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ABSTRACT:

This paper evaluates an innovative framework for spoken dialect density prediction on children’s and adults’
African American English. A speaker’s dialect density is defined as the frequency with which dialect-specific lan-
guage characteristics occur in their speech. Rather than treating the presence or absence of a target dialect in a user’s
speech as a binary decision, instead, a classifier is trained to predict the level of dialect density to provide a higher
degree of specificity in downstream tasks. For this, self-supervised learning representations from HuBERT, hand-
crafted grammar-based features extracted from ASR transcripts, prosodic features, and other feature sets are experi-
mented with as the input to an XGBoost classifier. Then, the classifier is trained to assign dialect density labels to
short recorded utterances. High dialect density level classification accuracy is achieved for child and adult speech
and demonstrated robust performance across age and regional varieties of dialect. Additionally, this work is used as
a basis for analyzing which acoustic and grammatical cues affect machine perception of dialect.
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I. INTRODUCTION

Language identification (LID) and dialect identification
(DID) have become integral parts of many large spoken lan-
guage systems. For example, many multilingual automatic
speech recognition (ASR) systems, such as OpenAl’s
Whisper (Radford et al., 2022) and Meta’s Massively
Multilingual Speech models (Pratap et al., 2024), leverage
large cross-lingual speech corpora for training and then per-
form LID during inference. Other systems, like AWS tran-
scribe (AWS, 2023), offer DID for commercial use cases,
distinguishing input speech, for example, between English
dialects from the U.S., U.K., or India for better performance
on regional dialects. As these models expand to support
more languages and dialects, several challenges arise: First,
data-driven DID methods that rely on the availability of
large amounts of dialect-labeled speech may not generalize
to less well-resourced dialects and variations. Second, even
within a dialect, these systems are typically only trained on
adult speech. Therefore, many DID systems are unable to
accurately predict dialect for children’s speech, making
them unsuitable for speech applications in early education.
Third, some speakers may use more or fewer aspects of a
dialect than others (as some people are perceived to have a
thicker accent than others). As such, categorizing all speak-
ers of a dialect into the same label group regardless of the
frequency of wuse of dialect-specific pronunciations,
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grammar patterns, and prosodic patterns may lead to inaccu-
rate representations of some speakers in downstream
applications.

Despite recent advances in DID systems, few works
have been proposed to better explain which acoustic and lin-
guistic cues are essential for machines to accurately predict
certain dialects. Studies, such as that in Holliday (2021),
attempt to better understand which acoustic and prosodic
cues are used by listeners to determine a speaker’s perceived
ethnicity or dialect. However, it is largely unknown if
machines use the same cues as humans to perform DID and,
if so, to what extent they apply them. This motivates the
need for further research on explainable DID systems in
which the importance of different types of input cues can be
further analyzed and compared to known phenomena in
humans.

In this paper, we build on the dialect density estimation
system originally proposed in Johnson et al. (2022a) to
address these challenges. Particularly, we seek to better
understand what acoustic cues, in addition to known mor-
phosyntactic cues, affect machine perception of dialect.
Dialect density is the frequency with which a speaker uses
dialectal differences that are not present in a reference dia-
lect (Craig and Washington, 1994; Washington and
Seidenberg, 2022). Therefore, automatic dialect density esti-
mation consists of predicting a speaker’s dialect density
from a short input sample of their speech. A machine can
then use this estimate for better downstream model selec-
tion, tuning of decoding parameters, or data sampling tech-
niques. The dialect density labels need not be mutually
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exclusive between multiple dialects and can encode dialectal
aspects of grammar and pronunciation separately if desired.

This work proposes a model for African American
English (AAE) dialect density estimation from short utteran-
ces on children’s and adults’ speech (utterances of length
30-90s for adult speech and 2—3 min for children’s speech).
As education literature has demonstrated, speakers of minor-
ity dialects like AAE are often underrated in language abili-
ties because of raters who are unfamiliar with AAE,
interpreting dialectal differences as language deficiencies
(Washington et al., 2018). In particular, children with higher
AAE dialect density have been shown to underachieve in
schools that primarily teach in mainstream American
English (MAE; Washington et al., 2018). Therefore, DID in
educational spoken language systems could be used to
detect and mitigate this bias, creating a pressing use case for
the dialect explored in this work. First, we train and test the
proposed system on a dataset of adult’s AAE. We, then,
show the generality of the feature extraction and model
training paradigm to children’s speech by training and test-
ing the proposed model on a corpus of spontaneous child-
ren’s speech from AAE and non-AAE-speaking students
from the Atlanta, GA area.

Although the phonetic and morphosyntactic dialectal
features of AAE have been well-documented (Lanehart and
Malik, 2015; Thomas, 2015), few studies have been per-
formed to collect data or improve ASR system performance
for the dialect, giving it status as a low-resource dialect.
Notably, Koenecke et al. (2020) identify a performance gap
between MAE and AAE for several commercial ASR sys-
tems and point to insufficiently trained acoustic models as a
possible cause. They also show that commercial ASR sys-
tem performance worsens as a function of increasing AAE
dialect density. The model proposed in our work fuses tradi-
tional acoustic features, state-of-the-art neural network rep-
resentations, and handcrafted features designed to detect
documented aspects of AAE to create robust predictions of
dialect density. The model combines information relating to
acoustic phonetics, prosody, and morphology. We show
high performance of the model for AAE-speaking children
and adults, as well as offer insights on how machines can
better deal with the dialectal linguistic differences present.
Additionally, we show the impact of input features on the
dialect density classifier to interpret how they affect
the model and interact with each other. Next, we summarize
the previous works related to this paper.

A. Related works

Several recent studies have offered promising DID sys-
tems for a limited number of dialects. Liao et al. (2023)
introduce a time delay neural network, as popularized by the
X-vector speaker embedding (Snyder et al., 2018), with
attention across time and frequency for classifying among a
set of 16 dialects. The experiments performed in Tzudir
et al. (2022a) also found frequency-based data augmentation
to be beneficial in training a recurrent neural network to
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classify low-resource dialects with either speaker embed-
dings or a combination of Mel frequency cepstral coeffi-
cients (MFCCs) and other acoustic features. Yadavalli et al.
(2022) designed a multitask learning framework for a
conformer-based system that jointly learns to output ASR
transcripts and DID labels for speech from three Telegu dia-
lects. To overcome performance degradation caused by
domain mismatch in end-to-end DID systems, Shon et al.
(2019) create a domain-attentive fusion technique to better
classify African and Arabic dialects across recording condi-
tions and speaking styles.

Despite these advancements, several challenges remain
in DID, especially for widely spoken languages such as
English, which display wide variability within and across
groups. For example, although many current DID systems
may categorize U.S. English as distinct from British
English, they do not recognize differences between MAE,
AAE, Southern American English, Creole English, and
other varieties. The work in Duroselle et al. (2021) shows
that ASR systems with more knowledge of the different dia-
lects, achieved by joint training on DID and ASR, often per-
form better across those dialects, implying that adding more
specificity to the DID pipeline would improve the perfor-
mance of downstream tasks. However, it is neither simple
nor scalable to simply attempt to train current DID systems
to distinguish between larger sets of dialects. First, several
dialects are low-resource dialects, which means that there is
not enough publicly available speech data to train large spo-
ken language models to recognize them. Second, speech
samples cannot always be categorized neatly into one dia-
lect. Many speakers code-switch, alternating between differ-
ent languages or dialects (Martin-Jones, 1995) or
incorporate aspects of multiple dialects into their speech.
The degree of the speaker’s code-switching may depend on
several factors such as the speaking style or formality of the
conversation (Labov, 2006). Assigning discrete labels to
samples from these speakers and forcing a model to choose
a single dialect for them would likely propagate error
through the system. Third, many current DID models only
classify dialect from acoustic features like spectrograms or
MFCCs, which mainly discern differences in pronunciation
(e.g., Ali et al., 2019; Lei and Hansen, 2011; Mawadda
Warohma et al., 2018). However, sociolinguistic variations
can differ in several aspects other than just pronunciation
(e.g., prosody, grammar, and diction). Previous works which
have combined prosodic cues with spectral information
(Tzudir et al., 2022b) or attempted to classify language or
dialect from grammatical features of text (Zissman and
Berkling, 2001) have shown that considering other aspects
of language can improve automatic DID. This is especially
beneficial in DID for speakers, like children, with relatively
high acoustic variability. Although children’s developing
vocal tracts and articulatory motor skills may cause their
speech to display different acoustic properties than adults’
speech (Lee et al., 1999), work in Johnson et al. (2023a)
shows that incorporating prosodic and grammar information
into DID systems trained on adult’s speech can make them
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more robust for children. Improving DID for children’s
speech is of particular interest in educational speech tech-
nology, as mentioned previously. Applications such as Read
Along by Google (Google, 2023) use ASR and natural lan-
guage processing (NLP) to recognize and provide pronunci-
ation and literacy feedback to children as they practice
reading aloud.

1. Dialect density

Originally proposed in educational studies on AAE child-
ren’s language usage, dialect density is a metric for measuring
how much dialectal influence appears in a speaker’s speech
(Craig and Washington, 1994; Seymour et al., 1998;
Washington et al., 1998). It is common to measure AAE dialect
density as the percentage of words or sentences of a speaker’s
speech that contain well-documented AAE dialectal characteris-
tics that are not present in MAE speakers. The language differ-
ences between MAE and AAE may cause student speakers of
AAE to be observed as developing language skills incorrectly
and, therefore, education researchers have found it necessary to
measure one’s frequency of dialect usage separately from their
pronunciation abilities (Moyle et al., 2014), lexical comprehen-
sion (Edwards et al., 2014), and other markers of language
development (Van Hofwegen and Wolfram, 2010). Drawing
inspiration from these studies, we aim to enable ASR systems
with similar capabilities so that they can mitigate bias that may
come from dialect-specific constructions.

B. Roadmap

In Sec. II, we describe the structure of the proposed fea-
ture extraction pipeline and classification model for dialect
density estimation. Then in Sec. III, we present the results
of evaluating the system on adult speech from the Corpus of
Regional African American Language (CORAAL) database
and children’s speech from the Georgia State University
Kid’s (GSU Kids) speech database. Section IV presents a
discussion and analysis of the results. Section V provides
conclusions and future work.

Il. METHODS

The overall goal of this work is to train a classifier to pre-
dict the frequency and strength of a speaker’s dialect usage from
a short input utterance. The amount of dialect usage can be rep-
resented numerically with a dialect density measure (DDM),
which gives the percentage of words in an utterance that contain
a documented phonological or morphosyntactic characteristic of
dialect. Here, we train a classifier to map features extracted from
an utterance to the hand-labeled DDM. This section describes
the datasets, feature sets, and models used in this work.

A. Datasets

This study uses adult AAE speech data from the
CORAAL (Kendall and Farrington, 2021) and children’s
speech data from the GSU Kids speech database (data col-
lected in Fisher et al., 2019, and structured in Johnson et al.,

2838  J. Acoust. Soc. Am. 155 (4), April 2024

2022b). An overview of each dataset is provided. Statistics
about each set and the average dialect density for the speak-
ers are shown in Table 1.

1. CORAAL

The CORAAL dataset contains recordings of interviews
with AAE speakers from a variety of socioeconomic back-
grounds, ages, and cities throughout the East Coast of the
U.S. We use speech from five different cities in the data-
base: Rochester, NY (ROC); Lower East Side Manhattan,
NY (LES); Washington, DC (DCB); Princeville, NC (PRV);
and Valdosta, GA (VLD). We avoid using recordings from
the DCA (a dataset from Washington, DC, recorded two
decades prior to DCB) or DTL (data recorded in Detroit,
MI) datasets as these were recorded decades before the
others on dissimilar devices. Preliminary experiments show
that recordings from these datasets are easily distinguishable
by recording device and dialect, adding confounding factors
to experiments which may seek to separate recordings by
regional dialectal characteristics. There was a total of 65 dif-
ferent speakers from across the 5 regional datasets used. The
speakers ranged in age from young teens to over 90 years
old. The speakers also span a range of socioeconomic
groups, although this information is not available for several
speakers and, thus, we do not focus on drawing conclusions
from the speakers’ reported socioeconomic status. From
each speaker, we took 2—3 utterances, each 30-90 s in length
(as performed in Koenecke et al., 2020), which were anno-
tated for dialect density. This totaled 208 utterances (about
2h) of dialect density-labeled adult AAE speech. Despite
the fact that the CORAAL dataset contains hundreds of
hours of speech, the number of different speakers from
whom distinct dialectal patterns can be observed is far more
limited, leading to the smaller dataset used in this work. The
number of utterances and speakers from each city are pro-
vided in Table I. The utterances from ROC, PRV, and DCB
were selected and labeled for dialect density by Koenecke
et al. (2020), and the utterances from VLD and LES were
selected and labeled by authors of this work." Note that
speakers from PRV and VLD, on average, have higher dia-
lect densities than speakers from the other cities, possibly
because those southern cities have historically had larger
populations of AAE speakers. The audio recordings were
originally sampled at 44.1 kHz and downsampled to 16 kHz
for experimentation.

TABLE I. Number of utterances, Number of speakers, and average DDM
(avg. DDM) of dialect from each city for the labeled portion of the
CORAAL database used and the Georgia State University Kids Speech
Corpus.

City ROC LES DCB PRV VLD GSUKids
Number of utterances 50 30 50 50 28 203
Number of speakers 11 10 22 10 12 203
Avg. DDM 0.047 0.042 0.088 0.194 0.141 0.040
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2. GSU Kids speech database

This dataset contains audio recordings of 203 children
aged 9-13 years old from the Atlanta, GA area as they per-
form oral assessments consisting of a picture description
task. The recordings contain a mix of spontaneous and
scripted speech. Each child gives one speech sample,
2-3min in length, totaling approximately 15h of speech.
Although this leads to longer audio segments than those in
the adult samples from CORAAL, we observe more similar
numbers of words and number clauses between the child
and adult samples of these lengths. The children’s speech
was transcribed by Fisher et al. (2019), who are experts in
children’s language. Authors of this paper then annotated
the dialect density of each recording following the same pro-
cedure as described in Koenecke er al. (2020) for the
CORAAL data. All of the students are from the same school
district, which primarily serves children of working and
lower middle-class families. We acknowledge that socioeco-
nomic status is an important factor in acquisition of dialectal
language (Craig and Washington, 1994) and control for it as
best as possible with the use of this largely homogeneous
dataset.

3. Dialect density labels

Each utterance was transcribed at the word level, and
then any documented phonological AAE dialectal differ-
ences from MAE (i.e., differences in pronunciation) or mor-
phosyntactic differences (i.e., differences in grammar or
word choice) in the utterance were tagged as such. The
DDM of each utterance is next calculated as the number of
these dialectal differences divided by the number of words
in the utterance (Koenecke et al., 2020). For educational
applications with AAE children’s speech, it may also be
useful to predict the child’s usage of phonological dialectal
patterns and morphosyntactic dialectal patterns separately.
Having these two separate metrics (one corresponding to
pronunciation and one corresponding to grammar) would
allow spoken language systems to give dialect-appropriate
feedback on a child’s pronunciation, grammar, and word
usage separately. To explore a classifier’s ability to perform
this task for children, we train the classifier to predict the
total DDM, the dialect density only taking into account the
phonological aspects (Phon DDM), and the dialect density
only taking into account the morphosyntactic aspects (Gram
DDM) for each model. Similar to the overall DDM, Phon
DDM is calculated as the number of phonetic features of

AAE in an utterance divided by the number of words in that
utterance. We find that calculating a morphosyntactic DDM
in the same way often does not produce a metric that aligns
well with the raters’ perception of which children are low or
high density dialect speakers. Therefore, we define morpho-
syntactic dialect density at the utterance level as performed
in Oetting and McDonald (2002). That is, we define the
Gram DDM as the percentage of sentences that contain a
marker of AAE grammar. Because the number of possible
dialectal phonological differences is largely limited by the
number of words in an utterance, and the number of dialec-
tal morphosyntactic differences is largely limited by the
number of grammar constructions (i.e., clauses), we normal-
ize Phon DDM and Gram DDM by their respective maxi-
mum possible values. We evaluate the system performance
in predicting Phon DDM and Gram DDM for only the chil-
dren as the adult speech samples are too short to estimate
Gram DDM. The average DDMs for each dataset are given
in Table I. To format dialect density estimation as a multi-
class classification problem, we then assign discrete levels
to the utterances based on their DDMs: 0, dialect density of
0; 1, dialect density between 0 and 0.05; 2, dialect density
between 0.05 and 0.1; 3, dialect density between 0.1 and
0.2; and 4, dialect density greater than or equal to 0.2. Each
utterance together with its dialect density label then consti-
tutes one training or testing sample. Literature shows that a
dialect density greater than 0.1 (i.e., 10% of the individual’s
words contain a dialectal difference from the mainstream
dialect) is often observed as a quite pronounced or high den-
sity dialect (Washington and Seidenberg, 2022). The num-
ber of utterances at each dialect density for each dataset is
shown in Table II. We note that the majority of adult speak-
ers from the CORAAL speakers have DDMs from level O to
2, and the majority of child speakers from the GSU Kids
speech database have DDMs from level O to 1.

B. Features

We extract several feature sets that relate to docu-
mented aspects of AAE dialect and then train a backend
classifier to predict the dialect density level of a given utter-
ance. Section II B 1 describes the five proposed feature sets
and backend model.

1. Grammatical features

AAE has different grammar than MAE. For example,
AAE constructions may contain verb conjugations, colloca-
tions, or word usages that are not observed in MAE.

TABLE II. Number of utterances in each DDM bin for the CORAAL and GSU Kids speech database datasets.

Label 0 1 2 3 4
Bounds DDM =0 0 < DDM < 0.05 0.05 < DDM < 0.1 0.1 <DDM < 0.2 0.2 < DDM
CORAAL DDM 28 49 51 54 26
GSU Kids DDM 68 80 31 17 7
GSU Kids Phon DDM 95 82 16 8 2
GSU Kids Gram DDM 84 14 12 43 50
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Motivated by the desire to capture these grammatical
aspects of AAE, which have been well-documented in lin-
guistic studies (Lanehart and Malik, 2015), we create a
handcrafted feature set composed of the following values to
detect the most commonly noticed of these differences (as
determined in Craig et al., 2003) in ASR transcripts of spo-
ken AAE.

First, we use the ASR system, HuBERT-base (Hsu
et al., 2021), to automatically transcribe each utterance. As
an ultimate goal of this work is to perform transcription and
dialect density estimation with as little work required from
the teacher as possible, we use the ASR transcripts as is
without human corrections. Our previous work in Johnson
et al. (2023a) showed that HUBERT achieved lower average
word error rate (WER) than Wav2Vec2 (Baevski et al.,
2020) but worse performance than Whisper (Radford ez al.,
2022). However, Whisper’s language modeling often forced
the output to align with a language pattern similar to that
observed in training, removing AAE constructions from the
transcripts. For example, Whisper may interpret the utter-
ance, “We wasn’t doin’ nothin,”” as “We weren’t doing
nothing,” which does not represent the dialectal grammar
and pronunciation differences present in the speech sample.
Whereas HuBERT gave a higher average WER, we noticed
that it represented these differences more faithfully for the
higher dialect density speakers. From the HuBERT ASR
transcripts, next, we calculated the following quantities
intended to capture commonly recognized grammatical
traits of AAE:

e GPT2 sentence perplexity: We calculated the perplexity
of the ASR transcript under the GPT2 language model
(Radford et al., 2019). This gives the average negative log
likelihood of a sequence of words occurring in their given
order (i.e., a value inversely proportional to the likelihood
of the sentence being spoken). As GPT?2 is likely trained
on primarily MAE text, we hypothesize that AAE con-
structions and ASR errors caused by dialectal differences
will give higher perplexity to ASR transcripts from higher
density speakers;
habitual or future “be” perplexity: AAE grammar con-
structions may contain an unconjugated instance “to be,”
as in “They be crazy out there.” We calculate the ratio of
perplexity of the original sentence with the perplexity of
the sentence, replacing the verb “be” with the contraction
of “are” or “is” (e.g., “They’re crazy out there.”). We sim-
ilarly calculate the perplexity for the use of “future be”
(e.g., “He be here tomorrow.”);
completetive “done” (e.g., “They done finished it.”): We
calculate the ratio of the perplexity of the original utter-
ance to the perplexity of the utterance with the word
“done” removed. This value will return “1” if the word
“done” does not appear in the ASR transcript, and we
choose a backend classifier that can ignore this or other
values if they are not informative;
e simple past “had” (e.g., “She had went inside” to express
the simple past, “She went inside.”): We compute the
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ratio of the perplexity of the original utterance to the per-
plexity of the utterance with the word “had” removed;
subject-verb agreement: Like the habitual “be,” AAE has
several grammar constructions that contain subject-verb
combinations that do not follow the typical subject-verb
agreement patterns of MAE. For example, AAE construc-
tions can include double marking of number and tense
(e.g., “he wants to hits them” or “they both felled”), gen-
eralization of “is” and “was” to plural and second person
(e.g., “They was from Los Angeles.”), and use of a verb
stem as past tense (e.g., “They come here yesterday.”). To
capture these, we use the SpaCy Python library (Honnibal
et al., 2020) to automatically apply parts of speech and
dependency taggings to the input utterances and then
return a binary decision on whether or not a mismatched
subject-verb pair (i.e., a plural subject and singular verb
or vice versa) was detected. We also apply direct string
matching to detect common subject-verb pairs with irreg-
ular verbs (e.g., “they was” or “we is”);

consecutive nouns: Some AAE constructions, such as
absence of possessive “s” (e.g., “That’s John house.”),
absence of plural “s” (e.g., “It’s two inch long.”), and use
of appositive or pleonastic pronouns (e.g., “That girl, she
likes chocolate.”), can be detected by the presence of con-
secutive nouns. We use SpaCy part of speech tagging to
tag nouns in the ASR transcript and return a binary deci-
sion for whether or not consecutive nouns (not including
possessives or proper noun phrases) were detected;

“ain’t” as a preverbal negator: We return a binary deci-
sion on whether or not the word “ain’t” is detected in the
utterance through string matching on the ASR transcripts;
negative concord: AAE grammar constructions may
include double negatives or negative concord (e.g., “They
ain’t done nothing to nobody.”). We use SpaCy part of
speech and dependency tagging to automatically detect
whether or not a negative verb with a negative object
appears in the transcript to return a binary decision for
this;

existential “it” and “got”: AAE speakers may use an
existential “it” or “got” in place of reference words (e.g.,
“it was a ton of people” or “They got a ton of people.”
instead of “there were a ton of people.”). We calculate the
ratio of the sentence perplexity of the utterance with the
perplexity of the utterance replacing phrases with existen-
tial “it” or “got” with the corresponding MAE phrase
(e.g., replacing “It was” or “They got” with “There
were”);

indefinite article: AAE may include invariant use of the
indefinite article regardless of the starting sound of the
following noun (e.g., saying “a airplane”). We use string
matching to determine the presence of the article “a” fol-
lowed by a word starting with a vowel and return a binary
decision for this;

irregular participle: AAE may include using regular verb
forms for irregular participles (e.g., “a broke down car”
instead of “a broken down car”). We use SpaCy part of
speech tagging to identify verbs that modify nouns and
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are not in participle form and then return a binary decision
for the detection of these; and

zero preposition: Some prepositions are variably included
in AAE. Notably, the preposition “of” is often omitted in
constructions with the preposition “out” (e.g., “She came
out the car.”). We use SpaCy part of speech tagging to
identify the presence of prepositions after the word “out”
and return a binary decision for the detection of these.

2. HUBERT self-supervised learning representations
(SSLR)

As noted in Yang et al. (2021), the HuBERT SSLR
have proven to be useful for a variety of speech tasks. Here,
we apply them to train a classifier to predict dialect density.
For each utterance, first, we extract the hidden state from the
last layer of HuBERT. Then, wedivide the 1024 x N output
SSLR (where N is the number of 20 ms frames in the audio
signal) into segments of five frames (corresponding to
100ms of the audio signal). These 100 ms segments are
compiled with a sliding window with a shift of 20 ms, which
means that there is overlap between adjacent segments. We
compute the average of each 5-frame segment and use these
1024 x 1 vectors to train a K-nearest neighbor (Knn) classi-
fier to predict the dialect density level of a new input aver-
aged segment of HUBERT SSLR during inference. These
1024 x 1 vectors are extracted from all 100ms frames of
every training utterance and given the dialect density label
of the utterance from which they came for training the Knn
classifier. Tuning on the validation set showed that the best
K for the Knn classifier was 90. After training the Knn clas-
sifier on the frames of the training set, next, we similarly
extracted the HUBERT SSLR from the test set, averaged
over each 100 ms segment, computed the Knn prediction for
each segment, and computed the percentage of frames
assigned to each of the five dialect density levels. The soft
label 5 x 1 vector, containing the percentages of frames at
each dialect density level, is then used as an input to the
backend classifier for final dialect density level prediction.
As HuBERT is trained with an unsupervised clustering step,
we hypothesize that its SSLR will be useful in a downstream
dialect-related task using clustering.

3. ASR phoneme-level features

For this feature set, we use the Wav2Vec2-Phoneme
model first (Xu et al., 2022) to transcribe each utterance at a
phoneme level. Wav2Vec2-Phoneme has a total of 391 dif-
ferent possible phoneme outputs. Validation on the
CORAAL adult speech training set, which holds out
CORAAL DCB as the test set, showed that only 38 of these
phonemes were present in the dataset and, therefore, we
restricted the output of the system to only consider those 38
for all experiments. Then, we compute the frequency of
each phoneme and bigram frequency of each phoneme pair
normalized by the number of phonemes in the utterance.
This created a 38-dim feature vector for the unigram pho-
neme frequency and a 1444-dim feature vector (i.e., 38%) for
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the bigram phoneme frequency counts. We note that the
majority of entries in the bigram feature vector were zero as
many phonemes would not typically occur next to each
other in a given order. A vector containing these counts for
each phoneme or phoneme combination is then used as an
input to the backend classifier.

4. OpenSmile features

The OpenSmile feature set (Eyben et al., 2010), which
extracts paralinguistic features relating to speaker pitch,
voice quality, spectral shape, MFCCs, and other factors has
proven to be effective in low-resource DID in multiple stud-
ies (Johnson et al., 2022a; Tzudir et al., 2022b). Here, we
investigate the performance Geneva minimalistic acoustic
parameter set (GeMAPS; Eyben et al., 2016) feature set of
the OpenSmile features in dialect density classification. We
elect to use the smaller GeMAPS vOla feature set instead of
the larger ComparE 2016 feature set (62 vs 6373 features,
respectively) as we wish to use the feature set primarily to
investigate the prosodic information contained in the utter-
ance, which can be achieved through the use of the low level
descriptors (LLDs) and their statistical functionals available
in GeMAPS. Although the DDMs used in this paper are cal-
culated without respect to prosodic markers, previous work
shows that prosodic markers of dialect often cooccur with
phonological and grammatical markers of dialect and are
used by human listeners to discern dialect, as shown with
AAE in Holliday (2021). Whereas the LLDs of the
GeMAPS set are available in the ComparE set as well, the
large number of features contained in the overall feature set
compared to the size of the available dataset might cause the
classifier to overfit and, thus, we opt against using the full
ComparE 2016 feature set.

5. X-vector speaker embeddings

Originally proposed as a feature for speaker identifica-
tion, X-vectors are the output of a later hidden layer of a
time delay neural network trained for speaker discrimination
(Snyder et al., 2018). These features have proven to be use-
ful in DID (Johnson et al., 2022a; Liao et al., 2023). Here,
we use them as a feature to train the backend system to learn
dialect density. From each utterance, we extract the 512-
dimensional X-vector using the Kaldi toolkit (Povey et al.,
2011). We also perform a comparison of these embeddings
with the more recent ECAPA-TDNN X-vectors
(Desplanques et al., 2020).

C. Model

After extracting features, we use an XGBoost model
(Chen and Guestrin, 2016) to map the input features to a dis-
crete dialect density level. XGBoost is an ensemble method
which iteratively trains decision trees to perform classifica-
tion, adding new trees to the ensemble to compensate for the
errors of the previous tree in each iteration. These models
perform well in classification tasks that rely on fusing infor-
mation from different feature sets and have proven useful in
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dialect density estimation in our previous work (Johnson
et al., 2022a). These models also offer much more explain-
ability than deep neural networks as the impact of each fea-
ture used in decision can be explored through SHAP value
analysis (Lundberg and Lee, 2017). That is, we can calculate
a measure of feature importance for each input feature in the
five-class dialect density level classification problem.

D. Prediction tasks

We perform three sets of experiments to validate our
proposed system.

Task 1: Individual feature performance. We use the fea-
tures described in Sec. IIC as the input to the XGBoost
model with the goal of predicting the speaker’s DDM from
one of five discrete levels. We, first, test the performance of
each feature individually in predicting the overall DDM for
adults and children and the Phon DDM and Gram DDM for
children.

Task 2: Combined feature performance. Given the per-
formance of the individual features in predicting the DDM
classes, we next use a concatenation of the features in the
model to perform the five-class dialect density level
classification.

Task 3: Binary thresholding. We acknowledge that
choosing boundaries for each dialect density level requires
domain knowledge which may not exist for every dialect or
accent. Therefore, the multi-class classification method that
we present is less reproducible for some low-resource dia-
lects. As an alternative, we also perform the experiment as a
binary classification task. In this experiment, we choose a
threshold and train the classifier to predict whether or not
the DDM for each test sample is less than or equal to that
threshold. Then, we shift the threshold across the range of
DDMs for the test set.

For the adult speech, where data is labeled for different
dialect regions, we consider two train/test configurations:
cross-region and multi-region. In the cross-region case, we
train the system on four regions and test on the held-out
region, rotating over all regions. This scenario is designed to
show the performance of the system with no training data
from the same region as the test set. In the multi-region
case, we randomly hold out 20% of the full CORAAL data
set for testing and train on the remaining data, repeating the
experiment five times and reporting the average perfor-
mance. Because the children’s speech data all comes from a
single region, we perform a fivefold validation experiment
and present the average results.

E. Comparison with our previous work

We make several modifications to our previous frame-
work for dialect density estimation in Johnson et al. (2022a)
in accordance with new developments in speech and lan-
guage processing. First, we previously noted that sentence
perplexity calculated with a long short term memory-based
language model was an effective feature in estimating dia-
lect density. With the increasing effectiveness of GPT-based
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language models, we instead try a perplexity feature calcu-
lated with the most recent open-source GPT model (GPT-2
at time of writing). We also implement more granular hand-
crafted features to target specific grammatical patterns that
may affect perplexity for greater interpretability. Next, we
add SSLR from HuBERT here as they have recently been
shown to be effective in a variety of speech tasks (Yang
et al., 2021). In addition, our previous work with the
OpenSmile feature set of over 6000 features showed that
several of the most impactful features from the set related to
voice quality and prosody. We opt to use the more compact
GeMAPS feature set from OpenSmile because it contains
features relating to the most useful features of our previous
work and reduces the chance of overfitting. We, again, use
the X-vector speaker embedding in this work. Previously,
we trained a neural network to predict a speaker’s regional
accent (using the speaker’s city of origin as a label) from the
input X-vectors extracted from non-dialect density-labeled
speech CORAAL. The output softmax probability from that
system was then used as a feature in dialect density estima-
tion. We have since found that some region’s recordings in
CORAAL are highly separable by recording quality and
channel effects and, hence, we use instead the raw X-vector
as a feature here. Last, we used correlation between the sets
of predicted and actual DDM labels in our previous work. In
this work, we format the problem as a classification problem
for greater interpretability of the machine performance on
individual samples.

lll. RESULTS

Because this is the first reported effort on automatic dia-
lect density prediction, the results for all three tasks are
reported in comparison to the accuracy associated with pre-
dicting the most frequent class in the training data, i.e., the
prediction based only on class priors. The training prior
condition represents an uninformed baseline; model accu-
racy below this baseline reflects over-fitting. A low training
prior result indicates train/test mismatch in the class distri-
butions for the cross-region scenario.

Table III shows the five-class dialect density level clas-
sification accuracy for task 1, where an XGBoost model is
trained separately on each of the specific feature types
described in Sec. II. We show the performance of the mod-
els trained separately for adults (cross-region and multi-
region scenarios) and children. The DCB set is used in this
exploratory work for the cross-region scenario because it
has the median dialect density of the CORAAL database.
With the exception of the ECAPA-TDNN X-vector, all fea-
tures provide benefit over the uninformed training prior
baseline for the adult conditions. For children, as discussed
further in Sec. IV, grammar features are only informative
for the Gram-DDM score, and most of the acoustic features
are uninformative for the Gram-DDM score. The experi-
ments showed that the Wav2Vec2-Phoneme Bigram fea-
tures and ECAPA-TDNN X-vector feature perform
substantially worse than their related counterparts, the
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TABLE III. DDM classification accuracy of XGBoost classifier trained on each individual feature set (task 1) for adults (cross-region DCB and multi-
region) and children with results for the training prior maximum (Tr-prior) for reference. The accuracy is shown with the overall dialect density for adults
and children. In addition, for children, results are given for the dialect density taking into account only phonological characteristics of dialect (Phon DDM)
and the dialect density taking into account only grammatical characteristics of dialect (Gram DDM).

CORAAL adults CORAAL adults

Feature set (test DCB, train other) (20% RHO) GSU Kids (fivefold validation)

Feature
Metric dimension Overall DDM Overall DDM Overall DDM Phon DDM Gram DDM
Grammar feature 13 32.0% 47.6% 37.7% 25.1% 56.4%
HuBERT SSLR-knn 5 40% 45.2% 56.2% 51.3% 35.8%
Wav2Vec2-Phoneme unigram 38 44.0% 52.4% 52.1% 54.5% 51.3%
Wav2Vec2-Phoneme bigram 1444 40.0% 51.1% 48.9% 46.6% 36.4%
OpenSmile GeMAPS 62 36.0% 41.7% 48.2% 56.4% 43.6%
Kaldi X-vector 512 34.0% 48.2% 44.0% 53.6% 33.3%
ECAPA-TDNN X-vector 128 16.0% 37.8% 42.8% 55.2% 29.2%
Tr-prior 24.0% 26.0% 39.4% 43.2% 41.3%
Wav2Vec2-Phoneme unigram feature and Kaldi X-vector IV. DISCUSSION

feature, respectively. Therefore, these features are dropped
in subsequent experiments.

Table IV shows the classification accuracy for task 2,
where we concatenate the features and train a single model
to perform the dialect density level estimation. The average
cross-region (avg CR) and average random hold out (RHO)
results are not directly comparable because of random sam-
pling, but the performance difference is substantial in that it
is roughly double the standard deviation of the RHO results.
In all cases, the model substantially outperforms the unin-
formed training prior baseline and the results for all individ-
ual features as expected.

Figure 1 presents the result of the binary DDM classifi-
cation experiment (task 3) for the different regions of the
adult speech (cross-region) and children’s speech. For each
test set, we compute the accuracy of the system in predict-
ing whether or not the speaker of a given sample had a
DDM above a series of different thresholds. The corre-
sponding plots show the difference in model prediction
accuracy relative to the uninformed training prior baseline.
Small values (positive or negative) indicate that perfor-
mance is not significantly different from the training prior,
i.e., the features are not informative, which will be the case
for thresholds where one class has few examples. Larger
negative values reflect overtraining, which is generally
associated with a mismatch in the binary class distribution
between training and testing.

In this section, we analyze the experimental results. The
Knn-generated soft labels, using the frames of the HuBERT
SSLR and the Wav2Vec2-Phoneme unigram model, classify
dialect density level best for the children’s and adults’
speech. It is worth noting that there are typically more pho-
nological than morphosyntactic aspects of AAE dialects in a
speaker’s speech because a sentence can have several words
containing pronunciation differences but will often only
have one subject-verb structure that can be modified.
Therefore, the overall DDM is often dominated by the Phon
DDM term, and features that capture acoustic differences in
pronunciation like the HUBERT SSLR and the Wav2Vec2-
Phoneme outputs appear best for predicting the overall
DDM. However, these features do not appear to capture
grammatical features of AAE dialect well. The handcrafted
grammar features and X-vector features perform best for
predicting DDM-gram for the adults. Although the X-vector
features are derived for speaker identification and not
semantic tasks, the TDNN used to extract the feature pools
information over several time windows, capturing segment-
level information. This segment-level information is likely
more useful in categorizing a speaker’s likelihood of speak-
ing with a morphosyntactic dialectal difference than features
that operate at the frame-level only (e.g., Wav2Vec2 or
HuBERT features). Although the handcrafted grammatical
features perform well for adult speech, their performance
degrades for the children’s speech. This is likely the result

TABLE 1IV. Performance of the XGBoost model trained on the combined feature set (task 2; excluding the Wav2Vec2-Phoneme bigram and ECAPA-
TDNN X-vector features). For reference, we show performance associated with the training prior maximum (Tr-prior) for each test set. Results are reported
for the overall DDM score for cross-region (CR) and multi-region conditions for the adult AAE speech in CORAAL. For children’s speech, cross-validation

results are reported for DDM, Phon DDM, and Gram DDM.

CORAAL adults GSU Kids fivefold validation
Overall DDM DDM type
Model ROC LES DCB PRV VLD Average CR Average RHO Overall Phon Gram
Tr-prior 18.0% 5.0% 24.0% 2.0% 28.6% 15.5% 26.0% 39.4% 43.2% 41.3%
XGboost 46.0% 56.7% 48.0% 48.0% 32.9% 46.3% 60.1% 73.8% 61.2% 59.0%
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FIG. 1. (Color online) Performance of the task 3 binary model in predicting whether or not a speech sample displayed an overall DDM higher than a given
threshold. Each plot shows the difference in the classification accuracy relative to performance associated with the training prior decision vs the DDM
threshold. The plots for adults correspond to the five cross-region systems, and the plot for GSU Kids speech database shows the fivefold CV average for

overall DDM.

of the higher number of ASR transcription errors in child-
ren’s speech, which may prevent the downstream NLP algo-
rithm from accurately matching grammatical patterns. The
X-vector feature, again, performs well for classifying the
number of morphosyntactic dialectal differences in the chil-
dren. We also note that the OpenSmile prosodic features are
useful for this as some grammatical patterns may typically
co-occur with specific intonation or changes in pitch, mak-
ing the prosody a good indicator of grammatical differences.
Whereas the adults in the study each display one of five dif-
ferent regional dialects, all of the children are from the same
school district, making them more likely to share prosodic
and dialectal grammar patterns that generalize better across
the training and testing sets.

In the combined model, we dropped the worse perform-
ing Wav2Vec-Phoneme bigram and X-vector features.
Although studies have shown that bigram features typically
outperform unigram features, the smaller size of the data used
in this work may be insufficient to adequately train a model
using bigram features, which are much higher dimension than
the unigram features. We also examine the performance of
the speaker embeddings in this task. The 512-dimensional
Kaldi X-vectors outperformed the 128-dimensional ECAPA-
TDNN X-vectors. This may indicate that the more com-
pressed ECAPA-TDNN X-vectors contain only more identity
focused information, whereas the larger Kaldi X-vector fea-
ture retains more information on dialect.

The model trained on the combined feature set outper-
forms all models trained on individual feature sets for
CORAAL DCB and performs well across the other test sets.
We note that the model trained on the other four sets and
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tested on CORAAL VLD has the lowest dialect density
level prediction performance. This is likely due to the fact
that the speakers from Valdosta display some aspects of
southern American dialect that are not observed in the other
datasets and, thus, are difficult for the model to learn.
Particularly, AAE speakers from North Carolina and
Georgia have been shown to exhibit vowel shifts more in
line with those observed in Southern American English,
whereas AAE speakers from Washington, DC and New
York often display vowel shifts that are more unique to
AAE (Thomas, 2001; Yaeger-Dror and Thomas, 2010). The
model performed best for CORAAL LES out of the adult
datasets as the LES dialect has been influenced by speakers
of several other regions, and training on speech from other
areas will likely generalize better to speakers from there
than to a more isolated area. The work in Koenecke et al.
(2020) also demonstrates that commonly used ASR systems
have shown better ASR WER for the northern AAE dialects
than the southern AAE dialects and, therefore, a higher
number of ASR errors in the VLD Wav2Vec2-Phoneme fea-
tures and grammatical feature input transcripts may have
caused worse prediction accuracy.

Figure 2 shows the bee swarm plot depicting which fea-
tures were most used in predicting dialect density level for
the adult’s speech when testing on CORAAL DCB. Each
line shows how separable each utterance was by the feature
displayed on the left. We note that the Knn soft labels gener-
ated from the HUBERT SSLR were most often used in the
classification (where knng, knny, knn,, knns, and knn, denote
the Knn soft labels for dialect density level in ascending
order). The unsupervised pre-training on a large amount of
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data appears to have made the HUBERT SSLR especially
potent in capturing small acoustic differences relating to
pronunciation and regional phonological varieties. Then, we
see that several components of the X-vector feature (e.g.,
xvec_237) were effective in distinguishing dialect density
level, capturing shared traits across speakers at the segment
level. From the Wav2Vec2-Phoneme model, it appears that
a higher number of detections of the vowel \a\ (shown as
“a” in the bee swarm plot) correlated with a lower predicted
dialect density. This is consistent with documented phenom-
ena in which vowel formant frequencies shift between MAE
and southern American dialects, including varieties of AAE,
which may result in alternate pronunciations of some vowel
sounds and cause the model trained on MAE to recognize
them as other sounds (Johnson et al., 2022b; Lanehart and
Malik, 2015). Last, several of the OpenSmile features, such
as the harmonic-to-noise ratio (HNR), autocorrelation func-
tion, standard deviation of the FO semitone, and standard
deviation of the slope of the loudness, were also often used
by the decision trees of the ensemble classifier. HNR has
been shown to be useful in distinguishing several speaker
characteristics such as age and speaking style (Ferrand,
2002) while changes in FO and loudness over time may be
indicative of the presence of dialect-specific prosodic
patterns.

The model trained on the combined features performs
well for the children’s speech (Fig. 3). The model achieves
over 70% classification accuracy in the five-class dialect
density level prediction task. One reason why this model
performs better for the children’s speech than for the adults’
speech may be that the children in the test and train splits
are from the same geographic area, whereas the adult mod-
els are trained on speech from other regional AAE variants.
Another reason is that although the recordings of the chil-
dren performing the picture description educational assess-
ment are unscripted, the children are all performing the
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same assessment and are likely to share some of the same
vocabulary and grammar while performing it. This may
make it easier for the model to analyze shared traits across
content that are not available across the completely sponta-
neous interview speech in CORAAL. However, the high
variability in children’s speech still presents challenges for
the model.

It can be observed that the overall DDM prediction
accuracy (DDM acc.) is sometimes lower than the DDM
considering only phonological differences (Phon DDM acc.)
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FIG. 3. (Color online) Bee swarm plot depicting the relative impact of fea-
tures in the ensemble classifier for the child speech from the GSU Kids’
speech database.
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or the DDM considering only grammatical differences
(Gram DDM acc.). This may indicate that for some regional
variations of AAE or age-specific ways of speaking, the
grammatical and phonological language characteristics are
not strongly correlated. It then becomes a more complex
problem for the classifier to jointly identify the presence of
both of these types of linguistic tokens in an input utterance.
As a result, the performance of the joint prediction may be
worse than the individual phonological or grammatical
DDM prediction. For these cases, we may either explore
increasing the complexity of the classifier or simply creating
a weighted sum of the individual predictions in the future.

The model trained to perform binary classification with
thresholded DDMs as opposed to multi-class classification
generally performed well across the choice of threshold for
the test sets. For all CORAAL test sets except VLD, the
greatest benefit of the classifier over the training prior for a
DDM threshold is 0.05 and 0.1. This is likely because most
regions had a larger number of samples in this range and,
hence, the classifier was able to better learn to distinguish
DDMs from the input data. For the children’s speech, we see
that the classifier accuracy is mostly above training prior
baseline when the DDM threshold is in the lower range. This
follows logically as many of the children’s speech samples
have lower dialect density and, therefore, the classification
problem becomes easier as the threshold rises to the point
where most samples in the test and training sets will have
lower DDMs than the threshold. Therefore, the training prior
baseline performance will be much higher at the higher DDM
thresholds for this case. Overall, these experiments give
insight on which DDM thresholds the classifier performs best
at given the variation across regions and currently available
training data. From this, we observe a tendency for the classi-
fier to become more accurate as more data in the target dialect
density range is added, pointing to a possibility for the classi-
fier to become much stronger with additional training data.

As expected, the multi-region scenario outperforms the
cross-region scenario (Table IV) because of the reduced mis-
match in the train/test distributions. We realize that the record-
ings taken from the same region (i.e., recorded by the same
interviewer) may share some recording conditions or channel
effects that can be used to form spurious correlations with the
speaker’s dialect density. However, the Wav2Vec-Phoneme
and grammar features do not pass information on the back-
ground conditions or channel effects to the backend classifier.
Therefore, background effects that may be common across mul-
tiple recordings of the same region cannot be used to indirectly
learn dialect density classification. Because these features per-
form similarly to those that are more subject to background
noise and channel effects (e.g., OpenSmile GeMAPS features
and Kaldi X-vector feature), we believe that feature correlations
with characteristics of the audio that are not directly related to
speaker and dialectal qualities are minimal.

We note a few comparisons with our prior work in
Johnson et al. (2023b). Previously, we found character-level
perplexity of the transcripts to be a useful feature in dialect
density estimation. However, in this work, we do not see the
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word level perplexity from GPT2 used by the classifier as
often as several of the other features available. As Holtzman
et al. (2019) points out, large language models like GPT2 may
learn a bias for longer sentences and repetitive grammar struc-
tures when training on large text corpora, which means that
their prediction of likelihood of words occurring in a sequence
does not generalize well to spontaneous spoken speech. Our
previous work also found the frequency of several sounds in
the transcripts to be good indicators of the dialect spoken.
This is especially true for vowels that may undergo a formant
shift or consonants that are more often dropped or de-
emphasized in different dialects. We noticed a similar trend
for a few vowels and consonants for the adults’ and children’s
speech. The addition of the Knn soft labels in this work seems
to improve performance over our previous results, and the fea-
tures are relatively robust for adult and child speech.

V. CONCLUSIONS

This work shows promising progress in automatically
detecting dialect density levels of speakers across age and
regional dialect. Given the limited size of the datasets, we
achieve reasonably high dialect density level classification
accuracy over the adults’ speech (often ranging from 10% to
40% above the uninformed max training prior baseline) and
over 70% accuracy for children. We demonstrate the utility
of HuBERT self-supervised representations, prosodic fea-
tures from OpenSmile, handcrafted grammatical features,
speaker embeddings, and phoneme-level transcripts in the
prediction task. The feature sets provided may be adapted
for use in several other language and DID tasks, and the
framework presented offers explainability for which speech
features capture dialectal differences that are useful for auto-
matic classification. We anticipate that additional training
data would lead to improved results with high enough fidel-
ity for real-time classroom use. This study also highlights
the degree of dialectal speaker variability within and across
regions and how spoken language systems should be
adapted to handle them. Our future work includes using dia-
lect density predictions in downstream tasks such as bias
mitigation in language technology, fair educational speech
technologies that provide dialect-appropriate automatic
feedback to spoken responses in oral assessments, and
applying this framework to other dialects.
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