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Abstract

The paper studies a scalar auxiliary variable (SAV) method to solve the Cahn—Hilliard equa-
tion with degenerate mobility posed on a smooth closed surface I'. The SAV formulation
is combined with adaptive time stepping and a geometrically unfitted trace finite element
method (TraceFEM), which embeds I" in R3. The stability is proven to hold in an appropri-
ate sense for both first- and second-order in time variants of the method. The performance
of our SAV method is illustrated through a series of numerical experiments, which include
systematic comparison with a stabilized semi-explicit method.

Keywords Surface Cahn—Hilliard equation - SAV approach - Adaptive time-stepping -
TraceFEM - Membrane phase separation

1 Introduction

Many physical systems are described by PDEs in the form of gradient flow of a free energy
functional E (¢), ¢ being the problem unknown. Assuming that E (¢) is bounded from below,
the gradient flow in a Hilbert space H is defined by the identity

(Z—‘f,n} S (1)

which holds for all test functions n € H, (-, -) being the inner product in H and % the
functional derivative of E with respect to ¢. PDEs in the form of gradient flow are often
derived from the second law of thermodynamics. Examples include models for thin films
(see, e.g., [14]), polymers (see, e.g., [12]), and liquid crystals (see, e.g., [34]). In this paper,
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we focus on one particular gradient flow problem: the Cahn—Hilliard equation posed on a
surface. Our interest in this problem stems from its application in biomembrane modeling
[13, 19, 43, 45].

Constructing efficient, robust, and energy-stable numerical schemes for gradient flow
problems is not a trivial task. If one is not careful in designing a numerical scheme that
preserves the energy dissipation mechanism inherent in gradient flows, an extremely small
time step might be required to dissipate energy, resulting in an inefficient scheme. For a
comprehensive review of numerical schemes for gradient flows, we refer to [37]. One effective
numerical technique for a broad range of gradient flows is the scalar auxiliary variable (SAV)
method [36], which enables the construction of efficient and accurate time discretization
schemes. Since its introduction in [36], the SAV method has been developed and applied to
various problems, including epitaxial thin film growth models [8], models for single- and
multi-component Bose-Einstein condensates [46], and the square phase field crystal model
[41].

SAV methods for our specific problem, namely the Cahn—Hilliard equation, have been
extensively studied in volumetric domains. Convergence and error analysis for a first-order
semi-discrete SAV scheme are conducted in [35]. An unconditionally energy-stable and
second-order accurate SAV algorithm is presented in [6]. Error estimates for first and second-
order fully discretized SAV schemes, utilizing a mixed finite element discretization for the
spatial variables, are derived in [7]. An improvement over the standard SAV method is
represented by a class of extrapolated and linearized SAV methods based on Runge—Kutta
time integration [1]. These methods can achieve arbitrarily high-order accuracy for the time
discretization of the Cahn—Hilliard problem. To the best of our knowledge, it is the first time
that the SAV method is applied to the surface Cahn—Hilliard problem. Other surface problems
are treated in [39, 40].

In early versions of the SAV method [36, 37], numerical efficiency for the Cahn—Hilliard
equations is achieved through the computationally cheap invertibility of the discrete bihar-
monic operator in simple geometric settings discretized by, e.g., a tensor product finite
difference method. For the equations posed on surfaces, such fast solvers are not available,
in general.

Time adaptivity is a crucial feature of a numerical method for the Cahn—Hilliard equation
in order to achieve efficiency. This is because the Cahn—Hilliard equation exhibits two distinct
time scales. The first time scale is associated with the evolution of the order parameter (¢
in problem (1)) due to interfacial effects. This time scale is typically fast and governs the
short-term behavior of the system. The second time scale is associated with the relaxation of
the order parameter towards equilibrium. This time scale is typically very slow and governs
the long-term behavior of the system. Using a constant time step, which is oblivious to
these two time scales, would result in a highly inefficient simulation. In [20], high-order
unconditionally stable SAV methods that utilize variable time step sizes were developed to
address this issue.

In this paper, for the first time, SAV methods are combined with a geometrically unfitted
finite element method for the numerical solution of the Cahn—Hilliard problem posed on
a surface. In [39, 40] instead, the authors have opted for a fitted finite element method,
combined with a exponential-type SAV scheme. We consider both first-order and second-
order backward differentiation formula schemes and prove their energy stability. Additionally,
we present a time-adaptive version of the second-order scheme, drawing inspiration from
[15]. Implementation details are provided for all the proposed schemes. The unfitted finite
element method we choose for spatial discretization is called the trace finite element method
(TraceFEM) [30, 32]. The selection of an unfitted finite element method is motivated by its
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flexibility in handling complex shapes, as demonstrated in this paper, and possibly evolving
surfaces, as shown in [23, 31, 44]. Among all the unfitted finite element methods, Trace FEM
offers several advantages that make it appealing: (i) it employs a sharp surface representation,
(ii) surfaces can be defined implicitly without the need for surface parametrization, (iii)
the number of active degrees of freedom is asymptotically optimal, and (iv) the order of
convergence is optimal.

The paper outline is as follows. Sect. 2 states the surface Cahn—Hilliard problem under
consideration and rewrites it using the scalar auxiliary variable. Sect. 3 presents the first and
second order SAV schemes and provides proof of their energy stability. In Sect. 4, we discuss
the time adaptive version of the second order SAV scheme. Several numerical results are
presented in Sect. 5 and conclusions are drawn in Sect. 6.

2 Problem Definition

Let I' be a closed sufficiently smooth surface in R3, with the outward pointing unit normal n.
The Cahn—Hilliard equation [4, 5] posed on I" describes phase separation in a two component
system on the surface I". In order to state this equation, we denote the mass concentrations of
the two components with ¢; = m; /m, i = 1, 2, where m; are their masses and m is the total
mass of the system. Since m = m| + m», we have c| + c» = 1. Let ¢; be the representative
concentration c, i.e. ¢ = ¢1. We note that we choose to work with concentration instead of
order parameter ¢ like in the generic problem (1). Let p be the constant total density of the
system p = m/S, where S is the surface area of I'. Finally, let divr, Vr, and Ar denote the
surface divergence, the tangential gradient, and the Laplace—Beltrami operator respectively.

The Cahn—Hilliard equation is a conservation law for concentration c¢(x, ¢) that uses an
empirical law, called Fick’s law, for the diffusion flux:

9
pa—j — divp(MVru) =0 onT x (0, T], @

where M is the so-called mobility coefficient and u is the chemical potential, which is defined
as the functional derivative of the total specific free energy f with respect to the concentration
c. The total specific free energy is given by:

1> 2
f(©) = fole) + S€7|Vrel’, 3

where fy(c) is the free energy per unit surface and € is thickness of the interface layer between
the two components. The second term at the right-hand side in (3) represents the interfacial
free energy based on the concentration gradient. By taking the functional derivative of f in
(3) with respect to ¢, we obtain:
n= % = fyle) — €2Arc onT. CH)

The physical meaning of 1 is chemical potential. Equation (2), (4) represent the Cahn—Hilliard
problem written in mixed form, i.e., as two coupled second-order equations. Obviously,
problem (2), (4) needs to be supplemented with initial condition ¢ = ¢p on I x {0}, for a
given cg.

System (2), (4) needs to be supplemented with the definitions of mobility M and free
energy per unit surface fj. Out of all the possible definitions of M, we choose the so-called
degenerate mobility:
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M= M(c)=c( —o). )

A common choice for fj is given by

1
fole) = Zc2(1 — )% (©6)

Straightforward calculations show that for constant mobility M, the Cahn—Hilliard prob-
lem defines gradient flows of the energy functional

E(c)=/f(c)ds=/ %62|VFC|2 ds + Ei(c), with El(c>=ffo(c)ds, (7
T T I

in H~1(I") (adual space to H ' (I")). For the degenerate mobility, the Cahn—Hilliard problem is
known to define gradient flows in a weighted-Wasserstein metric [29]. Incorporating various
definitions of mobility M (c¢) into the Cahn—Hilliard equations can exert a notable impact on
the dynamic behavior of ¢, even without altering the energy landscape. Thanks to gradient
structure mentioned above, the following energy dissipation property holds:

d%E (c) <0. ®)

A time discretization scheme for problem (2), (4) is said to be energy stable if it satisfies

a discrete energy dissipation law, i.e., it needs to adhere to fundamental property (8). In this

paper, we construct an energy stable scheme for (2), (4) using the scalar auxiliary variable

(SAV) approach (see [37] for areview). As the name suggests, this method introduces a scalar
auxiliary variable

r(t) = Ei(c()) +C, (C))

where constant C can be added to ensure that r(¢) is well defined. Without loss of generality,
for the rest of the paper we will assume that E1(c) > 0, i.e., C = 0. Then, system (2), (4)
can be rewritten as follows:

p% = divr (M(c)Vrp) on I x (0. 11 1o
w0 2n onT x (0, T], (a1
VEi(c)
dr

i ﬁ/rfé(d%dS onI" x (0, T]. (12)
System (10)—(12) represents the starting point for the construction of our energy stable SAV
scheme.

For the numerical method presented in the next section, we need a variational formulation
of surface problem (10)—(12). To devise it, we multiply (10) by v € H'(I') and (11) by
g € H'(I), integrate over I" and employ the integration by parts identity [43]. This leads to
the formulation: Find (c, n) € H'\(I) x H! (I'") such that

d
/pivm=—/M@Wmem, (13)
r ot r
_ r(t) , 5
nqgds = fo(©)gds + [ € VrcVrqgds, (14)
r r vEi(c) r

forall (v, q) € H'(I') x H(I'), while (12) remains unchanged.
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The majority of the papers available in the literature on SAV methods for the Cahn—Hilliard
problem employs constant mobility. Nevertheless, degenerate mobility has been considered
in many practical applications (see, e.g., [43]) and is non-trivial to handle numerically (see,
e.g., [18] for recent advances). The only paper that proposes a SAV approach for the Cahn—
Hilliard equation with degenerate mobility is [21].

3 Space and Time Discretization

For the space discretization of the surface Cahn—Hilliard problem described in the previous
section, we apply the trace finite element method (TraceFEM) [32, 43]. This is an unfitted
method that allows to solve for scalar or vector fields on surface I' without the need for a
parametrization or triangulation of T" itself. As typical of unfitted methods, TraceFEM relies
on a triangulation of a bulk computational domain 2 (I' C €2 holds) into shape regular
tetrahedra “blind” to the position of I'. Such position is defined implicitly as the zero level
set of a sufficiently smooth (at least Lipschitz continuous) function ¢, i.e., I’ = {x € Q :
¢ (x) = 0}, such that [V¢| > ¢p > 0 in a 3D neighborhood of the surface.

Let 7j, be the collection of all tetrahedra, such that Q = Urcr;, T. Typically, we refine
the grid 7; near I'. The subset of tetrahedra that have a nonzero intersection with T is
denoted by 7,". The domain formed by all tetrahedra in 7, is denoted by Q}. On 7,/" we
use a standard finite element space of continuous functions that are piecewise-polynomials
of degree 1. Obviously, other choices of finite elements are possible (see, e.g., [16]). This
bulk (volumetric) finite element space is denoted by Vj,:

Vi={veC(@,):ve P|(T)forany T €7, }.

Finally, to define geometric quantities and for the purpose of numerical integration, we
approximate I with a “discrete” surface I'j,, which is defined as the zero level set of a P;
Lagrangian interpolant ¢, for level set function ¢ on the given mesh. The (-, -) inner product
and || - || norm further denotes the L>(T";) inner product and norm. The approximate normal
vector field n, = V¢, /|Véy| is piecewise smooth on I'j,. The orthogonal projection into
tangential space is given by P, (x) =1 —ny, (x)nhT (x) for almost all x € I'y,. For v € V), the
surface gradient on I'j, is easy to compute from the bulk gradient Vi, v = P, V.

Let us turn to time discretization. At time instance t" = nAt, with time step At = %, C
denotes the approximation of c¢(¢", X); similar notation is used for other quantities of interest.
Variational problem (12)—(14) discretized in space by TraceFEM and in time by the implicit
Euler (also called BDF1) scheme reads: Given c¢q and the associated E(cg) and rg (9), for
n > 0 at time step #"*! find (cZH, ,uZH, r,’frl) € Vi x Vi x R such that

n

,O(CZ+l —cp, vh) = —At(M(c”)VrhpLZ'H, Vrhvh) — hAt/ (nh ~V/LZ+1)(1‘I;, ~Vvh)dx,

Q
(15)
n+1 _ ’”ZH /(on 2 n+1 ~1.2
(i an) o (fo(ch)s an) + € (Vney ™, Vingn) +h'e
Ei(cy
/QF (ny, - Ve (ny, - Vg )dx, (16)
h
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1
———(fo(er)- 4" = ch)
2 Ei(c)

for all (vp, gn) € Vi x Vj. The volumetric terms in (15)—(16) are included to stabilize the
resulting algebraic systems [3, 16]. Notice that the nonlinear terms in (15)—(17) have been
linearized with a first order extrapolation. We will call this approach SAV-BDF1.

a7

Theorem 3.1 Let

2
”“‘ + he? th vc”“‘ (18)

rn+1l _ 6 n+1
By = 2 HV”ch H + RIS

be the modified discrete energy. Scheme (15)—(17) admits the following energy balance

2
(EnJrl _ En) L < HVF P VA 2 S 2 L he” he? H"” V(Cn+l e )
h h nCh nCh h h 2 h LZ(QF)
2
:——M Vi, 1 "“——H vt : 19
( (C ) rh l—‘h ) LZ(Q}:) ( )

In particular, this implies that the scheme (15)—(17) is energy stable in the sense that I;"ZH <
E}, (the discrete analogue of (8)) foralln =0,1,2,....
Proof Combine the equations obtained from taking v, = /LZ'H /pin (15) and g, = (C'H'1
cj) in (16) to get
rZ-H reon n+1 n 2 n+1 n
ﬁ(f()(ch)’ch = i) + (VoL Vi, (T =€)

+h_162/ (ny, - Vc”“)(nh V() n+l —c}p))dx
Qh

At 11 hAt 2
= =S (M@)o V) = 5 e v . 20
0 ( ( ) l"h/’Lh My ) P M LZ(Q};) ( )
By plugging (17) multiplied by 2r”+] into (20), we obtain:
ZrZH(rZH —rp)+e (Vl"h . Vi, (h - ch))
+ale /Q (- Ve ) (- V(! — o)) dx
h
:_ﬁ(M( )V 1, Vi ) — th vu”“‘ . 1)
P nh h LZ(QZ)
Using identity
2 (ak+1 gkl _ak) _ ‘ak+1’2 _ ‘akr n (ak+1 _ ak>2
in (21) leads to (19). O

We see that introducing the auxiliary variable r allows for the unconditionally stable
scheme with the explicit treatment of the non-linear term. The same conclusion will be true
for the second order scheme introduced next.
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For a second order scheme in time, we adopt Backward Differentiation Formula of order
2 (BDF2). A second order approximation of a first time derivative and a linear extrapolation
of second order at time ¢":

dc 3¢ — 4t g en2
at 2At

, =20 -2 (22)

respectively. Then, the space and time discrete Version of problem (12)—(14) reads: Given cy
and the associated E1(cg) and rq (9), find (ch, uh, rh) e V, x Vi x R such that (15)-(17)
hold and for n > 1 at time step "+ find (c"“, [LZ_H "+1) € Vi, x V, x R such that

S Lo (et — e+ e wn) = — (M@ Vi Vi o)
v, Vo, 23)
Qh

n+1
"h

L qh) = ————
" @)

+ir162/r (ny, - Ve (my, - Vg )dx, (24)
Q

h

(upt! (5@ an) + € (In,cp ™t Vi,qn)

1
—=—(f3(&). 3¢}
5 E1(EZ) o\Ch I

for all (vp, gn) € Vi x Vj,. We will call this approach SAV-BDF2.

3t —drf 4 = i+, @)

Theorem 3.2 Let

Fn+l e 1|2 e 1 2 12 1 2
EZ+ =5 ‘VFhCZJr H + 5 H2VI‘;,CZ+ —Vienl + ZJF ‘ + Zr;,’Jr —ry
2 2 h— 1 2 2
1 n+l n
+ ”n Vet H - V2 — ¢ 26
h 2@ (ny, - ( h h) L2 (26)

be the modified discrete energy. Scheme (15)—(17) admits the following energy balance

~ ~ 6 2 2
(E"“—E;:)+ Hv,,c;z+ — 2Vl + VT lH - 2r;,'+r,’;—1‘

2At
+—th Vet =2 4o ‘)\mr = - M@)oy V)
2h At a2
_ th.wh ‘LZ(Q’F). 27)

In particular, this implies that the scheme (15)—(17) is energy stable in the sense that EZH <
E;: (the discrete analogue of (8)) foralln =0,1,2,....
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Proof Combine the equations obtained from taking v, = 2A¢ ;L"H /pin(23),qp = (3c"+]
4ef + ¢!y in (24) to get

n+1

m(foq) 3t —dcp + N+ (et W, Bt —Ach + )
E;

+h_162f (ny, - Vc"+1)(nh V(3C"+1 4CZ+CZ_1))dx
Q

2At
= ( ( )Vrhﬂ'h Vl-‘h ”+1)

28
@) (28)
By plugging (25) multiplied by 2r”+] into (28), we obtain
Zr;:‘H(Sr"'H drp + 1y h 4+ ez(Vrhc"+l Vii, (36""'1 —4ey + CZ_I))

e / (- V) (g - V(3 — dcf + 1)) dx
Qr

h

2At

=—7(M( )V Vit
2hAt
- T o (nh . V/Lh+ )(nh V/LnJrl)d .
h

Let us make use of identity

2 2 2
z(ak+1’3ak+l — 44 +ak71) _ ’ak+1’ i ‘2ak+l _ak’ T ‘ak+1 — 24k +ak71‘

2 2
— ‘ak’ — ’2ak — ak_l’ (29)
to get:
2 2 2 2 2
rZH‘ + ‘ZrZH - r}f’ + r;ZH —2rp + r]'fl‘ — |r}'l‘|2 - ‘Zrh - 1‘ HVrh n+l H
2 2 2 2
€ €
+5 HZVFIZCZH = Vnch| +5 HVrhC —2V.¢; + V¢, IH

€2 €2 2
—7|}Vrh62||2— HWFM Vrhch '

2
n+1 n+l
+ — th Ve e + — th V(2c), ch) 2@
he? 2
e v, n+l _ 20" n 1‘
+ 2 H © e L2(Q))
he?

h62 2 1 2
= - Ve Fagar, - th v —dh v
ZA
=——<M(c )V, i T Vg, gt

2

ZhAt
/ My, - Vg - v hdx,
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which corresponds to (27). O

Note that both SAV-BDF1 and SAV-BDF?2 finite element methods preserve the conser-
vation property % fr cdx = 0 of the Cahn—Hilliard equation posed on a closed smooth
surface. One can see this by letting v, = const # 0 in (15) and (23), which is a legitimate
test function from Vj,.

3.1 Implementation

Schemes (15)—(17) and (23)—(25) can be conveniently rewritten as relatively minor modifi-
cations of “standard” mixed TraceFEM for the surface Cahn—Hilliard problem.

By plugging r"H obtained from (17) into Eq. (16), we can rewrite problem (15)—(17) as:
Given cq and the associated E| (cg) and rg (9), for n > 0 at time step "+ find (c”“ , ,uZ“) 1S

Vi x V

0
Lo (et ) + (M) Vi V) + / L Vit - Vudx = = (e, o),
Qh

(30)
Wt gn)  — Vet vy —hle? / my, - Verthmy - Vay)dx
Q
1 '
~ 35 h)(fo(ch) YD, an)
= T (fo( h) qn) — (fo(ch) Ch)(fo(ch) qn) (€1))

/E]( n

2E(h)

for all (v, gn) € Vi, x V). The only differences between (30)—(31) and a standard TraceFEM
for the surface Cahn—Hilliard problem with the implicit Euler scheme for time discretization
are the additional last term at the left-hand side in (31), which corresponds to a rank-one
matrix in the algebraic form of the problem, and the modified terms at the right-hand side in
(31). At every time step t"11, the value of the auxiliary variable is computed with (17).

In a similar way, we plug r”Jrl obtained from (25) into Eq. (24) and rewrite problem
(23)—(25) as: Given c¢g and the associated E1(co) and ry (9), find (c,i, “}1,) e Vi x Vj such
that (30)~(31) hold and get ;| from (17), then forn > 1 attime step "*+! find (¢} "', ui*") €
Vi, x V}, such that

—<3c"“ ) + (MEC) Vi, up ' o) + b f My - Vg thmy - Vop)dx = P,

(32)
Wt an) — (e Vingn) — h e /Q my, - Veprthmy, - Vgp)dx
h
= (fo@. SR qn) = b (33)

T 2E1)
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forall (vp, gn) € Vi x Vj,. The forcing terms in (32)—(33) are computed from known quantities

2
bZ“ = A—p(cz,vh) - E(C” 1, ),
bl =47(f @), qn) — L(f (GRS
" \/m 0\*h 3W 0\en
3E( (fo@) D (foE, qh>+6E ( h)(fo(”’ OED. an).

These forcing terms and the last term at the left-hand side in (33) are the only differences
with respect to a standard TraceFEM for the surface Cahn—Hilliard problem with BDF2 for
time discretization. At every time step "', the value of the auxiliary variable is computed
with (25).

For the numerical results in Sect. 5, we use the SAV-BDF2 scheme. In summary, we
implement is as follows:

— Step 0: from cg, get E1(cp) as in (7) and rg from (9).

— Step I: at t! = At, solve (30)-(31) to get (ch, uh) and compute rh from (17).

— Step 2: attime "1, n > 1, solve (32)—(33) to get (c"“, /LZ+1) and compute r,’f“ from
(25).

The implementation described above differs from the one presented in the original papers
on SAV schemes for gradient flows [20, 24, 37]. In those papers, the properties of the finite
difference method on uniform grids were utilized to enhance computational efficiency. How-
ever, since we have chosen to work with finite elements for greater geometric flexibility, we
cannot leverage the same properties. As a result, we decided to rewrite the SAV scheme as a
minor modification of a standard finite element discretization to simplify the implementation
process. Consequently, the additional terms introduced by the SAV method lead to dense
matrices in the associated linear systems.

4 Adaptive Time-Stepping Scheme

The dynamic response of the Cahn—Hilliard equation exhibits significant temporal scale
variations. Initially, a rapid phase of spinodal decomposition is observed, which can be
adequately captured with a small time step (e.g., At = O(107>)). This phase is followed
by a slower process of domain coarsening and growth, for which a larger time step can be
employed (e.g., At ranging from 10! to 10). As the phase separation process approaches
equilibrium, the time step can be further increased (e.g., up to At = ©(10%)). In the literature,
various approaches can be found where different time-step sizes are manually set during the
simulation. See, e.g., [43]. However, a more intelligent approach to handle such a wide range
of temporal scales is to employ an adaptive-in-time method that selects the time step based
on an accuracy criterion.

We choose to apply the adaptive time stepping technique first presented in [15]. Before
explaining the algorithm and how the time step is chosen, let us write the time discretization
of the space-discrete version of problem (12)—(14) using the BDF2 scheme with a variable
time step. Let Ar" = "1 — ¢ be the variable time step and set " = Ar"/Ar"~!. At time
"+, the time derivative is approximated as follows

%%acn+l_ﬂcn+ycnil o = 1+2qn7 ﬁ=1+qna V= (qn)z .
ot At 1+qg" 1+q"

)
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( n+1 n+1 n+1) c

Then, the fully discrete problem reads: for n > 1 at time step t"*! find ST,

Vi, x Vj, x R such that

,O ( n+1 n—1 )
ac — pc, + yc , U
At h B +v h h

:—(M(EZ)VrhMZ“,Vrhvh)—h/ (g, - Vi) (my, - Vo )dx, (34)
Qh
1

- (@) e
2 JE @)

and (24) hold for all (v, gr) € Vj x Vj,. The formula to compute ¢, is (22).
For the implementation of (24), (34), (35), we proceed as explained in Sect. 3.1, i.e., we
plug r"'H obtained from (35) into Eq. (24) and rewrite problem (24), (34), (35) as: forn > 1

at time step ! find (c”“, ,uZH) € Vi, x Vj such that

n—1

cerH —Bry +yr, = i Bey +ve,” 1), (35)

L™ )+ (M@, Vo) + / (- Vi) g - Vo)dx =
(36)

(i ™ an) = € (Ve Vi gn) — h*le2/r(nh Ve, - Van)dx
Szh

~3E ( TR @ qn) = djt (37)

forall (vp, gn) € Vi x Vj. The forcing terms in (36)—(37) are computed from known quantities

at = Lo (pej v — -(vep v,
it = a\/%(fé(@,)a qan) — j;%(fo(ﬁi) an)
~ 5 Eﬂ( RLCATACART
tE 2y D DUED-

Now, let us describe the adaptive time stepping technique. Let us call c”le and CZ’JEI the
solutions at time #"*! of (30)=(31) and (36)—(37), respectively. We define

+1 +1
wet et =l 18
e = W, (38)
which is taken as input to update the time step:
tol \1/2
Atn-‘rl <~ F(€n+l, Atn-‘rl) — ;(en_,’_l) Atn+1, (39)

where ¢ is a “safety” coefficient and 70l is a user prescribed tolerance. Algorithm 1 describes
the steps to take at time "' in order to adapt the time step.

Let r"+1 = Ar"T1/ At be the time step ratio. Approximately 40 years ago, it was demon-
strated that a variable step BDF2 method for ordinary initial-value problems is zero-stable if
Pt < 1+ V2 [17]. Advancing beyond this classical result has proven to be a challenging
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Algorithm 1 Adaptive time-stepping algorithm at time ¢!

Given ¢, and At"

Solve (30)-(31) with A" 1 = Ar to get ¢!

Solve (36)-(37) with A" ! = Ar to get ¢!
n+1

1:

2:

3: Compute e using (38)

4 if "t > 1ol then

5:  Update Ar"t! using (39)
6: gotol

7: else

8 Set A"t = F(e, 1, At
9: end if

Continue to /"2

task, which has recently gained attention. Through the utilization of techniques involving
discrete orthogonal convolution kernels, it has been possible to establish that variable time
step BDF2 methods are computationally robust, with 0 < "1 < 3.561, for linear diffusion
models [28], a phase-field crystal model [26], and the molecular beam epitaxial model with-
out slope selection [27]. These techniques have been extended to the Cahn—Hilliard model
in [25]. The complexity associated with proving the energy stability of the scheme presented
in this section is significant, to the extent that it could be the subject of a separate research
paper. Therefore, we will not delve into it in this work.

5 Numerical Results

After validating the accuracy of the numerical methods presented in Sect. 3.1, we compare
the numerical results obtained with our SAV methods against the results obtained with a
stabilized scheme inspired from [38] and presented in [43]. We will start by comparing the
numerical results produced by the different methods on a sphere in Sect. 5.2. Then, in Sect. 5.3
we will present results on a more complex surface that represents an idealized cell.

For implementation of the methods in Sects. 3 and 4, we use open source Finite Element
package DROPS [9].

5.1 Convergence Test

To assess our implementation of the SAV schemes presented in Sect. 3.1, we consider the
following exact solution to the non-homogeneous surface Cahn—Hilliard equations on the
unit sphere, centered at the origin:

x3
24/2¢

Here, X = (x1, x2, x3)7 denotes a point in R3. The exact chemical potential ;* can be readily
computed from Eq. (4) using the free energy per unit surface in (6) and the above c*. The
non-zero forcing term is computed by plugging ¢* and ©* into (2). We set p = 1 and mobility
M as in (5). In (9), we take C = 1. Since it is known that smaller values € are numerically
challenging (see, e.g., [11, 38]), we consider decreasing values of €: € = 1, 0.1, 0.05.

We characterize the surface I' as the zero level set of function ¢(x) = |x| — 1, and
embed I" in an outer cubic domain Q = [—5/3, 5/3]%. The initial triangulation Tp, of Q

1
c*(t,x) = 3 <1 + tanh

) , tel0,1]. (40)
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AVEN

VIZ/Z VI,

Fig. 1 Approximation of exact solution (40) with € = 0.05 computed with mesh level £ = 6 and a magnified
view of the interface thickness with the bulk mesh near the surface

consists of 8 sub-cubes, where each of the sub-cubes is further subdivided into 6 tetrahedra.
Further, the mesh is refined towards the surface, and £ € N denotes the level of refinement,
with the associated mesh size hy = %. Figure 1 shows the approximation of (40) with
€ = 0.05 computed with mesh level £ = 6 and a magnified view of the interface thickness
with the bulk mesh near the surface. The time step is also refined with the mesh as specified
below. Time step adaptivity is not used for this test.

Figure 2 shows the evolution of the L, errors of ¢ computed with the SAV-BDF1 and
SAV-BDF2 methods for € = 0.05, 0.1, 1. We used P! elements and for each panel in Fig. 2
we report the Ly errors associated to four mesh refinement levels. We see that in all the
cases the errors increase slightly at the beginning of the time interval and then they tend to
reach a plateau. The thinner the interface between phases is (i.e., the smaller €), the faster the
plateau is reached. In the case of the smallest €, i.e., € = 0.05, Fig. 3 displays the evolution
of modified energy (18), which is associated to the SAV-BDF1 method, and modified energy
(26), which is associated to the SAV-BDF2 method, for mesh level £ = 5. As expected, the
modified energies decay in time. Note that SAV-BDF1 modified energy approximates E (c)
from (7), while the SAV-BDF2 modified energy approximates 2E(c).

Tables 1 and 2 report the L, errors of ¢ at the end of the time interval (i.e., t = 1)
computed with the SAV-BDF1 and SAV-BDF2 method, respectively. Mesh refinement level
and associated time steps are reported in the tables, which provide the order of convergence
too. We see that while the L, errors are somewhat different, the order of convergence is the
same. It is around 2, especially when going from ¢ = 5 to £ = 6, which is the optimal order
of convergence for P! elements. We believe that the order of convergence is not spoiled when
using BDF1 for time discretization because the time step value is small enough to prevent the
time discretization error from dominating over the space discretization error. Table 2 can be
compared with Table 3, which provides L; errors of ¢ at + = 1 computed with the stabilized
method in [43] and BDF2, together with the rates of convergence. Not just the convergence
rates are the same, but the errors are also very similar. We have highlighted in red the digits
in Table 3 that differ from Table 2.

The results in this section give us confidence in our implementation of the SAV methods
within DROPS. In addition, they suggest that for the values of € we consider £ = 5 and Ar =
0.005 are appropriate levels of refinement for mesh size and time step as they provide small
discretization errors and are more computationally efficient than £ = 6 and At = 0.0025.
Hence, for the results in the next section we will use £ = 5 and Ar = 0.005.
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¢ = 0.05, BDF1 ¢=0.1, BDF1 ¢=1, BDF1
10° 10° 10°
mesh level - 3 mesh level - 3 mesh level - 3
= = =mesh level -4 = = =mesh level -4 = mesh level - 4
mesh level - 5 wsesssses mesh level - 5 107" mesh level - 5
10 === mesh level - 6 1071 | |=amem mesh level - 6 -= mesh level - 6

time time time
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Fig.2 Convergence test: evolution of the L errors of ¢ computed with the SAV-BDF1 method (top row) or
SAV-BDF2 method (bottom row) for € = 0.05 (left), € = 0.1 (center), and € = 1 (right)

BDF1 BDF2
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time time

Fig.3 Convergence test, ¢ = 0.05: decay of modified energy (18) (left) and (26) (right) for mesh level £ = 5

Table 1 Convergence test, ¢ = 0.05, 0.1, 1: L, errors of ¢ at + = 1 computed with the SAV-BDF1 method
and P! elements for different meshes and time steps, together with the rates of convergence

e =0.05 e =0.1 e=1
Mesh level At Error Rate Error Rate Error Rate
0.02 2.8247 102 1.3409-1072 0.3453-102
0.01 0.9720 102 1.54 0.3816-102 1.81 0.0765-10~2 2.18

0.005 0.2909-102 1.76 0.1139-1072 1.91 0.0181.1072 2.07
0.0025 0.0735-102 1.96 0.0267-1072 1.98 0.0045-102 2.01

=) WO B SN OV )

@ Springer



Journal of Scientific Computing (2023) 97:57 Page 150f22 57

Table 2 Convergence test, ¢ = 0.05, 0.1, 1: L, errors of ¢ at + = 1 computed with the SAV-BDF1 method
and P! elements for different meshes and time steps, together with the rates of convergence

e =0.05 e=0.1 e=1
Mesh level At Error Rate Error Rate Error Rate
0.02 2.8338 102 1.3438-1072 0.3474-102
0.01 0.9727 102 1.54 0.3824-1072 1.81 0.0767-1072 2.18

0.005 0.2869-1072 1.76 0.1013-10~2 1.91 0.0181-10~2 2.07
0.0025  0.0732:1072 1.96 0.0255-1072 1.98 0.0045-10~2 2.01

AN W kR W

Table3 Convergence test, ¢ = 0.05, 0.1, 1: Ly errors of ¢ at = 1 computed with the stabilized method in
[43], P! elements, and BDF?2 for different meshes and time steps, together with the rates of convergence

e =0.05 e=0.1 e=1
Mesh level At Error Rate Error Rate Error Rate
3 0.02 2.8335-1072 1.3434.1072 0.3475 1072
4 0.01 0.9725-1072 1.54 0.3823-1072 1.81 0.0767-1072 2.18
5 0.005 0.2869-10~2 176 0.1013-10~2 1.91 0.0182-1072  2.07
6 0.0025  0.0732:1072 196  0.0255-1072 1.98  0.0045-1072 2.01

5.2 Phase Separation on the Sphere

Our interest in surface phase field problems, such as the Cahn—Hilliard equation [33, 42—
45], stems from their practical applications in targeted drug delivery. The phenomenon of
lipid phase separation has been utilized to enhance the delivery performance of targeted lipid
vesicles [2, 22], as the formation of phase-separated patterns on the vesicle surface has been
associated with increased target selectivity, cell uptake, and overall efficacy. In our previous
works [42, 45], we validated our numerical results obtained using the approaches described in
[33, 43] against laboratory experiments. We achieved good agreement between the numerical
and experimental results for different lipid membrane compositions.

In this paper, we consider 3 membrane compositions. Each membrane composition cor-
responds to a certain fraction a of the sphere surface area (since these vesicles are spherical)
covered by one representative phase. In this section, we present results fora = 0.5, 0.3, 0.7,
which are experimentally relevant values.

In order to model an initially homogenous mix of components, the initial composition
co is defined as a realization of Bernoulli random variable ¢,pg ~ Bernoulli(a) with mean
value a, i.e. we set:

€0 := Crand (X) for active mesh nodes x. 41)

As mentioned at the end of the previous section, the interface thickness € is set to 0.05, which
is a realistic value for lipid vesicles.

Let us start with the results obtained with the SAV-BDF2 method without time step adap-
tivity and compare them with the results obtained with the stabilized method in [43]. Figure 4
shows the evolution of phases for a = 0.5, which means that 50% of the sphere surface is
covered by the representative phase (red in the figure) and the remaining 50% is covered
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c(x, t)

Fig.4 Phase separation on the sphere, @ = 0.5: evolution of phases computed with the stabilized method in
[43] (top) and the SAV-BDF2 method without time step adaptivity (bottom)
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SAV
BDF2

c(x, t)

Fig.5 Phase separation on the sphere, a = 0.3: evolution of phases computed with the stabilized method in
[43] (top) and the SAV-BDF2 method without time step adaptivity (bottom)

by the other phases (blue in the figure). There is no observable difference in the spinodal
decomposition and subsequent domain ripening given by the two methods.

Figure 5 and 6 display the evolution of phases for a = 0.3 and a = 0.7, respectively.
Notice that there are opposite cases: 30% of the sphere surface is covered by the representative
(red) phase for @ = 0.3, while 30% of the sphere surface is covered by the opposite (blue)
phase for a = 0.7. If we were to use opposite initial conditions in these two cases, Figs. 5
and 6 would look identical just with inverted colors (red to blue and viceversa). However,
the initial conditions were generated randomly according to (41) and so the evolution of the
red domains in Fig. 5 looks similar (not identical) to the evolution of the blue domains in
Fig. 6. For both values of a though, we see that again there is no observable difference in the
solution computed with the stabilized method in [43] and the solution give by the SAV-BDF2
method without time step adaptivity.

Figure 7 displays the decay of modified energy (26) for the three values of a. We see that
the decay is more or less rapid depending on the value of a. However, in no case at t = 25
the system is close to an energy plateau, which we observed already at r = 1 for the simple
convergence test in Sect. 5.1. See the graphs in Fig. 3.

Next, we compare the results obtained with the time-adaptive SAV-BDF2 method to those
obtained with the stabilized method in [43] in its time adaptive version. For this comparison,
we select only one representative value of a, namely a = 0.5. In Fig. 8, which illustrates
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Fig.6 Phase separation on the sphere, @ = 0.7: evolution of phases computed with the stabilized method in
[43] (top) and the SAV-BDF2 method without time step adaptivity (bottom)
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Fig.7 Phase separation on the sphere: decay of modified energy (26) for a = 0.3 (left), a = 0.5 (center), and
a = 0.7 (right)
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»
Time
adaptive
SAV

Fig.8 Phase separation on the sphere,a = 0.5: evolution of phases computed with the time-adaptive stabilized
method in [43] (top) and the time-adaptive SAV-BDF2 method (bottom)

the evolution of phases until reaching the equilibrium configuration, we once again observe
no difference in either the spinodal decomposition or the domain ripening between the two
methods.

A comparison of the time step sizes and time step number over time is shown in Fig. 9.
From Fig. 9 (left), we can see that the time step grows for both methods until approximately
t = 50, after which it fluctuates around Ar = 1. Although the time step sizes are generally
comparable for both methods, the SAV method utilizes slightly larger time steps during this
initial integration stage. Consequently, time step number n required to integrate the system
up to any ¢ < 200 is smaller for the time-adaptive SAV-BDF2 method compared to the
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Fig. 9 Phase separation on the sphere, @ = 0.5: evolution of the time step size At (left) and number of
the time steps required at each time instant (right) for the time-adaptive stabilized method from [43] and the
BDF2-SAV method with time step adaptivity
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Fig. 10 Phase separation on the sphere: computational time (in s) needed by the stabilized method in [43]
and the SAV method with no time step adaptivity to complete the first 100 time steps of the simulations in
Fig. 4 (a =0.5),5(a =0.3),and 6 (a = 0.7)

time-adaptive stabilized method in [43]. However, the difference is not significant. See Fig. 9
(right).

We conclude this section with a comment on the computational time. All the computations
were executed on a machine with an AMD EPYC 7513 32-Core Processor and 512 GB RAM.
Figure 10 reports the computational time needed by the simulations whose results are shown
in Figs. 4, 5, and 6 to complete the first 100 time steps. The time required by the stabilized
method in [43] varies between one half and two thirds of the time required by the SAV method
with no time step adaptivity. Let us now turn to the simulations in Fig. 8, i.e., those with
time adaptivity. The time-adaptive SAV-BDF2 method takes 319 time steps in time interval
(0, 200] for a total computational time of about 41 min, while the time-adaptive stabilized
method in [43] takes about 9min to complete 379 time steps in the same time interval.
The simulation with the time-adaptive SAV-BDF2 method requires less time steps but takes
longer overall. As mentioned at the end of Sect. 3.1, the reason for this difference in the
computational times is due to the fact that the extra terms introduced by the SAV method
make the matrices of the associated linear systems dense. If one used a finite difference
method on uniform grids for space discretization as in [20, 24, 37], higher computational
efficiency could be achieved for the SAV method. Our preference for a finite element method
and non-uniform meshes is for greater geometric flexibility, as shown in the next subsection.
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Fig. 12 Phase separation on an idealized cell: evolution of phases computed with the stabilized method in
[43] (top) and the SAV method and BDF2 without time step adaptivity (bottom)

5.3 Phase Separation on a Complex Manifold

Because of our interest in phase separation on biological membranes in general, not just lipid
vescicles, we need to be able to handle surfaces that are more complex than the sphere. Here,
we consider an idealized cell with surface I" given by the zero level set of following function
[10, 43]:

1, 5 4x3
P(x) = 4x1 +x; + i+ % R
Figure 11 illustrates a side view of this complex manifold and an angle view of the surface
mesh.

We embed surface I' in bulk domain 2 = [-2,2] x [—4/3,4/3] x [-4/3, —4/3]. A
tetrahedral mesh for €2 is generated in the same way as for the cases in the previous subsection,
i.e., by diving Q2 into cubes and then diving the cubes into tetrahedra. The active elements,
which are the elements that intersect surface, are further refined for a total of 14298 degrees
of freedom. This mesh has a level of refinement comparable to mesh ¢ = 5 in Sect. 5.2. We
fix the time step to Az = 0.005 and do not allow for time step adaptivity.

We set the interface thickness € to 0.05, like in Sect. 5.2. Figure 12 compares the evolution
of the phases given by SAV-BDF2 method without time step adaptivity with the evolution
given by the stabilized method in [43] for a = 0.5. We recall that a = 0.5 means that 50%
of the idealized cell surface is covered by the representative (red) phase and the remaining
50% is covered by the other phases. Just like in the case of the sphere (see Fig. 4), there is
no observable difference in the results given by the two methods.
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6 Conclusion

The paper introduced and investigated an SAV formulation of the geometrically unfitted trace
finite element method for the surface Cahn—Hilliard equations with degenerate mobility. The
BDF1 and BDF2 versions of the method were proven to dissipate specific energy, thus con-
forming to the fundamental property of the continuous problem. The method demonstrated
optimal convergence rates for smooth solutions and performed well in predicting phase sep-
aration and pattern formation in spherical and more complex shapes. Thus, it proved to be a
valuable tool in modeling multicomponent lipid vesicles. A comparison with a semi-explicit
mixed trace finite element method formulation with stabilization from [38] shows very similar
performance of both methods for the given class of problems. Both methods are well-suited
for time adaptation. Experiments suggested that SAV method allows for somewhat larger
time steps when the same adaptive criteria are used for the SAV and semi-explicit stabilized
methods. The stabilized method requires an additional parameter to be chosen, while the
SAV method adds a rank-one dense matrix to the resulting system of algebraic equations,
which must be solved at each time step. The availability of a fast algebraic solver for such
systems may determine one’s preference between these two solid methods.

Funding This work was partially supported by US National Science Foundation (NSF) through grant DMS-
1953535 (PT A. Q., co-PI M. O.) and DMS-2309197 (PI M. O).

Data availibility The datasets generated during and/or analyszed during the current study are available from
the corresponding author on reasonable request.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this
article.

References

1. Akrivis, G., Li, B., Li, D.: Energy-decaying extrapolated RK-SAV methods for the Allen—Cahn and
Cahn-Hilliard equations. STAM J. Sci. Comput. 41(6), A3703—-A3727 (2019)

2. Bandekar, A., Zhu, C., Gomez, A., Menzenski, M.Z., Sempkowski, M., Sofou, S.: Masking and triggered
unmasking of targeting ligands on liposomal chemotherapy selectively suppress tumor growth in vivo.
Mol. Pharm. 10(1), 152-160 (2013)

3. Burman, E., Hansbo, P., Larson, M.G.: A stabilized cut finite element method for partial differential
equations on surfaces: the Laplace—Beltrami operator. Comput. Methods Appl. Mech. Eng. 285, 188-207
(2015)

4. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9(9), 795-801 (1961)

5. Cahn, J.W,, Hilliard, J.E.: Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys.
28(2), 258-267 (1958)

6. Chen, C., Yang, X.: Fast, provably unconditionally energy stable, and second-order accurate algorithms
for the anisotropic Cahn—Hilliard model. Comput. Methods Appl. Mech. Eng. 351, 35-59 (2019)

7. Chen, H.,Mao, J., Shen, J.: Optimal error estimates for the scalar auxiliary variable finite-element schemes
for gradient flows. Numer. Math. 145(1), 167-196 (2020)

8. Cheng, Q., Shen, J., Yang, X.: Highly efficient and accurate numerical schemes for the epitaxial thin film
growth models by using the SAV approach. J. Sci. Comput. 78, 1467-1487 (2019)

9. DROPS package. http://www.igpm.rwth-aachen.de/DROPS/

10. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289-396 (2013)
11. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn—Hilliard equation.
Numer. Math. 99(1), 47-84 (2004)

@ Springer


http://www.igpm.rwth-aachen.de/DROPS/

Journal of Scientific Computing (2023) 97:57 Page210f22 57

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

37.

38.

39.

Fraaije, J.G.E.M., Sevink, G.J.A.: Model for pattern formation in polymer surfactant nanodroplets. Macro-
molecules 36(21), 7891-7893 (2003)

Garcke, H., Kampmann, J., Ritz, A., Roger, M.: A coupled surface-Cahn—Hilliard bulk—diffusion system
modeling lipid raft formation in cell membranes. Math. Models Methods Appl. Sci. 26(06), 1149-1189
(2016)

Giacomelli, L., Otto, F.: Variational formulation for the lubrication approximation of the Hele—Shaw flow.
Calc. Var. Partial. Differ. Equ. 13, 377403 (2001)

. Goémez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.: Isogeometric analysis of the Cahn—Hilliard phase-field

model. Comput. Methods Appl. Mech. Eng. 197(49-50), 43334352 (2008)

Grande, J., Lehrenfeld, C., Reusken, A.: Analysis of a high-order trace finite element method for PDEs
on level set surfaces. STAM J. Numer. Anal. 56(1), 228-255 (2018)

Grigorieff, R.D.: Stability of multistep-methods on variable grids. Numer. Math. 42, 359-377 (1983)
Guillen-Gonzalez, F., Tierra, G.: Energy-stable and boundedness preserving numerical schemes for the
Cahn-Hilliard equation with degenerate mobility. arXiv preprint arXiv: 2301.04913 (2023)

HauBler, F.,, Li, S., Lowengrub, J., Marth, W., Ritz, A., Voigt, A.: Thermodynamically consistent models
for two-component vesicles. Int. J. Biomath. Biostat 2(1), 19-48 (2013)

Huang, F., Shen, J., Yang, Z.: A highly efficient and accurate new scalar auxiliary variable approach for
gradient flows. SIAM J. Sci. Comput. 42(4), A2514-A2536 (2020)

Huang, Q.-A., Jiang, W., Yang, J.Z., Yuan, C.: Upwind-SAV approach for constructing bound-preserving
and energy-stable schemes of the Cahn-Hilliard equation with degenerate mobility. arXiv preprint
arXiv:2210.16017 (2022)

Karve, S., Bandekar, A., Ali, M.R., Sofou, S.: The pH-dependent association with cancer cells of tunable
functionalized lipid vesicles with encapsulated doxorubicin for high cell-kill selectivity. Biomaterials
31(15), 4409-4416 (2010)

Lehrenfeld, C., Olshanskii, M.A., Xu, X.: A stabilized trace finite element method for partial differential
equations on evolving surfaces. SIAM J. Numer. Anal. 56(3), 1643-1672 (2018)

Li, X., Shen, J., Rui, H.: Stability and error analysis of a second-order SAV scheme with block-centered
finite differences for gradient flows. Math. Comput. 88, 2047-2068 (2019)

Liao, H.-L., Ji, B., Wang, L., Zhang, Z.: Mesh-robustness of an energy stable BDF2 scheme with variable
steps for the Cahn—Hilliard model. J. Sci. Comput. 92(2), 52 (2022)

Liao, H.-L., Ji, B., Zhang, L.: An adaptive BDF2 implicit time-stepping method for the phase field crystal
model. IMA J. Numer. Anal. 42(1), 649-679 (2022)

Liao, H.-L., Song, X., Tang, T., Zhou, T.: Analysis of the second-order BDF scheme with variable steps
for the molecular beam epitaxial model without slope selection. Sci. China Math. 64, 887-902 (2021)
Liao, H.-L., Zhang, Z.: Analysis of adaptive BDF2 scheme for diffusion equations. Math. Comput.
90(329), 1207-1226 (2021)

Lisini, S., Matthes, D., Savaré, G.: Cahn—Hilliard and thin film equations with nonlinear mobility as
gradient flows in weighted-Wasserstein metrics. J. Differ. Equ. 253(2), 814-850 (2012)

Olshanskii, M.A., Reusken, A., Grande, J.: A finite element method for elliptic equations on surfaces.
SIAM J. Numer. Anal. 47, 3339-3358 (2009)

Olshanskii, M.A., Reusken, A., Xu, X.: An Eulerian space-time finite element method for diffusion
problems on evolving surfaces. SIAM J. Numer. Anal. 52(3), 1354-1377 (2014)

Olshanskii, M.A., Xu, X.: A trace finite element method for PDEs on evolving surfaces. SIAM J. Sci.
Comput. 39(4), A1301-A1319 (2017)

Palzhanov, Y., Zhiliakov, A., Quaini, A., Olshanskii, M.: A decoupled, stable, and linear fem for a phase-
field model of variable density two-phase incompressible surface flow. Comput. Methods Appl. Mech.
Eng. 387, 114167 (2021)

Qian, T., Sheng, P.: Generalized hydrodynamic equations for nematic liquid crystals. Phys. Rev. E 58,
7475-7485 (1998)

Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient
flows. SIAM J. Numer. Anal. 56(5), 2895-2912 (2018)

Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput.
Phys. 353, 407-416 (2018)

Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows.
SIAM Rev. 61(3), 474-506 (2019)

Shen, J., Yang, X.: Numerical approximations of Allen—-Cahn and Cahn-Hilliard equations. Discrete
Contin. Dyn. Syst. A 28, 1669 (2010)

Sun, M., Feng, X., Wang, K.: Numerical simulation of binary fluid-surfactant phase field model coupled
with geometric curvature on the curved surface. Comput. Methods Appl. Mech. Eng. 367, 113123 (2020)

@ Springer


http://arxiv.org/abs/2301.04913
http://arxiv.org/abs/2210.16017

57 Page22of22 Journal of Scientific Computing (2023) 97:57

40. Sun, M., Xiao, X., Feng, X., Wang, K.: Modeling and numerical simulation of surfactant systems with
incompressible fluid flows on surfaces. Comput. Methods Appl. Mech. Eng. 390, 114450 (2022)

41. Wang, M., Huang, Q., Wang, C.: A second order accurate scalar auxiliary variable (SAV) numerical
method for the square phase field crystal equation. J. Sci. Comput. 88(2), 33 (2021)

42. Wang, Y., Palzhanov, Y., Quaini, A., Olshanskii, M., Majd, S.: Lipid domain coarsening and fluidity in
multicomponent lipid vesicles: a continuum based model and its experimental validation. Biochimica et
Biophysica Acta (BBA) - Biomembranes 1864(7), 183898 (2022)

43. Yushutin, V., Quaini, A., Majd, S., Olshanskii, M.: A computational study of lateral phase separation in
biological membranes. Int. J. Numer. Methods Biomed. Eng. 35(3), 3181 (2019)

44. Yushutin, V., Quaini, A., Olshanskii, M.: Numerical modeling of phase separation on dynamic surfaces.
J. Comput. Phys. 407, 109126 (2020)

45. Zhiliakov, A., Wang, Y., Quaini, A., Olshanskii, M., Majd, S.: Experimental validation of a phase-field
model to predict coarsening dynamics of lipid domains in multicomponent membranes. Biochimica et
Biophysica Acta (BBA)-Biomembranes 1863(1), 183446 (2021)

46. Zhuang, Q., Shen, J.: Efficient SAV approach for imaginary time gradient flows with applications to
one-and multi-component Bose-Einstein condensates. J. Comput. Phys. 396, 72-88 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer



	A Scalar Auxiliary Variable Unfitted FEM for the Surface Cahn–Hilliard Equation
	Abstract
	1 Introduction
	2 Problem Definition
	3 Space and Time Discretization
	3.1 Implementation

	4 Adaptive Time-Stepping Scheme
	5 Numerical Results
	5.1 Convergence Test
	5.2 Phase Separation on the Sphere
	5.3 Phase Separation on a Complex Manifold

	6 Conclusion
	References


