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The paper addresses an error analysis of an Eulerian finite element method used for solving a linearized
Navier—Stokes problem in a time-dependent domain. In this study, the domain’s evolution is assumed
to be known and independent of the solution to the problem at hand. The numerical method employed
in the study combines a standard backward differentiation formula-type time-stepping procedure with a
geometrically unfitted finite element discretization technique. Additionally, Nitsche’s method is utilized to
enforce the boundary conditions. The paper presents a convergence estimate for several velocity—pressure
elements that are inf-sup stable. The estimate demonstrates optimal order convergence in the energy norm
for the velocity component and a scaled L2(H! )-type norm for the pressure component.
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1. Introduction

Fluid equations formulated in time-dependent domains are essential components of mathematical models
used in a wide range of applications, including cardiovascular research and aerospace engineering
(Formaggia et al., 2010; Bazilevs et al., 2013). The analysis of such equations is a classical topic in
mathematical fluid mechanics (Solonnikov, 1977; Miyakawa & Teramoto, 1982; Solonnikov, 1987;
Neustupa, 2009). Moreover, a significant body of literature addresses the development of computa-
tional methods aimed at numerically solving these problems. Well-established numerical techniques
include immersed boundary methods, fictitious domain methods, methods based on Lagrangian and
arbitrary Lagrangian-Eulerian formulations, space-time finite element formulations, level-set methods
and extended finite element methods; see, e.g., Peskin (1977); Tezduyar et al. (1992); Hirt et al. (1997);
Masud & Hughes (1997); Formaggia & Nobile (1999); Glowinski et al. (1999); Duarte et al. (2004);
Gross & Reusken (2011).

In this paper, we focus on an Eulerian finite element method that utilizes a time-independent
triangulation of R3 to solve a system of governing equations within a volume §2(¢) that smoothly evolves
through the background mesh, a typical configuration for unfitted finite element methods. Specifically,
we consider the CutFEM unfitted finite element method (Burman ez al., 2015) that incorporates Nitsche’s
method for boundary condition imposition and employs a ghost-penalty stabilization (Burman, 2010) to
handle instabilities arising from arbitrary small ‘cuts’ made by 2 (f) within the background simplices.
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2 M. NEILAN AND M. OLSHANSKII

For time stepping, we adopt an Eulerian procedure suggested in Lehrenfeld & Olshanskii (2019) that
relies on the implicit extension of the solution from £2 (¢) to its neighborhood of O (Af). This combination
of the CutFEM method and implicit extension-based time stepping was initially applied to two-phase
flow problems in Claus & Kerfriden (2019), demonstrating its efficacy when used in conjunction with
the level-set method for interface capturing. Recent studies in Burman et al. (2022) and von Wahl et al.
(2022) have addressed the analysis of this method, considering equal-order stabilized and Taylor—-Hood
elements, respectively. Both of these analyses identified a major challenge: the lack of a weak divergence-
free property of the time difference of the finite element solutions (uj} — uz_l) /At with respect to the
discrete pressure space at time ¢"*. The absence of this property makes it challenging to bound this term in
a suitable norm and precluding optimal-order estimates for the pressure. This observation has also been
made in the literature on adaptive-in-time finite element methods, where the pressure space varies in
time due to mesh adaptation (Besier & Wollner, 2012; Brenner et al., 2014). The use of equal-order finite
elements and pressure stabilization in Burman et al. (2022) allows the authors to establish the optimal
error estimate for velocity. However, for inf-sup stable Taylor—Hood elements, the coupling between
pressure and velocity appears stronger, and the sub-optimality in pressure also hindered the authors of
von Wahl et al. (2022) from obtaining the optimal order estimation for the velocity error. It is worth
noting that von Wahl et al. (2022) also quantified the error resulting from an approximate reconstruction
of the evolving ‘exact’ domain, 2 ().

Despite the aforementioned theoretical challenges, numerical experiments have demonstrated opti-
mal order convergence rates (von Wahl ez al., 2022). This raises the question of whether the analysis can
be enhanced to provide support for the observed numerical evidence. This is the question addressed in
the present paper. The setup of the problem and the methods here is similar to von Wahl et al. (2022), but
we consider general inf-sup stable unfitted finite element pairs, essentially those covered in the analysis
by Guzman et al. (Guzman & Olshanskii, 2018).

The main result established in this paper can be summarized as follows: optimal convergence rates
are proven for the energy norm of velocity and a scaled L?(H')-norm of the pressure under the constraint
h* < At < h, where h represents the mesh size and Ar denotes the time step. This bridges the gap in the
analysis up to the selection of the pressure norm. Notably, the use of a nonstandard pressure norm is vital
in mitigating the lack of divergence-free property in the discrete time derivative. This argument aligns
with the analysis in a recent study (Olshanskii et al., 2023), which analyzed a finite element method for
the Navier—Stokes equations posed on time-dependent surfaces.

In general, there is a scarcity of literature addressing error bounds for fully discrete solutions of
fluid equations in evolving domains. However, under the simplifying assumption that the motion of
the domain is given and decoupled from the flow solution, error bounds for the arbitrary Lagrangian—
Eulerian and quasi-Lagrangian finite element methods for Stokes, Navier—Stokes and coupled Stokes—
parabolic equations in moving domains can be found in Martin ez al. (2009); Lozovskiy et al. (2018);
Kesler et al. (2021). Similarly, error bounds for the unfitted characteristic finite element method within
the same setup are provided in Ma et al. (2023).

The remainder of the paper is organized in five sections and an appendix. Section 2 formulates
the linearized Navier—Stokes problem in evolving domains and introduces suitable extension operators
utilized in the analysis. In particular, the numerical analysis relies on existence of a sufficiently regular
divergence-free extension of the fluid velocity field in a neighborhood of £2(¢). The fully discrete
numerical method based on a Nitsche-based CutFEM formulation is given in Section 3. Here, we
present the scheme for general finite element Stokes pairs satisfying certain assumptions. Stability and
convergence analysis is the subject of Section 4. In Section 5, we list three standard finite element pairs
satisfying the assumptions. Finally, a proof of a ‘discrete’ trace estimate is found in Appendix A.
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AN EULERIAN FINITE ELEMENT METHOD 3

2. Problem formulation

We consider a time-dependent domain £2(¢) C R? with boundary I"(¢) := 0£2(f) whose motion is
assumed to be known a priori. In particular, we assume a smooth solenoidal vector field w : R3 x
[0, T] — R3, for some final time 7 > 0 such that the normal velocity of the boundary is specified via

Ve=w-np onl(2), 2.1)

where n denotes the outward unit normal of I"(f). We then consider the Oseen problem in the moving
volume £2(1):

u+(w-Viu—Au+Vp=£f in (),
divu =0 in £2(2),
u=w onl (), (2.2)

with initial condition u|,_y = uj in £2; := £2(0). As mentioned in the introduction, unfitted finite
element methods for (2.2) were recently addressed in Burman er al. (2022); von Wahl et al. (2022) with
suboptimal error bounds. We note that the previous studies (Burman et al., 2022; von Wahl et al., 2022)
ignore the advection term (w- V)u in (2.2). While this term does not lead to any additional difficulties in
the analysis, we believe it is mechanically relevant to include it in this simplified model. By a standard
argument, we can re-write the above problem for

u=0 on I'(Q). (23)

We assume the smooth velocity field w : R? x [0, T] — R3 is such that it defines the flow map D, :
£2(0) — £2(1) as the material evolution of the fluid volume: for z € 2, the trajectory x(t,z) = ®,(z)
solves

05 = 9
f(” z 2.4)
X(t,2) = w(t,x(z,1)) te (0,T]

for some final time 7 > 0. Equation (2.4) defines a smooth bijection between §2, and £2(¢) for every
1 €[0,T].If082, € CP andw € C? (R3), then I" () € CP; the flow map @, also preserves the connectivity
of £2(1).

Summarizing, we are interested in the analysis of a finite element method for solving (2.2) with
£2(t) = 9,(£2(0)) and homogeneous Dirichlet boundary conditions (2.3).

2.1 Extensions

Let (1) C 2 forallz € [0, T], for a bounded polyhedral domain 2 C R3. We define the two space-time
domains Q and Q as follows:

Q== |J 0 x{1cQ:=2x[0.T]cR"
te[0,T]
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4 M. NEILAN AND M. OLSHANSKII

For a domain D C R and some § > 0, we use the notation Oj;(D) for the §-neighborhood of D:

O5(D) = {x € R? : dist(x,D) < 8}.

Denoting by V(r) = {v € H(l)(.Q(t)) : divv = 0}, the subspace of divergence-free functions in
H(l)(.Q(t)), our goal now is to define an extension operator £ : V(1) — Hl(ﬁ) that preserves the
divergence-free condition. To this end, we note that since divu = 0, we can writeu = V x ¥ in £2(¢)
with a stream function that satisfies ¥ € WLP (2 (1)) and

1wkt io 2y S llywiooq,  forw e WHP(2(p), (2.5)

k> 0,1 < p < oo; see Girault & Raviart (1986); Costabel & McIntosh (2010).

REMARK 2.1 Here, the statement A < B (resp., A 2 B) to mean A < ¢B (resp., A > ¢B) for some
constant ¢ > 0 independent of the spatial and temporal discretization parameters /2 and Af introduced
below and time 7. The statement A >~ B means A < Band A 2 B.

For ¥, = ¥ o @, we consider Stein’s extension: since the boundary of £2, is smooth, there is a
continuous linear extension operator &, : L2(2)) — L*(R?), (g%, = ¥, in £2;), with the following
properties (Stein, 2016, Section VI.3.1):

||g()'/’0||Wk»p(]R3) = CQOH'ﬁo”Wk.p(QO), for 'ﬁo S Wk’p(Qo), k=0,....m+1, 1 <p<oo, (2.6
with any fixed m > 0. Here, the extension operator is performed component-wise, i.e., (§,¥); =

&Yy, fori = 1,2,3. For the extension £, ¥ = (Eg¥() o D, ! of ¥, the following estimates follow
from the analysis in Lehrenfeld & Olshanskii (2019):

||5¢W||Hk(§) f, ||¢||Hk(g(t)), k=0,....,m+1, ||glp¢||w4,5(@) S, ”w”W“(Q)’
IESW) Mm@y S U gt 2y + 18 am2a)- 2.7)

We now define the velocity extension as follows:
Eu(t) :==V x (€,¥), foreacht e [0,T]. (2.8)

By construction, there holds
divéu=0 inS2.

For u € L>®(0,T; H"(2(r))) N W*3(Q) such that diva = 0 in £2(¢) for all r € (0, T) and any fixed
integer m > 0, the £ollowing est’i\mates follow from (2.5), (2.7), Poincare—Friedrich’s inequality and the
embedding W33(Q) ¢ W>>(Q):

||(€U||Hk(§) 5 ”u”Hk(.Q(t))’ k= 0, ce.,m, (293)
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AN EULERIAN FINITE ELEMENT METHOD 5

IVEWg S ||Vu||(z([)s (2.9b)

”Eu”WZ,OC(@) < ] Ww35(Q)- (2.9¢)

Here, we use the standard notation for the L?-norm || - || p = Il Il .2(p) for some domain D. Furthermore,

foru € L*°(0, T; H"(£2(t))) such thatu, € L>°(0,T; H"1(£2())) it holds

||(5“);||Hmfl(§) S (”u”Hm(_Q(z)) + ||“z||1-1mfl(g(;)))~ (2.10)
With an abuse of notation, we define the extension of the pressure as

Ep(t) = (Ey(po @) o ®, !, foreacht e [0,T]. (2.11)

Then estimates (2.9a), (2.9¢), with £u and u replaced by Ep and p, respectively, are satisfied (cf.
Lehrenfeld & Olshanskii, 2019, Lemma 3.3). For the analysis, we need £u and Ep defined in O (£2(¢)) C
£2, a §-neighborhood of £2(f) with § >~ At.

3. The fully discrete finite element method

We adopt the basic framework in Lehrenfeld & Olshanskii (2019); Burman et al. (2022); von Wahl et
al. (2022) to build a Nitsche-based CutFEM spatial discretization of the Stokes problem on an evolving
domain.

3.1 Approximate geometries

Recall that 2 C R3is a polyhedral domain with £2(¢) C Q forallt e [0, T]. For simplicity, we
consider a time discretization with a uniform time-step At = T/N for some N € N. We set t, = nAt,
"= 8Q2(,), I' =TI, and (0", p") = (u(t,),p(t,)). We further set wi, = ||w(z,) - N || zoo(pny. For
practical purposes such as numerical integration, and similar to Lehrenfeld & Olshanskii (2019); Burman
et al. (2022); von Wahl et al. (2022), we assume that the domains £2" are given by their approximations
£2}} (cf. (3.1)=(3.2) below). The boundary of £2;' is denoted by I';’. To ensure that discrete solutions are
well defined at subsequent time-steps, we extend the computational domain by a layer of thickness §,,
with ¢;, wo At < §;, with constant 1 < ¢;, = O(1) such that dist(£2)], .Q,’l”l) < 6, for all n.

We assume there is a bijective, Lipschitz continuous map ¥, : 08h (£2)) = (’)5h (£2™) that connects
the approximate and exact domains at each time step. In particular, we assume ¥, satisfies Oy, (£2") =
¥, (O, (£2))), 2" = W, (£2;), I'" = ¥, (I};) and the existence of a positive integer g such that

19, = idlwis (0, (epy) S AT j=0.1. (3.1
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6 M. NEILAN AND M. OLSHANSKII

FiG. 1. Left: a depiction of the triangulation 7;"; and 7, \T/";. Right: the triangulation 'Tﬁh around a §j-neighborhood tubular
region of I},.

We refer to g as the geometric order of approximation. Such a mapping has been constructed in Gross et
al. (2015) based on isoparametric mappings of geometries defined via level sets. Note that (3.1) implies

dist (2", 21) < et (3.2)

3.2 Triangulations

We let 7, denote a shape-regular and quasi-uniform simplicial triangulation of the background domain
Q with h = maxyc7, diam(7). Note the quasi-uniformity implies a constant ¢ > 0 such that h <
cdiam(T) =: hy forall T € T,,.

We then define, for each time step n, the active triangulation and corresponding domain induced by
the background triangulation (cf. Fig. 1):

Ti,={TeT,: dist(x,.2}) <8,3xeT}, @, =int| |J T
TeT),

We further definite the set of interior elements for §2;' and associated domain at time step n:

Th={TeT.,: () cy}, Q=in| ] T
TeT),

and denote by ', (resp., F}/ ) the set of interior faces of 7;L"i (resp., ;') i.e.,

he ={F=0T N0T,: T|.T, € T}, T) # T»} * € {i,e}.
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AN EULERIAN FINITE ELEMENT METHOD 7

We further set iy = diam(F) for all ' € F}, ,. Following Lehrenfeld & Olshanskii (2019); von Wahl et
al. (2022), we define the elements in a strip around I'}":

77fh = {TE 7;:‘6: dist(x,]"h") <$,3xe T},

and define the set of faces in this strip:
bo={F=0T\N3T,: Ty €T}, T, € Tf,, T) # T,, |dT; N 3T,| > 0}.

For any sub-triangulation S;, C 7, andm € N, we set H"(S),) to be the piecewise Sobolev space with
respect to Sy, i.e., ¢ € H"(S),) implies ¢ is an L? function on the domain induced by S,and gl € H™(T)
forall T € S;,. Analogous vector-valued spaces are denoted in boldface.

3.3 Finite element spaces and assumptions

We denote by P, (7,) the space of piecewise polynomials of degree m with respect to 7, and set
P (T,) = P, (T,) NH l(fZ\) to be its subspace of continuous, piecewise polynomials. Analogous
vector-valued spaces are denoted in boldface. We consider a Stokes finite element pair V,, x Q; C
H' (2)x1*(Q), consisting of piecewise polynomial spaces with respect to 7;,, and assume the following
inclusions

P, (T €V, C PR (T, (3.3)

for some integers 1 < m,, < m,. We further assume there exists m, € Nj such that

0, = qu(’ﬁl) or Q= P;lq(’ﬁl). (3.4)

' We set Vi C H! (82, e.) to be the r'estn'ction of V; to £, and let O} be the restriction of Q), to £2,
with a zero-mean constraint on Qz‘ e,

0, = [q|9;ll’e: dqgeQ, suchthat/Q qu:0]_

hi
Note that, by construction, .Q;’l‘ C .Q;l’;l and therefore functions in VZ_I X QZ_l are well defined on

Q.

We define the Nitsche-type norms on H! £2)N H2( h’fe) | 9;'.’:

2. 2 —1 192 2
IVIE = 19V + A VI + VI,
and further define the norm for piecewise smooth functions on the extended domains:

2 . 2 2
IVIlG.e := IV Vlign + VI -
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8 M. NEILAN AND M. OLSHANSKII

Likewise, we define the weighted H!-seminorm with respect to the interior mesh it

gl == D IVqliz+7 D llglliz

Teﬁl”’i Fef}’f’i

where [-] denotes the jump operator across an interior face. Note that ||-||

3 71
ni 1S @ norm on thgﬁ,f'

Similarly, we define weighted seminorm over the extended domain 2}/ ,:

gz, ==h > IVqlF+h > lllqll}-

Te’ﬁ:‘e FeFy,

Note that [|¢ll,, . is a norm on Q}, and it will be our main pressure norm for stability and error analysis.

In addition to the inclusions (3.3)—(3.4), we make the following assumptions to ensure stability of
the discretization presented below.

ASSUMPTION 3.1 Assume that, given g € QZ, there exists v, € VZ that satisfies

Ivll,e < Nigll, i » (3.52)

Il < Bl(v.q) = / (divv)gdr — / (v-m)gds, (3.5b)
o] I

¥l < Allgll, - (3.50)

REMARK 3.2 The first two statements (3.5a)—(3.5b) are assumptions related to discrete inf-sup stability,
but where the L? norm of the pressure function is replaced with the weighted H'-norm. A variation of
these conditions is shown to hold in the context of CutFEM for many standard stable Stokes pairs in
Guzmén & Olshanskii (2018). Using a Verfiirth-type trick, it is shown in this reference that, if (3.5a)—
(3.5b) is satisfied then the discrete inf-sup condition with L? pressure norm holds:

bi(v,q)
Ollgllgr < sup === +|gln  Yq e Qf
" veve VI h

where 6 > 0 is independent of & and how I’ cuts through the triangulation 7, and | - | I is given by

(4.1) below. We show below in Section 5 that the third condition (3.5¢) is satisfied for several canonical
pairs as well.

REMARK 3.3 Assumption 3.1 can be modified and slightly weakened by replacing £2;; and 7,"; by a
smaller domain and mesh, respectively, provided the pressure ghost-penalty compensates for the smaller

domain. In particular, let 771”1- C T, be a sub-mesh with corresponding domain ‘Q;:i = int (UTej—n T).
> 5 ” hii
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AN EULERIAN FINITE ELEMENT METHOD 9
Then if

lallgy S gl +laly — Va €0 (3.6)

then we can replace 7;"; by ’7~;l"i and £2;; by (};}i in Assumption 3.1. This modified assumption is used
in the case V;, x Q) is the Taylor-Hood pair.

3.4 The CutFEM discretization

The finite element method based on the backward Euler temporal discretization seeks, at each time step,
the pair (uj, pj)) € V}; x Q} such that

n __ n—1
/ (%) -vdx +aj (uj, v) = b (v.pi) + b (w5 9) + v, 5 (Phg) = F'(v.@), (37
a2

forall v e V}, g € Q). Here, b}(-,-) is given by (3.5b), and the bilinear form aj(-, ) is defined as

a,(u,v) = /Q

a(u,v) =a,(u,v) + ys,(u,v),

Vu: Vvdx+/ (w-Vu) -vdx — ([(Vu)n] v+ [(VV)n] -u — %u . V) ds,
2

n
Ty

n
h

where y,,y;,n > 1 are user-defined constants. The bilinear forms sZ(-, -) and JZ(-, -) consist of ghost-
penalty terms acting on V; x V. and Q7 x Qf, respectively, defined on an O(8),) neighborhood of I'}":

S(u,v) = Z %hﬂc—l/F[[aﬁFu]] [[a’;FV]] ds,

n p—
FE]:Fh k=1

R = X S [ o] [he] oo

Fe]—'}hh k=0

(3.8)

and Bl’iF denotes the kth-order directional derivative with respect to the normal of the face F. Here, 71,
and m, are the integers in (3.3)-(3.4). Finally, F" (v, g) is a bounded linear functional on V}, x Q} with

F*(v,
|F'|l, == sup v.9) < o0. (3.9)

n /1 2 2 bl
VDV (IvI2, + lgl2.)?

In (3.7), it is given by
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10 M. NEILAN AND M. OLSHANSKII

but later we will consider a more general F” for the purpose of analysis.

REMARK 3.4 We have assumed that w is a (given) smooth solenoidal vector field defined on R3 x [0, T].
If this vector field is instead defined on U, 112(7) x {z}, then a suitable extension to w would be used
in the bilinear form aj,(-,-). Such an approximation may not be solenoidal, in which case a standard
skew-symmetry of the convective term would be required in the finite element method. The stability and
convergence analysis results presented below still hold in this more general setting, albeit with slightly
more technical arguments. We refer to Gross et al. (2015) for details.

REMARK 3.5 The ghost-penalty bilinear forms (3.8) both stabilize the solution of problem (3.7) due to
irregular cuts as well as yield implicit extensions to .Q" These terms also aid in algebraic stabilization,
as the resulting condition number of the system is 1nsens1t1ve to how I intersects 7. The pressure ghost-
stabilization form J;/ (-, -) ensures numerical stability as it provides an mf-sup -type stability condition of
the pair V}; x Q} (cf. Remark 3.2).

There are now several types of ghost-penalty stabilization besides the ‘derivative jump version’ used
in (3.8). These include the ‘direct version’ (Preuss, 2018) as well as the ‘local projection stabilization
version’ (Burman, 2010). In principle, we can replace (3.8) with any choice of these types of ghost
penalty versions, and the stability and convergence analysis presented below carries through with only
superficial modifications. However, for clarity of presentation, we only focus on the derivative jump
version in detail below.

Finally, we remark that the extension of the discrete pressure approximation to all of .Q" is not
required; in particular, the pressure ghost-penalty stabilization J (-, -) only needs to be deﬁned on a
single layer of elements around I7' to ensure stability. However, we use the set of faces ]-'"h for both
terms in (3.8) to simplify the presentation.

4. Stability and convergence analysis

We denote by

Vg = Jshoav) and gl = [T (@.1)

the seminorms induced by the bilinear forms s7. (-, -) and Jj (-, -), respectively. We assume that the Nitsche
penalty parameter 7 is chosen sufficiently large (but independent of 4 and the mesh-interface cut) such
that a;l'(~, -) is coercive on Vj (cf. Burman & Hansbo, 2012). In particular, we assume 7 > 0 is chosen
such that

1
aG,V) = S IVl + v IvE W e Vi 4.2)

Similar to Lehrenfeld & Olshanskii (2019); von Wahl et al. (2022), we assume that elements in the
strip 7", \T,; can be reached from an uncut element in 7, by a path that crosses at most L faces with
L< 1+ %”); we refer to Lehrenfeld & Olshanskii (2019); von Wahl et al. (2022) to see why this is a
reasonable assumption and how it relates to the shape-regularity of the triangulation 7. We consider the
setting where L is uniformly bounded with respect to the discretization parameters, i.e., when §;, < h.
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AN EULERIAN FINITE ELEMENT METHOD 11
Recalling that cshwgoAt <4, withl < s, = O(1), this brings us to the time-step restriction:
At < h. (4.3)
The condition (4.3) and ||w]|| 1(Q) < 1 implies
L<1. 4.4)

Thanks to (4.4) and standard properties of the stabilization terms (see, e.g., Massing et al., 2014, Lemma
5.1), we have the following norm equivalences for all v € V. and g € Q}:
2 qell2 21912
Vg = IVIgy + 11V,

2 2 2
Ivily.e = Nvil; + |VISZ’

s 5 5 4.5)
ligly,.e = lglly; + |61|JZ,

2 2 2
laligy, = aligy, + lab-

4.1 Preliminary results

In this section, we collect some preliminary results used in the stability and the convergence analysis of
the finite element method (3.7).

LeEmMA 4.1 For # sufficiently small, there holds for all v € Vz_l,

2 2 2 At o 2
||V||an < VG-t = (T ADIVIIG 1 + — IV -y + ALLIVI,- (4.6)
2 he h 4 Sh

for a constant ¢; > 0 independent of &, At and how the boundary cuts through the triangulation.

Proof. From Lehrenfeld & Olshanskii (2019, Lemma 5.7), we have

2

IVIZ,1 < (14 e @ ADIVIE,i + (O ALIVVIZ, i + c3(e, W AILIVE,
he h h Sh

with
ci(€) =ces, Wi (l+€7),  cy(e) =g, Whee,
c3(e,h) = cy(€) +cyle,h),  cyle h) =h*ceg who(l+€71),

¢ > 0is a generic constant, and ¢ > 0 is arbitrary. The result (4.6) follows from the inequality
VVlgr1 < lIvll,_; and by taking € such that c,(¢) = JT and h sufficiently small such that
h

culeh) < 1. 0
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12 M. NEILAN AND M. OLSHANSKII

LEMMA 4.2 There holds the following discrete Poincare inequality:

IVl < cplvll, Vv eV, 4.7)

Proof. See Massing et al. (2014, Lemma 7.2). 0

The following continuity estimate for the bilinear form aj(-,-) is essentially given in Burman &
Hansbo (2012) (also see Massing et al. (2014); von Wahl et al. (2022)) and follows from the Cauchy—
Schwarz inequality, so the proof is omitted.

LEmMMA 4.3 There holds

apu,v) < ull, VI, + ylulglvly — Vuve B (TL) nBY(2),). 438)

Sh

The next result states a discrete trace inequality for discontinuous piecewise polynomial functions.
Its proof is given in Appendix A (also see Buffa & Ortner, 2009, Theorem 4.4).

LEMMA 4.4 There holds

lgllrp < h M llgll,e Yo € Q. 4.9)

4.2 Stability analysis

In this section, we derive stability results for the finite element method (3.7). First, we state the energy
estimate for the finite element velocity in the following lemma. This result is essentially given in von
Wabhl et al. (2022, Theorem 5.9), but we provide a proof for completeness.

LeEmMA 4.5 There holds for £ sufficiently small, any ¢ > O and k = 1,2, ...

n n—1
llh — llh ‘

k 2 ‘
ot + 2]
k

‘Qh n=1

2 ko 1
ot ary (é_1 a2 + (zys -L- 5) i |5 + 2y, |p2|3;)
g n=1

2 At 2
<oy o+ 5 o+ o
h
k k 5
+At (ce + e—l) Z IF™|2 + Ate Z |||pZ|||n’e), (4.10)
n=0 n=0

with constants ¢ and ¢, independent of the discretization parameters.

Proof. Taking v = uj and ¢ = pj in (3.7), adding the two statements, applying (4.2) and using the
algebraic identity (a — b)a = $(a?> — b*) + L(a — b)? yields

1

1 2 _111? 1
5 il — 5 e P

u
il
Qp 2

1112 1
wi = [ (S I+ o 3+ v ) = a0 ).
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AN EULERIAN FINITE ELEMENT METHOD 13

Using (3.9) and the Cauchy—Schwarz inequality, we estimate the right-hand side as follows:

P () < 0PI (gl + 602,)° < e (gl + 2L,

< Vaeaenl, (Il + i) + 1, gl

l 1 2 € 2
<ere ) P72+ (Il + ) + £ gl

where ¢, > 1 satisfies ”|uh|||ne < 2 ) (cf. (4.5)). This yields
2 2 1 1
o = oI o= i [, e (5 Ol (2= 3) o3+ 2 ol )

< ar((eo+e PR +elpll,). @1

Applying the estimate (4.6) (with v = uZ_l) into (11) and summing the result over n = 1,. .., k yields

k
Ju| ; ) -y ; Ay (i ol + <2ys - %) |3+ 25, | 32)
0 At ofl? 0|2 < n||2
= [ubl g+ 3 loilly + ot oy + v 2 Iy
k
+ Y ((ee+ &P+ Iopllz,)-
n=1
The estimate (4.10) now follows from a discrete Gronwall inequality. O

For the complete stability result, we need to estimate the pressure term on the right-hand side of
(4.10). The estimate is given in the next lemma.

LEMMA 4.6 Assume A2 < At. Then

I ST (e

e[l + ]

)+Ar2||F"|| )
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14 M. NEILAN AND M. OLSHANSKII

Proof. Let v € V} satisfy (3.5) with ¢ = pj. Then using the identity (3.7) and bounds in (3.5), (3.9),
(4.8) and (4.5), we have

|||ph|||n1 S bn (V’p;’zl)

u’ _un 1
:/ =% vdx+al (ul.v) - F'(v,0)

foX At

5(7 w, — H ||v||9, + [l v, + vy AP |||v|||ne)
h

< (G o=+ o o o + "F””*) I,

Thus, we have

2
ul — ‘HQ + ar ([lul; L+ IF2). (4.12)

hZ
atllpill < % |

Combining this with (4.5) leads to the estimate of the pressure norm in the extended domain:

h? 2
atllphllne = 7 o =it + o (11 + gl + i, + nE"12)

Summing inequality over n = 1,...,k, and using h*> < At and (4.10) gets

k k
2 2
[+ A (il I+ i) + 400

k
2
Ay [Iphl. <
n=1 n=1

All terms on the right-hand side of the last inequality are estimated in (4.10). Thus, by applying (4.10)
with ¢ sufficiently small, but independent of the discretization parameters proves the lemma. g

REMARK 4.7 The corresponding 2-step backward differentiation formula (BDF2) scheme is analogous
3uz+l—4uh +u;” 2
2At

mesh is enlarged. In particular, §;, is replaced by 2§, in the definition of ’T" so that functions in V)~ 2

are well defined in £2}. In this setting, a stability result holds for the dlscrete velocity similar to (4. 10)
2

to (3.7), but where the discrete time derivative is replaced by , and the computational

but where [[u}} —u; ™' ||%,, is replaced by [lu}, — 2u; ™ T4 u, ||Q,,. The proof of this result is similar to
h h
that of Lemma 4.5, but using a different polarization identity, and so we omit the details.

The stability of the discrete pressure solution in the BDF2 scheme is more subtle and requires a

different argument than Lemma 4.6. Analogous to (4.12), there holds

h? B 12
a|lphll2; < T H3u7, —4uy~" +u) 2H9 +Ar(H!uth

5 IF2),
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AN EULERIAN FINITE ELEMENT METHOD 15

and therefore

ZMH il S AtZHuhHmeZ( 33+ Ao, )+AzZ||F"||*
Th? "
= e g vl + ar 32 (leill + 6 + 4 i) + Arz 172

=1

Thus, for & < At, the terms in the right-hand side of this expression are uniformly bounded, hence
obtaining a stability estimate for the discrete pressure solution. Note that when combined with (4.3), we
have the relation At =~ h in the case of BDF2.

4.3 Consistency

The consistency of the scheme (3.7) largely follows the arguments in von Wahl ez al. (2022, Lemma 5.14).
First, we identify the extensions of the smooth exact solution £u and Ep with u and p, respectively, both
of which satisfy (2.9). Recall that for u, we consider the divergence-free extension from (2.8). We then
set U" = u" —uj and P" = p" — pj to denote the errors at z,.

LemMA 4.8 There holds for all (v,q) € V} x O},

ur —Un 1
| T v ) — 0P B ) + 1, ) = €.

where the consistency error €7 (v, g) satisfies

€2 (v, )| < A" |2 om Nl e
(A B4 B ) (I g1y + Il iy + 10" gm ony + 10 g1 gy ) ¥l
(4.13)
for any integers m, m, satisfying m; > m, and m = m, + 1.

Proof. Recall that ¥, : Oy, (£2;)) — Oy, (£2) is the mapping that connects the approximate and exact
domains and satisfies (3.1). Testing (2.2) with v¢ ;= vo ¥, !, v e Vl and ¢* := go ¥, !, g € O and
integrating by parts we arrive at the identity

a n
/ il / vu' : vyl dx — [(Vu")n]-v‘ds+/ (w- vu?) - v6) dx
n n Qﬂ

at I

—/ p"divvldx—i—/ p"(v‘-n)ds—/ gdiva"dx = [ £ -vidx
n n n QVL
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16 M. NEILAN AND M. OLSHANSKII

Subtracting this identity from (3.7) gives the consistency term:

n n—1 n
— d
q’(v,q):/ . vhdx — f”-vdx+/ T7% var-— W v dx
n _Q;ll _Q;ll At on at

=% =%

+a,u",v) — /

n

vu" : Vvl dx +/ [(Vu")n] - v¢ ds —/ (w-vu") - v¢dx
rn 2n

=:%3

+ / pldivwtdx — [ p"(v' - m)ds — (v, p")
n 1"}’!

=%y
— by, ) +y, 0", @) + yes, @, v) .
~——
=:%s5 =%

Estimates for T; and T, are exactly the same as in von Wahl er al. (2022, Lemma 5.14):
1Z11 S A g 1V s T4l < (hUP" gt @my + "2 UP" 1 ggma (2my) WV e (4.14)

for any m, > 1. Likewise, the arguments in Lehrenfeld & Olshanskii (2019, Lemma 5.6) and von Wahl
et al. (2022, Lemma 5.14) show

1Tl S (Ar+ WD) ully2m ) IVgp S (Af + R [ullyss g IVlgr (4.15)

where we used (2.9¢) in the last inequality.

Unlike the problem considered in von Wahl et al. (2022), the bilinear formﬁz (-, -) includes convective
terms. Nonetheless, the same arguments in (von Wahl et al., 2022, Lemma 5.14) are valid, yielding the
following estimate:

T30 S (Auly2ne gy + A 10 1 oy ) IV e

S (Hlullyasig + K™ 10 gnrs1 gy ) Ve (4.16)

where m; > 1 is only dictated by the regularity of u”, and we have again used (2.9¢).

On the other hand, the estimate of T5 = bz (u”, ¢) should involve the elementwise scaled H L norm
for the pressure (which is nonstandard and not provided in von Wahl et al., 2022). Since the extension
of u is divergence-free, the estimate of ‘T5 reduces to estimating the boundary term:

Ts=— [ (u"-n)gds.
ry
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AN EULERIAN FINITE ELEMENT METHOD 17

Since ¥, (I'}}) = I'", there holds

u'o¥, =0 only.

Using the estimate |ju” —u” o l,I/n||1~}7 < hat! 0|l g2 ony (cf. Gross ez al., 2015, Lemma 7.3) and the
discrete trace inequality in Lemma 4.4, we have

[Ts] = /F" (un —u'o lpn) ‘ngds| < ”un —u"o lI/anél ||CI||1"h" S hq+1||un||H2(gn)||€I||rh"
h

S hq”un”HZ(Qn) |||¢]|||n,e . “4.17)

Finally, the consistency term involving ghost stabilization ‘T4 vanishes provided u” e H"H (.Q;l’, )

and p" € H™at! (.Q;l”e). The estimate (4.13) then follows from (4.14)—(4.17) and the discrete Poincare
inequality (4.7). t

4.4  Error estimates

In this section, we combine the stability and consistency estimates to obtain error estimates for the finite
element method (3.7). As a first step, let (u},p}) € Vj x Qf be approximations to the exact solution
satisfying

o = w7l + 0" —wj] o < P 1 (g, = P I
I = il + 16" = Ly S B 1 i (g ) S H 1 N1y (4.182)
and
W = g S Nl g ) S H Nl gy
(4.18b)

I =Pl + 1 0" =Py S 0 g gy S I gt gy

The existence of such uj and pj satisfying (4.18) follows from the inclusions (3.3)—(3.4) and standard
scaling and interpolation arguments. We also assume the initial condition of the finite element method
(3.7)is u) = u).

We then split the error into its interpolation and discretization errors:

U' = (u" —uf) + (0] —wj),  P'=(p" =) + (o] — })-
—_— —— — —_——— ——
=" =:efeVy =" =:dyeQ;
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18 M. NEILAN AND M. OLSHANSKII

Then the pair (e, d;) € V), x O} satisfies

n_ on—1
/ "% yax g ay (€4, v) — by (v, d}) + b, (€], q) + v,J; (d), q) = €L(v,q) + €[ (v, q),

i At
4.19)
for all (v,q) € V}, x 0y, where € (v, g) is given in Lemma 4.8 and
n _ "n B nnil ne.n n n ne.n Ngyen
€I(V,CI) = - T : de—ah(ﬂ ,V)‘f‘bh(v,; )=b,(m", q) —v;J, (" q).
‘QI? t —— —— —_——— ——
=:Tg =:%9 =T =T
=:%7
We now bound the terms in &} (v, ¢) individually.
First, by continuity estimates and the approximation properties (4.18), we have
Il S (2 10 gt gy + B 1 g ) IVl i = 8,9,11. (4.20)

For the temporal interpolation error, there holds by Lehrenfeld & Olshanskii (2019, Lemma 5.7) and the
discrete Poincare inequality (4.7),

|i7| § B sup (||U||Hmv+1(9(,)) + ||u;||1-1ﬁv(g(t))) ||V||Qh"
te[0,T]

S W™ S[%I;] (”u”HﬁvH(Q(I)) + ||ut||Hﬁv(_Q(;))) |||V|||n,e . (4.21)
telo,

For ¥, we integrate by parts to obtain

zw:/ (divn")qu—/ (n”-n)quZ/ n" - Vgdx+ Z/ 7" -nlgql ds.
Qn n Qn F

n
FeFp, /N4,
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AN EULERIAN FINITE ELEMENT METHOD 19

Consequently by an elementwise trace inequality and (4.18), there holds

Kol = | D0 a3} [ DD ival}
Te7;’fe Te7;l’fe

1

2

+ D0 rE Iz > e lilglli;

FeF}, FeF},

Bl—

(ST

1
2

S (v iz) ) (2 3 1vald+n Y el

Teﬁfe T€7;1’,1e FeFj,

< K [0 e omy Nl - (4.22)

Summarizing (4.20)—(4.22), we proved the bound

[ v.9)| < (h’" tes[%g]<||u||ﬂw(mm + 1wl g 20y)) + B ||p"||qu+1(m))

X (¥l + llgll,)-

(4.23)

From (4.13) and (4.23), it follows that the functionals € and &} are bounded as
v g)| + | €} (v.q)| < AL+ b + W2 + K" (VI + llgll,.),

where C > 0 depends on Sobolev norms of the exact solution and the source function.

Note that € and dj satisfy the same FE formulation (3.7) as uj and pj, but with the zero initial
condition and the right-hand side functional given by F" (v, q) = €}(v, q) + €} (v, q). Therefore, we can
apply the stability results from Lemmas 4.5 and 4.6 to estimate €}, and d}':

k

2
o

k
Ay (el + lln,) = Ccar+nt 4 g 4 2
h

n=1

2

Applying the triangle inequality and the estimates (4.18) one more time leads to our final result.

$20Z A\ €1 U0 J8sN UOISNOH JO AU ‘Aselqi] MeT uuIind,0 Aq G8806S /S0 L PEIp/WNUBLWI/EE0] 0 | /I0p/a|o1ie-eouBApe/eulewl/woo dnooiwapese//:sdjy wol) papeojumoqd



20 M. NEILAN AND M. OLSHANSKII

THEOREM 4.9 Assume the solution (u, p) to (2.2) is sufficiently smooth and let uj, p} be the solution to
(3.7). Assume that the discretization parameters satisfy h> < At < h. The following error estimate holds

N
max [u() — w5+ 23 ([l —wi[I7 + [l = A7, )

n=1
< C(At+h? + W™ 4+ B"+H2 | (4.24)

with a constant C independent of discretization parameters, but dependent on the solution (u, p) and final
time 7.

REMARK 4.10 Compared to the error estimates in von Wahl ez al. (2022), Theorem 4.9 provide optimal-
order error estimates for the velocity and pressure approximations. The key tool that differentiates our
result is the application of a scaled L?>(H') norm for the pressure approximation. This strategy provides
the flexibility to effectively handle the nondivergence-free property of the discrete time derivative (u” —
uz_l) /At in the stability analysis under the mesh constraint 2> < At < h (cf. von Wahl ez al., 2022,
Lemma 5.10 and Lemma 4.6).

REMARK 4.11 In the Oseen problem 2.2, we have implicitly taken the viscosity v = 1 to simplify the
presentation. If Au is replaced by v Au, then the velocity ghost penalty term in CutFEM discretization
needs to scale like v to perform the convergence and stability analysis. Also, y,s} (-, -) would be replaced
by v_lyssZ(~, -). In this general setting, a version of Theorem 4.9 holds, but the constant C > 0 scales
like exp(v_lT); see von Wahl et al. (2022) for details.

5. Examples of finite element pairs satisfying Assumption 3.1

In this section, we show that several canonical finite element pairs for the Stokes problem satisfy the
three inequalities (3.5) in Assumption 3.1.

5.1 The Mini element

For a tetrahedron T € 7T, let b; € P,(T) denote the standard quartic bubble function, i.e., the product
of the barycentric coordinates of 7. The lowest-order Mini pair with respect to 7}, is given by Arnold et
al. (1985)

Vv, = {v cH'(2): vy € Py(T) + byPy(T) VT € Th}

Q, = {q eH'(2): qly eP|(T)VT € 7;,]

In this setting, we can take m, = 1, m,, = 4 and m, = 1.
We now verify conditions (3.5). Given g € Q}, we set v € Vj so that v|, = h%bTVq|T for all

T e '7;:” The function v is extended to §2/ by zero. The results in Guzmén & Olshanskii (2018, Section
6.5) show that (3.5a)—(3.5b) is satisfied. We also have by a simple scaling argument

2 2 4 2 4 2 2 2
Ivlign = E vl = E hpllbrValr =~ E hrlIValir < h” ligll,; -
Te771"’i Ten”’i Te771"’i
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Thus, (3.5¢) is satisfied as well.

5.2 The Taylor-Hood pair

The (generalized) Taylor—Hood finite element pair is given by

Vv, = {v cH'(2): v, eP, (T)VT € Th},

0y ={aeH' @ : gy P, (OVT e T},

where m > 2. Thus, in this case 7, = m, = m and m, = m — 1 in (3.3)(3.4). Denote by &, the set of
interior one-dimensional edges of the the interior triangulation 7;1" . We then denote by ’fh”’i the members
in 7;"’[ that have at least three edges in & d (cf. Remark 3.3). We assume that the domain of pressure
ghost-stabilization is chosen such that (3.6) is satisfied. This is the case provided c;, is sufficiently large
(but still O(1)). ) ' _

We denote the set of interior edges of 7, by £, Then for e € £, we let ¢, denote the quadratic
bubble function associated with e, and let t, be a unit tangent vector of e. Note that ¢, has support on
the tetrahedra that have e as an edge, and the number of such tetrahedra is uniformly bounded due to the
shape-regularity of 7711

For a given g € O}, we define

v= > e,(Vq-tt,.

Sn,i
eet,,

Because ¢ is continuous, we see that Vg-t, is single-valued on e, and thus v is continuous and a piecewise
polynomial of degree m; hence, v € V.

It is shown in Guzman & Olshanskii (2018, Section 6.1) that (3.5a)—(3.5b) is satisfied, thus it remains
to show (3.5¢). This follows from the identity ||¢, ||, = 1 and the shape-regularity and quasi-uniformity
of the triangulation:

Vlign S h? val3-.
Mgy S8 2. 14l
TeT)

5.3 The P; — P pair

As our final example, we consider the Py — P, pair. In particular, the discrete velocity space is the cubic
Lagrange space, and the discrete pressure space consists of piecewise constants:

V, =BT = {veB'@): vi; e Py VT e T, },

0, = Py(T;) = {q € LX(2) : qly € Py(T) VT € Th}
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22 M. NEILAN AND M. OLSHANSKII

For each interior face ' € F}; with F = 9T} N 9T,, we denote by n; the outward unit normal of 97;
restricted to F. Then for given q IS Qh, we define v € V” such that for all F € F! i

/V-nlds=—hF/(qlnl+q2n2)~n1ds=hF/ [¢] - n, ds,
F F F

where ¢; = g|7,. Note that this condition implies Jrv-npds = —hp [1-[4] - ng ds for any unit normal
of F € Fj,. We further specify that v = 0 on all vertices and edges in 7;";, v X ny = 0 on all faces
F € F};, and v = 0 on the boundary of £2;';. We extend v to £2;', by zero.

By the divergence theorem, and using that q is piecewise constant we have

Bh(v.q) = / (divv)gdr=— > / gv-mypds 2 h > Igll3 = llgll?,

TeT” FeF};

Thus, (3.5b) is satisfied. A scaling argument also yields on each T € 7;:1,.,

2-2
Wlgnary ShF 2" D helllqllF -
]—',’,’jaFcaT

Consequently, by another scaling argument,

IVIGe S IVVIG +h72IVIg, < h D gl = lglly,; .
FeF};

VI = VI <7 D7 IallE = A lqlly, .

FeF) ,’
and therefore (3.5a) and (3.5c¢) are satisfied as well.
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Appendix A. Proof of Lemma 4.4
We first note that if Qf C H 1 (.Q;i .)» then a standard trace inequality and the definition of ||-|,, , yields
gl S lalgepy S0 gl + gl gy (A1)
To establish (4.9) in this case, we first apply a standard Poincare—Friedrich inequality
lallgy, S IVallgy — YaeL*(24,) NH' (24).
and (4.5) to conclude

gl gy < Igllap, + laly < I19alay, +1alyy S H" (gl + 19l ) S5 " lall,e Va € O}

The estimate (4.9) then follows from this inequality and (A.1).

Thus, it suffices to prove (4.9) in the case Q} consists of discontinuous polynomials. To this end,
we introduce an enriching operator E}, : Q) — Oy NH ! (.Q;f’e) constructed by averaging (Brenner &
Ridgway Scott, 2008). Let

T ={T €Ty, : TNnT #0},
and let ]-';’I denote the set of interior faces of T;'. Then there holds

4= Epalpe iy Shr 2t D Mgl  €=0,1. (A2)
Fe]-';’l

It then follows from (A.2) and the trace inequality

—-1/2 1/2
lalzary < Hr ' Plaly +hy*1Val;  Yge H'(T)
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that

2 2
lg = Endllit, = D llg— Eydliznpy
Te7;:’e

< D (W' la = Byl + bV - ) I)
TeT),

S D gl Sk gl - (A3)
FeFy,

Furthermore, by a standard trace inequality and (A.2), we have

2 2 2
I1Ewal Ty < 1Bl gn) < 1ERGNz (ap )

S D Mgl +h D gl

TeT), FeF,,
Sh72 Mgl + gl (Ad)
Combining (A.3)-(A.4) yields
gl < ™" gl + lgllgp - (A5)

Finally, since ¢| o € lo,z(.Q,’Zi), we apply the discrete Poincare-Friedrich inequality (Brenner &
Ridgway Scott, 2008, Theorem 10.6.12)

lalgy < D IValz +a7" > Ilally <52 llallz, .
T TeT) FeF},

and (4.5) to conclude
lallay, S lallag, + laly S h~" (gl +1aly) S A" gl
Combined with (A.5), we obtain (4.9).
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