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We derive a general expression for the fermion self-energy in a hot magnetized plasma by using
the Landau-level representation. In the one-loop approximation, the Dirac structure of the self-
energy is characterized by five different functions that depend on the Landau-level index n and
the longitudinal momentum pz. We derive general expressions for all five functions and obtain
closed-form expressions for their imaginary parts. The latter receive contributions from three types
of on shell processes, which are interpreted in terms of Landau-level transitions, accompanied by
a single photon (gluon) emission or absorption. By making use of the imaginary parts of the self-
energy functions, we also derive the Landau-level dependent fermion damping rates Γn(pz) and
study them numerically in a wide range of model parameters. We also demonstrate that the two-
spin degeneracy of the Landau levels is lifted by the one-loop self-energy corrections. While the
spin splitting of the damping rates is small, it may be important for some spin and chiral effects.
We argue that the general method and the numerical results for the rates can have interesting
applications in heavy-ion physics, astrophysics, and cosmology, where strongly magnetized QED or
QCD plasmas are ubiquitous.

I. INTRODUCTION

The influence of magnetic fields on relativistic matter has been a topic of continued investigations and interest for
decades. Strong magnetic fields appear and play an important role in cosmology [1, 2], astrophysics [3, 4], and heavy-
ion collisions [5–8]. They can affect physics of magnetars [9], supernovae [10], and gamma ray bursts [11]. Theoretical
estimates show that extremely strong magnetic fields up to ∣eB∣ ≃m2

π are produced in high-energy noncentral heavy-
ion collisions [12–16]. Of course, the strength and temporal evolution of these fields can be affected by many factors,
including the collision energy, the impact parameter, and the electrical conductivity of the plasma [17–22]. Even
in condensed matter physics, strong magnetic fields can trigger some relativisticlike phenomena when topological
features of the band structure give rise to low-energy quasiparticles described by Dirac and Weyl equations [23].
The groundwork for understanding relativistic systems in the presence of a magnetic field was laid by Heisenberg

and Euler [24] and later by Schwinger [25]. Many field-theoretical studies have been done over the years since. The
key developments and foundations can be found in many books and reviews, e.g., see Refs. [26–28]. Despite broad
theoretical knowledge gained, surprisingly few quantitative results are known about the Green functions and radiative
corrections for relativistic plasmas in background magnetic fields beyond the two extremes of the lowest Landau level
approximation and the weak-field limit [29–31]. For some of the recent developments; see Refs. [32–47].
In a uniform magnetic field, the usual transverse momenta are not good quantum numbers for charged particles.

Instead, their eigenstates are given by the Landau-level orbitals. This fact has profound implications on the field
theory formalism. The most natural form of the fermion propagator is given in the Landau-level representation [28].
The inherent complexity of such a representation makes the evaluation of Feynman diagrams difficult even at the
lowest one-loop order.
The main objective of this study is a rigorous derivation of the fermion self-energy in a strongly magnetized hot

relativistic plasma. In particular, the emphasis will be made on the proper treatment of the self-energy in the Landau-
level representation. We will follow the approach developed previously in the context of the quantum Hall effect in
graphene [48, 49]. Similar methodology was also utilized in the studies of chiral asymmetry in magnetized QED
at nonzero density [50, 51]. Here we will focus on the fermion self-energy in the Landau-level representation and
investigate in detail its imaginary part. Such an imaginary part defines the fermion damping rate in the plasma. It is
also a critical input in determining the particle mean free path and some transport properties. We will derive explicit
expressions for different components of the self-energy and discuss their interpretation in terms of underlying physical
processes. We will also study the quantitative dependence of the fermion damping rate on the Landau level index
and the longitudinal momentum.
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Several attempts at studying the fermion self-energy in strongly magnetized vacuum can be found in the literature
[52–56]. Most notably, the authors of Refs. [57–59] had the most progress in recent years, where they calculated the
Fourier transform of the transitionary invariant part of the self-energy but stopped short of projecting the results onto
the Landau levels. As we argue here, the latter procedure is necessary in order to extract observable features of the
self-energy.
The paper is organized as follows. We start from the definition of the fermion self-energy in coordinate space in

Sec. II. After removing the Schwinger phase and performing a Fourier transform on the translation invariant part of
the self-energy, we derive a relation that resembles but is not the usual momentum space representation. To extract
physics information, the corresponding result is mapped onto the Landau levels in Sec. III A. The numerical results
for the imaginary parts of the functions, defining the Dirac structure of the self-energy, are presented in Sec. III B.
By utilizing the imaginary part of the self-energy, we derive the fermion damping rate and study its dependence on
the Landau-level index n and the longitudinal momentum pz in Sec. IV. Note that we use two different methods in
Secs. IVA and IVB, but they give the same spin-averaged expression for the damping rate. However, the use of
the poles of the full propagator in Sec. IVB reveals that the rates for the two spin states of each Landau level are
slightly different. Finally, we summarize our main results and conclusions in Sec. V. Several technical derivations and
auxiliary results are given in the Appendixes at the end of the paper.

II. FERMION SELF-ENERGY IN MAGNETIZED PLASMA

To keep our analysis as simple as possible, we consider a hot magnetized QED-like plasma with a single fermion
flavor of mass m̄0 and charge q. With minor adjustments, accounting for a different coupling constant and the number
of gauge bosons, the one-loop expression for the self-energy will be also valid for the QCD plasma. Without loss of
generality, we will assume that the background magnetic field B points in the +z direction.

At the leading order in coupling, the coordinate space representation of the fermion self-energy is given by

Σ(u,u′) = −4iπαγµS(u,u′)γνDµν(u − u′), (1)

where α = q2/(4π) in the coupling constant, S(u,u′) is the free fermion propagator, and Dµν(u − u′) is the photon

(gauge-field) propagator. Note that, by definition, Σ(u,u′) = i [S−1(u,u′) −G−1(u,u′)], where G−1(u,u′) is the inverse
of the full fermion propagator (at the leading one-loop order). In the case of the QCD plasma, one would need to
replace the coupling constant α with αsCF , where αs = g2s/(4π) and CF = (N2

c − 1)/(2Nc).
Because of the broken translation symmetry, the free fermion propagator S(u,u′) and, in turn, the self-energy

Σ(u,u′) depend on spacetime coordinates u = (t, x, y, z) and u′ = (t′, x′, y′, z′) as follows [25]:
S(u,u′) = eiΦ(u⊥,u′⊥)S̄(u − u′), (2)

Σ(u,u′) = eiΦ(u⊥,u′⊥)Σ̄(u − u′), (3)

where Φ(u⊥, u′⊥) is the famous Schwinger phase. Note that the translation-invariant parts S̄(u − u′) and Σ̄(u − u′)
depend on the difference u − u′ only. Assuming the Landau gauge for the background field, i.e., A = (0,Bx,0), the
explicit form of the Schwinger phase is given by Φ(u⊥, u′⊥) = qB

2
(x + x′)(y − y′), where q is the fermion charge.

For reference, we derive an explicit form of the fermion propagator in a background magnetic field in Appendix A.
We make sure to emphasize its coordinate space dependence and the Landau-level structure. Using the same approach,
we also obtain the inverse fermion propagator in Appendix B. Note that both the propagator and its inverse (and, by
extension, the self-energy) have exactly the same Schwinger phase. It is consistent with the structure of Eq. (1) and
the spacetime dependence in Eqs. (2) and (3).

After removing the Schwinger phase and performing the Fourier transform on both sides of Eq. (1), we arrive at
the following expression for the self-energy function:

Σ̄(p∥,p⊥) = −4iπα∫ d2k∥d
2k⊥

(2π)4 γµ S̄(k∥,k⊥)γνDµν(p − k), (4)

where pµ∥ = (p0, pz) and p
µ
⊥ = (px, py). Interestingly, this expression coincides with the usual definition of the self-energy

in a theory with unbroken translation symmetry. Clearly, however, and vectorlike variable p⊥ cannot be interpreted
as a conserved transverse momentum in a magnetized plasma. (In contrast, the two components of p∥, i.e., the energy
p0 and the longitudinal momentum pz, are conserved quantities in a uniform magnetic field.) Despite the appearance,
the functions S̄(k∥,k⊥) and Σ̄(p∥,p⊥) are not the momentum-space representations of the fermion propagator and the
self-energy, respectively. Yet, they encode all information about the propagator and self-energy.
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FIG. 1. The leading order Feynman diagram for the fermion self-energy in the Landau-level representation.

The main advantage of the representation in Eq. (4) is its simplicity. To extract its observable effects, however, we
will need to render it in the Landau-level basis. The corresponding projection will be discussed and implemented in
Sec. III. While technically nontrivial, its outcome is obvious in the diagrammatic form shown in Fig. 1.

At this point, we will proceed with the calculation of the self-energy in Eq. (4). In the derivation, we will use the
following Feynman gauge for the free gauge-field propagator:

Dµν(p − k) = −i gµν

(p − k)2 , (5)

where gµν = diag(1,−1,−1,−1) is the Minkowski metric. We note that a more refined analysis of a hot magnetized
plasma may require using the hard-thermal [60] and hard-magnetic loop [28] resummations. The corresponding
refinements are beyond the scope of the present exploratory study but should be undertaken in the future.

It is instructive to emphasize that the Feynman gauge for the gauge-field propagator is convenient but not the most
general. In fact, it is well known that the fermion self-energy depends on a gauge choice. In this study, however, we
will be concerned primarily with the imaginary (dissipative) part of the self-energy and the fermion damping rate.
For these purposes, the simplest Feynman gauge should be sufficient [61, 62].

By substituting the free fermion propagator, whose explicit form is given in Appendix A, and the photon propagator
in Eq. (5) into the expression for the self-energy in Eq. (4), we obtain

Σ̄(p∥,p⊥) = −4iπα
∞

∑
n′=0
∫ d2k∥d

2k⊥

(2π)4 e−k
2

⊥ l
2

γµ
(−1)n′D(0)n′ (k∥,k⊥)
k2∥ − m̄2

0 − 2n′∣qB∣ γµ
1

q2∥ − q2⊥ . (6)

Here q∥ = p∥ − k∥, q⊥ = p⊥ − k⊥, and

D
(0)
n′ (k∥,k⊥) = 2 [(k∥ ⋅ γ∥) + m̄0] [P+Ln′ (2k2⊥ℓ2) −P−Ln′−1 (2k2⊥ℓ2)] + 4(k⊥ ⋅ γ⊥)L1

n′−1 (2k2⊥ℓ2) , (7)

where P± = (1 ± s⊥iγ1γ2) /2 are spin projectors, ℓ = 1/√∣qB∣ is the magnetic length, s⊥ = sign(qB), and Lα
n(z) are the

generalized Laguerre polynomials [63]. We assume that, by definition, Lα
−1(z) = 0.

To account for a nonzero temperature T , we use Matsubara’s formalism. In particular, we replace the fermion
energies p0 and k0 with iωnp

≡ iπT (2np + 1) and iωnk
≡ iπT (2nk + 1), respectively, and replace the integral over k0

with the Matsubara sum, i.e.,

∫ dk0

2π
F (p0, k0)→ iT

∞

∑
nk=−∞

F (iωnp
, iωnk

) . (8)

Then, the self-energy (6) becomes

Σ̄(iωnp
, pz,p⊥) = 4παT

∞

∑
n′=0

∞

∑
nk=−∞

∫ dkzd
2k⊥

(2π)3
(−1)n′e−k2

⊥ l
2

D̃
(0)
n′ (iωnk

, kz,k⊥)
(ω2

nk
+E2

n′,kz
) [(ωnp

− ωnk
)2 +E2

q ]
, (9)

where we used the shorthand notations for the Landau-level energies En′,kz
≡√2n′∣qB∣ + m̄2

0 + k2z and the gauge boson

energy Eq ≡
√
q2
⊥ + q2z , and introduced the following new function:

D̃
(0)
n′ (iωnk

, kz,k⊥) ≡ γµD(0)n′ (iωnk
, kz,k⊥)γµ = 4m̄0 [Ln′ (2k2⊥ℓ2) −Ln′−1 (2k2⊥ℓ2)]

− 4 (iωnk
γ0 − kzγ3) [P−Ln′ (2k2⊥ℓ2) −P+Ln′−1 (2k2⊥ℓ2)] − 8(k⊥ ⋅ γ⊥)L1

n′−1 (2k2⊥ℓ2) . (10)
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After performing the Matsubara sum, we obtain

Σ̄(p∥,p⊥) = 4πα
∞

∑
n′=0

∑
s1=±

∑
s2=±

(−1)n′ ∫ dkzd
2k⊥

(2π)3 e−k
2

⊥ l
2 s1s2 [1 − nF (s1En′,kz

) + nB(s2Eq)]
En′,kz

Eq (p0 − s1En′,kz
− s2Eq + iǫ)

×{(s1En′,kz
γ0 − kzγ3) [P−Ln′ (2k2⊥ℓ2) −P+Ln′−1 (2k2⊥ℓ2)]

−m̄0 [Ln′ (2k2⊥ℓ2) −Ln′−1 (2k2⊥ℓ2)] + 2(k⊥ ⋅ γ⊥)L1
n′−1 (2k2⊥ℓ2)}, (11)

where we used the standard Fermi-Dirac and Bose-Einstein distribution functions, nF (E) = (eE/T + 1)−1 and nB(E) =(eE/T − 1)−1, respectively. In the derivation, we used the following result for the Matsubara sum:

T
∞

∑
nk=−∞

iωnk
A +B(ω2

nk
+E2

a) [(ωnp
− ωnk

)2 +E2
b
] = −14 ∑

s1,s2=±

(s1EaA +B) [1 − nF (s1Ea) + nB(s2Eb)]
s1s2EaEb (iωnp

− s1Ea − s2Eb) . (12)

To separate the real and imaginary parts of the self-energy, we perform the analytical continuation iωnp
→ p0 + iǫ and

use the Sokhotski formula,

1

p0 − s1En′,kz
− s2Eq + iǫ = P

1

p0 − s1En′,kz
− s2Eq + iǫ − iπδ (p0 − s1En′,kz

− s2Eq) . (13)

In the rest, we will concentrate on the imaginary (absorptive) part. The corresponding expression can be simplified
by taking into account that

δ(p0 − s1En′,kz
− s2Eq) = ∑

s′=±

En′,kz
Eqδ(kz − ks′z )∣(ks′z − pz)s1En′,kz

+ ks′z s2Eq ∣ = ∑s′=±
2En′,kz

Eqδ(kz − ks′z )√[q2⊥ − (q−⊥)2] [q2⊥ − (q+⊥)2] , (14)

where q±⊥ = ∣√2n′∣qB∣ + m̄2
0 ±
√
p20 − p2z ∣ and the explicit expressions for the two solutions k±z to the energy-conservation

condition read as

k±z = pz2 (1 + 2n′∣qB∣ + m̄2
0 − q2⊥

p20 − p2z
± p0

pz(p20 − p2z)
√[q2⊥ − (q−⊥)2] [q2⊥ − (q+⊥)2]) . (15)

Note that, for the fermions on the mass shell, we should set p20 −p2z = 2n∣qB∣+ m̄2
0, and the two thresholds will become

q±⊥ = ∣√2n′∣qB∣ + m̄2
0 ±
√
2n∣qB∣ + m̄2

0∣.
By substituting the solutions of the energy-conservation condition (kz = k±z ), we derive the following two expressions

for the particle energies:

En′,kz
∣
kz→k±z

= s1p0
2
(1 + 2n′∣qB∣ + m̄2

0 − q2⊥
p20 − p2z

± pz

p0(p20 − p2z)
√[q2⊥ − (q−⊥)2] [q2⊥ − (q+⊥)2]) , (16)

Eq∣
kz→k±z

= s2p0
2
(1 − 2n′∣qB∣ + m̄2

0 − q2⊥
p20 − p2z

∓ pz

p0(p20 − p2z)
√[q2⊥ − (q−⊥)2] [q2⊥ − (q+⊥)2]) . (17)

Without loss of generality, below we will concentrate on the case of Landau-level states with positive energies, p0 > 0.
On the mass shell, they will be given by the Landau-level energies, p0 =√2n∣qB∣ + m̄2

0 + p2z. If needed, the self-energy
results for the Landau-level states with negative energies could be obtained by using the charge-conjugation symmetry.

By analyzing the solutions for energy-conservation relation p0 = s1En′,kz
+ s2Eq with the assumption p0 > 0, we

identify the following three kinematic cases:

s1 > 0, s2 > 0 ∶ 0 < q⊥ < q−⊥ , (18)

s1 > 0, s2 < 0 ∶ 0 < q⊥ < q−⊥ , (19)

s1 < 0, s2 > 0 ∶ q+⊥ < q⊥ <∞. (20)

The first one describes a transition to a lower energy particle state with emission of a photon (ψn → ψn′ + γ with
n > n′); see Fig. 2(a). The second one describes a transition to a higher energy particle state with absorption of a
photon (ψn + γ → ψn′ with n < n′); see Fig. 2(b). Finally, the third one describes a transition to an antiparticle state
with emission of a photon (i.e., annihilation process ψn + ψ̄n′ → γ for any n and n′); see Fig. 2(c).
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FIG. 2. Feynman diagrams for the three processes contributing to the fermion damping in the nth Landau-level state: (a)
quantum transition to a lower Landau level with emission of a photon ψn → ψn′ +γ (n > n′), (b) quantum transition to a higher
Landau level with absorption of a photon ψn + γ → ψn′ (n < n

′), (c) particle-antiparticle annihilation ψn + ψ̄n′ → γ.

It is instructive to emphasize that the three processes in Fig. 2 contribute to the fermion damping rate only when
the background magnetic field is nonzero. Without magnetic field, these processes of order α are forbidden by the
energy-momentum conservation. Instead, the fermion damping is dominated by diagrams of order α2 such as two-to-
two scattering and annihilation processes (i.e., ψk + γ → ψk′ + γ and ψk + ψ̄k′ → γ + γ). Turning the argument around,
this also implies that contributions from higher-order processes will compete with those in Fig. 2 when the magnetic
field is sufficiently weak.
The final expression for the imaginary part reads as

Im [Σ̄(p∥,p⊥)] = −4πα ∞∑
n′=0

∑
{s}

(−1)n′ ∫ d2k⊥(2π)2 e−k2

⊥ l
2 1 − nF (s1En′,ks′

z
) + nB(s2Eq)

s1s2
√[q2⊥ − (q−⊥)2] [q2⊥ − (q+⊥)2]

×{(s1En′,ks′
z
γ0 − ks′z γ3) [P−Ln′ (2k2⊥ℓ2) − P+Ln′−1 (2k2⊥ℓ2)]

−m̄0 [Ln′ (2k2⊥ℓ2) −Ln′−1 (2k2⊥ℓ2)] + 2(k⊥ ⋅ γ⊥)L1
n′−1 (2k2⊥ℓ2)}, (21)

where the shorthand notation ∑{s} represents the sum over three signs, i.e., s1, s2, s
′ = ±1. This expression for the

Fourier transform of the translation invariant part of the self-energy, as defined in Eq. (3), does not reveal explicitly
the Landau-level structure. Indeed, as we show in Appendix B 1, its Landau-level representation (B7) should be given
as an expansion in Laguerre polynomials Lα

n (2p2⊥ℓ2), where p⊥ is the Fourier variable for the external line. In the
next section, we will use the properties of the Laguerre polynomials to render the self-energy in such a Landau-level
form.

III. FERMION SELF-ENERGY IN LANDAU-LEVEL REPRESENTATION

A. Analytical expressions for the self-energy functions

By making use of explicit wave functions for the Landau-level orbitals in Appendix B 1, we find that the self-energy
must take the following general form:

Σ̄(p∥,p⊥) = −2e−p2

⊥ℓ
2
∞

∑
n=0

(−1)n [δv∥,n(p∥ ⋅ γ∥) + iγ1γ2(p∥ ⋅ γ∥)ṽn − δmn − iγ1γ2m̃n] [P+Ln(2p2⊥ℓ2) −P−Ln−1(2p2⊥ℓ2)]
− 4e−p2

⊥ℓ
2
∞

∑
n=0

(−1)nδv⊥,n(γ⊥ ⋅ p⊥)L1
n−1(2p2⊥ℓ2). (22)

As is easy to verify, it contains all the same Dirac matrices as the main expression for the one-loop self-energy
Σ̄(p∥,p⊥) in Eq. (11), or its imaginary part in Eq. (21). Of course, it is not accidental since we made an educated
choice for a general form of the full propagator in Appendixes A and B. In this connection, we should mention that,
if higher-order calculations would reveal the need for additional Dirac structures (allowed by symmetries), they could
be easily incorporated into a general ansatz for the full propagator.

The physical meaning of δv∥,n, δv⊥,n, and δmn is clear. They measure the one-loop corrections to the maximum
spin-averaged particle speed (in the directions parallel and perpendicular to the magnetic field) and the corrections
to the particle mass in the nth Landau level. As for the other two functions, i.e., ṽn and m̃n, they determine the
splitting of the parallel velocities and masses of the two spin states.
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The functional form of the self-energy dependence on p⊥, obtained in the previous section, does not seem to match
the Landau-level representation in Eq. (22), which is an expansion in the Laguerre polynomials Lα

n (2p2⊥ℓ2). However,
by making use of the orthogonality property of the Laguerre polynomials, i.e.,

∫
∞

0
e−xxαLα

n(x)Lα
n′(x)dx = δnn′ Γ(n + α + 1)

n!
, (23)

it is straightforward to render the result in the form of such an expansion.
In particular, after separating different Dirac structures, we can match the self-energy functions δv∥,n, δv⊥,n, δmn,

ṽn, and m̃n in the Landau-level representation to the projection of function Σ̄(p∥,p⊥) onto the Landau-level orbitals.
The corresponding relations read as

δv+∥,n ≡ δv∥,n + s⊥ṽn = −(−1)nℓ22πp2∥
∫ d2p⊥e

−p2

⊥ℓ
2

tr [(p∥ ⋅ γ∥)P+Σ(p∥,p⊥)]Ln(2p2⊥ℓ2), (24)

δv−∥,n ≡ δv∥,n − s⊥ṽn = (−1)nℓ22πp2∥
∫ d2p⊥e

−p2

⊥ℓ
2

tr [(p∥ ⋅ γ∥)P−Σ(p∥,p⊥)]Ln−1(2p2⊥ℓ2), (25)

δm+n ≡ δmn + s⊥m̃n = (−1)nℓ2
2π

∫ d2p⊥e
−p2

⊥ℓ
2

tr [P+Σ(p∥,p⊥)]Ln(2p2⊥ℓ2), (26)

δm−n ≡ δmn − s⊥m̃n = −(−1)nℓ2
2π

∫ d2p⊥e
−p2

⊥ℓ
2

tr [P−Σ(p∥,p⊥)]Ln−1(2p2⊥ℓ2), (27)

δv⊥,n = (−1)nℓ4
4πn

∫ d2p⊥e
−p2

⊥ℓ
2

tr [(γ⊥ ⋅ p⊥)Σ(p∥,p⊥)]L1
n−1(2p2⊥ℓ2). (28)

Note that the self-energy component functions δv±∥,n and δm±n have a simple meaning. They describe corrections to

the velocity and mass parameters for the two spin states in the nth Landau level. Only two of such functions, namely
Eqs. (24) and (26), are defined for all the Landau levels, n ≥ 0. The other three are defined only for the higher
Landau levels with n ≥ 1. This is related to the unique property of the lowest Landau level, which has only one spin
polarization (i.e., pointing along the field direction if the fermions carry a positive charge, or opposite to the field if
they carry a negative charge). As a result, the self-energy in the lowest Landau level (n = 0) is fully characterized
by the longitudinal velocity (or the wave-function renormalization) v+∥,n = δv∥,n + s⊥ṽn and the mass renormalization

δm+n = δmn + s⊥m̃n.
By substituting the expression for the one-loop result (11) into the above definitions (24) through (28), we will have

all Dirac components of the self-energy in the Landau-level representation. Here we will concentrate on the imaginary
parts of the self-energy functions by using the result in Eq. (21). The corresponding results read as

Im [δv+∥,n] = α

p2∥

∞

∑
n′=0

∑
{s}
∫ q⊥dq⊥In,n′−10 (q2⊥ℓ2

2
) (s1En′,ks′

z
p0 − ks′z pz) [1 − nF (s1En′,ks′

z
) + nB(s2Eq)]

s1s2
√[q2⊥ − (q−⊥)2] [q2⊥ − (q+⊥)2] , (29)

Im [δv−∥,n] = α

p2∥

∞

∑
n′=0

∑
{s}
∫ q⊥dq⊥In−1,n′0 (q2⊥ℓ2

2
) (s1En′,ks′

z
p0 − ks′z pz) [1 − nF (s1En′,ks′

z
) + nB(s2Eq)]

s1s2
√[q2⊥ − (q−⊥)2] [q2⊥ − (q+⊥)2] , (30)

Im [δm+n] = αm̄0

∞

∑
n′=0

∑
{s}
∫ q⊥dq⊥ [In,n′0 (q2⊥ℓ2

2
) + In,n′−10 (q2⊥ℓ2

2
)] 1 − nF (s1En′,ks′

z
) + nB(s2Eq)

s1s2
√[q2⊥ − (q−⊥)2] [q2⊥ − (q+⊥)2] , (31)

Im [δm−n] = αm̄0

∞

∑
n′=0

∑
{s}
∫ q⊥dq⊥ [In−1,n′0 (q2⊥ℓ2

2
) + In−1,n′−10 (q2⊥ℓ2

2
)] 1 − nF (s1En′,ks′

z
) + nB(s2Eq)

s1s2
√[q2⊥ − (q−⊥)2] [q2⊥ − (q+⊥)2] , (32)

Im [δv⊥,n] = α

2n

∞

∑
n′=0

∑
{s}
∫ q⊥dq⊥In−1,n′−12 (q2⊥ℓ2

2
) 1 − nF (s1En′,ks′

z
) + nB(s2Eq)

s1s2
√[q2⊥ − (q−⊥)2] [q2⊥ − (q+⊥)2] . (33)

Here we introduced two unitless kernel functions that depend on q2⊥ℓ
2/2. They are defined in Appendix C. There we

also prove that the kernels reduce to functions In,n′0 (ξ) and In,n′2 (ξ) introduced previously in Ref. [44]. The explicit
expressions for these functions are given in Eqs. (C7) and (C8) of our Appendix C.
As expected, all parameters are Landau-level dependent functions of the longitudinal momentum pz. We can further

simplify the integrand in Eqs. (29) and (30) by taking into account the following relation:

s1En′,ks′
z
p0 − ks′z pz = 1

2
(p2∥ + 2n′∣qB∣ + m̄2

0 − q2⊥) ∣
m.s.
= (n + n′) ∣qB∣ + m̄2

0 − q
2
⊥

2
. (34)
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In the last expression, we used the mass-shell condition to express the parallel components of the fermion momentum
in terms of the Landau-level index: p2∥ = 2n∣qB∣ + m̄2

0. For numerical calculations later, it will help that the result is

independent of the signs s1 and s′.
We should note that, despite the appearance, the combination of the Fermi-Dirac and Bose-Einstein distribution

functions, 1 − nF (s1En′,ks′
z
) + nB(s2Eq), is also independent of the signs s1 and s2. Indeed, it is obvious after taking

into account the energy expressions in Eqs. (16) and (17), which contain the overall factors of s1 and s2, respectively.
The only dependence of the integrands in Eqs. (29) through (33) on the signs s1 and s2 comes from the overall

factor s1s2. It is instructive to recall that different sign choices determine the process types contributing to the
imaginary part; see Eqs. (18) – (20). Therefore, up to overall sign s1s2, the integrands are formally the same for all
processes. The contributions of quantum transitions of fermions to lower Landau-level states (accompanied by photon
emission) come with a plus sign. The contributions of transitions to higher Landau-level states (accompanied by
photon absorption) and the annihilation processes (accompanied by photon emission) come with a minus sign. While
the integrands are formally the same for all three processes (up to a sign), the range of integration over q⊥ differs.
Namely, it is 0 < q⊥ < q−⊥ for transitions to lower/higher Landau-level states and q+⊥ < q⊥ < ∞ for the annihilation
processes.
By using the five functions in Eqs. (29) through (32), we can obtain the spin-average Landau-level dependent values

of the parallel velocity and mass, i.e.,

Im [δv∥,n] = 1

2
Im [δv+∥,n + δv−∥,n] , (35)

Im [δmn] = 1

2
Im [δm+n + δm−n] . (36)

as well as the corresponding spin-splitting functions, i.e.,

Im [ṽn] = s⊥
2
Im [δv+∥,n − δv−∥,n] , (37)

Im [m̃n] = s⊥
2
Im [δm+n − δm−n] . (38)

As expected, all of these parameters, as well as Im [δv⊥,n], are Landau-level dependent functions of the longitudinal
momentum pz.

B. Self-energy in QCD plasma

To demonstrate the proof of concept, here we study numerically the imaginary part of the self-energy functions in a
hot magnetized QCD plasma. Keeping in mind their potential applications to heavy-ion physics, we will assume that
the plasma temperature T is of the order of 200 MeV to 400 MeV and the magnetic field is of the order of ∣qB∣ ∼m2

π,
where mπ = 135 MeV.
Because of different electric charges of the up and down quarks (qu = +2e/3 and qd = −e/3), the effect of a background

magnetic field on their self-energies differs. Nevertheless, their dependence on ∣qB∣ will remain essentially the same.
(Strictly speaking, the roles of spin-up and spin-down states in the lowest Landau level will be interchanged because
their charges have opposite signs.) Instead of considering the cases of up- and down-quarks separately, we will consider
several fixed values of ∣qB∣. This will suffice to demonstrate the qualitative effects of the magnetic field on the quark
self-energy in the QCD plasma. We will also assume that the quark mass is the same for both flavors, i.e., m̄0 = 5 MeV.

In the case of QCD plasma, the expressions for the self-energy functions have the same form as in Eqs. (29) – (33),
but the coupling constant α should be replaced with αsCF , where αs = g2/(4π) and CF = (N2

c −1)/(2Nc) = 4/3. To get
an order of magnitude estimate, we will assume that the strong coupling is αs ≃ 1/2. In this case, αsCF = 2/3. This
choice is sufficient to get order of magnitude estimates. One could try to improve the approximation, for example, by
incorporating the running of the coupling constant at the scale of temperature or the momentum transfer. For the
purposes of the current proof-of-concept study, however, it is unnecessary. In any case, the overall benefit from this
and other improvements is likely very limited. Because of the strong coupling in QCD, the quantitative validity of
the one-loop correction will remain questionable. Thus, our numerical result should be interpreted with great caution
and, at best, viewed as reasonable estimates rather than true quantitative results.

When calculating the self-energy functions defined in Eqs. (29) through (33), one needs to add up contributions from
all three processes, sum over Landau level index n′, and integrate over the transverse momentum q⊥ in the appropriate
kinematic range; see Eqs. (18) – (20). We will limit the analysis to the first 50 Landau levels (i.e., n ≤ nmax = 50). In
this case, to achieve a good numerical precision in calculations, we include all transitions to Landau levels with the
indices up to n′max = 100.
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FIG. 3. The dependence of the self-energy functions Im[δv∥,n], Im[δv⊥,n], and Im[δmn]/m̄0 on the Landau-level index n for
two fixed values of the longitudinal momentum: pz = 0 (top panels) and pz = 1000 MeV (bottom panels). Each panel contains
results for three different temperatures: T = 200 MeV (blue), T = 300 MeV (green), and T = 400 MeV (red); and two magnetic
fields: ∣qB∣ = (75 MeV)2 (open circles) and ∣qB∣ = (200 MeV)2 (filled squares).

The representative results for the imaginary parts of the velocity and the mass as functions of the Landau-level index
n are shown in Fig. 3. Each panel displays numerical data for three different temperatures, i.e., T = 200 MeV (blue
lines), T = 300 MeV (green lines), T = 400 MeV (red lines), and two different magnetic fields, i.e., ∣qB∣ = (75 MeV)2
(open circles), ∣qB∣ = (200 MeV)2 (filled squares). The top three panels show the results for pz = 0, while the bottom
three panels show the results for pz = 1000 MeV.
The multipanel Fig. 3 provides only a limited view of the numerical data for two fixed values of the longitudinal

momentum. A large set of additional data for a wide range of pz values is included as the Supplemental Material [64].
Overall, we find that the imaginary parts of the velocity and mass functions tend to increase with the temperature and
decrease with the magnetic field. Beyond these general tendencies, one finds that their dependence on the Landau-level
index is nonmonotonous in general and differs at small and large values of pz.

Since the imaginary parts of the Landau-level dependent velocity and mass functions have no clear physical meaning
by themselves, we will not be discussing them in more detail. We note, however, that they are needed as an input to
calculate the fermion damping rate. The latter will be discussed in the next section.

IV. DAMPING RATE

In quantum field theory without a background magnetic field, the fermion damping rate is related to the imaginary
part of self-energy [65]. In some recent studies, e.g., see Refs. [66–68], a similar formula was used rather heuristically
in the case of magnetized plasmas. It should be noted, however, that no formal justification was given to utilize the
Fourier transform of the translation invariant part of the self-energy in such calculations. Since the transverse momenta
are not good quantum numbers in the field theory in a magnetic field, the underlying foundation of Weldon’s arguments
in Ref. [65] cannot be transferred to an unphysical representation. Below we provide a more rigorous derivation of
the damping rate in terms of the self-energy in the Landau-level representation.

A. Damping rate from the imaginary part of self-energy

Following the general approach of Ref. [65], we define the damping rate using the wave functions in coordinate
space as follows:

Γn(pz) = 1

2p0
∫ d4u′ ∫ d4uTr [2πℓ2

V⊥
∫ dp∑

s

Ψ̄n,p,s(u′)ImΣ(u′, u)Ψn,p,s(u)] . (39)
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Note that 1/(2πℓ2) is the number of degenerate states per unit transverse area (excluding the spin degeneracy) and
V⊥ is the volume (area) of the transverse plane. Thus, V⊥/(2πℓ2) is the total number of such degenerate states.
By making use of the fermion wave functions in a constant magnetic field, discussed in Appendix D, we then derive

Γn(pz) = 1

p0

⎧⎪⎪⎨⎪⎪⎩
δn,0

2
[p2∥Im(δv∥,n + s⊥ṽn) − m̄0Im(δmn + s⊥m̃n)]

+ (1 − δn,0) [p2∥Im(δv∥,n) − m̄0Im(δmn) − 2n∣qB∣Im(δv⊥,n)]⎫⎪⎪⎬⎪⎪⎭, (40)

where we used the result in Eq. (D10). In the final expression, one should assume that the fermion is on the mass

shell, i.e., p0 =√2n∣qB∣ + m̄2
0 + p2z.

By definition, the Landau-level dependent fermion damping rate in Eq. (40) is a spin-averaged quantity. Indeed,
in the derivation, we summed up contributions of the spin states indiscriminately. In the presence of a nonzero
magnetic field, however, the spin-degeneracy of each Landau level is likely to be lifted. Thus, the damping rates of the
corresponding states are expected to be different. As we show in the next subsection, it is indeed the case. Moreover,
we will be able to calculate the spin-dependent damping rates from the imaginary part of the one-loop self-energy.

By substituting the results in Eqs. (29) through (33) into the general expression for the rate (40), we derive the
following damping rate in the zeroth Landau level:

Γ0(pz) = α∣qB∣
4p0

∞∑
n′=0

∑
{s}
∫ dξ [n′I0,n′−10 (ξ) − (n′ + m̄2

0ℓ
2)I0,n′0 (ξ)] [1 − nF (s1En′,ks′

z
) + nB(s2Eq)]

s1s2
√(ξ − ξ−)(ξ − ξ+) , (41)

where we used the identity ξI0,n′−10 (ξ) = n′I0,n′0 (ξ). The expression for the damping rate in the higher Landau levels
(n ≥ 1) reads as

Γn(pz) = α∣qB∣
4p0

∞

∑
n′=0

∑
{s}
∫ dξ [In,n′−10 (ξ) + In−1,n′0 (ξ)] (n + n′) [1 − nF (s1En′,ks′

z
) + nB(s2Eq)]

s1s2
√(ξ − ξ−)(ξ − ξ+)

− α

4p0

∞

∑
n′=0

∑
{s}
∫ dξ [In,n′0 (ξ) + In−1,n′−10 (ξ)] (n + n′ + m̄2

0ℓ
2) [1 − nF (s1En′,ks′

z
) + nB(s2Eq)]

s1s2
√(ξ − ξ−)(ξ − ξ+) . (42)

Here, we introduced shorthand notations ξ = q2⊥ℓ2/2 and ξ± = (q±⊥)2ℓ2/2, and used Eq. (34) to simplify the integrands.

Also, to express In−1,n′−12 (ξ) in terms of In,n′0 (ξ), we used Eq. (C9) from Appendix C.
We can rewrite the above expressions for the damping rates in a form valid for all n ≥ 0 as follows:

Γn(pz) = α∣qB∣
4p0

∞

∑
n′=0

∑
{s}
∫ dξ

Mn,n′(ξ) [1 − nF (s1En′,ks′
z
) + nB(s2Eq)]

s1s2
√(ξ − ξ−)(ξ − ξ+) , (43)

where we introduced the following function:

Mn,n′(ξ) = −(n + n′ + m̄2
0ℓ

2) [In,n′0 (ξ) + In−1,n′−10 (ξ)] + (n + n′) [In,n′−10 (ξ) + In−1,n′0 (ξ)] . (44)

As one can verify, the damping rate in Eq. (43) is a positive definite quantity. This is expected since Weldon’s method
[65] should produce a result proportion to the squared amplitudes of the three underlying processes. As we show
below, the same expression (43) for the rate (after spin averaging) is obtained also from the poles of the propagator
in Sec. IVB below.

To further scrutinize the result in Eq. (43), we note that photon emission in a strongly magnetized plasma must
be determined by the same squared amplitudes at the leading order in coupling. By making use of the analytical
expression in Ref. [44], we verified that the photon emission rate is indeed determined by the same functionMn,n′(ξ).
The numerical results for the fermion damping rate (43) as a function of the Landau-level index n and the longitu-

dinal momentum are shown in Fig. 4. Note that the values of the rate and the longitudinal momentum pz are given
in units of the pion mass mπ = 135 MeV. We use the same value of the QCD coupling as in Sec. III B. Four different
panels display results for two different temperatures, i.e., T = 200 MeV (left panels) and T = 400 MeV (right panels),
and two different magnetic fields, i.e., ∣qB∣ = (75 MeV)2 (top panels) and ∣qB∣ = (200 MeV)2 (bottom panels).
By comparing the compilation of numerical data in the four panels of Fig. 4, representing different temperatures and

magnetic fields, we see that both temperature and magnetic field have a tendency to increase the damping rates. Such
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FIG. 4. The fermion damping rate as a function of the longitudinal momentum pz and the Landau-level index n. The damping
rate is measured in units of the pion mass. Four separate panels display results for two different temperatures, T = 200 MeV
(left panels) and T = 400 MeV (right panels), and two magnetic fields, ∣qB∣ = (75 MeV)2 (top panels) and ∣qB∣ = (200 MeV)2

(bottom panels).

an enhancement is not surprising since both have the tendency to increase the phase space for transitions to other
Landau levels. In connection to the magnetic field, in particular, its presence is critical to trigger the three processes
responsible for the damping rate at the leading order in coupling. In the absence of the field, the only processes
contributing to the fermion damping rate are of the subleading order in coupling. The findings are further reinforced
by the numerical data for intermediate values of temperature, T = 300 MeV, and magnetic field, ∣qB∣ = (125 MeV)2,
which are not shown in the figures but included in the Supplemental Material [64].

A careful analysis shows that the enhancement factors, resulting from increasing the temperatures and magnetic
field, are nonuniform functions of the Landau-level index n and longitudinal momentum pz. For example, the increase
of temperature from T = 200 MeV to T = 400 MeV leads to enhancement factors of the order of 2 to 4 in the whole
region of n and pz investigated. The largest increase is seen in the low-lying Landau levels at small longitudinal
momenta.

The effect of the magnetic field is also nonuniform across the whole range of n and pz values. Quantitatively, the
increase of the magnetic field from ∣qB∣ = (75 MeV)2 to ∣qB∣ = (200 MeV)2 gives the largest enhancement factors of
the order of 5 to 6, which occurs at large values of pz and small n. While, in absolute terms, the damping rates are
the highest at small values of pz, the increase due to the magnetic field is moderate (of the order of 2 or less). In
fact, when both n and pz are small, we find that the rate can even decrease by a factor of about 2 or less. We should
note, however, that this part of the parameter space must be treated with great caution because of a limited validity
of the one-loop approximation.

Before proceeding further, it is instructive to investigate the ratio of the damping rate and the real part of the
fermion energy, Γn(pz)/En,pz

. Note that the knowledge of the real part of particle energy at the zeroth order is
sufficient for calculating first-order corrections to Γn(pz)/En,pz

. The corresponding results are presented in Fig. 5.
The four panels correspond to the same choices of two temperatures and two magnetic fields. In essence, this is the
ratio of the imaginary and real parts of the fermion energy that shows whether the quantum state (with given n and
pz) is a well-defined quasiparticle. When the ratio value is comparable to 1 or larger, the quasiparticle description is
inapplicable. Indeed, this is the case when the particle’s lifetime τn = 1/Γn is comparable to or shorter than the time
needed to measure its energy ∆t ≲ 1/En,pz

according to the uncertainty principle. Alternatively, the uncertainty in
particle’s energy Γn is larger than the energy En,pz

itself.
As we see from Fig. 5, the ratio Γn(pz)/En,pz

remains small almost in the whole range of n and pz values. However,
the damping rate becomes very large in the lowest few Landau levels (n ≲ 1) when the longitudinal momentum pz
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FIG. 5. The ratio of the fermion damping rate to its energy as a function of the longitudinal momentum pz and the Landau-level
index n. Four separate panels display results for two different temperatures, T = 200 MeV (left panels) and T = 400 MeV (right
panels), and two magnetic fields, ∣qB∣ = (75 MeV)2 (top panels) and ∣qB∣ = (200 MeV)2 (bottom panels).

is sufficiently small (pz ≲ mπ). Formally, these results indicate that the concept of well-defined quasiparticles breaks
down for the corresponding lowest Landau level states. We believe this might be a premature conclusion, however.
It seems more likely that the validity of the perturbative one-loop calculation breaks down in this case. Because of
the high degeneracy of the Landau levels, it is plausible that the one-loop calculation breaks down, especially in the
region of small fermion energies.
As in the absence of a magnetic field, hard thermal loop resummations might be very important in the strongly

magnetized QCD plasma [60]. Additionally, somewhat similar hard magnetic loop resummation [28] may be needed
when there is a strong magnetic field. Both are very likely to affect the self-energy at small energies. Therefore, we
reiterate that the large damping rates at small n and pz should be accepted with great caution. Most likely, the
corresponding results are outside of the range of validity of the approximations used. Qualitatively, however, it is
intriguing to think that the damping rates can be indeed large in the low-lying Landau levels. They could dramatically
affect some observables in heavy-ion collisions, e.g., the electrical conductivity of plasma [66, 69] and the heavy-quark
energy loss and dissipation rate [67, 68].

B. Damping rates from the poles of the propagator

In the previous subsection, we used the definition of the damping rate in terms of the imaginary part of the self-
energy by generalizing the general approach of Ref. [65] to the case of quantum field theory in a quantizing magnetic
field. Here we consider an alternative definition that follows from the structure of the full propagator, calculated in
the one-loop approximation.
When the full propagator is known, the fermion damping rate can be also determined from the location of its poles in

the complex energy plane. At the leading order in coupling, the explicit structure of the fermion propagator is derived
in Appendix A. As expected, the self-energy functions v∥,n, mn, v⊥,n, ṽn, and m̃n modify the fermion propagator; see
Eqs. (A9), (A15) and (A16). Most importantly for our purposes here, one can extract the quasiparticle energies from
the location of the poles in the propagator; see Eq. (A17). Assuming that the self-energy corrections are small, the
approximate expressions for the (positive) energies can be written as follows:

p
(±)
0 ≃ √2n∣qB∣ + m̄2

0 + p2z ⎛⎝1 + m̄0δmn − (2n∣qB∣ + m̄2
0)δv∥,n + 2n∣qB∣δv⊥,n ±√2n∣qB∣ + m̄2

0(m̄0ṽn − m̃n)
2n∣qB∣ + m̄2

0 + p2z
⎞⎠ . (45)
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FIG. 6. The dependence of the self-energy functions Im[ṽn] and Im[m̃n]/m̄0 on the Landau-level index n for two fixed values
of the longitudinal momentum: pz = 0 (top panels) and pz = 1000 MeV (bottom panels). Each panel contains results for
three different temperatures: T = 200 MeV (blue), T = 300 MeV (green), and T = 400 MeV (red); and two magnetic fields:
∣qB∣ = (75 MeV)2 (open circles) and ∣qB∣ = (200 MeV)2 (filled squares).

Note that there are two different branches of solutions that correspond to two spin states. Recall that the corresponding
two states were degenerate in the free propagator. However, already at the leading order in coupling, the degeneracy
is lifted by the self-energy corrections ṽn and m̃n. Since we did not calculate explicitly the real parts of the self-energy
functions v∥,n, mn, v⊥,n, ṽn, and m̃n, we cannot quantify the corresponding corrections to the real parts of particle
energies.
Nevertheless, using the imaginary parts of self-energy functions; see Eqs. (29) through (33), we can determine

leading-order corrections to the imaginary parts of particle energies, i.e., Im[δp(±)0,n]. Since the latter should coincide
with the damping rate up an overall sign, we derive

Γ(±)n ≃ (2n∣qB∣ + m̄2
0)Im[δv∥,n] − m̄0Im[δmn] − 2n∣qB∣Im[δv⊥,n] ∓√2n∣qB∣ + m̄2

0(m̄0Im[ṽn] − Im[m̃n])√
2n∣qB∣ + m̄2

0 + p2z . (46)

As expected, this result demonstrates that the two spin-split Landau-level states have different damping rates. At

the same time, it is rewarding to see that the spin-averaged damping rate, Γ
(ave)
n ≡ (Γ(+)n + Γ(−)n )/2, agrees perfectly

with the result obtained by a very different method in the previous subsection; see Eq. (40).
It is natural to ask how large the spin splitting effects on the quasiparticle damping rate are. As we see from

Eq. (46), they are determined by the self-energy functions Im[ṽn] and Im[m̃n]. The representative results for both,
as functions of the Landau-level index n, are shown in Fig. 6. Each panel displays numerical data for three different
temperatures, i.e., T = 200 MeV (blue lines), T = 300 MeV (green lines), T = 400 MeV (red lines), and two different
magnetic fields, i.e., ∣qB∣ = (75 MeV)2 (open circles), ∣qB∣ = (200 MeV)2 (filled squares). The top panels show the
results for pz = 0, while the bottom panels show the results for pz = 1000 MeV. Since the imaginary parts of ṽn and
m̃n themselves have no direct physical meaning, there is no need to display more data here. However, an interested
reader could find a large set of additional data for a wide range of pz values in the Supplemental Material [64].
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FIG. 7. The spin-splitting of damping rates as functions of Landau-level index n for two fixed values of the longitudinal
momentum: pz = 0 (left panel) and pz = 1000 MeV (right panel). The magnetic field is ∣qB∣ = (75 MeV)2. Each panel contains
results for three different temperatures: T = 200 MeV (blue), T = 300 MeV (green), and T = 400 MeV (red).

Let us now turn to the spin-splitting effects on the damping rates. Two sets of representative results are shown in
Fig. 7. We display the difference between the rates of the spin up and down states as functions of the Landau-level
index n. The two panels display the results for the same (smallest) value of the magnetic field, ∣qB∣ = (75 MeV)2
but two different longitudinal momenta, pz = 0 (left panel) and pz = 1000 MeV (right panel). The data for three
different temperatures are represented by different colors. By comparing the magnitude of spin splitting with the
average damping rates in Fig. 4, we see that the effect of spin splitting is really small. The same is true for other
values of the magnetic field. Quantitatively, a typical difference between the rates of the spin up and down states is
of the order of a few percent of the average rate or less. However, it may reach up to about 10% in low-lying Landau
levels at small longitudinal momenta. In general, we find that the relative spin splitting decreases with increasing of
the magnetic field. Therefore, one can argue that, for most purposes, it is sufficient to use the spin-averaged damping

rate, Γ
(ave)
n ≡ (Γ(+)n + Γ(−)n )/2, which was investigated in detail in the previous subsection. This argument can be

further reinforced by the observation that systematic uncertainties of the one-loop approximation used in the study
are probably larger than the effects of spin splitting.
In conclusion of this section, let us emphasize that the spin splitting is a qualitatively new feature that can play an

important role in strongly magnetized plasmas. While the differences between the damping rates for spin-split states
in each Landau level remain quantitatively small, they may affect some spin physics phenomena, chiral magnetic or
chiral separation effects. In this connection, it should be emphasized that not only the imaginary parts of the Landau-
level energies but also their real parts will be spin split. While we did not calculate the latter, such a conclusion is
supported by the general expression for the self-energy derived.

V. DISCUSSION AND SUMMARY

In this paper we derived a general expression for the fermion self-energy in a hot and strongly magnetized plasma
by using the Landau-level representation. As we show, the leading-order one-loop expression for the self-energy is
characterized by three velocity and two mass functions. The velocity functions include a pair of spin-split parallel
components and a perpendicular component of the velocity. The other two functions are the masses of the spin-split
pair of states in each Landau level. As we demonstrated, all of these five functions have a nontrivial dependence on
the Landau-level index n and the longitudinal momentum pz.

Here we focused primarily on the imaginary (dissipative) part of the fermion self-energy. We derived closed-form
expressions for the imaginary parts of all five functions that define the Dirac structure of the self-energy. At the leading
order in coupling, the contributions to the imaginary parts of the velocity and mass functions in the nth Landau level
come from the following three types of on shell processes: (i) transitions to other Landau levels with lower indices n′

(ψn → ψn′ + γ with n > n′), (ii) transitions to other Landau levels with higher indices n′ (ψn + γ → ψn′ with n < n′),
and (iii) transitions to Landau-level states with negative energies (i.e., the annihilation process ψn + ψ̄n′ → γ for any
n and n′).

We used the imaginary parts of the self-energy functions to derive the Landau-level dependent fermion damping
rates Γn(pz). We employed two different methods to get the corresponding results. On one hand, we obtain the
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damping rate by utilizing the general approach of Weldon [65]. To apply it to the case of hot plasma in a quantizing
magnetic field, first we had to modify the method to account for the correct set of quantum numbers characterizing
the Landau-level states. As expected, the final result is expressed in terms of the imaginary parts of the spin-averaged
velocity and mass functions; see Eq. (40).
The second method for extracting the damping rates used the location of the poles in the full propagator. This

approach revealed that the two-spin degeneracy of the Landau level states was lifted by radiative corrections. Further-
more, by using the imaginary parts of particle energies, we were able to extract the damping rates for the spin-split

states Γ
(±)
n (pz). It is important to note that the spin-averaged rate, Γ

(ave)
n ≡ (Γ(+)n +Γ(−)n )/2, agrees perfectly with the

result obtained by Weldon’s method. Since the effect of spin splitting on the rate is not large, one may argue that
the use of Weldon’s method might be sufficient in most applications.
The analytical expression for the damping rate in Eq. (43) is remarkable in many ways. It defines a positive definite

damping rate as a function of the Landau-level n and the longitudinal momentum pz. We also showed that it is
determined by the same amplitudes that appear in photon emission from a magnetized plasma.
To demonstrate the Landau-level dependent description of the self-energy effects, we studied numerically the fermion

damping rates in a wide range of model parameters, considering three different temperatures and three different
magnetic fields. The choice of model parameters, with temperatures between 200 MeV and 400 MeV and magnetic
fields of the order of m2

π, were motivated by potential applications in heavy-ion physics. The main results are
summarized in Figs. 4 and 5. In absolute terms, the largest values of the rates are found for the low-lying Landau
levels and small values of the longitudinal momentum. In fact, in some cases (at small n and pz), the damping rates
appear to be formally much larger than the real parts of the particle energies. This suggests that the quasiparticle
picture may fail for such quantum states. These extreme cases should be treated with great caution, however, since
the one-loop approximation may become particularly bad in those regions of the parameter space.
Generally, we find that the rates have an overall tendency to grow with increasing both temperature and magnetic

field. However, the enhancement is nonuniform in the range of Landau-level indices n and longitudinal momenta
pz explored. The thermal effects are pronounced the most in the region of small values of n. The magnetic field
enhancement, in contrast, is most prominent at large values of pz. The latter may not be as surprising after one
recalls that the magnetic field is essential for allowing the leading-order, one-photon processes (i.e., ψn → ψn′ + γ,
ψn + γ → ψn′ , and ψn + ψ̄n′ → γ) to occur in the first place.

We hope that the results for the fermion damping rates, as well as the general method for calculating the self-energy
in the Landau-level representation, can be useful in a wide range of studies of strongly magnetized relativistic plasma.
They can be useful in the calculation of transport properties such as the electrical conductivity [66, 69] and the particle
loss or dissipation rate [67, 68]. In addition to heavy-ion physics, our self-energy results can be useful in studies of
QED plasmas in astrophysics and cosmology.
While this study provides a clear proof of concept for utilizing the Landau-level representation to describe self-energy

effects in strongly magnetized relativistic plasmas, there are many theoretical issues left outstanding. The most obvious
of them is the calculation of the real part of the self-energy. Unlike the imaginary part, the expression for the real
part contains ultraviolet divergences. Therefore, its evaluation requires a careful renormalization procedure, which is
complicated by the Landau-level structure of the self-energy. Despite these difficulties, we believe, the problem can
be solved by using the general expression for the self-energy derived here as the starting point. We plan to consider
this problem in the follow-up studies.
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Appendix A: Fermion propagator in the Landau-level representation

In this Appendix, we derive an explicit form of the fermion propagator in a magnetic field in the Landau-level
representation by using the method developed in Ref. [28]. By definition, the corresponding propagator in coordinate
space is given by the following matrix element:

G(u,u′) = i⟨u∣ [(i∂tγ0 − π3γ3) − (π⊥ ⋅ γ⊥) − m̄0 −Σ]−1 ∣u′⟩
= i⟨u∣ [v∥(i∂tγ0 − π3γ3) − v⊥(π⊥ ⋅ γ⊥) + iγ1γ2ṽ(i∂tγ0 − π3γ3) −m − iγ1γ2m̃]−1 ∣u′⟩, (A1)

where π⊥ = −i (∇ − iqA) and the vector potential in the Landau gauge is used, i.e., A = (0,Bx,0). Here we took into
account all possible Dirac structures of the full propagator at the leading order in coupling. In particular, functions
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m, v∥ and v⊥ include radiative corrections to the mass, the parallel and perpendicular components of the velocity,
respectively. The two additional functions ṽ and m̃ capture the effects of spin splitting corrections to the parallel
velocity and the mass. A self-consistency check shows that there is no spin splitting correction to v⊥. Note that,
strictly speaking, all five are operator-valued functions. When acting on the Landau-level orbitals (see below), they
will become functions of the Landau-level index n and the longitudinal momentum p∥. For example, mn will be the
mass function in the nth Landau level. (Note that we use notation m̄0 for the tree-level mass to distinguish it from
the mass in the lowest Landau level m0.)
Considering that translation symmetry remains intact in the time and the z direction, it is convenient to switch

to the corresponding momentum subspace represented by the longitudinal momentum p∥ = (p0, pz). The resulting
propagator in a mixed representation reads as

G(p∥, u⊥, u′⊥) = ⟨u⊥∣ [v∥(p∥ ⋅ γ∥) − v⊥(π⊥ ⋅ γ⊥) − iγ1γ2ṽ(p∥ ⋅ γ∥) +m − iγ1γ2m̃]
× [ (v2∥ − ṽ2)p2∥ − v2⊥π2 −m2 + m̃2 + 2iγ1γ2(mṽ − m̃v∥)(p∥ ⋅ γ∥) − iγ1γ2v2⊥qB]−1∣u′⊥⟩. (A2)

Here we took into account that −(π⊥ ⋅γ⊥)2 = π2
⊥−qBiγ1γ2. The eigenvalues of the operator π2

⊥ are (2n+1)∣qB∣, where
n = 0,1,2, . . . , and the corresponding normalized eigenfunctions are given by the Landau orbitals, i.e.,

ψnp(u⊥) ≡ ⟨u⊥∣np⟩ = 1√
2πℓ

1√
2nn!
√
π
Hn (x

ℓ
+ pℓ) e− 1

2ℓ2
(x+pℓ2)2e−is⊥py, (A3)

where s⊥ = sign(qB), ℓ = 1/√∣qB∣ is the magnetic length, and Hn(x) are the Hermite polynomials. It is useful to note
that

πxψn,p(u⊥) = −i∂xψn,p(u⊥) = i

2ℓ
(√2(n + 1)ψn+1,p(u⊥) −√2nψn−1,p(u⊥)) , (A4)

πyψn,p(u⊥) = (−i∂y − qBx)ψn,p(u⊥) = −s⊥
2ℓ
(√2(n + 1)ψn+1,p(u⊥) +√2nψn−1,p(u⊥)) , (A5)

(π⊥ ⋅ γ⊥)ψn,p(u⊥) = i

2ℓ

√
2(n + 1)ψn+1,p(u⊥) (γ1 + is⊥γ2) − i

2ℓ

√
2nψn−1,p(u⊥) (γ1 − is⊥γ2) , (A6)

where we took into account that H ′n(x) = 2nHn−1(x) and Hn+1(x) = 2xHn(x) − 2nHn−1(x).
These wave functions satisfy the condition of completeness

∞∑
n=0

∞

∫
−∞

dpψnp(u⊥)ψ∗np(u′⊥) = δ2(u⊥ − u′⊥), (A7)

which can be written in a compact form as ∑n,p⟨u⊥∣np⟩⟨pn∣u′⟩ = ⟨u⊥∣u′⟩.
By inserting the unit operator ∑n,p ∣np⟩⟨pn∣ in front of ∣u′⊥⟩ on the right-hand side of Eq. (A2) and making use of

the properties in Eqs. (A4) – (A6), we derive the propagator in the following form:

G(p∥, u⊥, u′⊥) = eiΦ(u⊥,u′⊥)Ḡ(p∥, u⊥ − u′⊥), (A8)

where Φ(u⊥, u′⊥) = qB

2
(x + x′)(y − y′) is the Schwinger phase, and

Ḡ(p∥, u⊥) = ie−u
2

⊥/(4ℓ
2)

2πℓ2

∞

∑
n=0

⎧⎪⎪⎨⎪⎪⎩[v∥,n(p∥ ⋅ γ∥) − iγ
1γ2ṽn(p∥ ⋅ γ∥) +mn − iγ1γ2m̃n] [Ln ( u2⊥

2ℓ2
)P+ +Ln−1 ( u2⊥

2ℓ2
)P−]

−iv⊥,n
ℓ2
(u⊥ ⋅ γ⊥)L1

n−1 ( u2⊥2ℓ2 )
⎫⎪⎪⎬⎪⎪⎭

1Mn − 2nv2⊥,n∣qB∣ , (A9)

where Lα
n(z) are the Laguerre polynomials [by definition, Lα

−1(z) ≡ 0], P± = (1 ± s⊥iγ1γ2) /2 are spin projectors, and

Mn = (v2∥,n − ṽ2n)p2∥ −m2
n + m̃2

n + 2iγ1γ2(mnṽn − m̃nv∥,n)(p∥ ⋅ γ∥). (A10)

In derivation, we used the following relations:

∫
∞

−∞
dpψnp(u⊥)ψ∗np(u′⊥) = e−ζ/2+iΦ(u⊥,u

′
⊥)

2πℓ2
Ln ((u⊥ − u′⊥)2

2ℓ2
) , (A11)

∫
∞

−∞
dpψn+1,p(u⊥)ψ∗np(u′⊥) = e−ζ/2+iΦ(u⊥,u

′
⊥)

2πℓ2
√
2(n + 1)

x − x′ − is⊥ (y − y′)
ℓ

L1
n ((u⊥ − u′⊥)22ℓ2

) , (A12)

∫
∞

−∞
dpψn−1,p(u⊥)ψ∗np(u′⊥) = e−ζ/2+iΦ(u⊥,u

′
⊥)

2πℓ2
√
2n

x′ − x − is⊥ (y − y′)
ℓ

L1
n−1 ((u⊥ − u′⊥)22ℓ2

) , (A13)
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where ζ = (u⊥ − u′⊥)2/(2ℓ2). To obtain Eq. (A13), we used the following table integral 7.377 [63]:

∫
∞

−∞
e−x

2

Hm(x + y)Hn(x + z)dx = 2n√πm!zn−mLn−m
m (−2yz), (A14)

which assumes m ≤ n.
Note that the last factor in Eq. (A9) is a matrix. It can be rendered in the following more convenient form:

1Mn − 2nv2⊥,n∣qB∣ =
1

Un

[(v2∥,n − ṽ2n)p2∥ − 2nv2⊥,n∣qB∣ −m2
n + m̃2

n − 2iγ1γ2(mnṽn − m̃nv∥,n)(p∥ ⋅ γ∥)] , (A15)

where

Un = [(v2∥,n − ṽ2n)p2∥ − 2nv2⊥,n∣qB∣ −m2
n + m̃2

n]2 − 4p2∥ (mnṽn − m̃nv∥,n)2 . (A16)

The poles of the full propagator are determined by setting Un = 0. Its solutions determine the modified energies of
the Landau-level states, i.e.,

p20 = p2z +
(v2∥,n − ṽ2n) (2nv2⊥,n∣qB∣ +m2

n − m̃2
n) + 2 (mnṽn − m̃nv∥,n)2 ± 2 (mnṽn − m̃nv∥,n)√Vn(v2∥,n − ṽ2n)2 , (A17)

where

Vn = (v2∥,n − ṽ2n) (2nv2⊥,n∣qB∣ +m2
n − m̃2

n) + (mnṽn − m̃nv∥,n)2 . (A18)

1. Fourier transform of the translation invariant part of the propagator

By performing the Fourier transform of the translation invariant part of the propagator in Eq. (A9), we derive

Ḡ(p∥,p⊥) = ie−p2

⊥ℓ
2
∞

∑
n=0

(−1)nDn(p∥,p⊥) 1Mn − 2nv2⊥,n∣qB∣ , (A19)

where the nth Landau level contribution is determined by

Dn(p∥,p⊥) = 2 [v∥,n(p∥ ⋅ γ∥) − iγ1γ2ṽn(p∥ ⋅ γ∥) +mn − iγ1γ2m̃n] [P+Ln (2p2⊥ℓ2) −P−Ln−1 (2p2⊥ℓ2)]
+ 4v⊥,n (p⊥ ⋅ γ⊥)L1

n−1 (2p2⊥ℓ2) . (A20)

In derivation, we used the following table integrals:

∫
2π

0
e−i(k⊥⋅u⊥)dφ = 2πJ0(k⊥u⊥), (A21)

∫
2π

0
(γ⊥ ⋅ û⊥)e−i(k⋅u⊥)dφ = 2iπ(γ⊥ ⋅ k̂⊥)J1(k⊥u⊥), (A22)

∫
∞

0
rν+1e−βr

2

Lν
n (αr2)Jν(rk)dr = kν(2β)1+ν (β − αβ )n e− k2

4β Lν
n ( αk2

4β(α − β)) . (A23)

2. Free fermion propagator

The free fermion propagator is obtained from the full propagator by replacing v∥,n, v⊥,n → 1, mn → m̄0, and setting
zero values to spin-splitting functions ṽn and m̃n. Then, the Fourier transform of the translation invariant part of the
free propagator takes the form:

S̄(p∥,p⊥) = ie−p2

⊥ℓ
2
∞
∑
n=0

(−1)n D
(0)
n (p∥,p⊥)

p2∥ − m̄2
0 − 2n∣qB∣ , (A24)

where

D(0)n (p∥,p⊥) = 2 [(p∥ ⋅ γ∥) + m̄0] [P+Ln (2p2⊥ℓ2) −P−Ln−1 (2p2⊥ℓ2)] + 4(p⊥ ⋅ γ⊥)L1
n−1 (2p2⊥ℓ2) . (A25)



17

Appendix B: Inverse fermion propagator in the Landau-level representation

By definition, the inverse of the full propagator is given by the following matrix element:

G−1(p∥, u⊥, u′⊥) = −i⟨u⊥∣ [v∥(p∥ ⋅ γ∥) − v⊥(π⊥ ⋅ γ⊥) + iγ1γ2(p∥ ⋅ γ∥)ṽ −m − iγ1γ2m̃] ∣u′⊥⟩. (B1)

As in the derivation of the propagator in Appendix A, we insert the unit operator ∑n,p ∣np⟩⟨pn∣ in front of ∣u′⊥⟩ to
derive the following representation for the inverse propagator:

G−1(p∥, u⊥, u′⊥) = eiΦ(u⊥,u′⊥)Ḡ−1(p∥, u⊥ − u′⊥), (B2)

where the translation invariant part of the propagator is given by a sum over Landau levels

Ḡ−1(p∥, u⊥) = −ie−u
2

⊥/(4ℓ2)

2πℓ2

∞

∑
n=0

⎧⎪⎪⎨⎪⎪⎩[v∥,n(p∥ ⋅ γ∥) + iγ
1γ2(p∥ ⋅ γ∥)ṽn −mn − iγ1γ2m̃n] [P+Ln ( u2⊥

2ℓ2
) +P−Ln−1 ( u2⊥

2ℓ2
)]

+ 1

ℓ2
v⊥,n(u⊥ ⋅ γ⊥)L1

n−1 ( u2⊥2ℓ2 )
⎫⎪⎪⎬⎪⎪⎭. (B3)

Recall that, by definition, Lα
−1 ≡ 0.

The corresponding Fourier transform reads as

Ḡ−1(p∥,p⊥) = −2ie−p2

⊥ℓ
2
∞

∑
n=0

(−1)n [v∥,n(p∥ ⋅ γ∥) + iγ1γ2(p∥ ⋅ γ∥)ṽn −mn − iγ1γ2m̃n] [P+Ln(2p2⊥ℓ2) −P−Ln−1(2p2⊥ℓ2)]
− 4ie−p2

⊥ℓ
2
∞

∑
n=0

(−1)nv⊥,n(γ⊥ ⋅ p⊥)L1
n−1(2p2⊥ℓ2). (B4)

1. Self-energy in the Landau-level representation

By making use of the inverse full and free propagators, we derive

Σ̄(p∥, u⊥) = iS̄−1(p∥, u⊥) − iḠ−1(p∥, u⊥). (B5)

By using the Landau-level representation for the inverse propagator, we obtain

Σ̄(p∥, u⊥) = −e−u
2

⊥/(4ℓ2)

2πℓ2

∞

∑
n=0

⎧⎪⎪⎨⎪⎪⎩[δv∥,n(p∥ ⋅ γ∥) + iγ
1γ2(p∥ ⋅ γ∥)ṽn − δmn − iγ1γ2m̃n] [P+Ln ( u2⊥

2ℓ2
) +P−Ln−1 ( u2⊥

2ℓ2
)]

+ δv⊥,n
ℓ2
(u⊥ ⋅ γ⊥)L1

n−1 ( u2⊥2ℓ2 )
⎫⎪⎪⎬⎪⎪⎭. (B6)

where δv∥,n = v∥,n − 1, δv⊥,n = v⊥,n − 1, and δmn =mn − m̄0. The corresponding Fourier transform reads as

Σ̄(p∥,p⊥) = −2e−p2

⊥ℓ
2
∞

∑
n=0

(−1)n [δv∥,n(p∥ ⋅ γ∥) + iγ1γ2(p∥ ⋅ γ∥)ṽn − δmn − iγ1γ2m̃n] [P+Ln(2p2⊥ℓ2) −P−Ln−1(2p2⊥ℓ2)]
− 4e−p2

⊥ℓ
2
∞

∑
n=0

(−1)nδv⊥,n(γ⊥ ⋅ p⊥)L1
n−1(2p2⊥ℓ2). (B7)

Appendix C: Calculation of the kernels

In the derivation of the Landau-level representation for the five component functions of the self-energy; see Eqs. (24)
through (28), one encounters the two different types of kernel functions defined by the following expressions:

Kn,n′ = (−1)n+n′ 2ℓ2
π
∫ d2k⊥e

−k2

⊥ℓ
2

e−(k⊥−q⊥)
2ℓ2Ln′ (2k2

⊥ℓ
2)Ln (2(k⊥ − q⊥)2ℓ2) , (C1)

K̄n,n′ = (−1)n+n′ 8ℓ4
π
∫ d2k⊥e

−k2

⊥ℓ
2

e−(k⊥−q⊥)
2ℓ2 (k⊥ ⋅ (k⊥ − q⊥))L1

n′−1 (2k2
⊥ℓ

2)L1
n−1 (2(k⊥ − q⊥)2ℓ2) . (C2)
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To calculate the first kernel, it is convenient to start by noting the following Fourier transform:

1

4πℓ2
∫ d2u⊥e

−u2

⊥/(4ℓ2)Ln ( u2⊥
2ℓ2
) e−ip⊥⋅u⊥ = 1

4πℓ2
∫
∞

0
u⊥du⊥e

−u2

⊥/(4ℓ2)Ln ( u2⊥
4πℓ2

)∫ 2π

0
dφe−ip⊥u⊥ cosφ

= 1

2
∫
∞

0
r̄dr̄e−r̄

2/4Ln ( r̄2
2
)J0 (p⊥ℓr̄) = (−1)ne−p2

⊥ℓ
2

Ln (2p2⊥ℓ2) , (C3)

where we introduced the following dimensionless variable r̄ = u⊥/ℓ and used table integral 7.419 1 in Ref. [63]. Similarly,
in the calculation of the second kernel, it is useful to utilize another Fourier transform

i

8πℓ4
∫ d2u⊥(u⊥ ⋅ a)e−u2

⊥/(4ℓ2)L1
n ( u2⊥2ℓ2 ) e−ip⊥⋅u⊥ = (p̂⊥ ⋅ a)4ℓ

∫
∞

0
r̄2dr̄e−r̄

2/4L1
n ( r̄22 )J1 (p⊥ℓr̄)

= (−1)n(p⊥ ⋅ a)e−p2

⊥ℓ
2

L1
n (2p2⊥ℓ2) , (C4)

where a is an arbitrary transverse 2D vector. In the derivation, we used table integral 7.419 4 in Ref. [63].
By making use of the first result, we derive

Kn,n′ = ∫ d2k⊥

8π3ℓ2
∫ d2u⊥e

−u2

⊥/(4ℓ2)Ln′ ( u2⊥
2ℓ2
) e−ik⊥⋅u⊥ ∫ d2u′⊥e

−(u′⊥)2/(4ℓ2)Ln ((u′⊥)2
2ℓ2

) e−i(k⊥−q⊥)⋅u′⊥
= ∫ d2u⊥

2πℓ2
e−u

2

⊥/(2ℓ2)Ln ( u2⊥
2ℓ2
)Ln′ ( u2⊥

2ℓ2
) e−iq⊥⋅u⊥

= 1

ℓ2
∫
∞

0
u⊥du⊥e

−u2

⊥/(2ℓ2)Ln ( u2⊥
2ℓ2
)Ln′ ( u2⊥

2ℓ2
)J0 (q⊥u⊥) = In,n′0 (q2⊥ℓ2

2
) . (C5)

By making use of the second result, we derive

K̄n,n′ = −∫ d2k⊥

8π3ℓ4
∫ d2u⊥e

−u2

⊥/(4ℓ2)L1
n′−1 ( u2⊥2ℓ2 ) e−ik⊥⋅u⊥ ∫ d2u′⊥ (u⊥ ⋅u′⊥) e−(u′⊥)2/(4ℓ2)L1

n−1 ((u′⊥)22ℓ2
) e−i(k⊥−q⊥)⋅u′⊥

= ∫ d2u⊥

2πℓ4
u2⊥e

−u2

⊥/(2ℓ2)L1
n−1 ( u2⊥2ℓ2 )L1

n′−1 ( u2⊥2ℓ2 ) e−iq⊥⋅u⊥
= 1

ℓ4
∫
∞

0
u3⊥du⊥e

−u2

⊥/(2ℓ2)L1
n−1 ( u2⊥2ℓ2 )L1

n′−1 ( u2⊥2ℓ2 )J0 (q⊥u⊥) = In−1,n′−12 (q2⊥ℓ2
2
) . (C6)

where In,n′0 (ξ) and In,n′2 (ξ) are the same function that were introduced in Ref. [44], i.e.,

In,n′0 (ξ) = (n′)!
n!

e−ξξn−n
′ (Ln−n′

n′ (ξ))2 = n!(n′)!e−ξξn′−n (Ln′−n
n (ξ))2 , (C7)

In,n′2 (ξ) = 2(n′ + 1)!
n!

e−ξξn−n
′

Ln−n′
n′ (ξ)Ln−n′

n′+1 (ξ) = 2(n + 1)!(n′)! e−ξξn
′−nLn′−n

n (ξ)Ln′−n
n+1 (ξ) . (C8)

Note that In,n′2 (ξ) can also be expressed in terms of In,n′0 (ξ) [44], i.e.,
In,n′2 (ξ) = n + n′ + 2

2
[In,n′0 (ξ) + In+1,n′+10 (ξ)] − ξ

2
[In+1,n′0 (ξ) + In,n′+10 (ξ)] . (C9)

By definition, In,n′0 (ξ) and In,n′2 (ξ) vanish when either of their upper indices becomes negative.

Appendix D: Wave functions for fermions in a magnetic field

Let us consider the spinor wave function in a given Landau (labeled by index n) level with a positive energy:

Ψn,p(u) = e−ip∥⋅u∥ [ψn,p(u⊥)P+ + iψn−1,p(u⊥)P−] v. (D1)

Substituting it into the Dirac equation gives

(iγµDµ − m̄0)Ψn,p(u) = [(p∥ ⋅ γ∥) − (π⊥ ⋅ γ⊥) − m̄0]Ψn,p(u)
= e−ip∥⋅u∥ [ψn,p(u⊥)P+ + iψn−1,p(u⊥)P−] [(p∥ ⋅ γ∥) + γ1√2n∣qB∣ − m̄0] v, (D2)
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where we used the property in Eq. (A6). The spinor v must satisfy the equation:

[(p∥ ⋅ γ∥) + γ1√2n∣qB∣ − m̄0] v = 0. (D3)

It has nonzero solution when

Det [(p∥ ⋅ γ∥) + γ1√2n∣qB∣ − m̄0] = [p2∥ − 2n∣qB∣ − m̄2
0]2 = 0. (D4)

Using the following representation of Dirac matrices,

γ0 = ( I2 0
0 −I2 ) , γi = ( 0 σi

−σi 0
) , (D5)

where σi are the Pauli matrices, we derive explicit solutions for spinor v, i.e.,

v =√m̄0 +En,pz

⎛⎜⎜⎜⎜⎜⎝

a1
a2

pza1−
√

2n∣qB∣a2

m̄0+En,pz

−
√

2n∣qB∣a1+pza2

m̄0+En,pz

⎞⎟⎟⎟⎟⎟⎠
. (D6)

These spinor are similar but different from those in Ref. [70]. However, here we use a slightly different ansatz for the
wave function (D1) and a different normalization convention for the spinors, i.e.,

v̄v = 2m̄0(a21 + a22). (D7)

Therefore, the final spinor wave function reads as

Ψn,p(u) = e−ip∥⋅u∥
⎛⎜⎜⎜⎜⎜⎜⎝

√
m̄0 +En,pz

ψn,p(u⊥)a1
i
√
m̄0 +En,pz

ψn−1,p(u⊥)a2
pza1−

√
2n∣qB∣a2√

m̄0+En,pz

ψn,p(u⊥)
−i
√

2n∣qB∣a1+pza2√
m̄0+En,pz

ψn−1,p(u⊥)

⎞⎟⎟⎟⎟⎟⎟⎠
, (D8)

where we set s⊥ = 1 for simplicity. (Note that ψn,p(u⊥) and iψn−1,p(u⊥) switch places when s⊥ = −1.) Two independent
states Ψn,p,s(u) are obtained by setting either (i) a1 = 1, a2 = 0 or (ii) a1 = 0, a2 = 1. Then, we check that the sum
over both spin states gives

∑
s

Ψn,p,s(u)Ψ̄n,p,s(u′) = e−ip∥⋅(u∥−u
′
∥)

2
[ (ψn,p(u⊥)ψ∗n,p(u′⊥) +ψn−1,p(u⊥)ψ∗n−1,p(u′⊥)) (En,pz

γ0 − pzγ3 + m̄0)
+iγ1γ2 (ψn,p(u⊥)ψ∗n,p(u′⊥) − ψn−1,p(u⊥)ψ∗n−1,p(u′⊥)) (En,pz

γ0 − pzγ3 + m̄0)
+√2n∣qB∣(iγ1 + γ2)ψn−1,p(u⊥)ψ∗n,p(u′⊥) +√2n∣qB∣(−iγ1 + γ2)ψn,p(u⊥)ψ∗n−1,p(u′⊥)]. (D9)

Finally, when also integrated over the quantum number p, we obtain

∫ dp∑
s

Ψn,p,s(u)Ψ̄n,p,s(u′) = e−ip∥⋅(u∥−u′∥) e−(u⊥−u′⊥)2/(2ℓ2)+iΦ(u⊥,u′⊥)
2πℓ2

× [ (En,pz
γ0 − pzγ3 + m̄0) [P+Ln (ζ) +P−Ln−1 (ζ) ] + (u⊥ ⋅ γ⊥)

ℓ2
L1
n−1(ζ)], (D10)

where we used the shorthand notation ζ = (u⊥ − u′⊥)2/(2ℓ2). By making use of this result, the expression for the
fermion damping rate (39) becomes

Γn(pz) = 1

2p0
∫ d2u⊥e

−ζ

2πℓ2
Tr

⎧⎪⎪⎨⎪⎪⎩[[(p∥ ⋅ γ∥) + m̄0] [P+Ln(ζ) +P−Ln−1(ζ)] + (u⊥ ⋅ γ⊥)
ℓ2

L1
n−1(ζ)]

×
∞
∑
n′=0

[ [Imδv∥,n′(p∥ ⋅ γ∥) + iγ1γ2(p∥ ⋅ γ∥)Imṽn′ − Imδmn′ − iγ1γ2Imm̃n′] [P+Ln′(ζ) +P−Ln′−1(ζ)]
+ Imδv⊥,n′

ℓ2
(u⊥ ⋅ γ⊥)L1

n′−1(ζ)]⎫⎪⎪⎬⎪⎪⎭. (D11)
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After integrating over ζ, this reduces to the final expression for the spin-averaged damping rate, which is given in
Eq. (40) in the main text.
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