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Abstract

The paper studies a scalar auxiliary variable (SAV) method to solve the Cahn–Hilliard equa-

tion with degenerate mobility posed on a smooth closed surface �. The SAV formulation

is combined with adaptive time stepping and a geometrically unfitted trace finite element

method (TraceFEM), which embeds � in R
3. The stability is proven to hold in an appropri-

ate sense for both first- and second-order in time variants of the method. The performance

of our SAV method is illustrated through a series of numerical experiments, which include

systematic comparison with a stabilized semi-explicit method.

Keywords Surface Cahn–Hilliard equation · SAV approach · Adaptive time-stepping ·
TraceFEM · Membrane phase separation

1 Introduction

Many physical systems are described by PDEs in the form of gradient flow of a free energy

functional E(φ), φ being the problem unknown. Assuming that E(φ) is bounded from below,

the gradient flow in a Hilbert space H is defined by the identity

〈∂φ

∂t
, η

〉
= −

δE

δφ
[η], (1)

which holds for all test functions η ∈ H , 〈·, ·〉 being the inner product in H and δE
δφ

the

functional derivative of E with respect to φ. PDEs in the form of gradient flow are often

derived from the second law of thermodynamics. Examples include models for thin films

(see, e.g., [14]), polymers (see, e.g., [12]), and liquid crystals (see, e.g., [34]). In this paper,
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we focus on one particular gradient flow problem: the Cahn–Hilliard equation posed on a

surface. Our interest in this problem stems from its application in biomembrane modeling

[13, 19, 43, 45].

Constructing efficient, robust, and energy-stable numerical schemes for gradient flow

problems is not a trivial task. If one is not careful in designing a numerical scheme that

preserves the energy dissipation mechanism inherent in gradient flows, an extremely small

time step might be required to dissipate energy, resulting in an inefficient scheme. For a

comprehensive review of numerical schemes for gradient flows, we refer to [37]. One effective

numerical technique for a broad range of gradient flows is the scalar auxiliary variable (SAV)

method [36], which enables the construction of efficient and accurate time discretization

schemes. Since its introduction in [36], the SAV method has been developed and applied to

various problems, including epitaxial thin film growth models [8], models for single- and

multi-component Bose-Einstein condensates [46], and the square phase field crystal model

[41].

SAV methods for our specific problem, namely the Cahn–Hilliard equation, have been

extensively studied in volumetric domains. Convergence and error analysis for a first-order

semi-discrete SAV scheme are conducted in [35]. An unconditionally energy-stable and

second-order accurate SAV algorithm is presented in [6]. Error estimates for first and second-

order fully discretized SAV schemes, utilizing a mixed finite element discretization for the

spatial variables, are derived in [7]. An improvement over the standard SAV method is

represented by a class of extrapolated and linearized SAV methods based on Runge–Kutta

time integration [1]. These methods can achieve arbitrarily high-order accuracy for the time

discretization of the Cahn–Hilliard problem. To the best of our knowledge, it is the first time

that the SAV method is applied to the surface Cahn–Hilliard problem. Other surface problems

are treated in [39, 40].

In early versions of the SAV method [36, 37], numerical efficiency for the Cahn–Hilliard

equations is achieved through the computationally cheap invertibility of the discrete bihar-

monic operator in simple geometric settings discretized by, e.g., a tensor product finite

difference method. For the equations posed on surfaces, such fast solvers are not available,

in general.

Time adaptivity is a crucial feature of a numerical method for the Cahn–Hilliard equation

in order to achieve efficiency. This is because the Cahn–Hilliard equation exhibits two distinct

time scales. The first time scale is associated with the evolution of the order parameter (φ

in problem (1)) due to interfacial effects. This time scale is typically fast and governs the

short-term behavior of the system. The second time scale is associated with the relaxation of

the order parameter towards equilibrium. This time scale is typically very slow and governs

the long-term behavior of the system. Using a constant time step, which is oblivious to

these two time scales, would result in a highly inefficient simulation. In [20], high-order

unconditionally stable SAV methods that utilize variable time step sizes were developed to

address this issue.

In this paper, for the first time, SAV methods are combined with a geometrically unfitted

finite element method for the numerical solution of the Cahn–Hilliard problem posed on

a surface. In [39, 40] instead, the authors have opted for a fitted finite element method,

combined with a exponential-type SAV scheme. We consider both first-order and second-

order backward differentiation formula schemes and prove their energy stability. Additionally,

we present a time-adaptive version of the second-order scheme, drawing inspiration from

[15]. Implementation details are provided for all the proposed schemes. The unfitted finite

element method we choose for spatial discretization is called the trace finite element method

(TraceFEM) [30, 32]. The selection of an unfitted finite element method is motivated by its
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flexibility in handling complex shapes, as demonstrated in this paper, and possibly evolving

surfaces, as shown in [23, 31, 44]. Among all the unfitted finite element methods, TraceFEM

offers several advantages that make it appealing: (i) it employs a sharp surface representation,

(ii) surfaces can be defined implicitly without the need for surface parametrization, (iii)

the number of active degrees of freedom is asymptotically optimal, and (iv) the order of

convergence is optimal.

The paper outline is as follows. Sect. 2 states the surface Cahn–Hilliard problem under

consideration and rewrites it using the scalar auxiliary variable. Sect. 3 presents the first and

second order SAV schemes and provides proof of their energy stability. In Sect. 4, we discuss

the time adaptive version of the second order SAV scheme. Several numerical results are

presented in Sect. 5 and conclusions are drawn in Sect. 6.

2 ProblemDefinition

Let � be a closed sufficiently smooth surface in R
3, with the outward pointing unit normal n.

The Cahn–Hilliard equation [4, 5] posed on � describes phase separation in a two component

system on the surface �. In order to state this equation, we denote the mass concentrations of

the two components with ci = mi/m, i = 1, 2, where mi are their masses and m is the total

mass of the system. Since m = m1 + m2, we have c1 + c2 = 1. Let c1 be the representative

concentration c, i.e. c = c1. We note that we choose to work with concentration instead of

order parameter φ like in the generic problem (1). Let ρ be the constant total density of the

system ρ = m/S, where S is the surface area of �. Finally, let div� , ∇� , and �� denote the

surface divergence, the tangential gradient, and the Laplace–Beltrami operator respectively.

The Cahn–Hilliard equation is a conservation law for concentration c(x, t) that uses an

empirical law, called Fick’s law, for the diffusion flux:

ρ
∂c

∂t
− div�(M∇�μ) = 0 on � × (0, T ], (2)

where M is the so-called mobility coefficient and μ is the chemical potential, which is defined

as the functional derivative of the total specific free energy f with respect to the concentration

c. The total specific free energy is given by:

f (c) = f0(c) +
1

2
ε2|∇�c|2, (3)

where f0(c) is the free energy per unit surface and ε is thickness of the interface layer between

the two components. The second term at the right-hand side in (3) represents the interfacial

free energy based on the concentration gradient. By taking the functional derivative of f in

(3) with respect to c, we obtain:

μ =
δf

δc
= f ′

0(c) − ε2��c on �. (4)

The physical meaning ofμ is chemical potential. Equation (2), (4) represent the Cahn–Hilliard

problem written in mixed form, i.e., as two coupled second-order equations. Obviously,

problem (2), (4) needs to be supplemented with initial condition c = c0 on � × {0}, for a

given c0.

System (2), (4) needs to be supplemented with the definitions of mobility M and free

energy per unit surface f0. Out of all the possible definitions of M , we choose the so-called

degenerate mobility:
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M = M(c) = c(1 − c). (5)

A common choice for f0 is given by

f0(c) =
1

4
c2(1 − c)2. (6)

Straightforward calculations show that for constant mobility M , the Cahn–Hilliard prob-

lem defines gradient flows of the energy functional

E(c) =
∫

�

f (c) ds =
∫

�

1

2
ε2|∇�c|2 ds + E1(c), with E1(c) =

∫

�

f0(c) ds, (7)

in H−1(�) (a dual space to H1(�)). For the degenerate mobility, the Cahn–Hilliard problem is

known to define gradient flows in a weighted-Wasserstein metric [29]. Incorporating various

definitions of mobility M(c) into the Cahn–Hilliard equations can exert a notable impact on

the dynamic behavior of c, even without altering the energy landscape. Thanks to gradient

structure mentioned above, the following energy dissipation property holds:

d

dt
E(c) < 0. (8)

A time discretization scheme for problem (2), (4) is said to be energy stable if it satisfies

a discrete energy dissipation law, i.e., it needs to adhere to fundamental property (8). In this

paper, we construct an energy stable scheme for (2), (4) using the scalar auxiliary variable

(SAV) approach (see [37] for a review). As the name suggests, this method introduces a scalar

auxiliary variable

r(t) =
√

E1(c(t)) + C, (9)

where constant C can be added to ensure that r(t) is well defined. Without loss of generality,

for the rest of the paper we will assume that E1(c) > 0, i.e., C = 0. Then, system (2), (4)

can be rewritten as follows:

ρ
∂c

∂t
= div� (M(c)∇�μ) on � × (0, T ], (10)

μ =
r(t)

√
E1(c)

f ′
0 − ε2��c on � × (0, T ], (11)

dr

dt
=

1

2
√

E1(c)

∫

�

f ′
0(c)

∂c

∂t
ds on � × (0, T ]. (12)

System (10)–(12) represents the starting point for the construction of our energy stable SAV

scheme.

For the numerical method presented in the next section, we need a variational formulation

of surface problem (10)–(12). To devise it, we multiply (10) by v ∈ H1(�) and (11) by

q ∈ H1(�), integrate over � and employ the integration by parts identity [43]. This leads to

the formulation: Find (c, μ) ∈ H1(�) × H1(�) such that
∫

�

ρ
∂c

∂t
v ds = −

∫

�

M(c)∇�μ∇�v ds, (13)

∫

�

μ q ds =
∫

�

r(t)
√

E1(c)
f ′
0(c) q ds +

∫

�

ε2∇�c ∇�q ds, (14)

for all (v, q) ∈ H1(�) × H1(�), while (12) remains unchanged.
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The majority of the papers available in the literature on SAV methods for the Cahn–Hilliard

problem employs constant mobility. Nevertheless, degenerate mobility has been considered

in many practical applications (see, e.g., [43]) and is non-trivial to handle numerically (see,

e.g., [18] for recent advances). The only paper that proposes a SAV approach for the Cahn–

Hilliard equation with degenerate mobility is [21].

3 Space and Time Discretization

For the space discretization of the surface Cahn–Hilliard problem described in the previous

section, we apply the trace finite element method (TraceFEM) [32, 43]. This is an unfitted

method that allows to solve for scalar or vector fields on surface � without the need for a

parametrization or triangulation of � itself. As typical of unfitted methods, TraceFEM relies

on a triangulation of a bulk computational domain 
 (� ⊂ 
 holds) into shape regular

tetrahedra “blind” to the position of �. Such position is defined implicitly as the zero level

set of a sufficiently smooth (at least Lipschitz continuous) function φ, i.e., � = {x ∈ 
 :
φ(x) = 0}, such that |∇φ| ≥ c0 > 0 in a 3D neighborhood of the surface.

Let Th be the collection of all tetrahedra, such that 
 = ∪T ∈Th
T . Typically, we refine

the grid Th near �. The subset of tetrahedra that have a nonzero intersection with � is

denoted by T
�

h . The domain formed by all tetrahedra in T
�

h is denoted by 
�
h . On T

�
h we

use a standard finite element space of continuous functions that are piecewise-polynomials

of degree 1. Obviously, other choices of finite elements are possible (see, e.g., [16]). This

bulk (volumetric) finite element space is denoted by Vh :

Vh =
{
v ∈ C(
�

h ) : v ∈ P1(T ) for any T ∈ T
�

h

}
.

Finally, to define geometric quantities and for the purpose of numerical integration, we

approximate � with a “discrete” surface �h , which is defined as the zero level set of a P1

Lagrangian interpolant φh for level set function φ on the given mesh. The (·, ·) inner product

and ‖ · ‖ norm further denotes the L2(�h) inner product and norm. The approximate normal

vector field nh = ∇φh/|∇φh | is piecewise smooth on �h . The orthogonal projection into

tangential space is given by Ph(x) = I − nh(x)nT
h (x) for almost all x ∈ �h . For v ∈ Vh the

surface gradient on �h is easy to compute from the bulk gradient ∇�h
v = Ph∇v.

Let us turn to time discretization. At time instance tn = n�t , with time step �t = T
N

, cn

denotes the approximation of c(tn, x); similar notation is used for other quantities of interest.

Variational problem (12)–(14) discretized in space by TraceFEM and in time by the implicit

Euler (also called BDF1) scheme reads: Given c0 and the associated E1(c0) and r0 (9), for

n ≥ 0 at time step tn+1 find (cn+1
h , μn+1

h , rn+1
h ) ∈ Vh × Vh × R such that

ρ
(
cn+1

h − cn
h , vh

)
= −�t(M(cn

)
∇�h

μn+1
h ,∇�h

vh

)
− h�t

∫


�
h

(
nh · ∇μn+1

h

)(
nh · ∇vh

)
dx,

(15)

(
μn+1

h , qh

)
=

rn+1
h√

E1

(
cn

h

)
(

f ′
0

(
cn

h

)
, qh

)
+ ε2

(
∇�h

cn+1
h ,∇�h

qh

)
+ h−1ε2

∫


�
h

(
nh · ∇cn+1

h

)(
nh · ∇qh

)
dx, (16)
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rn+1
h − rn

h =
1

2

√
E1

(
cn

h

)
(

f ′
0

(
cn

h

)
, cn+1

h − cn
h

)
(17)

for all (vh, qh) ∈ Vh × Vh . The volumetric terms in (15)–(16) are included to stabilize the

resulting algebraic systems [3, 16]. Notice that the nonlinear terms in (15)–(17) have been

linearized with a first order extrapolation. We will call this approach SAV-BDF1.

Theorem 3.1 Let

Ẽn+1
h =

ε2

2

∥∥∥∇�h
cn+1

h

∥∥∥
2
+

∣∣∣rn+1
h

∣∣∣
2
+ hε2

∥∥∥nh · ∇cn+1
h

∥∥∥
2

L2(
�
h )

. (18)

be the modified discrete energy. Scheme (15)–(17) admits the following energy balance

(
Ẽn+1

h − Ẽn
h

)
+

ε2

2

∥∥∥∇�h
cn+1

h − ∇�h
cn

h

∥∥∥
2
+

∣∣∣rn+1
h − rn

h

∣∣∣
2
+

hε2

2

∥∥∥nh · ∇(cn+1
h − cn

h)

∥∥∥
2

L2(
�
h )

= −
�t

ρ
(M (̃cn)∇�h

μn+1
h ,∇�h

μn+1
h ) −

h�t

ρ

∥∥∥nh · ∇μn+1
h

∥∥∥
2

L2(
�
h )

. (19)

In particular, this implies that the scheme (15)–(17) is energy stable in the sense that Ẽn+1
h ≤

Ẽn
h (the discrete analogue of (8)) for all n = 0, 1, 2, . . . .

Proof Combine the equations obtained from taking vh = μn+1
h /ρ in (15) and qh = (cn+1

h −
cn

h) in (16) to get

rn+1
h√

E1(c
n
h)

(
f ′
0(c

n
h), cn+1

h − cn
h

)
+ ε2

(
∇�h

cn+1
h ,∇�h

(
cn+1

h − cn
h

))

+ h−1ε2

∫


�
h

(
nh · ∇cn+1

h

)(
nh · ∇

(
cn+1

h − cn
h

))
dx

= −
�t

ρ

(
M

(
c̃n

)
∇�h

μn+1
h ,∇�h

μn+1
h

)
−

h�t

ρ

∥∥∥nh · ∇μn+1
h

∥∥∥
2

L2(
�
h )

. (20)

By plugging (17) multiplied by 2rn+1
h into (20), we obtain:

2rn+1
h

(
rn+1

h − rn
h

)
+ ε2

(
∇�h

cn+1
h ,∇�h

(
cn+1

h − cn
h

))

+ h−1ε2

∫


�
h

(
nh · ∇cn+1

h

)(
nh · ∇

(
cn+1

h − cn
h

))
dx

= −
�t

ρ

(
M

(
c̃n

)
∇�h

μn+1
h ,∇�h

μn+1
h

)
−

h�t

ρ

∥∥∥nh · ∇μn+1
h

∥∥∥
2

L2(
�
h )

. (21)

Using identity

2
(

ak+1, ak+1 − ak
)

=
∣∣∣ak+1

∣∣∣
2
−

∣∣∣ak
∣∣∣
2
+

(
ak+1 − ak

)2

in (21) leads to (19). 
�

We see that introducing the auxiliary variable r allows for the unconditionally stable

scheme with the explicit treatment of the non-linear term. The same conclusion will be true

for the second order scheme introduced next.
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For a second order scheme in time, we adopt Backward Differentiation Formula of order

2 (BDF2). A second order approximation of a first time derivative and a linear extrapolation

of second order at time tn :

∂c

∂t
≈

3cn − 4cn−1 + cn−2

2�t
, c̃n = 2cn−1 − cn−2, (22)

respectively. Then, the space and time discrete version of problem (12)–(14) reads: Given c0

and the associated E1(c0) and r0 (9), find (c1
h, μ1

h, r1
h ) ∈ Vh × Vh × R such that (15)–(17)

hold and for n ≥ 1 at time step tn+1 find (cn+1
h , μn+1

h , rn+1
h ) ∈ Vh × Vh × R such that

ρ

2�t

(
3cn+1

h − 4cn
h + cn−1

h , vh

)
= −(M(c̃n

h)∇�h
μn+1

h ,∇�h
vh)

− h

∫


�
h

(nh · ∇μn+1
h )(nh · ∇vh)dx, (23)

(
μn+1

h , qh

)
=

rn+1
h√

E1

(
c̃n

h

)
(

f ′
0(c̃

n
h), qh

)
+ ε2(∇�h

cn+1
h ,∇�h

qh)

+ h−1ε2

∫


�
h

(
nh · ∇cn+1

h

)(
nh · ∇qh

)
dx, (24)

3rn+1
h − 4rn

h + rn−1
h =

1

2

√
E1

(
c̃n

h

)
(

f ′
0

(
c̃n

h

)
, 3cn+1

h − 4cn
h + cn−1

h

)
, (25)

for all (vh, qh) ∈ Vh × Vh . We will call this approach SAV-BDF2.

Theorem 3.2 Let

Ẽn+1
h =

ε2

2

∥∥∥∇�h
cn+1

h

∥∥∥
2
+

ε2

2

∥∥∥2∇�h
cn+1

h − ∇�h
cn

h

∥∥∥
2
+

∣∣∣rn+1
h

∣∣∣
2
+

∣∣∣2rn+1
h − rn

h

∣∣∣
2

+
hε2

2

∥∥∥nh · ∇cn+1
h

∥∥∥
2

L2(
�
h )

+
h−1ε2

2

∥∥∥(nh · ∇
(
2cn+1

h − cn
h

)∥∥∥
2

L2(
�
h )

(26)

be the modified discrete energy. Scheme (15)–(17) admits the following energy balance

(
Ẽn+1

h − Ẽn
h

)
+

ε2

2

∥∥∥∇�h
cn+1

h − 2∇�h
cn

h + ∇�h
cn−1

h

∥∥∥
2
+

∣∣∣rn+1
h − 2rn

h + rn−1
h

∣∣∣
2

+
hε2

2

∥∥∥nh · ∇(cn+1
h − 2cn

h + cn−1
h )

∥∥∥
2

L2(
�
h )

= −
2�t

ρ
(M (̃cn)∇�h

μn+1
h ,∇�h

μn+1
h )

−
2h�t

ρ

∥∥∥nh · ∇μn+1
h

∥∥∥
2

L2(
�
h )

. (27)

In particular, this implies that the scheme (15)–(17) is energy stable in the sense that Ẽn+1
h ≤

Ẽn
h (the discrete analogue of (8)) for all n = 0, 1, 2, . . . .

123



57 Page 8 of 22 Journal of Scientific Computing (2023) 97 :57

Proof Combine the equations obtained from taking vh = 2�tμn+1
h /ρ in (23), qh = (3cn+1

h −
4cn

h + cn−1
h ) in (24) to get

rn+1
h√

E1

(
c̃n

h

) ( f ′
0(c̃

n
h), 3cn+1

h − 4cn
h + cn−1

h ) + ε2
(
∇�h

cn+1
h ,∇�h

(
3cn+1

h − 4cn
h + cn−1

h

))

+ h−1ε2

∫


�
h

(
nh · ∇cn+1

h

)(
nh · ∇(3cn+1

h − 4cn
h + cn−1

h

))
dx

= −
2�t

ρ

(
M

(
c̃n)∇�h

μn+1
h ,∇�h

μn+1
h

)

−
2h�t

ρ

∥∥∥nh · ∇μn+1
h

∥∥∥
2

L2(
�
h )

. (28)

By plugging (25) multiplied by 2rn+1
h into (28), we obtain

2rn+1
h (3rn+1

h − 4rn
h + rn−1

h ) + ε2(∇�h
cn+1

h ,∇�h
(3cn+1

h − 4cn
h + cn−1

h ))

+ h−1ε2

∫


�
h

(
nh · ∇cn+1

h

)(
nh · ∇

(
3cn+1

h − 4cn
h + cn−1

h

))
dx

= −
2�t

ρ

(
M

(
c̃n

)
∇�h

μn+1
h ,∇�h

μn+1
h )

−
2h�t

ρ

∫


�
h

(
nh · ∇μn+1

h

)(
nh · ∇μn+1

h

)
dx .

Let us make use of identity

2
(

ak+1, 3ak+1 − 4ak + ak−1
)

=
∣∣∣ak+1

∣∣∣
2
+

∣∣∣2ak+1 − ak
∣∣∣
2
+

∣∣∣ak+1 − 2ak + ak−1
∣∣∣
2

−
∣∣∣ak

∣∣∣
2
−

∣∣∣2ak − ak−1
∣∣∣
2

(29)

to get:

∣∣∣rn+1
h

∣∣∣
2
+

∣∣∣2rn+1
h − rn

h

∣∣∣
2
+

∣∣∣rn+1
h − 2rn

h + rn−1
h

∣∣∣
2
−

∣∣rn
h

∣∣2 −
∣∣∣2rn

h − rn−1
h

∣∣∣
2
+

ε2

2

∥∥∥∇�h
cn+1

h

∥∥∥
2

+
ε2

2

∥∥∥2∇�h
cn+1

h − ∇�h
cn

h

∥∥∥
2
+

ε2

2

∥∥∥∇�h
cn+1

h − 2∇�h
cn

h + ∇�h
cn−1

h

∥∥∥
2

−
ε2

2

∥∥∇�h
cn

h

∥∥2 −
ε2

2

∥∥∥2∇�h
cn

h − ∇�h
cn−1

h

∥∥∥
2

+
hε2

2

∥∥∥nh · ∇cn+1
h

∥∥∥
2

L2(
�
h )

+
hε2

2

∥∥∥nh · ∇(2cn+1
h − cn

h)

∥∥∥
2

L2(
�
h )

+
hε2

2

∥∥∥nh · ∇(cn+1
h − 2cn

h + cn−1
h

∥∥∥
2

L2(
�
h )

−
hε2

2

∥∥nh · ∇cn
h

∥∥2

L2(
�
h )

−
hε2

2

∥∥∥nh · ∇(2cn
h − cn−1

h )

∥∥∥
2

L2(
�
h )

= −
2�t

ρ
(M (̃cn)∇�h

μn+1
h , ∇�h

μn+1
h )

−
2h�t

ρ

∫


�
h

(nh · ∇μn+1
h )(nh · ∇μn+1

h )dx,
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which corresponds to (27). 
�

Note that both SAV-BDF1 and SAV-BDF2 finite element methods preserve the conser-

vation property d
dt

∫
�

c dx = 0 of the Cahn–Hilliard equation posed on a closed smooth

surface. One can see this by letting vh = const �= 0 in (15) and (23), which is a legitimate

test function from Vh .

3.1 Implementation

Schemes (15)–(17) and (23)–(25) can be conveniently rewritten as relatively minor modifi-

cations of “standard” mixed TraceFEM for the surface Cahn–Hilliard problem.

By plugging rn+1
h obtained from (17) into Eq. (16), we can rewrite problem (15)–(17) as:

Given c0 and the associated E1(c0) and r0 (9), for n ≥ 0 at time step tn+1 find (cn+1
h , μn+1

h ) ∈
Vh × Vh

ρ

�t
(cn+1

h , vh) + (M(cn)∇�h
μn+1

h ,∇�h
vh) + h

∫


�
h

(nh · ∇μn+1
h )(nh · ∇vh)dx =

ρ

�t
(cn

h , vh),

(30)

(μn+1
h , qh) − ε2(∇cn+1

h ,∇qh) − h−1ε2

∫


�
h

(nh · ∇cn+1
h )(nh · ∇qh)dx

−
1

2E1(c
n
h)

( f ′
0(c

n
h), cn+1

h )( f ′
0(c

n
h), qh)

=
rn

h√
E1(c

n
h)

( f ′
0(c

n
h), qh) −

1

2E1(c
n
h)

( f ′
0(c

n
h), cn

h)( f ′
0(c

n
h), qh) (31)

for all (vh, qh) ∈ Vh ×Vh . The only differences between (30)–(31) and a standard TraceFEM

for the surface Cahn–Hilliard problem with the implicit Euler scheme for time discretization

are the additional last term at the left-hand side in (31), which corresponds to a rank-one

matrix in the algebraic form of the problem, and the modified terms at the right-hand side in

(31). At every time step tn+1, the value of the auxiliary variable is computed with (17).

In a similar way, we plug rn+1
h obtained from (25) into Eq. (24) and rewrite problem

(23)–(25) as: Given c0 and the associated E1(c0) and r0 (9), find (c1
h, μ1

h) ∈ Vh × Vh such

that (30)–(31) hold and get r1
h from (17), then for n ≥ 1 at time step tn+1 find (cn+1

h , μn+1
h ) ∈

Vh × Vh such that

ρ

2�t
(3cn+1

h , vh) + (M (̃cn)∇�h
μn+1

h ,∇�h
vh) + h

∫


�
h

(nh · ∇μn+1
h )(nh · ∇vh)dx = bn+1

c ,

(32)

(μn+1
h , qh) − ε2(∇�h

cn+1
h ,∇�h

qh) − h−1ε2

∫


�
h

(nh · ∇cn+1
h )(nh · ∇qh)dx

−
1

2E1(c
n
h)

( f ′
0(c̃

n
h), cn+1

h )( f ′
0(c̃

n
h), qh) = bn+1

μ , (33)
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for all (vh, qh) ∈ Vh×Vh . The forcing terms in (32)–(33) are computed from known quantities

bn+1
c =

2ρ

�t
(cn

h , vh) −
ρ

2�t
(cn−1

h , vh),

bn+1
μ =

4rn
h

3
√

E1(c
n
h)

( f ′
0(c̃

n
h), qh) −

rn−1
h

3
√

E1(c
n
h)

( f ′
0(c̃

n
h), qh)

−
2

3E1(c
n
h)

( f ′
0(c̃

n
h), cn

h)( f ′
0(c̃

n
h), qh) +

1

6E1(c
n
h)

( f ′
0(c̃

n
h), cn−1

h )( f ′
0(c̃

n
h), qh).

These forcing terms and the last term at the left-hand side in (33) are the only differences

with respect to a standard TraceFEM for the surface Cahn–Hilliard problem with BDF2 for

time discretization. At every time step tn+1, the value of the auxiliary variable is computed

with (25).

For the numerical results in Sect. 5, we use the SAV-BDF2 scheme. In summary, we

implement is as follows:

– Step 0: from c0, get E1(c0) as in (7) and r0 from (9).

– Step 1: at t1 = �t , solve (30)–(31) to get (c1
h, μ1

h) and compute r1
h from (17).

– Step 2: at time tn+1, n ≥ 1, solve (32)–(33) to get (cn+1
h , μn+1

h ) and compute rn+1
h from

(25).

The implementation described above differs from the one presented in the original papers

on SAV schemes for gradient flows [20, 24, 37]. In those papers, the properties of the finite

difference method on uniform grids were utilized to enhance computational efficiency. How-

ever, since we have chosen to work with finite elements for greater geometric flexibility, we

cannot leverage the same properties. As a result, we decided to rewrite the SAV scheme as a

minor modification of a standard finite element discretization to simplify the implementation

process. Consequently, the additional terms introduced by the SAV method lead to dense

matrices in the associated linear systems.

4 Adaptive Time-Stepping Scheme

The dynamic response of the Cahn–Hilliard equation exhibits significant temporal scale

variations. Initially, a rapid phase of spinodal decomposition is observed, which can be

adequately captured with a small time step (e.g., �t = O(10−5)). This phase is followed

by a slower process of domain coarsening and growth, for which a larger time step can be

employed (e.g., �t ranging from 10−1 to 10). As the phase separation process approaches

equilibrium, the time step can be further increased (e.g., up to �t = O(103)). In the literature,

various approaches can be found where different time-step sizes are manually set during the

simulation. See, e.g., [43]. However, a more intelligent approach to handle such a wide range

of temporal scales is to employ an adaptive-in-time method that selects the time step based

on an accuracy criterion.

We choose to apply the adaptive time stepping technique first presented in [15]. Before

explaining the algorithm and how the time step is chosen, let us write the time discretization

of the space-discrete version of problem (12)–(14) using the BDF2 scheme with a variable

time step. Let �tn = tn+1 − tn be the variable time step and set qn = �tn/�tn−1. At time

tn+1, the time derivative is approximated as follows

∂c

∂t
≈

³cn+1 − ´cn + µ cn−1

�t
, ³ =

1 + 2qn

1 + qn
, ´ = 1 + qn, µ =

(qn)2

1 + qn
.
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Then, the fully discrete problem reads: for n ≥ 1 at time step tn+1 find
(
cn+1

h , μn+1
h , rn+1

h

)
∈

Vh × Vh × R such that

ρ

�t

(
³cn+1

h − ´cn
h + µ cn−1

h , vh

)

= −
(
M

(
c̃n

h

)
∇�h

μn+1
h ,∇�h

vh

)
− h

∫


�
h

(
nh · ∇μn+1

h

)(
nh · ∇vh

)
dx, (34)

³rn+1
h − ´rn

h + µ rn−1
h =

1

2

√
E1

(
c̃n

h

)
(

f ′
0

(
c̃n

h

)
, ³cn+1

h − ´cn
h + µ cn−1

h

)
, (35)

and (24) hold for all (vh, qh) ∈ Vh × Vh . The formula to compute c̃n
h is (22).

For the implementation of (24), (34), (35), we proceed as explained in Sect. 3.1, i.e., we

plug rn+1
h obtained from (35) into Eq. (24) and rewrite problem (24), (34), (35) as: for n ≥ 1

at time step tn+1 find (cn+1
h , μn+1

h ) ∈ Vh × Vh such that

ρ

�t
(³cn+1

h , vh) + (M (̃cn)∇�h
μn+1

h ,∇�h
vh) + h

∫


�
h

(nh · ∇μn+1
h )(nh · ∇vh)dx = dn+1

c ,

(36)

(μn+1
h , qh) − ε2(∇�h

cn+1
h ,∇�h

qh) − h−1ε2

∫


�
h

(nh · ∇cn+1
h )(nh · ∇qh)dx

−
1

2E1(c
n
h)

( f ′
0(c̃

n
h), cn+1

h )( f ′
0(c̃

n
h), qh) = dn+1

μ , (37)

for all (vh, qh) ∈ Vh×Vh . The forcing terms in (36)–(37) are computed from known quantities

dn+1
c =

ρ

�t
(´cn

h , vh) −
ρ

�t
(µ cn−1

h , vh),

dn+1
μ =

´rn
h

³
√

E1(c
n
h)

( f ′
0(c̃

n
h), qh) −

µ rn−1
h

³
√

E1(c
n
h)

( f ′
0(c̃

n
h), qh)

−
´

2³E1(c
n
h)

( f ′
0(c̃

n
h), cn

h)( f ′
0(c̃

n
h), qh)

+
µ

2³E1(c
n
h)

( f ′
0(c̃

n
h), cn−1

h )( f ′
0(c̃

n
h), qh).

Now, let us describe the adaptive time stepping technique. Let us call cn+1
h,1 and cn+1

h,2 the

solutions at time tn+1 of (30)–(31) and (36)–(37), respectively. We define

en+1 =
‖cn+1

h,1 − cn+1
h,2 ‖

‖cn+1
h,2 ‖

, (38)

which is taken as input to update the time step:

�tn+1 ← F(en+1,�tn+1) = ζ

( tol

en+1

)1/2
�tn+1, (39)

where ζ is a “safety” coefficient and tol is a user prescribed tolerance. Algorithm 1 describes

the steps to take at time tn+1 in order to adapt the time step.

Let rn+1 = �tn+1/�tn be the time step ratio. Approximately 40 years ago, it was demon-

strated that a variable step BDF2 method for ordinary initial-value problems is zero-stable if

rn+1 < 1 +
√

2 [17]. Advancing beyond this classical result has proven to be a challenging
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Algorithm 1 Adaptive time-stepping algorithm at time tn+1

Given cn and �tn

1: Solve (30)-(31) with �tn+1 = �tn to get cn+1
h,1

2: Solve (36)-(37) with �tn+1 = �tn to get cn+1
h,2

3: Compute en+1 using (38)

4: if en+1 > tol then

5: Update �tn+1 using (39)

6: goto 1

7: else

8: Set �tn+1 = F(en+1, �tn+1)

9: end if

Continue to tn+2

task, which has recently gained attention. Through the utilization of techniques involving

discrete orthogonal convolution kernels, it has been possible to establish that variable time

step BDF2 methods are computationally robust, with 0 < rn+1 < 3.561, for linear diffusion

models [28], a phase-field crystal model [26], and the molecular beam epitaxial model with-

out slope selection [27]. These techniques have been extended to the Cahn–Hilliard model

in [25]. The complexity associated with proving the energy stability of the scheme presented

in this section is significant, to the extent that it could be the subject of a separate research

paper. Therefore, we will not delve into it in this work.

5 Numerical Results

After validating the accuracy of the numerical methods presented in Sect. 3.1, we compare

the numerical results obtained with our SAV methods against the results obtained with a

stabilized scheme inspired from [38] and presented in [43]. We will start by comparing the

numerical results produced by the different methods on a sphere in Sect. 5.2. Then, in Sect. 5.3

we will present results on a more complex surface that represents an idealized cell.

For implementation of the methods in Sects. 3 and 4, we use open source Finite Element

package DROPS [9].

5.1 Convergence Test

To assess our implementation of the SAV schemes presented in Sect. 3.1, we consider the

following exact solution to the non-homogeneous surface Cahn–Hilliard equations on the

unit sphere, centered at the origin:

c∗(t, x) =
1

2

(
1 + tanh

x3

2
√

2ε

)
, t ∈ [0, 1]. (40)

Here, x = (x1, x2, x3)
T denotes a point in R

3. The exact chemical potential μ∗ can be readily

computed from Eq. (4) using the free energy per unit surface in (6) and the above c∗. The

non-zero forcing term is computed by plugging c∗ and μ∗ into (2). We set ρ = 1 and mobility

M as in (5). In (9), we take C = 1. Since it is known that smaller values ε are numerically

challenging (see, e.g., [11, 38]), we consider decreasing values of ε: ε = 1, 0.1, 0.05.

We characterize the surface � as the zero level set of function φ(x) = ‖x‖2 − 1, and

embed � in an outer cubic domain 
 = [−5/3, 5/3]3. The initial triangulation Th�
of 
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Fig. 1 Approximation of exact solution (40) with ε = 0.05 computed with mesh level � = 6 and a magnified

view of the interface thickness with the bulk mesh near the surface

consists of 8 sub-cubes, where each of the sub-cubes is further subdivided into 6 tetrahedra.

Further, the mesh is refined towards the surface, and � ∈ N denotes the level of refinement,

with the associated mesh size h� = 10/3

2�+1 . Figure 1 shows the approximation of (40) with

ε = 0.05 computed with mesh level � = 6 and a magnified view of the interface thickness

with the bulk mesh near the surface. The time step is also refined with the mesh as specified

below. Time step adaptivity is not used for this test.

Figure 2 shows the evolution of the L2 errors of c computed with the SAV-BDF1 and

SAV-BDF2 methods for ε = 0.05, 0.1, 1. We used P
1 elements and for each panel in Fig. 2

we report the L2 errors associated to four mesh refinement levels. We see that in all the

cases the errors increase slightly at the beginning of the time interval and then they tend to

reach a plateau. The thinner the interface between phases is (i.e., the smaller ε), the faster the

plateau is reached. In the case of the smallest ε, i.e., ε = 0.05, Fig. 3 displays the evolution

of modified energy (18), which is associated to the SAV-BDF1 method, and modified energy

(26), which is associated to the SAV-BDF2 method, for mesh level � = 5. As expected, the

modified energies decay in time. Note that SAV-BDF1 modified energy approximates E(c)

from (7), while the SAV-BDF2 modified energy approximates 2E(c).

Tables 1 and 2 report the L2 errors of c at the end of the time interval (i.e., t = 1)

computed with the SAV-BDF1 and SAV-BDF2 method, respectively. Mesh refinement level

and associated time steps are reported in the tables, which provide the order of convergence

too. We see that while the L2 errors are somewhat different, the order of convergence is the

same. It is around 2, especially when going from � = 5 to � = 6, which is the optimal order

of convergence for P
1 elements. We believe that the order of convergence is not spoiled when

using BDF1 for time discretization because the time step value is small enough to prevent the

time discretization error from dominating over the space discretization error. Table 2 can be

compared with Table 3, which provides L2 errors of c at t = 1 computed with the stabilized

method in [43] and BDF2, together with the rates of convergence. Not just the convergence

rates are the same, but the errors are also very similar. We have highlighted in red the digits

in Table 3 that differ from Table 2.

The results in this section give us confidence in our implementation of the SAV methods

within DROPS. In addition, they suggest that for the values of ε we consider � = 5 and �t =
0.005 are appropriate levels of refinement for mesh size and time step as they provide small

discretization errors and are more computationally efficient than � = 6 and �t = 0.0025.

Hence, for the results in the next section we will use � = 5 and �t = 0.005.
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Fig. 2 Convergence test: evolution of the L2 errors of c computed with the SAV-BDF1 method (top row) or

SAV-BDF2 method (bottom row) for ε = 0.05 (left), ε = 0.1 (center), and ε = 1 (right)

Fig. 3 Convergence test, ε = 0.05: decay of modified energy (18) (left) and (26) (right) for mesh level � = 5

Table 1 Convergence test, ε = 0.05, 0.1, 1: L2 errors of c at t = 1 computed with the SAV-BDF1 method

and P
1 elements for different meshes and time steps, together with the rates of convergence

ε = 0.05 ε = 0.1 ε = 1

Mesh level �t Error Rate Error Rate Error Rate

3 0.02 2.8247 ·10−2 1.3409·10−2 0.3453·10−2

4 0.01 0.9720 ·10−2 1.54 0.3816·10−2 1.81 0.0765·10−2 2.18

5 0.005 0.2909·10−2 1.76 0.1139·10−2 1.91 0.0181·10−2 2.07

6 0.0025 0.0735·10−2 1.96 0.0267·10−2 1.98 0.0045·10−2 2.01
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Table 2 Convergence test, ε = 0.05, 0.1, 1: L2 errors of c at t = 1 computed with the SAV-BDF1 method

and P
1 elements for different meshes and time steps, together with the rates of convergence

ε = 0.05 ε = 0.1 ε = 1

Mesh level �t Error Rate Error Rate Error Rate

3 0.02 2.8338 ·10−2 1.3438·10−2 0.3474·10−2

4 0.01 0.9727 ·10−2 1.54 0.3824·10−2 1.81 0.0767·10−2 2.18

5 0.005 0.2869·10−2 1.76 0.1013·10−2 1.91 0.0181·10−2 2.07

6 0.0025 0.0732·10−2 1.96 0.0255·10−2 1.98 0.0045·10−2 2.01

Table 3 Convergence test, ε = 0.05, 0.1, 1: L2 errors of c at t = 1 computed with the stabilized method in

[43], P
1 elements, and BDF2 for different meshes and time steps, together with the rates of convergence

ε = 0.05 ε = 0.1 ε = 1

Mesh level �t Error Rate Error Rate Error Rate

3 0.02 2.8335·10−2 1.3434·10−2 0.3475 ·10−2

4 0.01 0.9725·10−2 1.54 0.3823·10−2 1.81 0.0767·10−2 2.18

5 0.005 0.2869·10−2 1.76 0.1013·10−2 1.91 0.0182 ·10−2 2.07

6 0.0025 0.0732·10−2 1.96 0.0255·10−2 1.98 0.0045·10−2 2.01

5.2 Phase Separation on the Sphere

Our interest in surface phase field problems, such as the Cahn–Hilliard equation [33, 42–

45], stems from their practical applications in targeted drug delivery. The phenomenon of

lipid phase separation has been utilized to enhance the delivery performance of targeted lipid

vesicles [2, 22], as the formation of phase-separated patterns on the vesicle surface has been

associated with increased target selectivity, cell uptake, and overall efficacy. In our previous

works [42, 45], we validated our numerical results obtained using the approaches described in

[33, 43] against laboratory experiments. We achieved good agreement between the numerical

and experimental results for different lipid membrane compositions.

In this paper, we consider 3 membrane compositions. Each membrane composition cor-

responds to a certain fraction a of the sphere surface area (since these vesicles are spherical)

covered by one representative phase. In this section, we present results for a = 0.5, 0.3, 0.7,

which are experimentally relevant values.

In order to model an initially homogenous mix of components, the initial composition

c0 is defined as a realization of Bernoulli random variable crand ∼ Bernoulli(a) with mean

value a, i.e. we set:

c0 := c rand (x) for active mesh nodes x. (41)

As mentioned at the end of the previous section, the interface thickness ε is set to 0.05, which

is a realistic value for lipid vesicles.

Let us start with the results obtained with the SAV-BDF2 method without time step adap-

tivity and compare them with the results obtained with the stabilized method in [43]. Figure 4

shows the evolution of phases for a = 0.5, which means that 50% of the sphere surface is

covered by the representative phase (red in the figure) and the remaining 50% is covered
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Fig. 4 Phase separation on the sphere, a = 0.5: evolution of phases computed with the stabilized method in

[43] (top) and the SAV-BDF2 method without time step adaptivity (bottom)

Fig. 5 Phase separation on the sphere, a = 0.3: evolution of phases computed with the stabilized method in

[43] (top) and the SAV-BDF2 method without time step adaptivity (bottom)

by the other phases (blue in the figure). There is no observable difference in the spinodal

decomposition and subsequent domain ripening given by the two methods.

Figure 5 and 6 display the evolution of phases for a = 0.3 and a = 0.7, respectively.

Notice that there are opposite cases: 30% of the sphere surface is covered by the representative

(red) phase for a = 0.3, while 30% of the sphere surface is covered by the opposite (blue)

phase for a = 0.7. If we were to use opposite initial conditions in these two cases, Figs. 5

and 6 would look identical just with inverted colors (red to blue and viceversa). However,

the initial conditions were generated randomly according to (41) and so the evolution of the

red domains in Fig. 5 looks similar (not identical) to the evolution of the blue domains in

Fig. 6. For both values of a though, we see that again there is no observable difference in the

solution computed with the stabilized method in [43] and the solution give by the SAV-BDF2

method without time step adaptivity.

Figure 7 displays the decay of modified energy (26) for the three values of a. We see that

the decay is more or less rapid depending on the value of a. However, in no case at t = 25

the system is close to an energy plateau, which we observed already at t = 1 for the simple

convergence test in Sect. 5.1. See the graphs in Fig. 3.

Next, we compare the results obtained with the time-adaptive SAV-BDF2 method to those

obtained with the stabilized method in [43] in its time adaptive version. For this comparison,

we select only one representative value of a, namely a = 0.5. In Fig. 8, which illustrates

123



Journal of Scientific Computing (2023) 97 :57 Page 17 of 22 57

Fig. 6 Phase separation on the sphere, a = 0.7: evolution of phases computed with the stabilized method in

[43] (top) and the SAV-BDF2 method without time step adaptivity (bottom)

Fig. 7 Phase separation on the sphere: decay of modified energy (26) for a = 0.3 (left), a = 0.5 (center), and

a = 0.7 (right)

Fig. 8 Phase separation on the sphere, a = 0.5: evolution of phases computed with the time-adaptive stabilized

method in [43] (top) and the time-adaptive SAV-BDF2 method (bottom)

the evolution of phases until reaching the equilibrium configuration, we once again observe

no difference in either the spinodal decomposition or the domain ripening between the two

methods.

A comparison of the time step sizes and time step number over time is shown in Fig. 9.

From Fig. 9 (left), we can see that the time step grows for both methods until approximately

t = 50, after which it fluctuates around �t = 1. Although the time step sizes are generally

comparable for both methods, the SAV method utilizes slightly larger time steps during this

initial integration stage. Consequently, time step number n required to integrate the system

up to any t ≤ 200 is smaller for the time-adaptive SAV-BDF2 method compared to the
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Fig. 9 Phase separation on the sphere, a = 0.5: evolution of the time step size �t (left) and number of

the time steps required at each time instant (right) for the time-adaptive stabilized method from [43] and the

BDF2-SAV method with time step adaptivity

Fig. 10 Phase separation on the sphere: computational time (in s) needed by the stabilized method in [43]

and the SAV method with no time step adaptivity to complete the first 100 time steps of the simulations in

Fig. 4 (a = 0.5), 5 (a = 0.3), and 6 (a = 0.7)

time-adaptive stabilized method in [43]. However, the difference is not significant. See Fig. 9

(right).

We conclude this section with a comment on the computational time. All the computations

were executed on a machine with an AMD EPYC 7513 32-Core Processor and 512 GB RAM.

Figure 10 reports the computational time needed by the simulations whose results are shown

in Figs. 4, 5, and 6 to complete the first 100 time steps. The time required by the stabilized

method in [43] varies between one half and two thirds of the time required by the SAV method

with no time step adaptivity. Let us now turn to the simulations in Fig. 8, i.e., those with

time adaptivity. The time-adaptive SAV-BDF2 method takes 319 time steps in time interval

(0, 200] for a total computational time of about 41 min, while the time-adaptive stabilized

method in [43] takes about 9 min to complete 379 time steps in the same time interval.

The simulation with the time-adaptive SAV-BDF2 method requires less time steps but takes

longer overall. As mentioned at the end of Sect. 3.1, the reason for this difference in the

computational times is due to the fact that the extra terms introduced by the SAV method

make the matrices of the associated linear systems dense. If one used a finite difference

method on uniform grids for space discretization as in [20, 24, 37], higher computational

efficiency could be achieved for the SAV method. Our preference for a finite element method

and non-uniform meshes is for greater geometric flexibility, as shown in the next subsection.
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Fig. 11 Illustration of the complex manifold

Fig. 12 Phase separation on an idealized cell: evolution of phases computed with the stabilized method in

[43] (top) and the SAV method and BDF2 without time step adaptivity (bottom)

5.3 Phase Separation on a Complex Manifold

Because of our interest in phase separation on biological membranes in general, not just lipid

vescicles, we need to be able to handle surfaces that are more complex than the sphere. Here,

we consider an idealized cell with surface � given by the zero level set of following function

[10, 43]:

φ(x) =
1

4
x2

1 + x2
2 +

4x2
3

(1 + 1
2

sin(πx1))2
− 1.

Figure 11 illustrates a side view of this complex manifold and an angle view of the surface

mesh.

We embed surface � in bulk domain 
 = [−2, 2] × [−4/3, 4/3] × [−4/3,−4/3]. A

tetrahedral mesh for 
 is generated in the same way as for the cases in the previous subsection,

i.e., by diving 
 into cubes and then diving the cubes into tetrahedra. The active elements,

which are the elements that intersect surface, are further refined for a total of 14298 degrees

of freedom. This mesh has a level of refinement comparable to mesh � = 5 in Sect. 5.2. We

fix the time step to �t = 0.005 and do not allow for time step adaptivity.

We set the interface thickness ε to 0.05, like in Sect. 5.2. Figure 12 compares the evolution

of the phases given by SAV-BDF2 method without time step adaptivity with the evolution

given by the stabilized method in [43] for a = 0.5. We recall that a = 0.5 means that 50%

of the idealized cell surface is covered by the representative (red) phase and the remaining

50% is covered by the other phases. Just like in the case of the sphere (see Fig. 4), there is

no observable difference in the results given by the two methods.
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6 Conclusion

The paper introduced and investigated an SAV formulation of the geometrically unfitted trace

finite element method for the surface Cahn–Hilliard equations with degenerate mobility. The

BDF1 and BDF2 versions of the method were proven to dissipate specific energy, thus con-

forming to the fundamental property of the continuous problem. The method demonstrated

optimal convergence rates for smooth solutions and performed well in predicting phase sep-

aration and pattern formation in spherical and more complex shapes. Thus, it proved to be a

valuable tool in modeling multicomponent lipid vesicles. A comparison with a semi-explicit

mixed trace finite element method formulation with stabilization from [38] shows very similar

performance of both methods for the given class of problems. Both methods are well-suited

for time adaptation. Experiments suggested that SAV method allows for somewhat larger

time steps when the same adaptive criteria are used for the SAV and semi-explicit stabilized

methods. The stabilized method requires an additional parameter to be chosen, while the

SAV method adds a rank-one dense matrix to the resulting system of algebraic equations,

which must be solved at each time step. The availability of a fast algebraic solver for such

systems may determine one’s preference between these two solid methods.
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