉 .

Next, we apply the oracle gate Uf : |x〉 |y〉 → |x〉 |y ⊕ f (x)〉 and
note that

Uf |x〉 |−〉 = Uf |x〉 1√
2

(|0〉 − |1〉)

= 1√
2
(
|x〉 |0 ⊕ f (x)〉 − |x〉 |1 ⊕ f (x)〉

)

= −1f (x) |x〉 |−〉 .

Thus, Uf ,ips the sign for the state |x0〉 for which f (x0) =
1 but leaves the other states unchanged. If we suppress the
ancillary qubit |−〉, then Uf is equivalent to the gate Ux0 de"ned
as Ux0 |x〉 = −1δx0 |x〉. We may succinctly write this gate as
the Householder matrix that re,ects vectors about the unique
hyperplane through the origin that has |x0〉 for a normal vector:

Ux0 = I − 2 |x0〉 〈x0| .

The action of this gate on the state |h〉 takes the form

1√
N

N−1∑

x=0
|x〉 −→ 1√

N

N−1∑

x=0
−1δx0 (x) |x〉 .

Next, the algorithm re,ects the current state about the hyper-
plane that has |h〉 as a normal vector and negates the resulting
state:

(
2 |h〉 〈h| − I

) (
1√
N

N−1∑

x=0
−1δx0 (x) |x〉

)

= 1√
N

∑

x

(
(−1)1−δx0 (x) + 2 (N − 2)

N

)
|x〉

= (3N − 4)

N3/2 |x0〉 +
∑

x .=x0

(N − 4)

N3/2 |x〉 .

The scientist who measures the state at this moment would
obtain the desired state |x0〉 with a slightly higher probability of
(3N − 4)2/N3 than the individual probabilities of (N − 4)2/N3

for the other states. Each additional application of the Grover
iteration

G := −UhUx0 :=
(

2 |h〉 〈h| − I
)(

I − 2 |x0〉 〈x0|
)

(3)

increases the probability of obtaining |x0〉 at the time of mea-
surement in the computational basis and R =

⌈
π

√
N/4

⌉

iterations guarantees a probability of success that is greater than
1 − 1/N.

In general, we may use Grover’s search algorithm to "nd
a solution when the number of solutions M is greater than
1. While the algorithmic details change little, the number of
required Grover iterations

R =
⌈

π

4

√
N
M

⌉

(4)

and the probability of success a#er those R iterations do change
(Boyer et al. 1998). When M is much smaller than N, the success
rate is greater than 1 − M/N, and even for large M the success
rate is more than 1/2. Lower-bounds are useful for establishing
mathematical guarantees, but it is also helpful to understand
the quality of algorithmic performance as a function of M and
R. Figure 1 shows success curves as a function of the number
of Grover iterations (or oracle calls) applied. The search "eld
contains 214 ≈ 16k elements, and the number of solutions M
varies. Each curve represents an individual search task. The algo-
rithm requires more iterations for smaller numbers and fewer
iterations for larger numbers of solutions. The upper bound
on error M/N is only an upper bound: the "nal probability of
success for, for example, M = 256 is 0.997 compared to the
bound of 0.984.

While Grover’s algorithm delivers impressive speedups over
classical search algorithms, it has a major weakness. Figure 1
hides the fact that the probability of success for Grover’s algo-
rithm is not monatonic in the number of iterations. Running the
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Figure 1. Curves depict the probability that Grover’s quantum search algorithm returns a solution as a function of the number of oracle evaluations. For the ranges depicted,
the number of iterations required and the number of solutions inversely relate, but increasing the number of iterations past R (Equation (4)) can back!re and lead to extremely
small probabilities of success.

Figure 2. [Left] Total number of oracle evaluations required by quantum exponential searching algorithm (Algorithm 3) for di"erent numbers of solutions M and search
set sizes N from 500 independent simulations each. Horizontal lines at 9

4
√

N represent upper bounds on expected total number of evaluations to obtain a solution for the
M = 1 problem. [Right] Probabilities of success for the !xed-point quantum search algorithm (Yoder, Low, and Chuang 2014) for di"erent proportions of solutions λ = M/N
and selecting di"erent lower bounds w on M/N with error tolerance δ2.

algorithm for more than R iterations can back"re. For example,
running the algorithm for

√
2N iterations when M = 1 results

in a probability of success less than 0.095 (Boyer et al. 1998). The
non-monotinicity of Grover’s algorithm becomes particularly
problematic when we do not know the number of solutions
M. Taking for example N = 220, Boyer et al. (1998) point
out that 804 iterations provide an extremely high probability of
success when M = 1 but a one-in-a-million chance of success
when M = 4. To solve this problem and develop an e$ective
search algorithm when M is unknown, those authors adopt the
strategy of focusing on the expected number of iterations before
success. In particular, they propose the quantum exponential
search algorithm (Algorithm 3). When a solution exists, the
algorithm returns a solution with expected total number of
Grover iterations bounded above by 9

2
√

N/M. Still better, this
upper bound reduces to 9

4
√

N/M for the special case M / N,
and simulations presented in Figure 2 show that even this bound
is large. Such results come in handy when deciding whether to
halt the algorithm’s progress if one believes it possible that no
solutions exist. Indeed, this turns out to be useful in the context
of quantum minimization (Section 2.2).

Algorithm 3 is not the only quantum search algorithm that is
useful when the number of solutions M is unknown. Yoder, Low,
and Chuang (2014) use generalized Grover iterations that extend
(3) to include general phases (αj, βj):

G(αj, βj) := −Uh(αj)Ux0(βj)

:=
(
(1 − e−iαj) |h〉 〈h| − I

)(
I − (1 − eiβj) |x0〉 〈x0|

)
.

(5)

This form reduces to the original Grover iteration (3) when α =
±π and β = ±π . To select general phases, the method "rst "xes
an error tolerance δ2 > 0 and a lower bound w ≤ λ = M/N
and then selects an odd upper bound L on the total number of
oracle queries (L − 1) such that

L ≥ log(2/δ)√
w

.

Finally, letting l = (L − 1)/2, one obtains phases (αj, βj) for
j = 1, . . . , l that satisfy

αj = −βl−j+1 = 2 cot−1
(

tan(2π j/L)
√

1 − γ 2
)

,
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Algorithm 3 Quantum exponential searching algorithm (Boyer et al. 1998)
Data: An oracle gate Uf taking |x〉 |y〉 to |x〉 |y ⊕ f (x)〉 for a function f (x) : {0, . . . , N − 1} → {0, 1} with unknown number of

solutions; n = log2(N).
Result: If a solution exists, an n-bit binary string x0 satisfying f (x0) = 1; if no solution exists, the algorithm runs forever.
m ← 1; γ ← 6/5; success ← FALSE; while success .=TRUE do

j ← Uniform{0, . . . , m − 1}; |0〉⊗n |1〉 −→ H⊗n+1 |0〉⊗n |1〉 = |h〉 |−〉; |h〉 |−〉 −→ Gj |h〉 |−〉 = |x〉 |−〉; /* j Grover
iterations from Algorithm 2. */

|x〉 −→ x; /* Measure and check. */
if f (x) = 1 then

x0 ← x; success ← TRUE;
else

m ← min
(
γ m,

√
N

)
; /* Increase m in case of failure. */

end
end
return x0 .

Figure 3. Total number of oracle evaluations required by !xed-point quantum
search (FPQS) (Yoder, Low, and Chuang 2014) minus total required for quantum
exponential searching algorithm (QESA) (Algorithm 3) for di"erent numbers of
solutions M and search set sizes N from 500 independent simulations each. FPQS
underperforms partially due to a miniscule lower bound w = 1/N on λ =
M/N, a tuning decision motivated by the potential application within quantum
minimization with warm-starting (Section 2.2).

for γ −1 = cos( 1
L cos−1( 1

δ )) is the reciprocal of the inverse Lth
Chebyshev polynomial of the "rst kind. Such phases mark the
only algorithmic di$erence between the "xed-point quantum
search and the original Grover search (Algorithm 2). The upshot
is a search procedure that obtains a guaranteed probability of
success 1 − δ2 for any M such that there exists an M0 < M
that also obtains the same success threshold (Figure 2). On
the one hand, this algorithm avoids the exponential quantum
search algorithm’s need to perform multiple measurements of
the quantum state. On the other hand, the exponential quantum
search algorithm requires signi"cantly fewer oracle evaluations
when M is small (Figure 3), and it turns out that this is precisely
the scenario that interests us.

2.2. Quantum Minimization

Given a function f (·) that maps the discrete set {0, . . . , N − 1}
to the integers, we wish to "nd the minimizer

x0 = arg minx∈{0,...,N−1}f (x) .

Durr and Hoyer (1996) propose a quantum algorithm for "nd-
ing x0 that iterates between updating a running minimum F ∈

f ({0, . . . , N − 1}) and applying the quantum exponential search
algorithm (Algorithm 3) to "nd an element x such that f (x) < F.
Having run these iterations a set number of times, the algorithm
returns the minimizer x0 with high probability. To this end, Durr
and Hoyer (1996) show that their algorithm takes an expected
total time less than or equal to m0 := 45

4
√

N + 7
10 log2(N)

to "nd the minimizer, where marking items with values less
than the threshold value (Algorithm 4) requires log2(N) time
steps and each Grover iteration within the quantum exponential
search algorithm requires one time step. From there, Markov’s
inequality says

Pr
(

total time to success ≥ m0
ε

)

≤ E ( total time to success)
m0/ε

≤ ε,

or that we must scale the minimization procedure’s time steps
by a factor of 1/ε to reach a failure rate less than ε. Due to the
iterative nature of the algorithm, one might suppose that it is
bene"cial to start at a value x0 for which f (x0) is lower relative
to other values. This turns out to be the case in theory and in
practice, and the bene"t of warm-starting is particularly useful
in the context of parallel MCMC.

Proposition 1 (Warm-starting). Suppose that the quantum min-
imization algorithm begins with a threshold F0 such that f (x) <

F0 for only K − 1 > 0 items. Then the expected total number of
time steps to "nd the minimizer is bounded above by

mK
0 =

(5
4

− 1√
K − 1

)
9
√

N + 7
10

log2(K) log2(N) ,

and so the following rule relates the warm-started upper bound
to the generic upper bound:

mK
0 = m0 − 9

√
N

K − 1
+ 7

10
log2

( K
N

)
log2(N) .

Proof. The proof follows the exact same form as Lemma 2 of
Durr and Hoyer (1996). It relies on a theoretical algorithm called
the in!nite algorithm that runs until the minimum is found. In
this case, Lemma 1 of that paper says that the probability that the
rth lowest value is ever selected when searching among K items
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Algorithm 4 Quantum minimum searching algorithm (Durr and Hoyer 1996)
Data: A quantum sub-routine capable of evaluating a function f (·) over {0, . . . , N −1} with with unique integer values; a maximum

error tolerance ε ∈ (0, 1); expected total time to success m0 = 45
4

√
N + 7

10 log2(N).
Result: A log2(N)-bit binary string x0 satisfying f (x0) = min f with probability greater than 1 − ε.
s ← 0; x0 ← Uniform{0, . . . , N − 1}; while s < m0/ε do

Prepare initial state 1√
N

∑
x |x〉 |x0〉; Mark all items x satisfying f (x) < f (x0); s ← s + log2(N); Apply quantum exponential

searching algorithm (Algorithm 3); /* I time steps */
s ← s + I; Obtain x′ by measuring "rst register; if f (x′) < f (x0) then

x0 ← x′

end
end
return x0.

is p(K, r) = 1/r for r ≤ K and 0 otherwise. For a warm-start
at element K, the expected total time spent in the exponential
search algorithm is

N∑

r=2
p(K, r)9

2

√
N

r − 1
=

K∑

r=2
p(K, r)9

2

√
N

r − 1

= 9
2
√

N
K−1∑

r=1

1
r + 1

1√
r

≤ 9
2
√

N
(

1
2

+
K−1∑

r=2
r−3/2

)

≤ 9
2
√

N
(1

2
+

∫ K−1

r=1
r−3/2dr

)

=
(5

4
− 1√

K − 1

)
9
√

N.

An upper bound for the expected total number of time steps
preparing the initial state and marking items f (x) < f (x0)
follows in a similar manner.

Proposition 1 shows that, for example, if Algorithm 4 begins
at the item with second lowest value, then the expected total time
to success is bounded above by m2

0 = 9
4
√

N+ 7
10 log2(N), reduc-

ing the generic upper bound by 9
√

N− 7
10 log2

( 2
N

)
log2(N) time

steps. When N equals 1000, say, the expected total time steps
is m2

0 < 78.2. Keeping N = 1000 but letting the algorithm
begin at the third lowest value (K = 3), the expected total time
steps before success is m3

0 < 165.6. Raising N to 10,000, the two
numbers increase to m2

0 < 234.4 and m3
0 < 503.4.

In practice, the number of time steps before "nding the min-
imum is surprisingly small. Figure 4 corroborates the intuition
that it is bene"cial to start at a lower ranked element. To generate
these results, we use an early stopping rule for the quantum min-
imization algorithm’s exponential searching sub-routine, halting
it a#er 9

4
√

N iterations. Even with this stopping rule in place, the
error rate of the quantum minimization algorithm is less than
1%. We can increase the early stopping threshold to obtain even
lower error rates, but this strategy would seem to be unnecessary
in the context of parallel MCMC. The bene"ts of warm-starting
are useful in the same context, when the current state θ (s) usually
inhabits the high-density region of the target distribution but the
majority of proposals do not.

3. Quantum Parallel MCMC

With the rudiments of quantum minimization in hand, we
present a quantum parallel MCMC (QPMCMC). The general
structure of the algorithm the same as Algorithm 1: it constructs
a Markov chain by iterating between generating many propos-
als and randomly selecting new Markov chain states among
these proposals. Unlike classical single-proposal MCMC, par-
allel MCMC proposes many states and chooses one according
to the generalized acceptance probabilities of (2). In general
MCMC, evaluation of the target density function π(·) is the
rate-limiting computational step, becoming particularly onerous
in big data scenarios (Holbrook et al. 2021a). While parallel
MCMC bene"ts from improved mixing as a function of MCMC
iterations, the increased computational burden of P target eval-
uations at each step can lead to less favorable comparisons when
accounting for elapsed wall-clock time.

Having successfully generated proposals θp, p = 1, . . . , P and
evaluated the corresponding proposal densities q(·, ·), we would
like to use quantum parallelism and an appropriate oracle gate
to e!ciently compute the π(θp)s but immediately encounter a
Catch-22 when we seek to draw a sample θ (s+1) ∼ Discrete(π)
for π the vector of probabilities π0, π1, . . . , πP de"ned in (2).
We can use neither a quantum nor a classical circuit to draw the
sample! On the one hand, drawing the sample within a quan-
tum circuit would somehow require that all superposed states
have access to all the π(θp)s at once to perform the required
normalization. On the other hand, drawing the sample within
the classical circuit would require access to all the π(θp)s, but
measurement in the computational basis can only return one.

In light of this dilemma, we propose to use the Gumbel-max
trick (Papandreou and Yuille 2011) to transform the generalized
accept-reject step into a discrete optimization procedure (Sec-
tion B). From there, we use quantum minimization to e!ciently
sample from Discrete(π). Crucially, we get away with quantum
parallel evaluation of the target π(·) over all superposed states
because the Gumbel-max trick does not rely on a normalization
step: each superposed state requires no knowledge of any target
evaluation other than its own.

Once one has e$ectively parallelized the target evaluations
π(θp), the new computational bottleneck is the calculations
required to obtain the P + 1 proposal density terms q(θp, "−p),
for p = 0, . . . , P. Under an independent proposal mechanism
with a proposal distribution of the form q(θ0, "−0) =
∏P

p=1 q(θ0, θp), the acceptance probabilities (2) require the
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Figure 4. Total number of oracle evaluations required by quantum minimization algorithm (Durr and Hoyer 1996) for di"erent starting ranks and search set sizes N from
500 independent simulations each. Here, less than 1% of the 12,500 instances fail to recover the true minimum on account of early stopping.

O
(
P2) evaluation of the

(P+1
2

)
terms q(θp, θp′). To avoid such

calculations, we follow Holbrook (2021) and use symmetric
proposal distributions for which q(θp, "−p) = q(θp′ , "−p′) for
p, p′ = 0, . . . , P.

Algorithm 5 The Gumbel-max trick
Data: A vector of unnormalized log-probabilities λ∗ = log π +

log c, for π a discrete probability vector with P + 1 ele-
ments.

Result: A single sample p̂ ∼Discrete(π) satisfying p̂ ∈
{0, 1, . . . , P}.

for p ∈ {0, 1, . . . , P} do
zp ← Gumbel(0, 1); α∗

p ← λ∗
p + zp;

end
p̂ ← arg maxp=0,...,Pα∗

p ; return p̂ .

3.1. Simpli!ed Acceptance Probabilities

Evaluation of the P+1 proposal density terms q(θp, "−p) can be
computationally burdensome as P grows large. Holbrook (2021)
proves that two speci"c proposal mechanisms enforce equality
across all P + 1 terms and thus enable the simpli"ed acceptance
probabilities

πp = π(θp)
∑P

p′=0 π(θp′)
, p = 0, . . . , P . (6)

In Section 3.2, we opt for one of these proposal mechanisms, the
centered Gaussian proposal of Tjelmeland (2004). This strategy
"rst generates a Gaussian random variable θ̄ centered at the
current state θ0 and then generates P proposals centered at θ̄ :

θ1, . . . , θP
⊥∼ NormalD(θ̄ , %) , θ̄ ∼ NormalD(θ0, %) . (7)

Holbrook (2021) shows that this strategy leads to the higher-
order proposal symmetry

q(θ0, "−0) = q(θ1, "−1) = · · · = q(θP, "−P) (8)

and that the simpli"ed acceptance probabilities (6) maintain
detailed balance. In fact, other location scale families also su!ce

in the manner, but here we focus on Gaussian proposals with-
out loss of generality. Finally, the simplicial sampler (Holbrook
2021) accomplishes the same simpli"ed acceptance probabilities
but incurs an O(D3) computational cost.

One may also use a more limited strategy to enforce (8). Glatt-
Holtz et al. (2022) show that the sampler using independence
proposal q(θp, "−p) = ∏

p′ .=p q(θp′), where q(·) is not a func-
tion of θp, results in acceptance probabilities

πp = π(θp)/q(θp)
∑P

p′=0 π(θp′)/q(θp′)
, p = 0, . . . , P . (9)

When π(·) and q(·) take continuous values on a topologically
compact domain or discrete values on a "nite domain, one may
specify q(·) to be uniform and let (9) simplify to (6). This strategy
proves useful in Section 3.3, in which we consider discrete-
valued targets over Ising-type lattice models.

3.2. Continuously Valued Targets

Algorithm 6 presents the details of QPMCMC for a continuously-
valued target. The algorithm uses conventional (perhaps
parallel) computing almost entirely, excluding two lines that
are highlighted. The "rst of these loads proposals onto the
quantum machine, and the second line that calls the quantum
minimization algorithm presented in Algorithm 4. This sub-
routine seeks to "nd the minimizer of the function

f (p) = −
(
zp + log π(θp)

)
over p = 0, 1, . . . , P, (10)

which combines the numerators of (2), the Gumbel-max trick
and a trivial negation. As discussed in Section 2.2, the sub-
routine requires only O(

√
P) oracle evaluations and, therefore,

only O(
√

P) evaluations of the target density π(·) using a quan-
tum circuit. In theory, a quantum computer can perform the
same computations as a classical computer, but the e!ciency
of the target evaluations would depend on a number of factors
related to the structure of the density itself, the availability of
fast quantum random access memory (Giovannetti, Lloyd, and
Maccone 2008) and the ability of large numbers of quantum
gates to act in concert with negligible noise (Kielpinski, Monroe,
and Wineland 2002; Erhard et al. 2019).
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Algorithm 6 Quantum parallel MCMC for a continuously-valued target
Data: Initial Markov chain state θ (0); total length of Markov chain S; total number of proposals per iteration P; routine for evaluating

target density π(·); routines for drawing random samples from a D-dimensional multivariate Gaussian NormalD(µ, %) and
the standard Gumbel distribution Gumbel(0, 1).

Result: A Markov chain θ (1), . . . , θ (S).
for s ∈ {1, . . . , S} do θ0 ← θ (s−1); z0 ← Gumbel(0, 1); θ̄ ← NormalD(θ0, %); /* Proposal (7) */
for p ∈ {1, . . . , P} do θp ← NormalD(θ̄ , %); zp ← Gumbel(0, 1); |θp〉 ← θp; /* Load proposal onto quantum

computer. */

p̂ ← arg minp=0,...,P

(
f (p) := −

(
zp + log π(θp)

))
; /* O

(√
P
)
Algorithm 4 with warm-start at p = 0. */

θ (s) ← θ p̂; return θ (1), . . . , θ (S) .

Figure 5. Total number of oracle evaluations required for each of 2000 quantum parallel MCMC (QPMCMC) iterations for standard multivariate normal targets of !ve di"erent
dimensionalities. Regardless of target dimension, the individual QPMCMC runs require roughly 7% of the usual 4 million target evaluations. Over 99.4% of the 10,000 MCMC
iterations across all dimensions successfully sample from the discrete distribution with probabilities of (2). Burn-in iterations require moderately more evaluations because
the current state occupies a lower density region and represents a “less good” warm-start.

In general MCMC, one o#en calibrates the scaling of a
proposal kernel to balance between exploring the target’s
domain and remaining within high-density regions. Optimal
scaling strategies may lead to a large number of rejected
proposals (Roberts and Rosenthal 2001). Indeed, Holbrook
(2021) shows that parallel MCMC algorithms are no exception.
When using the Gumbel-max trick to sample from proposals,
this means that the current state is o#en quite near optimality,
representing a warm-start. Figure 5 shows how this warm-
starting e$ects the number of oracle calls (and hence target
evaluations) within the quantum minimization sub-routine over
the course of an MCMC trajectory. We target multi-dimensional
standard normal distributions of di$ering dimensions using the
vector (100, . . . , 100) as starting position. We "x the number
of Gaussian proposals to be 2000 and use standard adaptation
procedures (Rosenthal 2011) to target a 50% acceptance rate
while guaranteeing convergence. Although no theoretical results
validate this target acceptance rate, the rate is close to empiri-
cally optimal rates from Holbrook (2021). Across iterations,
QPMCMC requires relatively few oracle calls compared to the
2000 target evaluations of parallel MCMC. We also witness
the expected drop in the number of oracle evaluations as the
chain approaches the target’s high-density region. Remarkably,
the algorithm succeeds in sampling from the true discrete

distribution in 99.5% of the MCMC iterations. An independent
simulation obtains similar results, requiring roughly 7% of the
usual number of target evaluations. Figure 6 shows a quantile-
quantile plot for all 100 dimensions of a multi-dimensional
standard normal distribution. We see no appreciable impact
from the rare failure of the quantum minimization sub-routine.

Finally, we compare convergence speed for QPMCMC
using 1000, 5000, and 10,000 proposals to target a massively
multimodal distribution: a mixture of 1000 two-dimensional,
isotropic Gaussians with standard deviations equal to 1 and
means equal to 10 × (0, 1, . . . , 999). This target is particularly
challenging because the distance between modes is signi"cantly
larger than standard deviations. In "ve independent simulations,
we run each algorithm until it achieves and e$ective sample
size of 100. Table 1 contains MCMC iterations and target
evaluations required to achieve this e$ective sample size as
well as relative speedups over sequential implementations and
relative improvements over the 1000 proposal sampler.

3.3. Discrete-Valued Targets

We wish to sample from a target distribution de"ned over a
discrete set {θα}α∈A, for A some "nite or countably in"nite
set of indices. Glatt-Holtz et al. (2022) establish the broader
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Figure 6. Empirical accuracy of quantum parallel MCMC (QPMCMC) for a 100
dimensional spherical Gaussian target. We generate 100,000 samples using 2000
proposals each iteration and remove the !rst 2000 samples as burn-in. The QQ
(quantile-quantile) plot shows sample quantiles adhering closely to the theoretical
quantiles. Similar to the independent simulation shown in Figure 5, here QPMCMC
requires less than 7.2% of the usual number of target evaluations.

measure theoretical foundations for parallel MCMC procedures
that use selection probabilities (2) to maintain detailed balance.
In particular, when the target distribution has probability mass
function π(·) de"ned with respect to the counting measure on
the power set 2A, then detailed balance results in the kernel
P(·, ·) satisfying

π(α) =
∑

α′
π(α′)P(α′, α) , ∀α, α′ ∈ A .

Sections 3.3.1 and 3.3.2 consider targets de"ned over "nite
sets A and make use of the uniform independence proposal
scheme described in Section 3.1, thereby facilitating simpli"ed
acceptance probabilities (6). This scheme proposes single-,ip
updates to the current Markov chain state θ0, but it is worth
noting that other multiple-,ip schemes would also be amenable
to QPMCMC.

3.3.1. Ising Model on a Two-Dimensional Lattice
Here, we are interested in an Ising-type lattice model over con-
"gurations θ = (θ1, . . . , θD) consisting of D individual spins
θd ∈ {−1, 1}. In terms of the preceding section, we have A =
{−1, 1}D and |A| = 2D. In particular, we consider targets of the
form

π(θ |ρ) ∝ exp



ρ
∑

(d,d′)∈E
θdθd′



 , (11)

where ρ > 0 is the interaction term and E is the lattice edge set.
We specify a two-dimensional 500-by-500 lattice with nearest
neighbors connections and "x ρ = 1. Since this latter setting
encourages neighboring spins to equal each other, we begin our
QPMCMC trajectories at the lowest-probability “checkerboard”
state for an initial con"guration. At each iteration, we generate
collections of proposal states by uniformly ,ipping P individual
spins θp, p ∈ {1, . . . , P}, and obtaining each proposal state θp
by updating the current state θ0 at the single location corre-
sponding to θp. Figure 7 shows results from 10 independent
runs using P ∈ {4, 8, 16, . . . , 2048} proposals. Trace plots of
unnormalized log-probabilities indicate that higher proposal
counts enable discovery of higher probability con"gurations.
Interestingly, QPMCMC appears to be particularly bene"cial
in this large P context, requiring less than one-tenth the tar-
get evaluations required using conventional computing when
P = 2048.

3.3.2. Bayesian Image Analysis
We apply a Bayesian image classi"cation model to an intensity
map (Figure 8) of the newly imaged supermassive black hole,
Sagittarius A*, located at the Galactic Center of the Milky Way
(Akiyama et al. 2022). Whereas one cannot see the black hole
itself, one may see the shadow of the black hole cast by the hot,
swirling cloud of gas surrounding it. We extract the black hole
from the surrounding cloud by modeling the intensity at each of
the D =40762 =16,613,776 pixels as belonging to a mixture of
two truncated normals with values yd restricted to the intensity
range [0, 255]. Namely, we follow Hurn (1997) and specify the
latent variable model

yd|(µ*, σ 2, θd)
ind∼ Normal(µ*, σ 2) , yd ∈ [0, 255] ,

θd = * , d ∈ {1, . . . , D} ,

µ*
iid∼ Uniform(0, 255) , * ∈ {−1, 1} ,

1
σ 2 ∼ Gamma

(1
2

, 1
2

)
,

where θ = (θ1, . . . , θD) share for a prior the Ising model (11)
with edges joining neighboring pixels and interaction ρ = 1.2.
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Table 1. Racing to a minimum (between the two dimensions) of 100 e"ective samples for a target with 1000 disjoint modes.

Proposals MCMC iterations Target evaluations Speedup E#ciency gain

1000 249,398 (200,998, 311,998) 24,988,963 (20,149,132, 31,265,011) 9.98 (9.98, 9.98) 1
5000 14,398 (12,998, 16,998) 3,314,560 (2,989,418, 3,916,281) 21.72 (21.70, 21.74) 7.58 (6.25, 9.71)
10,000 5998 (4998, 6998) 1,993,484 (1,662,592, 2,330,842) 30 (29.96, 30.26) 12.87 (8.64, 18.80)

NOTE: “Speedup” is ratio between target evaluations required for sequential and quantum implementations. “E#ciency gain” is ratio between target evaluations required
for 1000 proposal and 5000/10,000 proposal implementations. We report means (minima, maxima) across !ve independent runs.

Figure 7. Convergence of log-posterior for a parallel MCMC sampler targeting an Ising model with uniform interaction ρ = 1 and no external !eld. All chains begin at
minimal probability “checkerboard” state. Larger proposal counts allow discovery of higher probability con!gurations.

Figure 8. On the left is a 4076-by-4076 intensity map of the shadow of supermassive black hole Sagittarius A* (Akiyama et al. 2022). On the right is the pixelwise posterior
mode of a Bayesian image classi!cation model !t to intensity data. Within a Metropolis-in-Gibbs routine, quantum parallel MCMC using 1024 proposals requires less that
one-tenth the posterior evaluations required by conventional parallel MCMC.

We use a QPMCMC-within-Gibbs scheme to infer the join
posterior of θ and the three mixture model parameters. For the
former, we use the same QPMCMC scheme as in Section 3.3.1
with 1024 proposals at each iteration. For the latter, we use the
closed-form updates presented in Hurn (1997). We run this
scheme for 20 million iterations, discarding the "rst 10 million as
burnin. We thin the remaining sample at a ratio of 1 to 40,000 for
the latent memberships θ and 1 to 4000 for the three parameters
µ−1, µ1 and σ 2. Using the R package coda (Plummer et al.
2006), we calculate e$ective sample sizes of the log-posterior
(257.1), µ−1 (1,578.7), µ1 (257.6) and σ 2 (2500.0), suggesting
adequate convergence. Figure 8 shows both the intensity data
and the pixelwise posterior mode of the latent membership
vector θ . The QPMCMC requires only 1,977,553,608 target
evaluations compared to the 1024 × 20,000,000 = 2.048×1010

evaluations required for the analogous parallel MCMC scheme
implemented on a conventional computer, representing a 10.36-
fold speedup.

4. Discussion

We have shown that parallel MCMC enjoys quadratic speedups
by combining quantum minimization with the Gumbel-max
trick. Within a QPMCMC iteration, the current state represents
a warm-start for the sampling-turned-optimization problem,
leading to increased e!ciencies for the quantum minimization
algorithm. Moreover, combining this approach with the Tjelme-
land correction (Holbrook 2021) results in a total complexity
reduction from O(P2) to O(

√
P). Preliminary evidence sug-

gests that our strategy may "nd use when target distributions
exhibit extreme multimodality. While the algorithm still must
construct long Markov chains to reach equilibrium, generating
each individual Markov chain state requires signi"cantly fewer
target evaluations.

There are major technical barriers to the practical imple-
mentation of QPMCMC. The framework, like other quantum
machine learning (QML) schemes, requires on-loading and o$-
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loading classical data to and from a quantum machine. In the
seminal review of QML, Biamonte et al. (2017) discuss what
they call the “input problem.” Cortese and Braje (2018) present a
general purpose quantum circuit for loading B classical bits into
a quantum data structure comprising log2(B) qubits with circuit
depth O

(
log(B)

)
. For continuous targets, QPMCMC requires

reading O(P) real vectors θp ∈ RD onto the quantum machine at
each MCMC iteration. If b is the number of bits used to represent
a single real value, then reading B = O(PDb) classical bits
into the quantum machine requires time O

(
log(PDb)

)
. This is

true whether one opts for "xed-point (Jordan 2005) or ,oating-
point (Haener et al. 2018) representations for real values. The
outlook can be better for discrete distributions. For example, the
QPMCMC scheme presented in Section 4 only requires loading
the entire con"guration state once prior to sampling. A D-spin
Ising model requires D classical bits to encode, and these bits
load onto a quantum machine in time O

(
log(D)

)
. Once one has

encoded the entire system state, each QPMCMC iteration only
requires loading the addresses of the O(P) proposal states. If one
uses b bits to encode each address, then the total time required
to load data onto the quantum machine is O

(
log(Pb)

)
for each

QPMCMC iteration. On the other hand, the speedup for discrete
targets assumes the ability to hold an entire con"guration in
QRAM. Conveniently, the “output problem” is less of an issue
for QPMCMC, as only a single integer p̂ ∈ {0, . . . , P} need be
extracted within Algorithm 4.

This work leads to three interesting questions. First, what is
the status of inference obtained by QPMCMC? The QPMCMC
selection step relies on quantum minimization, an algorithm
that only achieves success with probability 1−ε. While empirical
studies suggest that this error induces little bias, it would be
helpful to use this ε to bound the distance between the target
distribution and the distribution generated by QPMCMC. Such
theoretical e$orts would need to extend recent formalizations of
the multiproposal based parallel MCMC paradigm (Glatt-Holtz
et al. 2022) to account for biased MCMC kernels.

Second, can QPMCMC be combined with established quan-
tum algorithms that make use of “quantum walks” on graphs
to sample from discrete target distributions? Szegedy (2004)
presents a quantum analog to classical ergodic reversible Markov
chains and shows that such quantum walks sometimes pro-
vide quadratic speedups over classical Markov chains. Szegedy
(2004) also points out that Grover’s search, a key component
within QPMCMC, may be interpreted as performing just such
a quantum walk on a complete graph. Wocjan and Abeyesinghe
(2008) accelerate the quantum walk by using ancillary Markov
chains to improve mixing and apply their method to simu-
lated annealing. Given a quantum algorithm A for producing
a discrete random sample with variance σ 2, Montanaro (2015)
develops a quantum algorithm for estimating the mean of algo-
rithm A’s output with error ε by running algorithm A a mere
Õ(σ/ε) times, where Õ hides polylogarithmic terms. Impor-
tantly, this quadratic quantum speedup over classical Monte
Carlo applies for quantum algorithms A that only feature a
single measurement such as certain simple quantum walk algo-
rithms. Unfortunately, this assumption fails for quantizations of
Metropolis-Hastings, in general, and QPMCMC, in particular.
More promising for QPMCMC, Lemieux et al. (2020) develop
a quantum circuit that applies Metropolis-Hastings to the Ising

model without the need for oracle calls. An interesting ques-
tion is whether similar non-oracular quantum circuits exist for
the basic parallel MCMC backbone to QPMCMC. In general,
however, comparison between QPMCMC and other quantum
Monte Carlo techniques is challenging because the foregoing
literature (a) largely focuses on MCMC as a tool for discrete
optimization, with algorithms that only ever return a single
Monte Carlo sample or function thereof, and (b) restricts itself
to a handfull of simple, stylized and discrete target distributions.
On the other hand, QPMCMC is a general inferential framework
for sampling from general discrete and continuous distributions
alike.

Third, there are other models and algorithms in statistics,
machine learning and statistical mechanics that require sam-
pling from potentially costly discrete distributions. Can one
adapt our quantum Gumbel-max trick to these? Approximate
Bayesian computation (Csilléry et al. 2010) extends probabilistic
inference to contexts within which one only has access to a com-
plex, perhaps computationally intensive, forward model. Having
sampled model parameters from the prior, one accepts or rejects
these parameter values based on the discrepancy between the
observed and simulated data. If one succeeds in embedding
forward model dynamics within a quantum circuit, then one
may plausibly select from many parameter values using our
quantum Gumbel-max trick. The trick may also "nd use within
sequential Monte Carlo (Doucet, De Freitas, and Gordon 2001).
For example, Berzuini and Gilks (2001) present a sequential
importance resampling algorithm that uses MCMC-type moves
to encourage particle diversity and avoid the need for boot-
strap resampling. Multiproposals accelerated by the quantum
Gumbel-max trick could add speed and robustness to such
MCMC-resampling.

Large-scale, practical quantum computing is still a long way
o$, but quantum algorithms are ripe for mainstream computa-
tional statistics.

Appendix A. Limited Introduction to Quantum
Computing

Quantum computers perform operations on unit-length vectors of
complex data called quantum bits or qubits. One may write any qubit
ψ as a linear combination of the computational basis states |0〉 and |1〉.
In symbols,

|ψ〉 = α |0〉 + β |1〉 for α, β ∈ C and |α|2 + |β|2 = 1 .

This formula uses Dirac or bra-ket notation and obscures ideas that
are commonplace in the realm of applied statistics. We make the unit-
vector speci"cation of |ψ〉 clear by writing

|0〉 =
[

1
0

]
, |1〉 =

[
0
1

]
or |ψ〉 = α

[
1
0

]
+ β

[
0
1

]
.

The full machinery of linear algebra is also available within this nota-
tion. The conjugate transpose of |ψ〉 is 〈ψ |. The inner product of |ψ〉
and |φ〉 is 〈φ|ψ〉. The outer product is |ψ〉 〈φ|. Naturally, we can write
ψ as a linear combination of any other such basis elements. Consider
instead the vectors

|+〉 = 1√
2

|0〉 + 1√
2

|1〉 and |−〉 = 1√
2

|0〉 − 1√
2

|1〉 .

A little algebra shows that |+〉 and |−〉 are indeed unit-length and
orthogonal to each other. A little more algebra reveals that, with respect
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to this basis, ψ has coe!cients α′ and β ′ given by (α+β)/
√

2 and (α−
β)/

√
2, respectively. A last bit of algebra shows that this representation

is consistent with ψ ’s unit length.
But linear algebra is not the only aspect of quantum computing that

should come easily to applied statisticians. In addition to thinking of
ψ as a vector, it is also useful to think of ψ as a (discrete) probability
distribution over the computational basis states |0〉 and |1〉. The con-
straints on coe!cients α and β mean that we can think of |α|2 and |β|2
as probabilities that ψ is in state |0〉 or |1〉, respectively. Accordingly,
|+〉 and |−〉 encode uniform distributions over the computational basis
states. In the parlance of quantum mechanics, α, β and ±1/

√
2 are all

probability amplitudes, and ψ , |+〉 and |−〉 are all superpositions of the
computational basis states. Quantum measurement of ψ results in |0〉
with probability |α|2, but—in the following—we can safely think of this
physical procedure as drawing a single discrete sample from ψ ’s implied
probability distribution.

Quantum logic gates perform linear operations on qubits like ψ

and take the form of unitary matrices U satisfying U†U = I for U†

the conjugate transpose of U. One terri"cally important single-qubit
quantum gate is the Hadamard gate

H = 1√
2

[
1 1
1 −1

]
.

One may verify that H is indeed unitary and that its action maps |0〉
to |+〉 and |1〉 to |−〉. In fact, the reverse is also true on account of the
symmetry of H. The Hadamard gate thus takes the computational basis
states in and out of superposition, facilitating a phenomenon called
quantum parallelism. Given a function f : {0, 1} → {0, 1}, consider
the two-qubit quantum oracle gate Uf which takes |x〉 |y〉 as input and
returns |x〉 |y ⊕ f (x)〉 as output, where ⊕ denotes addition modulo 2.
Importantly, the output simpli"es to |x〉 |f (x)〉 for y = 0. We now
consider a quantum circuit that acts on two qubits by "rst applying the
Hadamard transform H to the "rst qubit and then applying the oracle
gate Uf to both. Using the state |0〉 |0〉 as input, we have

|0〉 |0〉 −→ 1√
2

|0〉 |0〉 + 1√
2

|1〉 |0〉 −→ 1√
2

|0〉 |f (0)〉 + 1√
2

|1〉 |f (1)〉 .

(A.1)

The quantum circuit evaluates f (·) simultaneously over both inputs!
Unfortunately, the scientist who implements this circuit cannot directly
access Uf ’s output, and measurement will provide only |0〉 |f (0)〉 or
|1〉 |f (1)〉 with probability 1/2 each. Unlocking the potential of quan-
tum parallelism requires more ingenuity.

Uncountably many single- and two-qubit quantum gates exist, but
the real power of quantum computing stems from the development
of complex quantum gates that act on multiple qubits simultaneously.
To access this power, we need one more tool that also appears in the
statistics literature. The Kronecker or tensor product between an L-by-
M matrix A and an N-by-O matrix B is the LN-by-MO matrix

A ⊗ B =





A11B . . . A1MB
...

. . .
...

AL1B · · · ALMB



 . (A.2)

In statistics, the Kronecker product features in the de"nition of a matrix
normal distribution and is sometimes helpful when specifying the
kernel function of a multivariate Gaussian process (Werner, Jansson,
and Stoica 2008). Here, the product is equivalent to the parallel action
of individual quantum gates on individual qubits. Simple application of
Formula (A.2) shows that

H⊗2 = H ⊗ H = 1
2





1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



 and

|0〉 ⊗ |0〉 =
[

1
0

]
⊗

[
1
0

]
=





1
0
0
0



 . (A.3)

We may also denote the le# product H⊗2 and the right product |0〉⊗2,
|00〉 or |0〉 |0〉. One may therefore express (A.1) as a series of transfor-
mations applied to the 4-vector on the very right. Letting |10〉, |01〉 and
|11〉 take on analogous meanings to |00〉, an immediate result of (A.3)
is that

H⊗2 |00〉 = 1
2

(
|00〉 + |01〉 + |10〉 + |11〉

)
. (A.4)

The action of H⊗2 transforms |00〉 into a superposition of the states
|00〉, |10〉, |01〉 and |11〉, where the probability of selecting each is a
uniform (1/2)2 = 1/4. Writing so many 0s and 1s is tedious, so an
alternative notation becomes preferable. Exchanging |0〉 for |00〉, |1〉 for
|01〉, |2〉 for |10〉, and |3〉 for |11〉, (A.4) becomes the more succinct

H⊗2 |00〉 = 1
2

(
|0〉 + |1〉 + |2〉 + |3〉

)
.

This formula extends generally to operations over n qubits. Now letting
N = 2n, we have

H⊗n |0〉⊗n = 1√
N

(
|0〉 + |1〉 + · · · + |N − 1〉

)
= 1√

N

N−1∑

x=0
|x〉 =: |h〉 ,

and we call |h〉 a uniform superposition over the states |0〉 , . . . , |N − 1〉.
The many-qubit analogue for the quantum parallelism of (A.1) is then

|0〉⊗n |0〉 −→



 1√
N

N−1∑

x=0
|x〉



 |0〉 −→ 1√
N

N−1∑

x=0
|x〉 |f (x)〉 .

Appendix B. Gumbel-max

We wish to randomly select a single element from the set {0, 1, . . . , P}
with probability proportional to the unnormalized probabilities π∗ =
(π∗

0 , π∗
1 , . . . , π∗

P ). That is, there exists a c > 0 such that π∗ = cπ ,
for π a valid probability vector, but we only have access to π∗. De"ne
λ := log π and λ∗ := log π∗ = log π + log c, and assume that
z0, . . . , zP

iid∼ Gumbel(0, 1). Then, the probability density function g(·)
and cumulative distribution function G(·) for each individual zp are

g(zp) = exp
(
− zp − exp(−zp)

)
and G(zp) = exp

(
− exp(−zp)

)
.

Now, de"ning the random variables α∗
p := λ∗

p + zp, αp := λp + zp and

p̂ = arg maxp=0,...,P α∗
p ,

we have the result

Pr(p̂ = p) = πp .

In words, the procedure of adding Gumbel noise to unnormalized log-
probabilities and taking the index of the maximum produces a random
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Figure B.1. Relative di"erences between e"ective sample sizes (ESS) for parallel
MCMC (pMCMC) and quantum parallel MCMC (QPMCMC) across a range of proposal
counts. We target a 10-dimensional standard normal distribution. For each algo-
rithm and each proposal setting, we generate 100 independent chains of length
10,000 and calculate the mean and minimum ESS across dimensions.

variable that follows the discrete distribution over π . Moving from le#
to right:

Pr(p̂ = p) = Pr(α∗
p > α∗

p′ , ∀p′ .= p)

= Pr(αp + log c > αp′ + log c, ∀p′ .= p)

= Pr(αp > αp′ , ∀p′ .= p)

=
∫ ∞

−∞

∏

p′ .=p
Pr(αp > αp′ |αp)g(αp − λp) dαp

=
∫ ∞

−∞

∏

p′ .=p
G(αp − λp′)g(αp − λp) dαp

=
∫ ∞

−∞

∏

p′ .=p
exp

(
− exp(λp′ − αp)

)

exp
(
− αp + λp − exp(−αp + λp)

)
dαp .

Recalling that λp′ = log πp′ , we exponentiate the logarithms, and the
integral becomes

πp

∫ ∞

−∞

∏

p′ .=p
exp

(
− πp′ exp(−αp)

)
exp

(
− αp − πp exp(−αp)

)
dαp

= πp

∫ ∞

−∞
exp(−αp) exp

(
−

P∑

p′=0
πp′ exp(−αp)

)
dαp

= πp

∫ ∞

−∞
exp(−αp) exp

(
− exp(−αp)

)
dαp = πp ,

where the "nal equality follows easily from a change of variables.

Appendix C. Mixing of Parallel MCMC and QPMCMC

To ascertain whether QPMCMC mixes di$erently compared to conven-
tional parallel MCMC, we run both algorithms for a range of proposal
counts to sample from a 10-dimensional standard normal distribution.
For each algorithm and proposal setting, we run 100 independent
chains for 10,000 iterations and obtain e$ective sample sizes ESSd for
d ∈ {1, . . . , 10}. We then calculate the relative di$erences between the
means and minima of one chain generated using parallel MCMC and
one chain generated using QPMCMC; for example:

Relative di$erence between means ESS(·)

=
∣∣ ESSpMCMC − ESSQPMCMC

∣∣

ESSpMCMC

Figure B.1 shows results. In general, the majority relative di$erences
are small. For both statistics, mean relative di$erences are less than

0.05, regardless of proposal count. Again for both statistics, more than
75% of the independent runs result in relative di$erences below 0.1. We
note that relative di$erences between means (blue) appear to decrease
with the number of proposals, but the same does not hold for relative
di$erences between minima (red).

Appendix D. Note on Simulations

We use R (R Core Team 2021), Python (van Rossum 1995), Tensor-
Flow (Abadi et al. 2016) and TensorFlow Probability MCMC (Lao
et al. 2020) in our simulations and the ggplot2 package to generate all
"gures (Wickham 2016). In R, we use the package coda (Plummer et al.
2006) to calculate e$ective sample sizes. In Python, we use a built-in
function from TensorFlow Probability MCMC. The primary color
palette comes from Ram and Wickham (2018).

All simulations rely on the fact that the Grover iterations of (3)
manipulate the probability amplitudes in a deterministic manner. For
example, the following R code speci"es N uniform probability ampli-
tudes (sqrtProbs), performs I Grover iterations and measures a
single state according to the resulting probabilities.

sqrtProbs <- rep(1/sqrt(N),N); i <- 1
while (i <= I) {
sqrtProbs <- (1-2*marks)*sqrtProbs
sqrtProbs <- -sqrtProbs + 2*mean

(sqrtProbs)
i <- i + 1
}
measurement <- sample(size=1,

x=1:N, prob=sqrtProbsˆ2)

Of course, simulating these iterations on a classical computer
requires precomputing the values of marks beforehand. All code is
available online at https://github.com/andrewjholbrook/qpMCMC.
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