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The paper addresses an error analysis of an Eulerian finite element method used for solving a linearized
Navier–Stokes problem in a time-dependent domain. In this study, the domain’s evolution is assumed
to be known and independent of the solution to the problem at hand. The numerical method employed
in the study combines a standard backward differentiation formula-type time-stepping procedure with a
geometrically unfitted finite element discretization technique. Additionally, Nitsche’s method is utilized to
enforce the boundary conditions. The paper presents a convergence estimate for several velocity–pressure
elements that are inf-sup stable. The estimate demonstrates optimal order convergence in the energy norm
for the velocity component and a scaled L2(H1)-type norm for the pressure component.
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1. Introduction

Fluid equations formulated in time-dependent domains are essential components of mathematical models
used in a wide range of applications, including cardiovascular research and aerospace engineering
(Formaggia et al., 2010; Bazilevs et al., 2013). The analysis of such equations is a classical topic in
mathematical fluid mechanics (Solonnikov, 1977; Miyakawa & Teramoto, 1982; Solonnikov, 1987;
Neustupa, 2009). Moreover, a significant body of literature addresses the development of computa-
tional methods aimed at numerically solving these problems. Well-established numerical techniques
include immersed boundary methods, fictitious domain methods, methods based on Lagrangian and
arbitrary Lagrangian-Eulerian formulations, space-time finite element formulations, level-set methods
and extended finite element methods; see, e.g., Peskin (1977); Tezduyar et al. (1992); Hirt et al. (1997);
Masud & Hughes (1997); Formaggia & Nobile (1999); Glowinski et al. (1999); Duarte et al. (2004);
Gross & Reusken (2011).

In this paper, we focus on an Eulerian finite element method that utilizes a time-independent
triangulation of R3 to solve a system of governing equations within a volume Ω(t) that smoothly evolves
through the background mesh, a typical configuration for unfitted finite element methods. Specifically,
we consider the CutFEM unfitted finite element method (Burman et al., 2015) that incorporates Nitsche’s
method for boundary condition imposition and employs a ghost-penalty stabilization (Burman, 2010) to
handle instabilities arising from arbitrary small ‘cuts’ made by Ω(t) within the background simplices.
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2 M. NEILAN AND M. OLSHANSKII

For time stepping, we adopt an Eulerian procedure suggested in Lehrenfeld & Olshanskii (2019) that
relies on the implicit extension of the solution from Ω(t) to its neighborhood ofO(Δt). This combination
of the CutFEM method and implicit extension-based time stepping was initially applied to two-phase
flow problems in Claus & Kerfriden (2019), demonstrating its efficacy when used in conjunction with
the level-set method for interface capturing. Recent studies in Burman et al. (2022) and von Wahl et al.
(2022) have addressed the analysis of this method, considering equal-order stabilized and Taylor–Hood
elements, respectively. Both of these analyses identified a major challenge: the lack of a weak divergence-
free property of the time difference of the finite element solutions (un

h − un−1
h )/Δt with respect to the

discrete pressure space at time tn. The absence of this property makes it challenging to bound this term in
a suitable norm and precluding optimal-order estimates for the pressure. This observation has also been
made in the literature on adaptive-in-time finite element methods, where the pressure space varies in
time due to mesh adaptation (Besier & Wollner, 2012; Brenner et al., 2014). The use of equal-order finite
elements and pressure stabilization in Burman et al. (2022) allows the authors to establish the optimal
error estimate for velocity. However, for inf-sup stable Taylor–Hood elements, the coupling between
pressure and velocity appears stronger, and the sub-optimality in pressure also hindered the authors of
von Wahl et al. (2022) from obtaining the optimal order estimation for the velocity error. It is worth
noting that von Wahl et al. (2022) also quantified the error resulting from an approximate reconstruction
of the evolving ‘exact’ domain, Ω(t).

Despite the aforementioned theoretical challenges, numerical experiments have demonstrated opti-
mal order convergence rates (von Wahl et al., 2022). This raises the question of whether the analysis can
be enhanced to provide support for the observed numerical evidence. This is the question addressed in
the present paper. The setup of the problem and the methods here is similar to von Wahl et al. (2022), but
we consider general inf-sup stable unfitted finite element pairs, essentially those covered in the analysis
by Guzmán et al. (Guzmán & Olshanskii, 2018).

The main result established in this paper can be summarized as follows: optimal convergence rates
are proven for the energy norm of velocity and a scaled L2(H1)-norm of the pressure under the constraint
h2 � Δt � h, where h represents the mesh size and Δt denotes the time step. This bridges the gap in the
analysis up to the selection of the pressure norm. Notably, the use of a nonstandard pressure norm is vital
in mitigating the lack of divergence-free property in the discrete time derivative. This argument aligns
with the analysis in a recent study (Olshanskii et al., 2023), which analyzed a finite element method for
the Navier–Stokes equations posed on time-dependent surfaces.

In general, there is a scarcity of literature addressing error bounds for fully discrete solutions of
fluid equations in evolving domains. However, under the simplifying assumption that the motion of
the domain is given and decoupled from the flow solution, error bounds for the arbitrary Lagrangian–
Eulerian and quasi-Lagrangian finite element methods for Stokes, Navier–Stokes and coupled Stokes–
parabolic equations in moving domains can be found in Martín et al. (2009); Lozovskiy et al. (2018);
Kesler et al. (2021). Similarly, error bounds for the unfitted characteristic finite element method within
the same setup are provided in Ma et al. (2023).

The remainder of the paper is organized in five sections and an appendix. Section 2 formulates
the linearized Navier–Stokes problem in evolving domains and introduces suitable extension operators
utilized in the analysis. In particular, the numerical analysis relies on existence of a sufficiently regular
divergence-free extension of the fluid velocity field in a neighborhood of Ω(t). The fully discrete
numerical method based on a Nitsche-based CutFEM formulation is given in Section 3. Here, we
present the scheme for general finite element Stokes pairs satisfying certain assumptions. Stability and
convergence analysis is the subject of Section 4. In Section 5, we list three standard finite element pairs
satisfying the assumptions. Finally, a proof of a ‘discrete’ trace estimate is found in Appendix A.
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AN EULERIAN FINITE ELEMENT METHOD 3

2. Problem formulation

We consider a time-dependent domain Ω(t) ⊂ R
3 with boundary Γ (t) := ∂Ω(t) whose motion is

assumed to be known a priori. In particular, we assume a smooth solenoidal vector field w : R
3 ×

[0, T] → R
3, for some final time T > 0 such that the normal velocity of the boundary is specified via

VΓ = w · nΓ on Γ (t), (2.1)

where nΓ denotes the outward unit normal of Γ (t). We then consider the Oseen problem in the moving
volume Ω(t):

ut + (w · ∇)u − Δu + ∇p = f in Ω(t),

divu = 0 in Ω(t),

u = w on Γ (t), (2.2)

with initial condition u|t=0 = u0 in Ω0 := Ω(0). As mentioned in the introduction, unfitted finite
element methods for (2.2) were recently addressed in Burman et al. (2022); von Wahl et al. (2022) with
suboptimal error bounds. We note that the previous studies (Burman et al., 2022; von Wahl et al., 2022)
ignore the advection term (w ·∇)u in (2.2). While this term does not lead to any additional difficulties in
the analysis, we believe it is mechanically relevant to include it in this simplified model. By a standard
argument, we can re-write the above problem for

u = 0 on Γ (t). (2.3)

We assume the smooth velocity field w : R
3 × [0, T] → R

3 is such that it defines the flow map Φt :
Ω(0) → Ω(t) as the material evolution of the fluid volume: for z ∈ Ω0, the trajectory x(t, z) = Φt(z)
solves {

x(0, z) = z,
d
dt x(t, z) = w(t, x(z, t)) t ∈ (0, T]

(2.4)

for some final time T > 0. Equation (2.4) defines a smooth bijection between Ω0 and Ω(t) for every
t ∈ [0, T]. If ∂Ω0 ∈ Cp and w ∈ Cp(R3), then Γ (t) ∈ Cp; the flow map Φt also preserves the connectivity
of Ω(t).

Summarizing, we are interested in the analysis of a finite element method for solving (2.2) with
Ω(t) = Φt(Ω(0)) and homogeneous Dirichlet boundary conditions (2.3).

2.1 Extensions

Let Ω(t) ⊂ Ω̂ for all t ∈ [0, T], for a bounded polyhedral domain Ω̂ ⊂ R
3. We define the two space-time

domains Q and Q̂ as follows:

Q :=
⋃

t∈[0,T]

Ω(t) × {t} ⊂ Q̂ := Ω̂ × [0, T] ⊂ R
4.
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4 M. NEILAN AND M. OLSHANSKII

For a domain D ⊂ R
3 and some δ > 0, we use the notation Oδ(D) for the δ-neighborhood of D:

Oδ(D) = {x ∈ R
3 : dist(x, D) ≤ δ}.

Denoting by V(t) = {v ∈ H1
0(Ω(t)) : div v = 0}, the subspace of divergence-free functions in

H1
0(Ω(t)), our goal now is to define an extension operator E : V(t) → H1(Ω̂) that preserves the

divergence-free condition. To this end, we note that since divu = 0, we can write u = ∇ × ψ in Ω(t)
with a stream function that satisfies ψ ∈ Wk+1,p(Ω(t)) and

‖ψ‖Wk+1,p(Ω(t)) � ‖u‖Wk,p(Ω(t)) for u ∈ Wk,p(Ω(t)), (2.5)

k ≥ 0, 1 < p < ∞; see Girault & Raviart (1986); Costabel & McIntosh (2010).

Remark 2.1 Here, the statement A � B (resp., A � B) to mean A ≤ cB (resp., A ≥ cB) for some
constant c > 0 independent of the spatial and temporal discretization parameters h and Δt introduced
below and time t. The statement A � B means A � B and A � B.

For ψ0 = ψ ◦ Φt we consider Stein’s extension: since the boundary of Ω0 is smooth, there is a
continuous linear extension operator E0 : L2(Ω0) → L2(R3), (E0ψ0 = ψ0 in Ω0), with the following
properties (Stein, 2016, Section VI.3.1):

‖E0ψ0‖Wk,p(R3) ≤ CΩ0
‖ψ0‖Wk,p(Ω0)

, for ψ0 ∈ Wk,p(Ω0), k = 0, . . . , m + 1, 1 ≤ p ≤ ∞, (2.6)

with any fixed m ≥ 0. Here, the extension operator is performed component-wise, i.e., (E0ψ0)i =
E0(ψ0)i for i = 1, 2, 3. For the extension Eψψ := (E0ψ0) ◦ Φ−1

t of ψ , the following estimates follow
from the analysis in Lehrenfeld & Olshanskii (2019):

‖Eψψ‖Hk(Ω̂) � ‖ψ‖Hk(Ω(t)), k = 0, . . . , m + 1, ‖Eψψ‖W4,5(Q̂) � ‖ψ‖W4,5(Q),

‖(Eψψ)t‖Hm(Ω̂) � (‖ψ‖Hm+1(Ω(t)) + ‖ψ t‖Hm(Ω(t))). (2.7)

We now define the velocity extension as follows:

Eu(t) := ∇ × (Eψψ), for each t ∈ [0, T]. (2.8)

By construction, there holds

divEu = 0 in Ω̂ .

For u ∈ L∞(0, T; Hm(Ω(t))) ∩ W3,5(Q) such that divu = 0 in Ω(t) for all t ∈ (0, T) and any fixed
integer m ≥ 0, the following estimates follow from (2.5), (2.7), Poincare–Friedrich’s inequality and the
embedding W3,5(Q̂) ⊂ W2,∞(Q̂):

‖Eu‖Hk(Ω̂) � ‖u‖Hk(Ω(t)), k = 0, . . . , m, (2.9a)
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AN EULERIAN FINITE ELEMENT METHOD 5

‖∇(Eu)‖Ω̂ � ‖∇u‖Ω(t), (2.9b)

‖Eu‖W2,∞(Q̂) � ‖u‖W3,5(Q). (2.9c)

Here, we use the standard notation for the L2-norm ‖ · ‖D = ‖ · ‖L2(D) for some domain D. Furthermore,

for u ∈ L∞(0, T; Hm(Ω(t))) such that ut ∈ L∞(0, T; Hm−1(Ω(t))) it holds

‖(Eu)t‖Hm−1(Ω̂) � (‖u‖Hm(Ω(t)) + ‖ut‖Hm−1(Ω(t))). (2.10)

With an abuse of notation, we define the extension of the pressure as

Ep(t) = (E0(p ◦ Φt)) ◦ Φ−1
t , for each t ∈ [0, T]. (2.11)

Then estimates (2.9a), (2.9c), with Eu and u replaced by Ep and p, respectively, are satisfied (cf.
Lehrenfeld & Olshanskii, 2019, Lemma 3.3). For the analysis, we need Eu and Ep defined inOδ(Ω(t)) ⊂
Ω̂ , a δ-neighborhood of Ω(t) with δ � Δt.

3. The fully discrete finite element method

We adopt the basic framework in Lehrenfeld & Olshanskii (2019); Burman et al. (2022); von Wahl et
al. (2022) to build a Nitsche-based CutFEM spatial discretization of the Stokes problem on an evolving
domain.

3.1 Approximate geometries

Recall that Ω̂ ⊂ R
3 is a polyhedral domain with Ω(t) ⊂ Ω̂ for all t ∈ [0, T]. For simplicity, we

consider a time discretization with a uniform time-step Δt = T/N for some N ∈ N. We set tn = nΔt,
Ωn = Ω(tn), Γ n = Γ (tn) and (un, pn) = (u(tn), p(tn)). We further set wn∞ = ‖w(tn) · nΓ ‖L∞(Γ n). For
practical purposes such as numerical integration, and similar to Lehrenfeld & Olshanskii (2019); Burman
et al. (2022); von Wahl et al. (2022), we assume that the domains Ωn are given by their approximations
Ωn

h (cf. (3.1)–(3.2) below). The boundary of Ωn
h is denoted by Γ n

h . To ensure that discrete solutions are
well defined at subsequent time-steps, we extend the computational domain by a layer of thickness δh

with cδh
wn∞Δt ≤ δh with constant 1 ≤ cδh

= O(1) such that dist(Ωn
h , Ωn+1

h ) ≤ δh for all n.
We assume there is a bijective, Lipschitz continuous map Ψn : Oδh

(Ωn
h ) → Oδh

(Ωn) that connects
the approximate and exact domains at each time step. In particular, we assume Ψn satisfies Oδh

(Ωn) =
Ψn(Oδh

(Ωn
h )), Ωn = Ψn(Ω

n
h ), Γ n = Ψn(Γ

n
h ) and the existence of a positive integer q such that

‖Ψn − id‖Wj,∞(
Oδh(Ω

n
h)

) � hq+1−j j = 0, 1. (3.1)
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6 M. NEILAN AND M. OLSHANSKII

Fig. 1. Left: a depiction of the triangulation T n
h,i and T n

h,e\T n
h,i. Right: the triangulation T n

Γh
around a δh-neighborhood tubular

region of Γh.

We refer to q as the geometric order of approximation. Such a mapping has been constructed in Gross et
al. (2015) based on isoparametric mappings of geometries defined via level sets. Note that (3.1) implies

dist
(
Ωn, Ωn

h

)
� hq+1. (3.2)

3.2 Triangulations

We let Th denote a shape-regular and quasi-uniform simplicial triangulation of the background domain
Ω̂ with h = maxT∈Th

diam(T). Note the quasi-uniformity implies a constant c > 0 such that h ≤
c diam(T) =: hT for all T ∈ Th.

We then define, for each time step n, the active triangulation and corresponding domain induced by
the background triangulation (cf. Fig. 1):

T n
h,e = {

T ∈ Th : dist
(
x, Ωn

h

) ≤ δh ∃ x ∈ T̄
}

, Ωn
h,e = int

⎛⎝ ⋃
T∈T n

h,e

T̄

⎞⎠ .

We further definite the set of interior elements for Ωn
h and associated domain at time step n:

T n
h,i = {

T ∈ T n
h,e : int(T) ⊂ Ωn

h

}
, Ωn

h,i = int

⎛⎝ ⋃
T∈T n

h,i

T̄

⎞⎠,

and denote by Fn
h,i (resp., Fn

h,e) the set of interior faces of T n
h,i (resp., T n

h,e), i.e.,

Fn
h,∗ = {

F = ∂T1 ∩ ∂T2 : T1, T2 ∈ T n
h,∗, T1 �= T2

} ∗ ∈ {i, e}.
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AN EULERIAN FINITE ELEMENT METHOD 7

We further set hF = diam(F) for all F ∈ Fh,e. Following Lehrenfeld & Olshanskii (2019); von Wahl et
al. (2022), we define the elements in a strip around Γ n

h :

T n
Γh

:= {
T ∈ T n

h,e : dist
(
x, Γ n

h

) ≤ δh ∃ x ∈ T̄
}
,

and define the set of faces in this strip:

Fn
Γh

:= {
F = ∂T1 ∩ ∂T2 : T1 ∈ T n

h,e, T2 ∈ T n
Γh

, T1 �= T2, |∂T1 ∩ ∂T2| > 0
}
.

For any sub-triangulation Sh ⊂ Th and m ∈ N, we set Hm(Sh) to be the piecewise Sobolev space with
respect to Sh, i.e., q ∈ Hm(Sh) implies q is an L2 function on the domain induced by Sh and q|T ∈ Hm(T)

for all T ∈ Sh. Analogous vector-valued spaces are denoted in boldface.

3.3 Finite element spaces and assumptions

We denote by Pm(Th) the space of piecewise polynomials of degree m with respect to Th, and set
Pc

m(Th) = Pm(Th) ∩ H1(Ω̂) to be its subspace of continuous, piecewise polynomials. Analogous
vector-valued spaces are denoted in boldface. We consider a Stokes finite element pair Vh × Qh ⊂
H1(Ω̂)×L2(Ω̂), consisting of piecewise polynomial spaces with respect to Th, and assume the following
inclusions

Pc
mv

(Th) ⊂ Vh ⊂ Pc
mv

(Th), (3.3)

for some integers 1 ≤ mv ≤ mv. We further assume there exists mq ∈ N0 such that

Qh = Pmq
(Th) or Qh = Pc

mq
(Th). (3.4)

We set Vn
h ⊂ H1(Ωn

h,e) to be the restriction of Vh to Ωn
h,e, and let Qn

h be the restriction of Qh to Ωn
h,e

with a zero-mean constraint on Ωn
h,i, i.e.,

Qn
h =

{
q|Ωn

h,e
: ∃ q ∈ Qh such that

∫
Ωn

h,i

q dx = 0

}
.

Note that, by construction, Ωn
h ⊂ Ωn−1

h,e , and therefore functions in Vn−1
h × Qn−1

h are well defined on
Ωn

h .
We define the Nitsche-type norms on H1(Ωn

h ) ∩ H2(T n
h,e)

∣∣
Ωn

h
:

|||v|||2n := ‖∇v‖2
Ωn

h
+ h−1‖v‖2

Γ n
h

+ h‖∇v‖2
Γ n

h
,

and further define the norm for piecewise smooth functions on the extended domains:

|||v|||2n,e := ‖∇v‖2
Ωn

h,e
+ |||v|||2n .
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8 M. NEILAN AND M. OLSHANSKII

Likewise, we define the weighted H1-seminorm with respect to the interior mesh T n
h,i:

|||q|||2n,i := h2
∑

T∈T n
h,i

‖∇q‖2
T + h

∑
F∈Fn

h,i

‖[[q]]‖2
F ,

where [[·]] denotes the jump operator across an interior face. Note that |||·|||n,i is a norm on Qn
h|Ωn

h,i
.

Similarly, we define weighted seminorm over the extended domain Ωn
h,e:

|||q|||2n,e := h2
∑

T∈T n
h,e

‖∇q‖2
T + h

∑
F∈Fn

h,e

‖[[q]]‖2
F .

Note that |||q|||n,e is a norm on Qn
h, and it will be our main pressure norm for stability and error analysis.

In addition to the inclusions (3.3)–(3.4), we make the following assumptions to ensure stability of
the discretization presented below.

Assumption 3.1 Assume that, given q ∈ Qn
h, there exists vh ∈ Vn

h that satisfies

|||v|||n,e � |||q|||n,i , (3.5a)

|||q|||2n,i ≤ bn
h(v, q) :=

∫
Ωn

h

(div v)q dx −
∫

Γ n
h

(v · n)q ds, (3.5b)

‖v‖Ωn
h

� h |||q|||n,i . (3.5c)

Remark 3.2 The first two statements (3.5a)–(3.5b) are assumptions related to discrete inf-sup stability,
but where the L2 norm of the pressure function is replaced with the weighted H1-norm. A variation of
these conditions is shown to hold in the context of CutFEM for many standard stable Stokes pairs in
Guzmán & Olshanskii (2018). Using a Verfürth-type trick, it is shown in this reference that, if (3.5a)–
(3.5b) is satisfied then the discrete inf-sup condition with L2 pressure norm holds:

θ‖q‖Ωn
h

≤ sup
v∈Vn

h

bn
h(v, q)

|||v|||n,e
+ |q|Jn

h
∀q ∈ Qn

h,

where θ > 0 is independent of h and how Γ n
h cuts through the triangulation Th, and | · |Jn

h
is given by

(4.1) below. We show below in Section 5 that the third condition (3.5c) is satisfied for several canonical
pairs as well.

Remark 3.3 Assumption 3.1 can be modified and slightly weakened by replacing Ωn
h,i and T n

h,i by a
smaller domain and mesh, respectively, provided the pressure ghost-penalty compensates for the smaller

domain. In particular, let T̃ n
h,i ⊂ T n

h,i be a sub-mesh with corresponding domain Ω̃n
h,i = int

(⋃
T∈T̃ n

h,i
T̄
)

.
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AN EULERIAN FINITE ELEMENT METHOD 9

Then if

‖q‖Ωn
h,e

� ‖q‖Ω̃n
h,i

+ |q|Jn
h

∀q ∈ Qn
h, (3.6)

then we can replace T n
h,i by T̃ n

h,i and Ωn
h,i by Ω̃n

h,i in Assumption 3.1. This modified assumption is used
in the case Vh × Qh is the Taylor–Hood pair.

3.4 The CutFEM discretization

The finite element method based on the backward Euler temporal discretization seeks, at each time step,
the pair (un

h, pn
h) ∈ Vn

h × Qn
h such that

∫
Ωn

h

(
un

h − un−1
h

Δt

)
· v dx + an

h

(
un

h, v
) − bn

h

(
v, pn

h

) + bn
h

(
un

h, q
) + γJJn

h

(
pn

h, q
) = Fn(v, q), (3.7)

for all v ∈ Vn
h, q ∈ Qn

h. Here, bn
h(·, ·) is given by (3.5b), and the bilinear form an

h(·, ·) is defined as

ân
h(u, v) =

∫
Ωn

h

∇u : ∇v dx +
∫

Ωn
h

(w · ∇u) · v dx −
∫

Γ n
h

(
[(∇u)n] · v + [(∇v)n] · u − η

h
u · v

)
ds,

an
h(u, v) = ân

h(u, v) + γss
n
h(u, v),

where γs, γJ , η ≥ 1 are user-defined constants. The bilinear forms sn
h(·, ·) and Jn

h(·, ·) consist of ghost-
penalty terms acting on Vn

h × Vn
h and Qn

h × Qn
h, respectively, defined on an O(δh) neighborhood of Γ n

h :

sn
h(u, v) =

∑
F∈Fn

Γh

mv∑
k=1

h2k−1
∫

F

[[
∂k

nF
u
]] [[

∂k
nF

v
]]

ds,

Jn
h(p, q) =

∑
F∈Fn

Γh

mq∑
k=0

h2k+1
∫

F

[[
∂k

nF
p
]] [[

∂k
nF

q
]]

ds,

(3.8)

and ∂k
nF

denotes the kth-order directional derivative with respect to the normal of the face F. Here, mv
and mq are the integers in (3.3)–(3.4). Finally, Fn(v, q) is a bounded linear functional on Vn

h × Qn
h with

‖Fn‖∗ := sup
(v,q)∈Vn

h×Qn
h

Fn(v, q)(|||v|||2n,e + |||q|||2n,e

) 1
2

< ∞. (3.9)

In (3.7), it is given by

Fn(v, q) =
∫

Ωn
h

fn · v dx,
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10 M. NEILAN AND M. OLSHANSKII

but later we will consider a more general Fn for the purpose of analysis.

Remark 3.4 We have assumed that w is a (given) smooth solenoidal vector field defined on R
3 × [0, T].

If this vector field is instead defined on ∪t∈[0,T]Ω(t) × {t}, then a suitable extension to w would be used
in the bilinear form an

h(·, ·). Such an approximation may not be solenoidal, in which case a standard
skew-symmetry of the convective term would be required in the finite element method. The stability and
convergence analysis results presented below still hold in this more general setting, albeit with slightly
more technical arguments. We refer to Gross et al. (2015) for details.

Remark 3.5 The ghost-penalty bilinear forms (3.8) both stabilize the solution of problem (3.7) due to
irregular cuts as well as yield implicit extensions to Ωn

h,e. These terms also aid in algebraic stabilization,
as the resulting condition number of the system is insensitive to how Γ n

h intersects Th. The pressure ghost-
stabilization form Jn

h(·, ·) ensures numerical stability as it provides an inf-sup-type stability condition of
the pair Vn

h × Qn
h (cf. Remark 3.2).

There are now several types of ghost-penalty stabilization besides the ‘derivative jump version’ used
in (3.8). These include the ‘direct version’ (Preuss, 2018) as well as the ‘local projection stabilization
version’ (Burman, 2010). In principle, we can replace (3.8) with any choice of these types of ghost
penalty versions, and the stability and convergence analysis presented below carries through with only
superficial modifications. However, for clarity of presentation, we only focus on the derivative jump
version in detail below.

Finally, we remark that the extension of the discrete pressure approximation to all of Ωn
h,e is not

required; in particular, the pressure ghost-penalty stabilization Jn
h(·, ·) only needs to be defined on a

single layer of elements around Γ n
h to ensure stability. However, we use the set of faces Fn

Γh
for both

terms in (3.8) to simplify the presentation.

4. Stability and convergence analysis

We denote by

|v|sn
h

=
√

sn
h(v, v) and |q|Jn

h
=

√
Jn

h(q, q) (4.1)

the seminorms induced by the bilinear forms sn
h(·, ·) and Jn

h(·, ·), respectively. We assume that the Nitsche
penalty parameter η is chosen sufficiently large (but independent of h and the mesh-interface cut) such
that an

h(·, ·) is coercive on Vn
h (cf. Burman & Hansbo, 2012). In particular, we assume η > 0 is chosen

such that

an
h(v, v) ≥ 1

2
|||v|||2n + γs|v|2sn

h
∀v ∈ Vn

h. (4.2)

Similar to Lehrenfeld & Olshanskii (2019); von Wahl et al. (2022), we assume that elements in the
strip T n

h,e\T n
h,i can be reached from an uncut element in T n

h,i by a path that crosses at most L faces with

L � (1 + δh
h ); we refer to Lehrenfeld & Olshanskii (2019); von Wahl et al. (2022) to see why this is a

reasonable assumption and how it relates to the shape-regularity of the triangulation Th. We consider the
setting where L is uniformly bounded with respect to the discretization parameters, i.e., when δh � h.
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AN EULERIAN FINITE ELEMENT METHOD 11

Recalling that cδh
wn∞Δt ≤ δh with 1 ≤ cδh

= O(1), this brings us to the time-step restriction:

Δt � h. (4.3)

The condition (4.3) and ‖w‖L∞(Q) � 1 implies

L � 1. (4.4)

Thanks to (4.4) and standard properties of the stabilization terms (see, e.g., Massing et al., 2014, Lemma
5.1), we have the following norm equivalences for all v ∈ Vn

h and q ∈ Qn
h:

‖v‖2
Ωn

h,e
� ‖v‖2

Ωn
h

+ h2|v|2sn
h
,

|||v|||2n,e � |||v|||2n + |v|2sn
h
,

|||q|||2n,e � |||q|||2n,i + |q|2Jn
h
,

‖q‖2
Ωn

h,e
� ‖q‖2

Ωn
h,i

+ |q|2Jn
h
.

(4.5)

4.1 Preliminary results

In this section, we collect some preliminary results used in the stability and the convergence analysis of
the finite element method (3.7).

Lemma 4.1 For h sufficiently small, there holds for all v ∈ Vn−1
h ,

‖v‖2
Ωn

h
≤ ‖v‖2

Ωn−1
h,e

≤ (1 + c1Δt)‖v‖2
Ωn−1

h
+ Δt

4
|||v|||2n−1 + ΔtL|v|2

sn−1
h

(4.6)

for a constant c1 > 0 independent of h, Δt and how the boundary cuts through the triangulation.

Proof. From Lehrenfeld & Olshanskii (2019, Lemma 5.7), we have

‖v‖2
Ωn−1

h,e
≤ (1 + c1(ε)Δt)‖v‖2

Ωn−1
h

+ c2(ε)Δt‖∇v‖2
Ωn−1

h
+ c3(ε, h)ΔtL|v|2

sn−1
h

,

with

c1(ε) = c′cδh
wn∞(1 + ε−1), c2(ε) = c′cδh

wn∞ε,

c3(ε, h) = c2(ε) + c4(ε, h), c4(ε, h) = h2c′cδh
wn∞(1 + ε−1),

c′ > 0 is a generic constant, and ε > 0 is arbitrary. The result (4.6) follows from the inequality
‖∇v‖

Ωn−1
h

≤ |||v|||n−1 and by taking ε such that c2(ε) = 1
4 and h sufficiently small such that

c4(ε, h) ≤ 1. �
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12 M. NEILAN AND M. OLSHANSKII

Lemma 4.2 There holds the following discrete Poincare inequality:

‖v‖Ωn
h

≤ cP |||v|||n ∀v ∈ Vn
h. (4.7)

Proof. See Massing et al. (2014, Lemma 7.2). �
The following continuity estimate for the bilinear form an

h(·, ·) is essentially given in Burman &
Hansbo (2012) (also see Massing et al. (2014); von Wahl et al. (2022)) and follows from the Cauchy–
Schwarz inequality, so the proof is omitted.

Lemma 4.3 There holds

an
h(u, v) � |||u|||n |||v|||n + γs|u|sn

h
|v|sn

h
∀u, v ∈ Hmv+1 (T n

h,e

) ∩ H1 (Ωn
h,e

)
. (4.8)

The next result states a discrete trace inequality for discontinuous piecewise polynomial functions.
Its proof is given in Appendix A (also see Buffa & Ortner, 2009, Theorem 4.4).

Lemma 4.4 There holds

‖q‖Γ n
h

� h−1 |||q|||n,e ∀q ∈ Qn
h. (4.9)

4.2 Stability analysis

In this section, we derive stability results for the finite element method (3.7). First, we state the energy
estimate for the finite element velocity in the following lemma. This result is essentially given in von
Wahl et al. (2022, Theorem 5.9), but we provide a proof for completeness.

Lemma 4.5 There holds for h sufficiently small, any ε > 0 and k = 1, 2, . . .

∥∥∥uk
h

∥∥∥2

Ωk
h

+
k∑

n=1

∥∥∥un
h − un−1

h

∥∥∥2

Ωn
h

+ Δt
k∑

n=1

(
1

4

∣∣∣∣∣∣un
h

∣∣∣∣∣∣2
n +

(
2γs − L − 1

2

) ∣∣un
h

∣∣ 2
sn
h
+ 2γJ

∣∣pn
h

∣∣ 2
Jn

h

)

≤ exp(ctk)

(∥∥∥u0
h

∥∥∥2

Ω0
h

+ Δt

4

∣∣∣∣∣∣∣∣∣u0
h

∣∣∣∣∣∣∣∣∣2
0
+ ΔtL

∣∣∣u0
h

∣∣∣ 2
s0
h

+Δt
(

ce + ε−1
) k∑

n=0

‖Fn‖2∗ + Δtε
k∑

n=0

∣∣∣∣∣∣pn
h

∣∣∣∣∣∣2
n,e

)
, (4.10)

with constants c and ce independent of the discretization parameters.

Proof. Taking v = un
h and q = pn

h in (3.7), adding the two statements, applying (4.2) and using the
algebraic identity (a − b)a = 1

2 (a2 − b2) + 1
2 (a − b)2 yields

1

2

∥∥un
h

∥∥2
Ωn

h
− 1

2

∥∥∥un−1
h

∥∥∥2

Ωn
h

+ 1

2

∥∥∥un
h − un−1

h

∥∥∥2

Ωn
h

+ Δt

(
1

2

∣∣∣∣∣∣un
h

∣∣∣∣∣∣2
n + γs

∣∣un
h

∣∣ 2
sn
h

+ γJ
∣∣pn

h

∣∣ 2
Jn

h

)
≤ ΔtFn (

un
h, pn

h
)

.
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AN EULERIAN FINITE ELEMENT METHOD 13

Using (3.9) and the Cauchy–Schwarz inequality, we estimate the right-hand side as follows:

Fn (un
h, pn

h

) ≤ ‖Fn‖∗
(∣∣∣∣∣∣un

h

∣∣∣∣∣∣2
n,e + ∣∣∣∣∣∣pn

h

∣∣∣∣∣∣2
n,e

) 1
2 ≤ ‖Fn‖∗

(∣∣∣∣∣∣un
h

∣∣∣∣∣∣
n,e + ∣∣∣∣∣∣pn

h

∣∣∣∣∣∣
n,e

)
≤ √

ce/2‖Fn‖∗
(∣∣∣∣∣∣un

h

∣∣∣∣∣∣2
n + |un

h|2sn
h

) 1
2 + ‖Fn‖∗

∣∣∣∣∣∣pn
h

∣∣∣∣∣∣
n,e

≤ 1

2

(
ce + ε−1

)
‖Fn‖2∗ + 1

4

(∣∣∣∣∣∣un
h

∣∣∣∣∣∣2
n + |un

h|2sn
h

)
+ ε

2

∣∣∣∣∣∣pn
h

∣∣∣∣∣∣2
n,e ,

where ce ≥ 1 satisfies
∣∣∣∣∣∣un

h

∣∣∣∣∣∣2
n,e ≤ ce

2 (
∣∣∣∣∣∣un

h

∣∣∣∣∣∣2
n + |un

h|2sn
h
) (cf. (4.5)). This yields

∥∥un
h

∥∥2
Ωn

h
−

∥∥∥un−1
h

∥∥∥2

Ωn
h

+
∥∥∥un

h − un−1
h

∥∥∥2

Ωn
h

+ Δt

(
1

2

∣∣∣∣∣∣un
h

∣∣∣∣∣∣2
n +

(
2γs − 1

2

) ∣∣un
h

∣∣ 2
sn
h
+ 2γJ

∣∣pn
h

∣∣ 2
Jn

h

)
≤ Δt

((
ce + ε−1)‖Fn‖2∗ + ε

∣∣∣∣∣∣pn
h

∣∣∣∣∣∣2
n,e

)
. (4.11)

Applying the estimate (4.6) (with v = un−1
h ) into (11) and summing the result over n = 1, . . . , k yields

∥∥∥uk
h

∥∥∥2

Ωk
h

+
k∑

n=1

∥∥∥un
h − un−1

h

∥∥∥2

Ωn
h

+ Δt
k∑

n=1

(
1

4

∣∣∣∣∣∣un
h

∣∣∣∣∣∣2
n +

(
2γs − L − 1

2

) ∣∣un
h

∣∣ 2
sn
h
+ 2γJ

∣∣pn
h

∣∣ 2
Jn

h

)

≤
∥∥∥u0

h

∥∥∥
Ω0

h

+ Δt

4

∣∣∣∣∣∣∣∣∣u0
h

∣∣∣∣∣∣∣∣∣2
0
+ ΔtL

∣∣∣u0
h

∣∣∣ 2
s0
h
+ c1Δt

k−1∑
n=0

∥∥un
h

∥∥2
Ωn

h

+ Δt
k∑

n=1

((
ce + ε−1)‖Fn‖2∗ + ε

∣∣∣∣∣∣pn
h

∣∣∣∣∣∣2
n,e

)
.

The estimate (4.10) now follows from a discrete Gronwall inequality. �
For the complete stability result, we need to estimate the pressure term on the right-hand side of

(4.10). The estimate is given in the next lemma.

Lemma 4.6 Assume h2 � Δt. Then

Δt
k∑

n=1

∣∣∣∣∣∣pn
h

∣∣∣∣∣∣2
n,e � exp(ctk)

(∥∥∥u0
h

∥∥∥2

Ω0
h

+ Δt

(∣∣∣∣∣∣∣∣∣u0
h

∣∣∣∣∣∣∣∣∣2
0
+

∣∣∣u0
h

∣∣∣ 2
s0
h

)
+ Δt

k∑
n=0

‖Fn‖2∗

)
.
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14 M. NEILAN AND M. OLSHANSKII

Proof. Let v ∈ Vn
h satisfy (3.5) with q = pn

h. Then using the identity (3.7) and bounds in (3.5), (3.9),
(4.8) and (4.5), we have

∣∣∣∣∣∣pn
h

∣∣∣∣∣∣2
n,i ≤ bn

h

(
v, pn

h

)
=

∫
Ωn

h

un
h − un−1

h

Δt
· v dx + an

h

(
un

h, v
) − Fn(v, 0)

�
(

1

Δt

∥∥∥un
h − un−1

h

∥∥∥
Ωn

h

‖v‖Ωn
h

+ ∣∣∣∣∣∣un
h

∣∣∣∣∣∣
n |||v|||n + γs

∣∣un
h

∣∣
sn
h
|v|sn

h
+ ‖Fn‖∗ |||v|||n,e

)
�

(
h

Δt

∥∥∥un
h − un−1

h

∥∥∥
Ωn

h

+ ∣∣∣∣∣∣un
h

∣∣∣∣∣∣
n + γs

∣∣un
h

∣∣
sn
h
+ ‖Fn‖∗

) ∣∣∣∣∣∣pn
h

∣∣∣∣∣∣
n,i .

Thus, we have

Δt
∣∣∣∣∣∣pn

h

∣∣∣∣∣∣2
n,i � h2

Δt

∥∥∥un
h − un−1

h

∥∥∥2

Ωn
h

+ Δt
(∣∣∣∣∣∣un

h

∣∣∣∣∣∣2
n + ∣∣un

h

∣∣ 2
sn
h
+ ‖Fn‖2∗

)
. (4.12)

Combining this with (4.5) leads to the estimate of the pressure norm in the extended domain:

Δt
∣∣∣∣∣∣pn

h

∣∣∣∣∣∣2
n,e � h2

Δt

∥∥∥un
h − un−1

h

∥∥∥2

Ωn
h

+ Δt
(∣∣pn

h

∣∣ 2
Jn

h
+ ∣∣∣∣∣∣un

h

∣∣∣∣∣∣2
n + |un

h|2sn
h
+ ‖Fn‖2∗

)
.

Summing inequality over n = 1, . . . , k, and using h2 � Δt and (4.10) gets

Δt
k∑

n=1

∣∣∣∣∣∣pn
h

∣∣∣∣∣∣2
n,e �

k∑
n=1

∥∥∥un
h − un−1

h

∥∥∥2

Ωn
h

+ Δt
k∑

n=1

(∣∣pn
h

∣∣ 2
Jn

h
+ ∣∣∣∣∣∣un

h

∣∣∣∣∣∣2
n + |un

h|2sn
h

)
+ Δt

k∑
n=1

‖Fn‖2∗.

All terms on the right-hand side of the last inequality are estimated in (4.10). Thus, by applying (4.10)
with ε sufficiently small, but independent of the discretization parameters proves the lemma. �

Remark 4.7 The corresponding 2-step backward differentiation formula (BDF2) scheme is analogous

to (3.7), but where the discrete time derivative is replaced by
3un+1

h −4un−1
h +un−2

h
2Δt , and the computational

mesh is enlarged. In particular, δh is replaced by 2δh in the definition of T n
h,e so that functions in Vn−2

h
are well defined in Ωn

h . In this setting, a stability result holds for the discrete velocity similar to (4.10),
but where ‖un

h − un−1
h ‖2

Ωn
h

is replaced by ‖un
h − 2un−1

h + un−2
h ‖2

Ωn
h
. The proof of this result is similar to

that of Lemma 4.5, but using a different polarization identity, and so we omit the details.
The stability of the discrete pressure solution in the BDF2 scheme is more subtle and requires a

different argument than Lemma 4.6. Analogous to (4.12), there holds

Δt
∣∣∣∣∣∣pn

h

∣∣∣∣∣∣2
n,i � h2

Δt

∥∥∥3un
h − 4un−1

h + un−2
h

∥∥∥2

Ωn
h

+ Δt
(∣∣∣∣∣∣un

h

∣∣∣∣∣∣2
n + ∣∣un

h

∣∣ 2
sn
h
+ ‖Fn‖2∗

)
,
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AN EULERIAN FINITE ELEMENT METHOD 15

and therefore

k∑
n=1

Δt
∣∣∣∣∣∣pn

h

∣∣∣∣∣∣2
n,e � h2

Δt

k∑
n=0

∥∥un
h

∥∥2
Ωn

h
+ Δt

n∑
k=1

(∣∣∣∣∣∣un
h

∣∣∣∣∣∣2
n + ∣∣un

h

∣∣ 2
sn
h
+ Δt

∣∣pn
h

∣∣ 2
Jn

h

)
+ Δt

k∑
n=1

‖Fn‖2∗

≤ Th2

Δt2
max

0≤n≤N

∥∥un
h

∥∥2
Ωn

h
+ Δt

n∑
k=1

(∣∣∣∣∣∣un
h

∣∣∣∣∣∣2
n + |un

h|2sn
h
+ Δt

∣∣pn
h

∣∣ 2
Jn

h

)
+ Δt

k∑
n=1

‖Fn‖2∗.

Thus, for h � Δt, the terms in the right-hand side of this expression are uniformly bounded, hence
obtaining a stability estimate for the discrete pressure solution. Note that when combined with (4.3), we
have the relation Δt � h in the case of BDF2.

4.3 Consistency

The consistency of the scheme (3.7) largely follows the arguments in von Wahl et al. (2022, Lemma 5.14).
First, we identify the extensions of the smooth exact solution Eu and Ep with u and p, respectively, both
of which satisfy (2.9). Recall that for u, we consider the divergence-free extension from (2.8). We then
set Un = un − un

h and P
n = pn − pn

h to denote the errors at tn.

Lemma 4.8 There holds for all (v, q) ∈ Vn
h × Qn

h,

∫
Ωn

h

U
n − U

n−1

Δt
· v dx + an

h(U
n, v) − bn

h(v,Pn) + bn
h(U

n, q) + γJJn
h(Pn, q) = Cn

c(v, q),

where the consistency error Cn
c(v, q) satisfies

∣∣Cn
c(v, q)

∣∣ � hq‖un‖H2(Ωn) |||q|||n,e

+ (Δt + hq + hm1 + hm2)
(
‖fn‖H1(Ωn) + ‖u‖W3,5(Q) + ‖pn‖Hm2 (Ωn) + ‖un‖Hm1+1(Ωn)

)
|||v|||n,e ,

(4.13)

for any integers m1, m2 satisfying m1 ≥ mv and m2 ≥ mq + 1.

Proof. Recall that Ψn : Oδh
(Ωn

h ) → Oδh
(Ωh) is the mapping that connects the approximate and exact

domains and satisfies (3.1). Testing (2.2) with v� := v ◦ Ψ −1
n , v ∈ Vn

h and q� := q ◦ Ψ −1
n , q ∈ Qn

h and
integrating by parts we arrive at the identity

∫
Ωn

∂un

∂t
v� dx +

∫
Ωn

∇un : ∇v� dx −
∫

Γ n
[(∇un)n] · v� ds +

∫
Ωn

(w · ∇un) · v�) dx

−
∫

Ωn
pndivv� dx +

∫
Γ n

pn(v� · n) ds −
∫

Ωn
q�divun dx =

∫
Ωn

fn · v� dx.
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16 M. NEILAN AND M. OLSHANSKII

Subtracting this identity from (3.7) gives the consistency term:

Cn
c(v, q) =

∫
Ωn

fn · v� dx −
∫

Ωn
h

fn · v dx︸ ︷︷ ︸
=:T1

+
∫

Ωn
h

un − un−1

Δt
· v dx −

∫
Ωn

∂un

∂t
v� dx︸ ︷︷ ︸

=:T2

+ ân
h(u

n, v) −
∫

Ωn
∇un : ∇v� dx +

∫
Γ n

[(∇un)n] · v� ds −
∫

Ωn
(w · ∇un) · v� dx︸ ︷︷ ︸

=:T3

+
∫

Ωn
pndivv� dx −

∫
Γ n

pn(v� · n) ds − bn
h(v, pn)︸ ︷︷ ︸

=:T4

− bn
h(u

n, q)︸ ︷︷ ︸
=:T5

+ γJJn
h(pn, q) + γss

n
h(u

n, v)︸ ︷︷ ︸
=:T6

.

Estimates for T1 and T4 are exactly the same as in von Wahl et al. (2022, Lemma 5.14):

|T1| � hq‖fn‖H1(Ωn)‖v‖Ωn
h
, |T4| �

(
hq‖pn‖H1(Ωn) + hm2‖pn‖Hm2 (Ωn)

) |||v|||n,e (4.14)

for any m2 ≥ 1. Likewise, the arguments in Lehrenfeld & Olshanskii (2019, Lemma 5.6) and von Wahl
et al. (2022, Lemma 5.14) show

|T2| � (Δt + hq)‖u‖W2,∞(Q̂)‖v‖Ωn
h

� (Δt + hq)‖u‖W3,5(Q)‖v‖Ωn
h
, (4.15)

where we used (2.9c) in the last inequality.
Unlike the problem considered in von Wahl et al. (2022), the bilinear form ân

h(·, ·) includes convective
terms. Nonetheless, the same arguments in (von Wahl et al., 2022, Lemma 5.14) are valid, yielding the
following estimate:

|T3| �
(

hq‖u‖W2,∞(Q̂) + hm1‖un‖Hm1+1(Ωn)

)
|||v|||n,e

�
(

hq‖u‖W3,5(Q) + hm1‖un‖Hm1+1(Ωn)

)
|||v|||n,e , (4.16)

where m1 ≥ 1 is only dictated by the regularity of un, and we have again used (2.9c).
On the other hand, the estimate of T5 = bn

h(u
n, q) should involve the elementwise scaled H1-norm

for the pressure (which is nonstandard and not provided in von Wahl et al., 2022). Since the extension
of u is divergence-free, the estimate of T5 reduces to estimating the boundary term:

T5 = −
∫

Γ n
h

(un · n)q ds.
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AN EULERIAN FINITE ELEMENT METHOD 17

Since Ψn(Γ
n

h ) = Γ n, there holds

un ◦ Ψn = 0 on Γ n
h .

Using the estimate ‖un − un ◦ Ψn‖Γ n
h

� hq+1‖un‖H2(Ωn) (cf. Gross et al., 2015, Lemma 7.3) and the
discrete trace inequality in Lemma 4.4, we have

|T5| =
∣∣∣∣∣
∫

Γ n
h

(
un − un ◦ Ψn

) · n q ds

∣∣∣∣∣ ≤ ∥∥un − un ◦ Ψn

∥∥
Γ n

h
‖q‖Γ n

h
� hq+1‖un‖H2(Ωn)‖q‖Γ n

h

� hq‖un‖H2(Ωn) |||q|||n,e . (4.17)

Finally, the consistency term involving ghost stabilization T6 vanishes provided un ∈ Hmv+1(Ωn
h,e)

and pn ∈ Hmq+1(Ωn
h,e). The estimate (4.13) then follows from (4.14)–(4.17) and the discrete Poincare

inequality (4.7). �

4.4 Error estimates

In this section, we combine the stability and consistency estimates to obtain error estimates for the finite
element method (3.7). As a first step, let (un

I , pn
I ) ∈ Vn

h × Qn
h be approximations to the exact solution

satisfying

∣∣∣∣∣∣un − un
I

∣∣∣∣∣∣
n,e + ∣∣un − un

I

∣∣
sn
h

� hmv‖un‖
Hmv+1

(
Ωn

h,e

) � hmv‖un‖Hmv+1(Ωn),∣∣∣∣∣∣pn − pn
I

∣∣∣∣∣∣
n,e + ∣∣pn − pn

I

∣∣
Jn

h
� hmq+1‖pn‖

Hmq+1
(
Ωn

h,e

) � hmq+1‖pn‖Hmq+1(Ωn),
(4.18a)

and

h−1
∥∥un − un

I

∥∥
Ωn

h
� hmv‖u‖

Hmv+1
(
Ωn

h,e

) � hmv‖u‖Hmv+1(Ωn),∥∥pn − pn
I

∥∥
Ωn

h
+ h1/2

∥∥pn − pn
I

∥∥
Γ n

h
� hmq+1‖pn‖

Hmq+1
(
Ωn

h,e

) � hmq+1‖pn‖Hmq+1(Ωn).
(4.18b)

The existence of such un
I and pn

I satisfying (4.18) follows from the inclusions (3.3)–(3.4) and standard
scaling and interpolation arguments. We also assume the initial condition of the finite element method
(3.7) is u0

h = u0
I .

We then split the error into its interpolation and discretization errors:

U
n = (

un − un
I

)︸ ︷︷ ︸
=:ηn

+ (
un

I − un
h

)︸ ︷︷ ︸
=:en

h∈Vn
h

, P
n = (

pn − pn
I

)︸ ︷︷ ︸
=:ζ n

+ (
pn

I − pn
h

)︸ ︷︷ ︸
=:dn

h∈Qn
h

.
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18 M. NEILAN AND M. OLSHANSKII

Then the pair (en
h, dn

h) ∈ Vn
h × Qn

h satisfies

∫
Ωn

h

en
h − en−1

h

Δt
· v dx + an

h

(
en

h, v
) − bn

h

(
v, dn

h

) + bn
h

(
en

h, q
) + γJJh

(
dn

h, q
) = Cn

c(v, q) + Cn
I (v, q),

(4.19)

for all (v, q) ∈ Vn
h × Qn

h, where Cn
c(v, q) is given in Lemma 4.8 and

Cn
I (v, q) = −

∫
Ωn

h

ηn − ηn−1

Δt
· v dx︸ ︷︷ ︸

=:T7

− an
h(η

n, v)︸ ︷︷ ︸
=:T8

+ bn
h(v, ζ n)︸ ︷︷ ︸
=:T9

− bn
h(η

n, q)︸ ︷︷ ︸
=:T10

− γJJn
h(ζ n, q)︸ ︷︷ ︸
=:T11

.

We now bound the terms in Cn
I (v, q) individually.

First, by continuity estimates and the approximation properties (4.18), we have

|Ti| �
(

hmv‖un‖Hmv+1(Ωn) + hmq+1‖pn‖Hmq+1(Ωn)

)
|||v|||n,e i = 8, 9, 11. (4.20)

For the temporal interpolation error, there holds by Lehrenfeld & Olshanskii (2019, Lemma 5.7) and the
discrete Poincare inequality (4.7),

|T7| � hmv sup
t∈[0,T]

(‖u‖Hmv+1(Ω(t)) + ‖ut‖Hmv (Ω(t))

) ‖v‖Ωn
h

� hmv sup
t∈[0,T]

(‖u‖Hmv+1(Ω(t)) + ‖ut‖Hmv (Ω(t))

) |||v|||n,e . (4.21)

For T10, we integrate by parts to obtain

T10 =
∫

Ωn
h

(divηn)q dx −
∫

Γ n
h

(ηn · n)q ds =
∫

Ωn
h

ηn · ∇q dx +
∑

F∈Fn
h,e

∫
F∩Ωn

h

ηn · n [[q]] ds.
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AN EULERIAN FINITE ELEMENT METHOD 19

Consequently by an elementwise trace inequality and (4.18), there holds

|T10| ≤
⎛⎝ ∑

T∈T n
h,e

h−2
T ‖ηn‖2

T

⎞⎠
1
2
⎛⎝ ∑

T∈T n
h,e

h2
T‖∇q‖2

T

⎞⎠
1
2

+
⎛⎝ ∑

F∈Fn
h,e

h−1
F ‖ηn‖2

F

⎞⎠
1
2
⎛⎝ ∑

F∈Fn
h,e

hF ‖[[q]]‖2
F

⎞⎠
1
2

�

⎛⎝ ∑
T∈T n

h,e

(
h−2

T ‖ηn‖2
T + ‖∇ηn‖2

T

)⎞⎠
1
2
⎛⎝h2

∑
T∈T n

h,e

‖∇q‖2
T + h

∑
F∈Fn

h,e

‖[[q]]‖2
F

⎞⎠
1
2

� hmv‖un‖Hmv+1(Ωn) |||q|||n,e . (4.22)

Summarizing (4.20)–(4.22), we proved the bound

∣∣Cn
I (v, q)

∣∣ �
(

hmv sup
t∈[0,T]

(‖u‖Hmv+1(Ω(t)) + ‖ut‖Hmv (Ω(t))) + hmq+1‖pn‖Hmq+1(Ωn)

)
× (|||v|||n,e + |||q|||n,e

)
.

(4.23)

From (4.13) and (4.23), it follows that the functionals Cn
c and Cn

I are bounded as

∣∣Cn
c(v, q)

∣∣ + ∣∣Cn
I (v, q)

∣∣ ≤ C(Δt + hq + hmv + hmq)(|||v|||n,e + |||q|||n,e),

where C > 0 depends on Sobolev norms of the exact solution and the source function.
Note that en

h and dn
h satisfy the same FE formulation (3.7) as un

h and pn
h, but with the zero initial

condition and the right-hand side functional given by Fn(v, q) = Cn
c(v, q) + Cn

I (v, q). Therefore, we can
apply the stability results from Lemmas 4.5 and 4.6 to estimate en

h and dn
h:

∥∥∥ek
h

∥∥∥2

Ωk
h

+ Δt
k∑

n=1

(∣∣∣∣∣∣en
h

∣∣∣∣∣∣2
n + ∣∣∣∣∣∣dn

h

∣∣∣∣∣∣2
n,e

)
≤ C(Δt + hq + hmv + hmq+1)2.

Applying the triangle inequality and the estimates (4.18) one more time leads to our final result.
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20 M. NEILAN AND M. OLSHANSKII

Theorem 4.9 Assume the solution (u, p) to (2.2) is sufficiently smooth and let un
h, pn

h be the solution to
(3.7). Assume that the discretization parameters satisfy h2 � Δt � h. The following error estimate holds

max
1≤n≤N

∥∥u(tn) − un
h

∥∥2
Ωn

h
+ Δt

N∑
n=1

(∣∣∣∣∣∣u(tn) − un
h

∣∣∣∣∣∣2
n + ∣∣∣∣∣∣p(tn) − pn

h

∣∣∣∣∣∣2
n,e

)
≤ C(Δt + hq + hmv + hmq+1)2, (4.24)

with a constant C independent of discretization parameters, but dependent on the solution (u, p) and final
time T .

Remark 4.10 Compared to the error estimates in von Wahl et al. (2022), Theorem 4.9 provide optimal-
order error estimates for the velocity and pressure approximations. The key tool that differentiates our
result is the application of a scaled L2(H1) norm for the pressure approximation. This strategy provides
the flexibility to effectively handle the nondivergence-free property of the discrete time derivative (un −
un−1

h )/Δt in the stability analysis under the mesh constraint h2 � Δt � h (cf. von Wahl et al., 2022,
Lemma 5.10 and Lemma 4.6).

Remark 4.11 In the Oseen problem 2.2, we have implicitly taken the viscosity ν = 1 to simplify the
presentation. If Δu is replaced by νΔu, then the velocity ghost penalty term in CutFEM discretization
needs to scale like ν to perform the convergence and stability analysis. Also, γss

n
h(·, ·) would be replaced

by ν−1γss
n
h(·, ·). In this general setting, a version of Theorem 4.9 holds, but the constant C > 0 scales

like exp(ν−1T); see von Wahl et al. (2022) for details.

5. Examples of finite element pairs satisfying Assumption 3.1

In this section, we show that several canonical finite element pairs for the Stokes problem satisfy the
three inequalities (3.5) in Assumption 3.1.

5.1 The Mini element

For a tetrahedron T ∈ Th, let bT ∈ P4(T) denote the standard quartic bubble function, i.e., the product
of the barycentric coordinates of T . The lowest-order Mini pair with respect to Th is given by Arnold et
al. (1985)

Vh =
{

v ∈ H1(Ω̂) : v|T ∈ P1(T) + bTP0(T) ∀T ∈ Th

}
,

Qh =
{

q ∈ H1(Ω̂) : q|T ∈ P1(T) ∀T ∈ Th

}
.

In this setting, we can take mv = 1, mv = 4 and mq = 1.

We now verify conditions (3.5). Given q ∈ Qn
h, we set v ∈ Vn

h so that v|T = h2
TbT∇q|T for all

T ∈ T n,i
h . The function v is extended to Ωn

e by zero. The results in Guzmán & Olshanskii (2018, Section
6.5) show that (3.5a)–(3.5b) is satisfied. We also have by a simple scaling argument

‖v‖2
Ωn =

∑
T∈T n,i

h

‖v‖2
T =

∑
T∈T n,i

h

h4
T‖bT∇q‖2

T �
∑

T∈T n,i
h

h4
T‖∇q‖2

T � h2 |||q|||2n,i .
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AN EULERIAN FINITE ELEMENT METHOD 21

Thus, (3.5c) is satisfied as well.

5.2 The Taylor–Hood pair

The (generalized) Taylor–Hood finite element pair is given by

Vh =
{

v ∈ H1(Ω̂) : v|T ∈ Pm(T) ∀T ∈ Th

}
,

Qh =
{

q ∈ H1(Ω̂) : q|T ∈ Pm−1(T) ∀T ∈ Th

}
,

where m ≥ 2. Thus, in this case mv = mv = m and mq = m − 1 in (3.3)–(3.4). Denote by En,i
h the set of

interior one-dimensional edges of the the interior triangulation T n,i
h . We then denote by T̃ n,i

h the members

in T n,i
h that have at least three edges in En,i

h (cf. Remark 3.3). We assume that the domain of pressure
ghost-stabilization is chosen such that (3.6) is satisfied. This is the case provided cδh

is sufficiently large
(but still O(1)).

We denote the set of interior edges of T̃ n,i
h by Ẽn,i

h . Then for e ∈ Ẽn,i
h , we let φe denote the quadratic

bubble function associated with e, and let te be a unit tangent vector of e. Note that φe has support on
the tetrahedra that have e as an edge, and the number of such tetrahedra is uniformly bounded due to the
shape-regularity of T̃ n

h,i.
For a given q ∈ Qn

h, we define

v =
∑

e∈Ẽn,i
h

h2
eφe(∇q · te)te.

Because q is continuous, we see that ∇q·te is single-valued on e, and thus v is continuous and a piecewise
polynomial of degree m; hence, v ∈ Vn

h.
It is shown in Guzmán & Olshanskii (2018, Section 6.1) that (3.5a)–(3.5b) is satisfied, thus it remains

to show (3.5c). This follows from the identity ‖φe‖∞ = 1 and the shape-regularity and quasi-uniformity
of the triangulation:

‖v‖Ω̃n
h

� h2
∑

T∈T̃ n
h,i

‖∇q‖2
T .

5.3 The P3 − P0 pair

As our final example, we consider the P3 − P0 pair. In particular, the discrete velocity space is the cubic
Lagrange space, and the discrete pressure space consists of piecewise constants:

Vh = Pc
3(Th) =

{
v ∈ H1(Ω̂) : v|T ∈ P3(T) ∀T ∈ Th

}
,

Qh = P0(Th) =
{

q ∈ L2(Ω̂) : q|T ∈ P0(T) ∀T ∈ Th

}
.
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22 M. NEILAN AND M. OLSHANSKII

For each interior face F ∈ Fn
h,i with F = ∂T1 ∩ ∂T2, we denote by nj the outward unit normal of ∂Tj

restricted to F. Then for given q ∈ Qn
h, we define v ∈ Vn

h such that for all F ∈ Fn
h,i,∫

F
v · n1 ds = −hF

∫
F
(q1n1 + q2n2) · n1 ds = hF

∫
F

[[q]] · n1 ds,

where qj = q|Tj
. Note that this condition implies

∫
F v · nF ds = −hF

∫
F [[q]] · nF ds for any unit normal

of F ∈ Fn
h,i. We further specify that v = 0 on all vertices and edges in T n

h,i, v × nF = 0 on all faces
F ∈ Fn

h,i, and v = 0 on the boundary of Ωn
h,i. We extend v to Ωn

h,e by zero.
By the divergence theorem, and using that q is piecewise constant, we have

bn
h(v, q) =

∫
Ωn

h,i

(div v)q dx = −
∑

T∈T n
h,i

∫
∂T

q(v · n∂T) ds � h
∑

F∈Fn
h,i

‖[[q]]‖2
F = |||q|||2n,i .

Thus, (3.5b) is satisfied. A scaling argument also yields on each T ∈ T n
h,i,

|v|Hm(T) � h2−2m
T

∑
Fn

h,i�F⊂∂T

hF ‖[[q]]‖2
F .

Consequently, by another scaling argument,

|||v|||2n,e � ‖∇v‖2
Ωn

h,i
+ h−2‖v‖2

Ωn
h,i

� h
∑

F∈Fn
h,i

‖[[q]]‖2
F = |||q|||2n,i ,

‖v‖2
Ωn

h
= ‖v‖2

Ωn
h,i

� h3
∑

F∈Fn,i
h,i

‖ [[q]] ‖2
F = h2 |||q|||2n,i ,

and therefore (3.5a) and (3.5c) are satisfied as well.
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Appendix A. Proof of Lemma 4.4

We first note that if Qn
h ⊂ H1(Ωn

h,e), then a standard trace inequality and the definition of |||·|||n,e yields

‖q‖Γ n
h

� ‖q‖H1(Ωn
h)

� h−1 |||q|||n,e + ‖q‖Ωn
h
. (A.1)

To establish (4.9) in this case, we first apply a standard Poincare–Friedrich inequality

‖q‖Ωn
h,i

� ‖∇q‖Ωn
h,i

∀q ∈ ◦
L2 (Ωn

h,i

) ∩ H1 (Ωn
h,i

)
,

and (4.5) to conclude

‖q‖Ωn
h

� ‖q‖Ωn
h,i

+ |q|Jn
h

� ‖∇q‖Ωn
h,i

+ |q|Jn
h

� h−1
(
|||q|||n,i + |q|Jn

h

)
� h−1 |||q|||n,e ∀q ∈ Qn

h.

The estimate (4.9) then follows from this inequality and (A.1).
Thus, it suffices to prove (4.9) in the case Qn

h consists of discontinuous polynomials. To this end,
we introduce an enriching operator Eh : Qn

h → Qn
h ∩ H1(Ωn

h,e) constructed by averaging (Brenner &
Ridgway Scott, 2008). Let

T n
T = {

T ′ ∈ T n
h,e : T̄ ∩ T̄ ′ �= ∅},

and let Fn,I
T denote the set of interior faces of T n

T . Then there holds

|q − Ehq|2H�(T)
� h1−2�

T

∑
F∈Fn,I

T

‖[[q]]‖2
L2(F)

� = 0, 1. (A.2)

It then follows from (A.2) and the trace inequality

‖q‖T∩Γ n
h

� h−1/2
T ‖q‖T + h1/2

T ‖∇q‖T ∀q ∈ H1(T)
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that

‖q − Ehq‖2
Γh

=
∑

T∈T n
h,e

‖q − Ehq‖2
T∩Γ n

h

�
∑

T∈T n
h,e

(
h−1

T ‖q − Ehq‖2
T + hT‖∇(q − Ehq)‖2

T

)
�

∑
F∈Fn

h,e

‖[[q]]‖2
F � h−1 |||q|||2n,e . (A.3)

Furthermore, by a standard trace inequality and (A.2), we have

‖Ehq‖2
Γ n

h
� ‖Ehq‖2

H1(Ωn
h )

≤ ‖Ehq‖2
H1(Ωn

h,e)

�
∑

T∈T n
h,e

‖q‖2
H1(T)

+ h−1
∑

F∈Fn
h,e

‖[[q]]‖2
F

� h−2 |||q|||2n,e + ‖q‖2
Ωn

h,e
. (A.4)

Combining (A.3)–(A.4) yields

‖q‖Γ n
h

� h−1 |||q|||n,e + ‖q‖Ωn
h,e

. (A.5)

Finally, since q|Ωn
h,i

∈ ◦
L2(Ωn

h,i), we apply the discrete Poincare–Friedrich inequality (Brenner &
Ridgway Scott, 2008, Theorem 10.6.12)

‖q‖2
Ωn

h,i
�

∑
T∈T n

h,i

‖∇q‖2
T + h−1

∑
F∈Fn

h,i

‖[[q]]‖2
F � h−2 |||q|||2n,i ,

and (4.5) to conclude

‖q‖Ωn
h,e

� ‖q‖Ωn
h,i

+ |q|Jn
h

� h−1
(
|||q|||n,i + |q|Jn

h

)
� h−1 |||q|||n,e .

Combined with (A.5), we obtain (4.9).
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