
1.  Introduction
Evapotranspiration (ET) is the largest terrestrial water flux (Schlesinger & Jasechko, 2014) and is vital for under-
standing and modeling the terrestrial water cycle (Maxwell & Condon, 2016). But while ET flux tells us the gross 
quantity of ET water (i.e., how much water), it does not tell us about its source, pathway, and age (i.e., which 
water) (Benettin et al., 2021; Kuppel et al., 2020). Indeed, ET age is now seen as a crucial descriptor of the time 
water takes from precipitation to its movement through the subsurface and ultimately to plant water uptake and 
soil evaporation (Botter, 2012; Kuppel et al., 2020). Once thought to be simple, the fundamental mechanisms 
governing variations in ET age remain unclear (Benettin et al., 2021; Botter, 2012) with cryptic connections and 
disconnections of ET with the subsurface waters, for example, the groundwater (Fan, 2016; McDonnell, 2017).

Recent studies have used tracer experiments (Benettin et al., 2021; Nehemy et al., 2021; Sprenger et al., 2019), 
analytical approaches (Botter,  2012; Calabrese & Porporato,  2017), and column/hillslope numerical models 
(Asadollahi et al., 2022; Maxwell et al., 2019; Rahimpour Asenjan & Danesh-Yazdi, 2020; Sprenger et al., 2018) 
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to address many aspects of ET age. However, the limited spatiotemporal sampling, lumped conceptualization, 
and truncated modeling domain of these approaches limit our ability to connect this work to model estimates 
of groundwater age distributions (Engdahl & Maxwell, 2014) and streamflow travel time distributions (TTDs) 
(Kirchner, 2016a, 2016b; Maxwell et al., 2016). Clearly, our understanding of ET age lags far behind our under-
standing of groundwater and streamflow ages (Botter,  2012; Soulsby et  al.,  2016). Lateral heterogeneities in 
space and their temporal dynamics should be considered to improve understanding of the ET age variations 
(Kuppel et al., 2020).

The emergence of distributed numerical models tracking water movement at the catchment scale has facilitated 
the mechanistic assessment of ET age variations by integrating lateral heterogeneities and interactions (Knighton 
et al., 2020; Kuppel et al., 2018, 2020; Wilusz et al., 2019). With the distributed modeling approach, Kuppel 
et al. (2020) and Wilusz et al. (2019) showed a higher baseline of ET age at the valley bottom of the catchment. 
Such unintentional results may imply some intrinsic ET age variations differentiated by the locations in the catch-
ment yet lack enough attention and further exploration. Given that groundwater plays an important role in ET age 
variations at the stand scale, the spatially nested Tóthian groundwater flow (Tóth, 1963) controlled by topography 
may regulate ET age variations across multiple scales. The numerical domains in these previous studies using 
distributed models are thus far mainly headwater catchments. Given that the Tóthian groundwater flow systems 
are multi-level across scales, that is, local, intermediate, and regional systems, these previous small-scale studies 
may not be enough. A full view of spatiotemporal variations in ET age at larger scales may be necessary to better 
understand the role of lateral groundwater in governing these variations.

As a result, we leverage the latest parallel architecture of the multi-GPU (Yang et al., 2021; Yang et al., 2023a, 2023b; 
Yang, Maxwell, McDonnell, et al., 2022; Yang, Maxwell, & Valent, 2022) to develop a GPU-accelerated particle 
tracking approach linked to the integrated hydrologic modeling. We explicitly simulate flow paths and ET age 
at the regional scale with an explicit treatment of three-dimensional groundwater flow and ET at an hourly time 
step. Previous modeled soil-water mass balances at large scales have pointed to drainage position (i.e., location 
on the topographic gradient) as a control on plant water uptake where upland plants may rely on deep soil-water 
and lowland plants use convergent, lateral groundwater (Fan et al., 2017; Miguez-Macho & Fan, 2021). Here, we 
conduct a 42-year particle tracking simulation for the ∼0.4 M km 2 Haihe River Basin to explore the effects of 
topography-driven groundwater flow paths on the spatial and temporal variations in ET age. Our specific ques-
tions guiding the application of our new tool are:

1.	 �Does ET age show systematic variations with topography?
2.	 �Where and when are such topographic controls the most significant?

Our work brings new tools (i.e., our GPU-accelerated particle tracking approach linked to integrated hydrologic 
modeling) to test the topography-ET age connection in a regional watershed. We also leverage the known Tóthian 
concepts (Tóth, 1963), known topographic controls on groundwater age distributions (Gomez & Wilson, 2013; 
Jiang et al., 2010) and TTDs of streamflow (Cardenas, 2008; Rodriguez et al., 2020), and past numerical mode-
ling (Cardenas, 2008; Gomez & Wilson, 2013; Jiang et al., 2010) and tracer data analysis (Rodriguez et al., 2020) 
that links to our conceptual thinking regarding the topographic controls on groundwater age and streamflow 
TTDs. We use this combination of the latest modeling tools and reflection on past concepts and tracer findings to 
unravel how the topography-driven flow paths affect ET age at the large watershed scale.

2.  Methods
2.1.  Study Area

The modeling domain (112.70°–117.28°E and 34.44°–41.01°N) located in Northern China (Figure S1 in 
Supporting Information S1) covers most of the Haihe River Basin and a small portion of the Yellow River Basin. 
It encompasses the Taihang and Yanshan mountain ranges and most of the North China Plain (Figure S2a in 
Supporting Information S1). Elevations range from 0 to 2,800 m (Rabus et al., 2003) (Figure S2b in Supporting 
Information S1). Annual precipitation, annual evaporation, and annual mean temperature are 539 mm, 470 mm, 
and 9.6°C (1951–2007), respectively (Bao et al., 2012; Chu et al., 2010; Zheng et al., 2009). Land cover types are 
mainly croplands in plains, while the mountainous headwater areas are dominated by a mix of forests, croplands, 
shrublands, and grasslands (USGS, 2018) (Figure S2c in Supporting Information S1). Soil types are mainly silt 
loam in plains and loam-dominant in mountainous areas (Shangguan et al., 2012) (Figure S2d in Supporting 
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Information S1). The plains and valleys are dominated by Quaternary sediments together with outcrops of crys-
talline and carbonate rocks in ridge areas (Gleeson et al., 2011) (Figure S2e in Supporting Information S1).

2.2.  Numerical Models and Simulations

We use the integrated hydrologic model ParFlow-CLM (PF-CLM) (Kuffour et  al.,  2020; Maxwell & 
Miller, 2005). ParFlow (PF) integrates the two-dimensional overland flow using the kinematic wave approxi-
mation and the three-dimensional variably saturated subsurface flow by Richards' equation and then couples an 
advanced Common Land Model (CLM) via the root zone for vegetation and land-energy processes (Maxwell & 
Condon, 2016). The PF-CLM model for this study area is modified from our previous work (Yang et al., 2020), 
where the meteorological forcing is changed from 1.25° gridded Japanese 55-year reanalysis (JRA-55) (Harada 
et al., 2016; Kobayashi et al., 2015) to 0.25° gridded ECMWF reanalysis v5 (ERA5) (Hersbach et al., 2018) 
(Figure S3 in Supporting Information S1). The spatial resolution is changed from approximately 1 km to rigorous 
1 km. The model comprises five vertical layers of 100, 1, 0.6, 0.3, and 0.1 m thicknesses from bottom to top, where 
the upper 2 m is coupled with CLM. Thus, the modeling domain has a dimension of 509 km × 921 km × 102 m 
with 2,343,945 (509 columns × 921 rows × 5 layers) grid cells. After a full spin-up of the PF model, ensuring that 
the storage change in the modeling domain is less than 3% of the precipitation minus ET (Maxwell et al., 2015), 
the PF–CLM model was spun up for another 3 years at an hourly time step using the meteorological forcing of 
1979, a time period before disturbance (e.g., groundwater pumping) by human activities on our modeling domain.

EcoSLIM is a Lagrangian particle tracking code that works seamlessly with PF-CLM to simulate the advection 
and diffusion of water parcels in the subsurface (Maxwell et al., 2019). It was developed to calculate water ages 
(groundwater, ET, and outflow) and diagnose source water composition (snow, rainfall, and historical ground-
water). It was recently accelerated by multi-GPU (Yang et al., 2021; Yang et al., 2023a, 2023b; Yang, Maxwell, 
& Valent, 2022), thus enabling particle tracking at the regional scale, which is computationally expensive and 
previously infeasible. Results of the third-year spin-up from the PF-CLM model were repeatedly used to spin-up 
the EcoSLIM model for a further 42 years at an hourly time step. We used the results of Wang et al. (2018), who 
sampled groundwater from wells at depths between 2 and 90 m in the mountainous area in our modeling domain 
and got apparent groundwater ages of these samples from 24 to 42.5 years based on CFC-12 and 25.5–42 years 
based on CFC-113. Using this field information to guide our model analysis, we stopped the EcoSLIM spin-up 
at the end of the 42nd year.

The boundary conditions applied were no-flux, except the uppermost model layer, which is open for the entrance 
and exit of particles as precipitation and ET. In each grid cell, one particle was inserted in the initialization, 
representing the historical groundwater. At each time step, particles were removed when and where the PME 
(precipitation minus ET) was negative or exited as outflow once they reached the stream. One particle was added 
into a grid cell based on the accumulated positive PME each day. Notwithstanding, the total number of particles 
in the 42nd year was around 250 million, beyond any previous particle tracking studies that we are aware of. 
Our model work was evaluated by comparing snow water equivalent (SWE), sensible and latent heat fluxes, and 
streamflow with reanalysis data, and comparing water table depth (WTD) with data from previously published 
studies (Figures S4–S6 in Supporting Information S1). Simulated ET and streamflow ages were compared with 
the general understanding collected from previous studies (Figure S7 in Supporting Information S1). Note that 
evaluation of the large-scale hydrologic model is challenging (Gleeson et al., 2021), and the evaluation of water 
ages at such a large scale is almost impossible. Our evaluation confirms the capability of our model to suggest 
general patterns of water age variations in the modeled domain. Our model may be treated as a virtual model 
approximating the real world with our current best efforts. Our results are suggestions from our simulation results 
and may not be the world's truth, given that the ET age is still an emerging field without a complete theoretical 
basis. Please refer to Texts S1–S3 in Supporting Information S1 for details of the model setup and uncertainties 
and limitations of the simulation results.

2.3.  Analysis

We calculated annually aggregated ET age in space using particles that exited as ET in the 42nd year of simula-
tion. For each grid cell in the root zone, if the number of particles that exited as ET in the year was greater than 
zero, then its annually aggregated ET age was determined by
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𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖) =

𝑁𝑁(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
∑

𝑛𝑛=1

𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑚𝑚𝑛𝑛

𝑁𝑁(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
∑

𝑛𝑛=1

𝑚𝑚𝑛𝑛

, 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁(𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖)� (1)

where Age(i, j, k) is the annually aggregated ET age in grid cell (i, j, k), N(i, j, k) is the total number of particles 
exited as ET from grid cell (i, j, k) in the whole year, and mn and Agen are the mass and the age of particle n, 
respectively. The results based on Equation 1 are used for plotting Figure 1.

Particles that exited as ET at time t in the entire modeling domain were used to calculate spatially aggregated ET 
age Age(t) using

Figure 1.  Annually aggregated distributions of evapotranspiration (ET) age for each of the upper four layers (a–d) and the whole root zone (e). The values missing in 
plains and northwestern mountainous areas in the 1.0 m layer (d) are due to the limited root fractions of croplands at such a depth (Dai et al., 2003).
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𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) =

𝑁𝑁(𝑡𝑡)
∑

𝑛𝑛=1

𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑚𝑚𝑛𝑛

𝑁𝑁(𝑡𝑡)
∑

𝑛𝑛=1

𝑚𝑚𝑛𝑛

, 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁(𝑡𝑡)� (2)

ET ages in the mountainous areas and plains are differentiated by separating ET particles at time t into two 
portions based on their spatial coordinates (Figure S2a in Supporting Information S1) and then applying Equa-
tion 2 to each portion. Similarly, ET ages in mountainous areas were further distinguished by critical WTD as 
proposed by Kollet and Maxwell (2008) for three mountainous subregions. The results based on Equation 2 are 
used for plotting Figures 2 and 3. Subsurface travel lengths of ET water were calculated using the same method 
as ET age. Ages and lengths of subsurface storage are reported in Supporting Information S1.

3.  Results
3.1.  Spatial and Temporal Variations in ET Age

Our simulation results show, perhaps not surprisingly, that ET age is younger in recharge areas and older around 
streams (Figure 1 and Figure S6a in Supporting Information S1 shows locations of streams). Such variations 
persist across the modeling domain, suggesting distinct topography-driven patterns in ET age, despite high 
variabilities in land cover types, soil types, geologic units, and meteorological conditions (Figures S2 and S3 
in Supporting Information S1). In addition, ET age increases with depth except for groundwater convergence 
regions where ET is old (>1 year) across the whole root zone due to groundwater upwelling. Temporally, a signif-
icant vertical gradient in ET age with depth exists in plains (the baseline excluding the peak in Figures 2c–2f): 
ET age increases from <10 −1 year (hours to days) in 0.1 m layer to > 10 years in 1 m layer. In contrast, large 
fluctuations at small time scales (subseasonal) characterize ET age variations in the mountainous areas of our 
domain: ET age frequently switches between old and young (Figures 2g–2j). Please see Section 4 for a discussion 
of controls on these variations from flow paths. Moreover, our simulated year showed a large increase in ET age 
of up to ∼42 years in plains between April and June (Figure 2a). Forty-two year is the maximum age permitted in 
this study due to the total simulation time, so this age could likely be much larger.

Figure 2.  Temporal variations of spatially aggregated evapotranspiration (ET) age in the 42nd year for the plains (a) and the mountainous area (b). Plains and 
mountainous areas are differentiated based on Figure S2a in Supporting Information S1. The first row is for the whole root zone, while the second and third are for 
different model layers in each region: the second row is for the plains, while the third row is for the mountainous area. In the second and third rows (from left to right), 
the panels are the 0.1 m, 0.3 m, 0.6 m, and 1.0 m layers in the root zone, respectively. ET ages are mass-weighted ages and are colored by mass-weighted travel lengths. 
The ET age and travel length in this figure are calculated based on Equation 2 in the main text. Precipitation minus ET (PME) in each region is indicated in (a) and (b) 
by blue lines representing spatially averaged variations. Two dash lines in each plot indicate ages of 1 year and 10 years, respectively.

 21698996, 2023, 18, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

039228, W
iley O

nline Library on [26/02/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Geophysical Research: Atmospheres

YANG ET AL.

10.1029/2023JD039228

6 of 13

Kollet and Maxwell (2008) pointed out that, in the zone with WTD between 1 and 10 m, water and energy fluxes 
show the most interactions between land surface processes and groundwater. Therefore, we further divided the moun-
tainous areas into three subregions based on WTD (WTD > 10 m, 1 m < WTD < 10 m, and WTD < 1 m) to check if 
the simulated ET ages also obey this critical depth theory. On ridges (WTD > 10 m) (Figures 3a and 3d–3g), the 2 m 
root zone, much smaller than the WTD of 10 m, is not connected to groundwater. Precipitation inputs are generally 
drained vertically in the unsaturated zone. Consequently, ET age is young throughout the entire root zone, varying 
from <10 −1 year (hours to days) at the top root zone (i.e., the 0.1 m layer in Figure 3d) to <10 0 year (several months) 
at the bottom root zone (i.e., the 1 m layer in Figure 3g). Seasonal variations in ET age with meteorologic shifts 
between wet and dry (i.e., variations of PME in Figure 3a) are obvious near the land surface, while such variations are 
largely damped in the deep root zone (Figures 3d–3g). On hillslopes (1 m < WTD < 10 m) (Figures 3b and 3h–3k), 
ET age shows strong seasonal variability through the complete root zone (Figures 3h–3k), which is similar to that in 
plains (Figures 2c–2f) where a large portion of WTDs are also located between ∼1 and 10 m (Figure S6 in Support-
ing Information S1). In valley bottoms (WTD < 1 m) (Figures 3c and 3l–3o), ET ages are characterized by old water 
(>10 0 year) with significant fluctuations at subseasonal timescales. Note that ET age variations in this subregion 
(Figures 3c and 3l–3o) show the highest similarity to that of the whole mountainous area (Figures 2b and 2g–2j), 
implying that ET age variations in groundwater convergence zones dominate throughout the mountainous areas.

3.2.  Key Zone of ET Age Variations

We build a relationship between the subsurface travel length and the depth of the water source in the modeling 
area based on simulation results; in other words, the longer the travel length, the deeper the water source (Text 
S4 and Figure S8 in Supporting Information S1). We define the water with subsurface travel lengths longer than 

Figure 3.  Temporal variations of spatially aggregated evapotranspiration (ET) age in the 42nd year in different subregions of the mountainous areas. The division of 
subregions here is based on water table depth (WTD): the subregion with WTD < 1 m (a), the subregion with WTD between 1 and 10 m (b), and the subregion with 
WTD > 10 m (c). The first row is for the whole root zone, while the second to fourth are for different model layers in each subregion. In the second to fourth rows (from 
left to right), the panels are the 0.1 m, 0.3 m, 0.6 m, and 1.0 m layers in the root zone, respectively. ET ages are mass-weighted ages and are colored by mass-weighted 
travel lengths. The ET age and travel length in this figure are calculated based on Equation 2 in the main text. Precipitation minus ET (PME) in each subregion is 
indicated in (a–c) by blue lines representing spatially averaged variations. Two dash lines in each plot indicate ages of 1 year and 10 years, respectively.
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10 km as “lateral groundwater”, indicating groundwater from the deep subsurface storage (see further details in 
Text S4 and Figure S9 in Supporting Information S1). In plains and on hillslopes (Figures 2c–2f and 3h–3k), 
where ET age shows highly seasonal variability, the increase in travel length (colored in Figures 2 and 3) of the 
ET water highlights the critical importance of groundwater to meet seasonal ET demand.

During the April to June period, precipitation minus ET (PME) is negative (Figure 2a), indicating limited precipi-
tation with strong ET. The maximum absolute value of negative PME in Figure 2a is 3.20 × 10 −4 m/hr (2,803 mm/
year or 7.68 mm/day), representing the strongest ET flux, while the annual average magnitude of negative PME 
is 2.94 × 10 −5 m/hr (258 mm/year or 0.71 mm/day). These values are comparable to the annual average ground-
water pumping rate of 6.85 × 10 −5–9.13 × 10 −5 m/hr (600–800 mm/year) in the piedmont area in the North 
China Plain, a worldwide hotspot of groundwater depletion (Cao et al., 2013). Hence, ET age in this subregion 
(1 m < WTD < 10 m) is controlled by shallow precipitation inputs and deep groundwater subsidy. The nonlinear 
shift of ET age to 42 years (e.g., Figure 3k) instead of a more progressive increase with time implies a switching 
of ET source water to sources deeper than the 2 m root zone during periods of water stress. In other words, plants 
in their rooting area use groundwater that upwells into the root zone like a seasonal extraction.

In the valley bottom, the extraction of groundwater by plants is insignificant due to the abundant water in such 
stable discharge areas. Slight increases in ET age were observed in the second and third WTD layers during dry 
conditions due to precipitation recharge deficits (Figures 3m and 3n). In contrast, on ridges (Figures 3d–3g), the 
short travel lengths indicate the decoupling of the root zone with the deep subsurface storage. Seasonal variations 
of ET age are largely mediated by meteorologic variations.

4.  Discussion and Conclusions
Figure 4 presents a conceptual model for the topography-driven flow paths and ET ages in the modeling domain, 
influenced by previous work (Fan, 2015; Freeze & Witherspoon, 1967; Maxwell et al., 2016; Tóth, 1963; Zhang 
et al., 2021). It contrasts how rolling and flat topography in complex topography differentiates water flow paths. 
In mountain valleys, upward flow paths with variable lengths and depths converge near the land surface. This 
creates a type of mixed flow paths at the same depth. In contrast, in plains, downward flow paths penetrate the 
thin vadose zone (i.e., with associated shallow water table depths, Figure S6 in Supporting Information S1) and 
rapidly convert to horizontal flow paths in the saturated zone, showing a type of consistent flow paths at the same 
depth. Synchronous variations in travel length with ET age in each layer (shown in the second and third rows in 
Figure 2) or the whole root zone (shown in the first row in Figure 2) indicate that ET water is drawn from similar 
depths in plains but from contrasting depths in mountainous areas. These differences in the depths of ET water 

Figure 4.  Conceptual diagram of topography-driven flow paths in the modeling domain based on the Tóthian concept. 
Mountainous areas and plains are dominated by rolling and flat topographies, respectively. The top 2 m represents the upper 
four layers of the model, that is, the root zone. The deeper 100 m is the bottom layer of the model. Three subregions in the 
mountainous areas differentiated by water table depth (WTD) are exemplified. These subregions represent the ridges with 
WTD larger than ∼10 m, the hillslopes with WTD between ∼1 m and ∼10 m, and the valleys with WTD smaller than ∼1 m.
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sources highlight the topographical controls on ET age. Particularly, the strong fluctuations of ET age associ-
ated with fast switches of travel length in the mountainous area, especially in the area with WTD less than 1 m, 
highlight the heterogeneity of flow paths and the change of the importance of different flow paths with time. The 
converged deep and long groundwater flow paths dominate the general old ET. Once precipitation happens, the 
shallow and short flow paths temporarily prevail, leading to young ET. Therefore, ET age in the valley bottom 
quickly shifts between old and young with precipitation events and has the most significant fluctuations.

Figure 5 shows the relationship between ET age and its subsurface travel length. On mountain ridges (the first 
column in Figure 5), ET water shows limited movements around a length scale comparable to the thickness of 
the root zone (∼10 0 m indicated by the first vertical dash-line). ET age is consequently young, varying in a small 
range. In the key zone of ET age variations (the second column in Figure 5), the >10 km travel length of ET water 
(the second vertical dash-line) becomes significant with depth (i.e., from 0.1 to 1 m layer). Travel length of more 
than 10 km, not possible through pure unsaturated movement in the root zone (Figure S10 in Supporting Infor-
mation S1), is an indicator of lateral groundwater flow (Text S4 in Supporting Information S1). This suggests that 
the deeper water source of ET during dry periods is the lateral groundwater flow. Increasing connections with 
lateral groundwater flow with depth (the second column in Figure 5) shifts ET age in the 0.1 m layer, which is 

Figure 5.  Variations of evapotranspiration (ET) age with subsurface travel length. Blue points are based on spatial distributions of ET age in Figure 1, while green 
points are based on time series of ET age aggregated in the entire modeling domain (i.e., mountainous areas and plains are not distinguished). The horizontal gray line 
indicates the ET age of 1 year. The first vertical gray line indicates the travel length of 1 m while the second indicates 10 km. The first row is for the whole root zone, 
while the second to the fifth are for layers from bottom to top (1.0, 0.6, 0.3, and 0.1 m). The first to the third columns are for subregions with different water table 
depths (WTDs): WTD > 10 m, 1 m < WTD < 10 m, and WTD < 1 m. The last panel in each row represents the whole layer. The panel for the area with WTD < 1 m in 
the 0.1 m layer (red rectangle) shows a scaling relationship since ET age varies linearly with travel length in the log-log plot over three orders of magnitude.
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similar to that on ridges, to about the maximum value (42 years) in this study in the 1 m layer. In valleys (the third 
column in Figure 5), the travel length of ET water shows a wide range throughout the root zone, highlighting the 
convergence of variable groundwater flow paths in this subregion, which induces large fluctuations of ET age 
at subseasonal scales (Figures 2b and 3c). Most notably, a significant scaling relationship (indicated by the red 
rectangle in Figure 5) between ET age and travel length is shown at the land surface of valleys, where there are 
the most variable flow paths, as shown in Figure 4.

Our work highlights the importance of accurately describing Tóthian (topography-driven) flow paths in ET age 
modeling. Three-dimensional variably saturated subsurface flow is essential to capture such topographically 
induced groundwater flow paths. Traditional land surface models—most without lateral groundwater flow (Clark 
et al., 2015) and some with simplified lateral groundwater flow (Maneta & Silverman, 2013) may overestimate 
the drainage in valleys (Fan,  2015) and underestimate the deep flow paths, respectively. Our work supports 
recent field and modeling evidence of how groundwater in headwaters subsidizes their parent watersheds (Ameli 
et al., 2018) and related process findings of groundwater subsidy on ET (Hwang et al., 2012).

Some previous work on ET age has shown similar divisions of two subregions (hillslope and valley bottom) based 
on soil saturation (Soulsby et al., 2016) or soil type (Kuppel et al., 2020). Kuppel et al. (2020) also showed a 
higher baseline of ET ages with weaker seasonal variability in the valley bottom than on the hillslope, consistent 
with our results. Fan and others (Fan, 2015; Miguez-Macho & Fan, 2021) delineated two hydrologic subregions: 
one the upland of precipitation drainage, the other a lowland area of groundwater convergence. They pointed out 
that plants in the two subregions took different water sources. While we also divided the subregions based on 
saturation—to show some difference in ET age among subregions—none were as successful as that based on 
WTDs. This strengthens our point that topography exerts a significant control on ET age variations. Our division 
based on topography-driven WTDs not only captures the variations in valleys or lowlands but also reveals the 
necessity to further divide the areas outside the groundwater convergence region.

Additionally, our work extends the critical WTDs (∼1 m < WTD < ∼10 m) for energy and water quantity in Kollet 
and Maxwell (2008) to water age. In this zone, groundwater shows a buffer effect to maintain ET demand and relieves 
water pressure on plants during dry conditions (Condon et al., 2020). However, our work further showed increased 
seasonal variability of ET age induced by the old groundwater subsidy. Generally, topography-driven flow paths 
shape the basic patterns of ET age variations by creating distinct characteristics from ridges to valleys with increasing 
connections with groundwater, while meteorologic conditions further modulate the basic pattern generating the key 
zone of ET age variations with WTDs of 1–10 m. However, our large-scale study on basic patterns cannot reject that 
soil type, geologic unit, land cover, etc. (Figure S2 in Supporting Information S1) affect ET age variations. The topo-
graphic controls revealed in our work could be impacted by subvariations of ET age (as seen in Figure 1), possibly 
regulated by these additional factors. Variations of ET age regulated by additional factors may be locally dominant at 
finer scales (Allen et al., 2019; Kuppel et al., 2020), but such analysis is beyond the scope of this discussion.

Finally, our GPU-accelerated particle tracking approach that integrates hydrologic modeling with land surface 
processes enables the explicit analysis of hydrologic compartmentalization (McDonnell, 2017) and its impact on 
water ages into the water balance. This implementation quantifies how the relatively isolated groundwater can 
connect with Earth's surface processes at large scales—as we showed here for ET age. Our analysis goes beyond 
the water quantity work reported in previous studies (de Graaf & Stahl, 2022; Maxwell & Condon, 2016). Our 
approach is able to reconcile and integrate ET age variations in a unified framework linked to topography-driven 
flow paths. These topographic controls appear to trump the meteorologic conditions, land cover types, soil types, 
and geologic units in our modeling domain. Contributions from lateral groundwater flow substantially widen 
the distributions of ET age showing long tails (Figure S11 in Supporting Information S1). Though ET is a land 
surface process that is thought to be “shallow and fast,” as represented in the current Earth System Models 
(ESMs) (Fan et al., 2019), our results show the subsurface travel lengths supplying ET water can be over 10 km 
with corresponding ET ages on the order of tens of years (Figure 5). These will likely increase further with longer 
simulation times with future developments in high-performance computing. Therefore, our work also illustrates 
the need to move the simulation of the hydrologic cycle toward the large scale with high-resolution frameworks 
using advanced parallel architectures (Hokkanen et al., 2021)—especially to accelerate the next-generation ESMs.

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

 21698996, 2023, 18, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

039228, W
iley O

nline Library on [26/02/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Geophysical Research: Atmospheres

YANG ET AL.

10.1029/2023JD039228

10 of 13

Data Availability Statement
ParFlow-CLM (ParFlow Developers, 2022) is open source at https://github.com/parflow, https://doi.org/10.5281/
zenodo.6413322; EcoSLIM (Yang et al., 2023a, 2023b) is also open source at https://github.com/aureliayang/
EcoSLIM_CONUS, https://doi.org/10.5281/zenodo.7302297.
The inputs scripts for simulations and the Figure data (including Figure data in Supporting Information S1) (Yang, 
Maxwell, McDonnell, et  al.,  2022; Yang, Maxwell, & Valent,  2022) can be found at https://doi.org/10.6084/
m9.figshare.19566085.
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