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bstract—Non-autoregressive automatic speech recognition
NASR) models have gained attention due to their parallelism
and fast inference. The encoder-based NASR, e.g. connectionist
temporal classification CTC), can be initialized from the speech
foundation models SFM) but does not account for any depen-
dencies among intermediate tokens. The encoder-decoder-based
NASR, like CTC alignment-based single-step non-autoregressive
transformer CASS-NAT), can mitigate the dependency problem
but is not able to efficiently integrate SFM. Inspired by the success
of recent work of speech-text joint pre-training with a shared
transformer encoder, we propose a new encoder-based NASR,
UniEnc-CASSNAT, to combine the advantages of CTC and CASS-
NAT. UniEnc-CASSNAT consists of only an encoder as the major
module, which can be the SFM. The encoder plays the role of both
the CASS-NAT encoder and decoder by two forward passes. The
first pass of the encoder accepts the speech signal as input, while
the concatenation of the speech signal and the token-level acoustic
embedding is used as the input for the second pass. Examined on
the Librispeech 100 h, MyST, and Aishelll datasets, the proposed
UniEnc-CASSNAT achieves state-of-the-art NASR results and is
better or comparable to CASS-NAT with only an encoder and
hence, fewer model parameters.

Index Terms—Non-autoregressive ASR, E2E ASR, self-

supervised learning, speech foundation model.

I. INTRODUCTION

N RECENT years, self-supervised learning (SSL) has be-
I come popular in speech [1], [2], [3] and natural language [4],
[5] processing. The SSL models learn prior knowledge from
a large amount of unannotated data and are called pre-trained
or foundation models. Widely-used speech foundation models
include APC [6] that predicts future frames from their histo-
ries, and Wav2vec2.0 [7], HuBERT [8], and WavLM [9] that
reconstruct or predict pseudo labels via the masked portions of
the speech signal. The speech foundation models are proven
effective in improving low-resource tasks by fine-tuning [10].
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Concurrently, non-autoregressive automatic speech recogni-
tion (NASR) has attracted considerable interest due to its fast
inference [11], [12], [13]. Although it is not naturally designed
for streaming ASR, NASR can greatly improve the inference ef-
ficiency for offline applications. As the earliest end-to-end ASR
framework, connectionist temporal classification (CTC) [14],
[15] can be regarded as an encoder-based NASR model when
using greedy decoding. However, the performance of CTC is
always constrained by the output independence assumption.
On the other hand, most NASR models are proposed based on
the encoder-decoder framework where the decoder can mitigate
the output independence problem. For example, the decoder of
Mask-CTC [16] is a masked language model to correct the low
confidence tokens in CTC output. Align-Refine [17] uses the
decoder to refine the CTC alignment iteratively. LASO [18],
CASS-NAT [19], and Paraformer [20] extract acoustic em-
bedding as the decoder input for token-level contextual repre-
sentation learning. However, the encoder-decoder framework
does not perfectly fit the current foundation models, which are
pre-trained with the transformer encoder structure. Although
previous work developed pre-trained models [21], [22] for the
encoder-decoder framework, it is specifically designed for au-
toregressive transformers. Additionally, [23] trains the trans-
former decoder from scratch with the encoder initialized from
the speech foundation model. The work in [24] and [25] intro-
duce BERT to the NASR model for better output dependency
modeling. However, these methods may contain unnecessary
model parameters.

In this work, based on previous method (CASS-NAT) [26],
we present a new encoder-only NASR (UniEnc-CASSNAT) that
can function in a way that is similar to CASS-NAT encoder
and decoder. Like CTC, UniEnc-CASSNAT can be initialized
from speech foundation models (HuBERT base model [8] is
used). To behave as both the CASS-NAT encoder and decoder,
UniEnc-CASSNAT has two forward passes and accepts two
types of input for each. In the first pass, speech features (output
of HuBERT Conv. encoder) are fed into the contextual encoder
to generate token-level acoustic embeddings (TAEs). In the
second pass, the concatenation of speech features and the TAEs
(along the time dimension) are used as the contextual encoder
inputs. The TAE corresponding outputs are selected for ASR
loss computation. The outputs in the second pass can generate
better quality TAEs than those in the first pass and hence lead to
better ASR performance. We, therefore, further propose a multi-
pass CTC (MP-CTC) training and iterative decoding method to
improve the WER performance. Experiments on Librispeech
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(a) Diagram of CASS-NAT. (b) Proposed UniEnc-CASSNAT. HuBERT conv. and contextual encoders are used. The TAE extractor is a self-attention

module that transforms the acoustic representations with length T to TAEs with length U. The generation of TAEs and second pass forward computation are

repeated during iterative decoding.

100-hour [27], MyST [28], and Aishelll [29] datasets show that
the proposed methods can achieve better or comparable WERs
to CASS-NAT, and contain fewer parameters. The framework
can be applied to other encoder-decoder-based NASR.

The remainder of this paper is organized as follows. Section II
introduces the framework of UniEnc-CASSNAT and iterative
decoding process. Experimental setups are described in Sec-
tion III. Results are shown and discussed in Section IV. We
conclude the paper in Section V.

II. PROPOSED FRAMEWORK: UNIENC-CASSNAT

A. Encoder-Decoder CASS-NAT

CASS-NAT [19] consists of an encoder, a token-level embed-
ding extractor (TAEE), and a decoder as plotted in Fig. 1(a). The
connectionist temporal classification (CTC) [14] loss is added to
learn the alignment between the acoustic and token sequences.
The alignment can provide segmentation information for each
token. TAEE extracts an embedding for each token from encoder
outputs (with a shape of [T" d], where T is the frame length and
d is the hidden dimension) using the segmentation information.
The extracted token-level acoustic embeddings (TAEs) (with a
shape of [U d], where U is the token sequence length) are fed
into the decoder, which models the relationship between tokens.
Suppose the input sequence is X = {z1 ... a4 ... x7}, the
ground truthis Y = {y; ...y, ... yu}andthe CTC alignment
is Z, then the objective function on the decoder side can be
written as:

LdeCZIOgPY‘X)
> zx[log P Y[Z X)]

U
~ 1 P
maxlog [T P yulz: -

u=1

1:t xl:T) (l)

where t,_1 + 1 : ¢, represents the acoustical boundary for
token u provided by the alignment Z. We use a maximum
approximation for the expectation (Viterbi-alignment during
training). CASS-NAT is then trained by jointly maximizing the
decoder loss in (1) and the CTC loss on the encoder side with a

task ratio

T
Ljoim = Lgec + log Z H P z |X)
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where ¢ is all the alignments that can be mapped to the label Y
by removing blank tokens in CTC and repetitions.

During decoding, Viterbi-alignment is not available. We
therefore use error-based sampled alignments (ESA) (see details
in [19]), where the multiple alignments Z are sampled based
on the CTC greedy search output with low confidence scores.
The TAEs computed from the sampled alignments are fed into
the decoder to obtain multiple ASR outputs. The autoregressive
transformer provides a ranking score for each ASR output (one
ASR output corresponds to one alignment).

B. Encoder-Only CASS-NAT: UniEnc-CASSNAT

Speech foundation models are proven to be useful in down-
stream ASR tasks. The encoder of CASS-NAT can be inherited
from a speech foundation model and extracts better acoustic
representations [23]. However, the CASS-NAT decoder has to
be trained from scratch. Inspired by the success of recent work
of speech-text joint pre-training [30], [31] with a shared encoder,
we rethought the necessity of CASS-NAT decoder and propose
an encoder-only CASS-NAT, denoted as UniEnc-CASSNAT to
fit the size of the speech foundation models.

The UniEnc-CASSNAT is shown in Fig. 1(b) with two for-
ward passes. In the first pass, the hidden features extracted from
the conv. encoder are fed into the contextual encoder for CTC
modeling and the token-level acoustic embeddings (TAEs) are
extracted using the alignment information from CTC outputs.
In the second pass, the extracted TAEs ([U d]) are concatenated
with the hidden features ([T d]) (along the time dimension) to
be the input to the contextual encoder. The self-attention layer in
the contextual encoder enables frame-frame, frame-token, and
token-token interactions between hidden features and TAEs.
Note that the goal of the first pass is to obtain TAEs, whose
quality is highly related to the ASR performance. The better the
speech foundation model, the better the quality of the TAEs ex-
tracted by UniEnc-CASSNAT. The second pass is similar to the
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role of the CASS-NAT decoder for modeling the relationships
between TAEs and frame-level hidden features. We investigate
whether the encoder is capable of both frame-level acoustic rep-
resentation learning and contextual modeling between tokens.

C. MP-CTC Training and Iterative Decoding

The output of the second pass is a sequence of T 4 U vectors,
where the first 7" vectors correspond to hidden features, and the
U vectors correspond to TAEs. Since the quality of TAEs is
essential to the performance of the CASS-NAT decoder, we
propose to add another CTC loss to the first 7" outputs of
the second pass and formulate a multi-pass CTC (MP-CTC)
training. With the CE loss used on the U outputs, the final
objective function of UniEnc-CASSNAT can be written as:

Lunienc-cassnat = Ldec + 1 LCchlpass + 2 LCTC72paS(53)
We share the final feed-forward layer for the two CTC losses.
Theoretically, the second-pass CTC loss would have better
performance than the first pass because it accepts additional
input information (TAEs). An intuitive idea is to iteratively
improve the quality of TAEs by repeating the second pass
with newly extracted TAEs. Hence, we propose an iterative
decoding method for UniEnc-CASSNAT. Specifically, we define
the hidden features as H, and the first pass of UniEnc-CASSNAT
encoder as Itery. Itery would generate TAE(. The second pass
uses H + TAE( as input and generates TAE;, which we define as
Iter;. Generally, for iteration n, the contextual encoder accepts
H and TAE,,_; as input and generates TAE,, for the iteration
n + 1. In each iteration, ESA generates multiple TAEs for the
next iteration. We define the number of sampled alignments in
each iteration as S,,. The total number of the sampled alignments
would be 71:[;01 S,,, where IV is the number of iterations used
in the decoding. We empirically found that two iterations are
sufficient for a desirable word error rate (WER).

III. EXPERIMENTAL SETUP

A. Data Settings

The experiments were conducted on three datasets: the 100-
hour subset of LibriSpeech English corpus [27], the 240-hour
(annotated section) My Science Tutor (MyST) children’s speech
corpus [28], and 170-hour Aishelll Mandarian corpus [29]. We
chose the 100-hour subset of Librispeech to enable comparisons
with previous work on NASR. We conducted pre-processing
on MyST dataset to get a better baseline compared to [23].
For example, we mapped filling pauses, non-speech events, and
truncated words to (UNK). The (UNK) is not considered when
computing WER.

The sets of output labels consist of 1024 word-pieces for
Librispeech 100 h and 500 word-pieces for the MyST, obtained
by the SentencePiece method [32]. For Aishell, 4230 characters
are used as the vocabulary.

B. Model Settings

A CTC/Attention autoregressive transformer (AT) baseline
was first trained with an architecture of a 12-block encoder
and a 6-block decoder. Suppose the tuple of a transformer
setting is represented by (model dimension, feed-forward layer
dimension, number of heads in self-attention), we define three

settings: ds12 for (512, 2048, 8), dr¢s for (768, 3072, 12), and
dase for (256, 2048, 4). ds1- is used for the two English datasets,
and do56 is used for the Aishelll dataset. Later on, we follow
the same setting as in [23] for CASS-NAT training. For a fair
comparison, we also include a CTC baseline as an encoder-only
NASR architecture. When training with the speech foundation
models, the 12-block encoder was replaced with a HuBERT-base
model, either the English! version for Librispeech and MyST,
or the Chinese version® for Aishelll. We also conducted exper-
iments on the TAE extractor in UniEnc-CASSNAT to examine
the trade-off between performance and model size.

All models are optimized using a noam scheduler [33] with
warmup steps of 15 k (10 k for Librispeech 100 h), a peak
learning rate of Se-5 for the encoder, and le-3 (5e-4 for MyST)
for uninitialized modules. The models were trained using a batch
size of 80 s audio samples (40 s for MyST because it contains
longer utterances). The training either stops when the WER of
the valid set doesn’t improve for 10 epochs or is terminated at
30 epochs. For MP-CTC training, the task ratio of CTC loss in
the second pass is set to one.

All results are decoded without the usage of the external
language model. For the AT baseline, the beam search decoding
is applied with a beam size of 20 for Librispeech and MyST,
and 10 for Aishelll. For CASS-NAT, the number of sampled
alignments is 50 and the threshold is 0.9. We explore the effects
of the number of sampled alignments in two iterations, and the
threshold for each iteration is set to 0.9 as well.

IV. RESULTS AND DISCUSSION

A. Main Results

The main WER results of UniEnc-CASSNAT on the Lib-
rispeech 100 h, MyST, and Aishelll datasets are shown in
Table I. We first train two autoregressive transformer baselines
with or without the usage of self-supervised learning. The re-
sults in the table again show the effectiveness of the speech
foundation models. CASS-NAT achieves close performance to
their AT counterpart, which is consistent with previous work.
We also present the results of CTC on the three datasets. Due to
the output-independent assumption, CTC is worse than the AT
baseline and CASS-NAT although it requires fewer parameters.
Note that the motivation of UniEnc-CASSNAT is to investi-
gate whether the encoder can jointly model the frame-level
and token-level acoustic embedding without the use of the
decoder and thus has fewer model parameters. We expect to
obtain a model with similar model parameters compared to
CTC but close performance to the CASS-NAT. As shown in
Table I, the proposed UniEnc-CASSNAT achieves compara-
ble or better results than CASS-NAT, for example, a WER of
11.0  for UniEnc-CASSNAT vs. 11.2  for CASS-NAT on
the Librispeech test-other set, but is superior to CASS-NAT
in terms of model size (99.3 M vs. 130.5 M). A smaller
model size can be helpful for on-device deployment. Compared
to CTC, the UniEnc-CASSNAT achieves much better perfor-
mance than CTC with a similar model size. The additional
3 M parameters compared to CTC (95.7 M) are from the
TAE extractor. The limitation of UniEnc-CASSNAT could be

![Online].
1s960.pt
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TABLE I
WER PERFORMANCE OF UNIENC-CASSNAT AND COMPARISONS TO PREVIOUS METHODS ON LIBRISPEECH-100 H, MYST, AND AISHELLI DATASETS

Model Type Model Size Librispeech-100h MyST Model Size ___ishelll
dev-clean  dev-other  test-clean  test-other RTF dev test dev test
AT-w/o SSL 85.1M 6.6 18.2 6.9 18.2 0.325 135 14.9 33.6M 4.6 5.0
AT-w/ SSL 121.6M 4.8 11.0 4.8 10.8 0486 114 13.1 107.3M 4.0 4.3
Non-autoregressive ASR
Previous SOTA w/ SSL 4.6 11.3 4.8 113034 - 160 15.61% w/ SSL 3.6 3.8
BERT-CTC [25] - 7.0 16.3 7.2 16.6 - - - 143M 3.9 3.9
CTC 95.7M 6.1 13.8 6.2 13.8 0.005 129 14.5 95.7M 4.5 4.9
CASS-NAT 130.5M 4.7 114 49 11.2 0.014 119 13.5 109.7M 4.0 4.3
UniEnc-CASSNAT 99.3M 49 11.0 4.8 11.0 0.093 118 13.5 102.7M 42 4.5

State-of-the-art (SOTA) results with the usage of speech foundation models that are pre-trained with the same amount of unannotated data to ours are reported. The real-time
factor (RTF) of each method on Librispeech test-other data is presented for speed comparison. All bold-faced improvements are statistically significant.

its slower inference than CTC and CASSNAT because of the
multiple forward computations of the encoder with a longer
input sequence (concatenation of frames and tokens). The RTF
values in Table I show that the UniEnc-CASSNAT is still
3-5x faster than the AT models although it is 6x slower than
CASS-NAT.

The proposed UniEnc-CASSNAT achieves the best-
performing NASR results so far in the literature [23], [34]
on Librispeech 100 h and MyST. One can find better WER
performance on the Librispeech 100 h data, for example, in [21],
[36]. However, in that work, the authors either use a larger
model trained with Libri60 k hours of data or extra text data.
We compare the UniEnc-CASSNAT results to a similar work
BERT-CTC [25], which also uses an encoder-only structure.
Differently, UniEnc-CASSNAT generates ASR outputs with CE
loss instead of CTC loss in BERT-CTC and does not require a
pre-trained BERT module (smaller in size than BERT-CTC).
In addition, UniEnc-CASSNAT achieves the best performance
with two iterations only instead of more than 10 iterations in
BERT-CTC (faster inference). Based on the results in Table I,
UniEnc-CASSNAT is better on Librispeech-100 h but worse on
Aishelll than BERT-CTC. The reason could be that Aishelll
contains simple sentences where a pre-trained BERT model is
more beneficial [25] and the BERT-CTC has 143 M parameters
versus 102 M in UniEnc-CASSNAT.

B. Ablation Study of UniEnc-CASSNAT

We present more results on the Librispeech 100 h data to
show the importance of the proposed MP-CTC training and
iterative decoding. First, we set o in (3) to zero and train
a UniEnc-CASSNAT with only first-pass CTC. The results in
Table II show that the single-pass CTC (SP-CTC) training has
a performance gap compared to the CASS-NAT. Additionally,
SP-CTC training is not able to perform iterative decoding be-
cause TAE,, 1 is not constrained by CTC outputs. MP-CTC
training is also worse than the CASS-NAT without iterative
decoding (e.g. (50, NA)). When applying iterative decoding,
we explore different combinations of the number of sampled
alignments S,, in each iteration. The total number of sampled
alignments is set to the same as that used in CASS-NAT for a
fair comparison. As shown in Table II, iterative decoding with
a setting of 25 2) achieves the best WER performance and is
better than the WER of CASS-NAT. Most of the combinations
of S,, achieve comparable WERs to CASS-NAT. It is also noted
that the diversity of sampled alignments in the first iteration is
more important than that in the second iteration.

TABLE II
ABLATION STUDY OF MP-CTC TRAINING, THE SIZE OF THE TAE MODULE,
AND THE ITERATIVE DECODING

Model Type (S1,S2) dev-clean | dev-other | test-clean | test-other
CASS-NAT (50, NA) 4.7 11.4 4.9 11.2
UniEnc-CASSNAT

SP-CTC (50, NA) 4.9 11.9 5.0 11.6
(50, NA) 5.0 11.7 5.2 11.8
(50, 5.0 1.1 19 11
(25,2) 49 11.0 4.8 11.0

MP-CTC-ds12 —55) 19 T 19 T
(5, 10) 49 T1.1 49 11.2
2. 25) 5.0 ! 51 14
(1, 50) 5.2 11.5 53 11.6

MP-CTC-d256 (25,2) 4.9 11.4 49 11.2

MP-CTC-d7os (25, 2) 17 112 13 11.0

dys6, ds)5, and dq are defined in Section I11-B and their model sizes (including encoder)
are 96.1M, 99.3M, 104.2M, respectively. S, is the number of sampled alignments in the
iteration n.

Finally, since the TAE extractor introduces extra model pa-
rameters besides the foundation model, we conduct experiments
of UniEnc-CASSNAT with different transformer settings (d256,
ds12, dreg) described in Section III-B). The results are also
shown in Table II. We can see from the table that with a bigger
TAEE module, the performance tends to be better. However, we
select MP-CTC-d515 as the final results to show in Table I be-
cause MP-CTC-d74g did not achieve significant improvements
with additional 5 M parameters.

V. CONCLUSION

We present a novel encoder-only non-autoregressive ASR
(NASR) model, UniEnc-CASSNAT, which integrates the ad-
vantage of CTC and CASS-NAT. The encoder of UniEnc-
CASSNAT acts as both the encoder and decoder in CASS-NAT
to reduce the model parameters and can be well initialized from
the speech foundation models. Furthermore, MP-CTC training
and iterative decoding are proposed for UniEnc-CASSNAT to
further improve the performance to be better or comparable
to CASS-NAT. We examined the effectiveness of the proposed
methods on the Librispeech 100 h, MyST, and Aishelll datasets.
To the best of our knowledge, we have achieved the best-
performing WER results for NASR on the first two datasets
with the same settings as those in the literature. Future work
includes model compression and distillation to further reduce
the parameters.
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