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Developing fluorescence-encoded infrared (FEIR) vibrational spectroscopy for single-

molecule applications requires a detailed understanding of how the molecular response

and external experimental parameters manifest in the detected signals. In the previous pa-

per of this series we introduced a nonlinear response function theory to describe vibrational

dynamics, vibronic coupling, and transition dipole orientation in FEIR experiments with

ultrashort pulses. In this second paper, we apply the theory to investigate the role of inter-

mode vibrational coherence, the orientation of vibrational and electronic transition dipoles,

and the effects of finite pulse durations in experimental measurements. We focus on mea-

surements at early encoding delays—where signal sizes are largest and therefore of most

value for single-molecule experiments, but where many of these phenomena are most pro-

nounced and can complicate the appearance of data. We compare experiments on coumarin

dyes with finite-pulse response function simulations to explain the time-dependent be-

havior of FEIR spectra. The role of the orientational response is explored by analyzing

polarization-dependent experiments and their ability to resolve relative dipole angles in

the molecular frame. This work serves to demonstrate the molecular information content

of FEIR experiments, and develop insight and guidelines for their interpretation.
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I. INTRODUCTION

The ability to probe the vibrations of single molecules offers a direct view into chemical struc-

ture and interaction free of the averaging inherent in conventional ensemble measurements. While

an array of single-molecule vibrational techniques utilizing near-field optical effects have been

established to study molecules near metallic surfaces or nanostructures,1–5 methods that can be

applied to bulk environments like free solution have only more recently begun to be developed.6–8

One such approach is fluorescence-encoded infrared (FEIR) spectroscopy, which encodes vibra-

tional excitation on the ground state into the molecule’s fluorescence emission intensity, facili-

tating single-molecule sensitivity.9 FEIR experiments employ ultrashort pulses to selectively and

sequentially excite the molecule’s vibrational and electronic transitions, and are therefore time-

resolved measurements sensitive to vibrational dynamics during the inter-pulse delays. A thor-

ough understanding of how these dynamics influence the time-dependence of FEIR experiments

is critical for interpreting data and designing measurements to most optimally yield the desired

molecular information.

FEIR experiments use a pair of broadband IR pulses separated by delay τIR to excite the vi-

brations of interest, followed after a variable encoding delay τenc by an electronically pre-resonant

visible pulse to selectively bring the molecule to its fluorescent excited state. Fourier transfor-

mation of the resulting fluorescence intensity along τIR produces an FEIR vibrational spectrum,

which evolves in τenc. Paper I of this series developed a nonlinear response function description

of such three-pulse FEIR experiments, describing how the τenc-dependence of spectra is governed

by contributions from the excited vibrational populations undergoing relaxation as well as from

the coherent evolution of superpositions of excited states—i.e. the concerted motion along multi-

ple vibrational coordinates. These coherence contributions are a hallmark of ultrafast experiments

with broadband excitation covering multiple transitions, and therefore have the potential to be

ubiquitous in FEIR measurements on multimode systems.

The vibrational population response produces intuitive absorptive bands in the spectra, each

with magnitude proportional to the squared product of the ith vibration’s transition dipole moment

µi0 and the Franck-Condon (FC) factor ⟨0e|1g
i ⟩ describing its coupling to the g → e electronic

transition. This magnitude is further scaled by a geometric factor dependent on the relative dipole

orientation of the vibrational and electronic transitions, manifesting in experimental polarization

dependencies with an anisotropy governed by the second Legendre polynomial of a two-point
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dipole correlation function—a form common to third-order spectroscopies of coupled transitions,

e.g. that of a cross-peak in a two-dimensional (2D) spectrum. On the other hand, the coherent re-

sponse produces phase-twisted lineshapes connecting pairs of vibrational resonances, with phase

evolving during τenc to produce beating signatures. The amplitude of a coherence pathway depends

on the product of the transition dipoles and FC factors for both vibrations, µi0µ j0⟨0e|1g
i ⟩⟨0e|1g

j⟩,

and can have positive or negative sign. The orientational factor for a coherence is similarly more

complex, depending on the multiple angular variables describing the orientation of the two vibra-

tions relative to the electronic transition, and also has variable sign.

The interference of population and coherence contributions can lead to complicated and non-

intuitive spectra, particularly when many vibrational modes are excited, resulting in multiple co-

herences evolving at different beat frequencies with variably signed amplitudes sensitive to vi-

bronic coupling and dipole orientation. This situation is most pronounced at early encoding de-

lays before the vibrational coherence has dephased. At the same time, the overall signal size is

invariably largest at these early delays, as the excited populations have not had time to signifi-

cantly relax. Therefore, working at early τenc is likely a practical necessity for single-molecule or

otherwise high-sensitivity applications.

In this paper we deal with the encoding-delay and polarization-dependent phenomenology of

multimode FEIR signals in the early-time region. Focusing our analysis on early-time signals

also limits the influence of more complicated vibrational relaxation behavior, notably intramolec-

ular vibrational energy relaxation (IVR),10–12 allowing us to apply the simple homogeneous-limit

expressions for the response function developed in Paper I. Earlier picosecond IR-UV/Vis double-

resonance fluorescence experiments—the conceptual predecessors of FEIR spectroscopy—identified

IVR as being responsible for signal generation at long delays, where the encoding step no longer

samples the initially excited vibrational levels but rather involves transitions from a “hot” distri-

bution of excitation in lower frequency FC-active modes.13,14 In FEIR spectra at longer τenc we

observe a re-weighting of band intensities consistent with IVR, although further work is needed

to fully understand these effects.15

In addition to the dynamic molecular response, the spectral and temporal pulse characteristics

can also significantly impact the appearance of data. This is especially true at early times, where

convolving the system response with the pulse’s finite temporal profiles has the largest effect on

the τenc-dependent shape of signals, and data from within the pulse overlap region is potentially

polluted by misordered light-matter interactions and other undesired contributions. Specifically,
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the problem of where the largest signal is located along τenc, which is of obvious interest for

achieving the highest detection sensitivity, is highly dependent on both the interference of popula-

tion and coherence pathways as well as finite-pulse effects. For example, Fig. 1 shows two-pulse

FEIR transients measured from a variety of coumarin molecules. As described in Paper I, the

two-pulse signal represent the magnitude of the total FEIR spectrum integrated over the vibra-

tional frequency axis at each τenc value. There are distinct variations in the shape of the signals,

including steepness of the rising edge, location of the signal maximum, and character of coherent

beating (or apparent lack thereof). Notably, in some cases the signal peaks beyond the extent of

the pulse-overlap region, while others peak near τenc = 0 ps. Understanding these differences, and

to what extent the FEIR spectra are interpretable at their brightest, requires an appreciation of the

role played by finite-pulse effects.

Assuming the impulsive limit when modelling ultrafast experiments—i.e. taking the pulses

to be infinitely short compared to the system dynamics encoded in the response function—is for

the most part a convenience that simplifies the problem, rather than a good physical approxima-

tion. Some of the most apparent finite-pulse effects are caused by the pulses’ finite spectral band-

width, which effectively windows the system response in the frequency domain and thereby dis-

torts spectra,17–21 or their finite duration, which modifies the apparent system dynamics measured

in the time domain.22–25 These two types of effects are in general connected by a Fourier transform

relation, and occur simultaneously in a measurement. Perhaps less intuitive are effects involving

distortions due to non-constant spectral phase, i.e. when pulses are not transform-limited.26–28

Another class of artifacts emerges from the presence of “improperly” time-ordered light-matter

interactions, most notably occurring when pulses overlap and the desired sequentiality of inter-

action cannot be enforced. Some examples are the perturbed free-induction decay contribution

and “coherence spike” in transient absorption and 2D spectra,29–32 or various other distortions to

absorptive 2D spectra from the spurious mixing of rephasing, non-rephasing, and double-quantum

coherence pathways.20,33–37

Coherently-detected nonlinear experiments are also often affected by other signal contributions

not originating from the response of the system of interest, for example arising instead from the

solvent or sample cell substrates. These contributions are usually non-resonant with the inci-

dent fields and occur during pulse overlap, where they can overwhelm the desired signal. Some

common examples include cross-phase modulation of the probe field,38 and multi-photon absorp-

tion or stimulated Raman scattering from the solvent and/or windows.39,40 As these processes
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FIG. 1. Two-pulse FEIR signals measured with identical pulse characteristics and ZZZZ polarization for

10 coumarin dyes (experiments described in Ref. 16). The independently measured projection of the τenc-

dependent FEIR spectrum onto the τenc-axis is overlayed to demonstrate the projection-slice relationship

(spectra shown in Sec. S6 of the supplementary material). The τenc-dependent spectrum was not measured

for C545. The 1/e2 full-width (667 fs) of the pulse-overlap region is indicated by the grayed-out box. Traces

are normalized to their respective maxima and offset vertically for clarity.

are not described by the response function of the system in question, they present an additional

layer of complexity in modelling data within the pulse-overlap region. It is often claimed that

action-based techniques, specifically those employing fluorescence detection, are immune to these

non-resonant pulse-overlap artifacts because the fluorescence signal comes unambiguously from

the spectroscopic system being targeted.41–45 While this ability to selectively sample the system

does preclude many of the pulse-overlap artifacts mentioned above and is an important advan-

tage of fluorescence-detected techniques, it is still possible for undesired processes to influence

the system’s target excited population—and hence fluorescence signal—during pulse overlap.

One important example is multi-photon excitation proceeding through virtual states, i.e. that is
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non-resonant with the real intermediate system states of spectroscopic interest. In FEIR spec-

troscopy, vibrationally-nonresonant IR + visible two-photon absorption is an example of such a

pulse-overlap artifact that can contribute to early-time data, and will be discussed in our analysis.

Understanding finite-pulse effects is also important for exploring avenues to maximize single-

molecule FEIR efficiencies through optimal pulse design. The primary importance of maximizing

overall efficiency alters the fundamental strategy in FEIR excitation from that of conventional ul-

trafast spectroscopies, which typically seek to approach the impulsive limit with the shortest pulses

to directly measure the unadulterated system response function. In contrast, an FEIR excitation

scheme that optimizes the excitation rate per molecule at the expense of imprinting the pulse char-

acteristics into the data would in principle be desirable, provided that the resulting signal can still

be interpreted to reveal the sought after molecule information.

This paper explores the role of vibrational coherence, finite-pulse effects, and orientational re-

sponse in early-time FEIR signals through a comparison of experimental data with response func-

tion simulations. We address bulk experiments on coumarin dyes largely described previously in

Ref. 16, and adopt a descriptive approach aimed at cataloging τenc-dependent behavior and ori-

entational effects through demonstrative calculations. This paper is organized as follows. Section

II describes the experimental and computational methods. Section III analyzes many of most im-

portant effects of finite pulses through simulations on a model two-mode system. In Sec. IV we

analyze the role of vibrational coherence in measurements on coumarin 6 (C6), which have been

especially significant for the development of FEIR spectroscopy as they were used for our previous

demonstration of single-molecule sensitivity.9 In these experiments the coumarin ring vibrations

being probed have roughly parallel transition dipoles, so the orientational response does not need

to be accounted for the model the signals. Section V discusses the polarization-dependence of the

FEIR signal, first for the simplest case of a single-mode system given by the spectrally-isolated

nitrile stretching mode of coumarin 337 (C337). Then the orientational response of a more compli-

cated multimode system consisting of the high-frequency ring modes and pair of carbonyl stretches

of coumarin 343 (C343) is analyzed, and the ability of FEIR anisotropy to measure the relative

vibrational transition dipole angles is discussed.
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II. METHODOLOGY

A. FEIR experiments and temporal instrument response characterization

The FEIR data analyzed in this paper originates from the experiments described in Ref. 16,

with the exception of the C337 nitrile measurements in Sec. V A, and further details on the in-

strumentation can also be found in Refs. 9 and 15. Here we briefly describe aspects of the ex-

perimental methodology relevant to τenc-dependent measurements. IR pulses are generated by an

optical parametric amplifier (OPA) pumped with a 1 MHz repetition-rate Yb fiber laser (Coher-

ent Monaco 1035-40),46 and sent through a Mach-Zehnder interferometer to produce a collinear

pulse-pair with controllable delay τIR. The visible encoding pulse (ωvis = 19360 cm-1 = 516.5

nm) is generated by doubling the fiber laser fundamental and passed through a delay line to set

and control the encoding delay τenc. The linear polarization of the IR pulse out of the OPA is left

unadjusted, while the linear polarization of the encoding pulse is rotated by a half-wave plate to

control the relative pulse polarization angle Θ (defined in Paper I).

The IR pulse-pair and visible encoding pulse are delivered into a home-built microscope where

they are focused into the sample in a collinear, counter-propagating geometry using a ∼0.7 numer-

ical aperture (NA) ZnSe aspheric lens and 0.8 NA air objective, respectively. The sample consists

of a 1 mm thick CaF2 window on the IR (bottom) side, a 50 µm solution layer defined by a PTFE

spacer, and either a 175 µm glass or 150 µm CaF2 coverslip on the visible (top) side. Fluorescence

is collected by the air objective, separated from the visible encoding beam by appropriate filters,

and focused onto a single-photon avalanche photodiode with its small active area serving as a con-

focal aperture. The probed region of solution is defined by the visible confocal volume, which is

contained within the order of magnitude larger IR focus. The total fluorescence intensity is given

by a photon count rate corrected for pile-up error, and the FEIR signal is found by subtracting off

the constant background from visible excitation alone.16 A description of how the signal from a

three-pulse FEIR experiment is processed into a spectrum is given in Sec. S3.

The IR pulse duration was characterized by interferometric autocorrelation in AgGaS2 at the

sample position (Sec. S5.1). Measurements on C6 and C343 use an IR pulse centered at ωIR =

1620 cm-1 with FWHM bandwidth ∆ωIR = 135-140 cm-1 and mildly-chirped duration (FWHM

intensity profile) of τp,IR = 230 fs (calculated transform-limited duration of 105-110 fs). For

measurements on the C337 nitrile the IR pulse is tuned to ωIR = 2235 cm-1 with FWHM bandwidth
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∆ωIR = 105 cm-1 and duration of τp,IR = 180 fs, which is closer to the transform-limited duration

of 140 fs.

The visible pulse duration and temporal instrument response function (IRF) are characterized

by measuring the intensity cross-correlation of the IR and visible pulses in the sample. This is

achieved by taking advantage of fluorescence excited by vibrationally-nonresonant IR + visible

two-photon absorption (TPA), and is described in detail in Secs. S4 and S5.2. The TPA signal

maps out the pulse-overlap region in τenc, and is extended over the IR pulse’s spectral profile on

the frequency axis of an FEIR spectrum. The visible pulse duration is backed out of the measured

IRF duration τcc with knowledge of the IR pulse duration from the relation τcc =
√

τ2
p,IR + τ2

p,vis,

yielding τp,vis = 315 fs.

The peak of the TPA signal along τenc formally defines the location of τenc = 0, and therefore

can be used to set timing. Ideally, a fluorescent dye that satisfies the FEIR resonance condition

ωIR +ωvis = ωeg but has no vibrations within the IR bandwidth is selected for generating a TPA

signal to characterize the IRF and set timing for experiments. This procedure is adopted for the

C337 nitrile experiments in Sec. V A, using C343 as the non-resonant TPA sample (Sec. S5.2).

However, we have so far been unable to find a suitable TPA dye for experiments with ωIR < 1800

cm-1, as C=C ring stretches are ubiquitous in organic dyes. Operationally, we therefore set τenc =

0 for the FEIR measurements at ωIR = 1620 cm-1 with reference to the maximum of the C6 two-

pulse signal, which we define to occur at τenc = 600 fs based on response function calculations

discussed below in Sec. IV C.

In practice, the proper assignment of time zero for τenc is also made difficult by the counter-

propagating experimental geometry, which couples the relative timing of the IR and visible pulses

to longitudinal position along the optical axis. Therefore τenc timing is sensitive to the overall

index profile of the sample, as this determines the effective pathlengths seen by the IR and visible

pulses on their way to the confocal volume. Care must be taken to ensure that the solution index,

thickness, and depth of the probe volume below the coverslip are consistent between measurements

intended to share common τenc timing. The uncertainty in timing between different experiments

(e.g. the various two-pulse transients in Fig. 1) is ∼100 fs, which reflects the repeatability from

sample to sample likely dominated by variations in solution-layer thickness.

The FEIR measurements on C6 and C343 were performed in acetonitrile-d3 solution at 100

µM concentration, while those on C337 were performed in dimethylformamide (DMF) solution

at 100 µM concentration.
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B. Numerical finite-pulse response function calculations

Incorporating the effects of finite pulses into a response function calculation presents two main

challenges: (1) accounting for all possible time-orderings of light-matter interactions supported

by the (potentially overlapping) pulses at any given set of inter-pulse delays, and (2) evaluating

the multiple time-convolution integrals of the pulse electric fields against the response function.

Our approach is described in detail in Sec. S1. Briefly, to address the first aspect of the problem

we employ a set of pulse-specific interaction time variables introduced by Jonas and co-workers

to separate the different time-ordered contributions to the signal.47 The relatively small number

of pathways that contribute under the unique resonance conditions of FEIR spectroscopy greatly

simplifies this mixed time-ordering situation during pulse-overlap.

Next, we use a numerical Monte Carlo integration procedure to evaluate the four nested convo-

lution integrals of Eq. 8 in Paper I for computing the target population giving rise to the three-pulse

signal F12(τIR,τenc). The two-pulse signal is calculated from the same expression by setting τIR

= 0. The calculation employs the rotating wave approximation (RWA), and the response func-

tion is expressed in the homogeneous limit with the RWA-conjugate electric field phase factors

directly incorporated. The pulse electric fields are initially specified in the frequency domain

and their time-domain envelopes are evaluated numerically by FFT. The complex envelope of the

three-pulse signal is calculated in a fully-rotating frame with respect to the IR center frequency

ωIR to facilitate maximal under-sampling of the τIR delay. For each combination of inter-pulse

delays τIR and τenc, N Monte Carlo samples of the four integration variables are drawn from in-

dependent Gaussian distributions mimicking the field envelopes. The range of each variable’s

distribution is truncated at 5 times the envelope FWHM of the field facilitating the interaction. We

use N = 2× 107 to 5× 107 samples, and spectra are calculated by FFT from the complex three-

pulse signal with τIR scanned from 0 to 5 ps in 50 fs steps. Section S3 demonstrates that the C3

pathways do not survive the convolution integrals, and therefore only the C1 and C2 pathways are

calculated.

All calculations in the main text use the same pulse characteristics, which are chosen to roughly

represent those in the experiments on C6 and C343, and are given Gaussian spectra for simplicity

(no calculations are performed to model the C337 nitrile experiment). The visible encoding pulse

is centered at ωvis = 19360 cm-1 with FWHM of ∆ωvis = 46.7 cm-1, producing a transform-limited

pulse duration of τp,vis = 315 fs intended to match the experimentally measured pulse duration. The

9



IR field is centered at ωIR = 1620 cm-1 with FWHM ∆ωIR = 140 cm-1. The resulting transform-

limited IR pulse duration is τp,IR = 105 fs, and applying a second-order spectral phase (group delay

dispersion) of γ2 = -7800 fs2 roughly reproduces the experimental pulse duration of 230 fs (Fig.

S23). We use transform-limited pulses in the calculations presented in the main text, but describe

the effects of this amount of dispersion, which are relatively minor, in Sec. S12.

C. Electronic structure calculations

Electronic structure calculations on the ground and first excited states were performed with

density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respec-

tively. The calculations employed the B3LYP functional with 6-31G(d,p) basis set, and ground

and excited state geometry optimization and normal mode analysis were carried out in the Gaus-

sian09 package (Revision B.0124) using a polarizable continuum model to account for the solvent

(acetonitrile for C6 and C343, dimethylformamide for C337). Frequency calculations were per-

formed on both optimized geometries to determine the vibrational normal modes. The ground

state vibrational transition dipole moments were computed from the derivatives of the molecular

dipole moment along the respective ground state normal mode coordinates. The electronic transi-

tion dipole moments were computed from single-point energy calculations of the first excited state

using TD-DFT on the geometry-optimized ground state.

FC wavefunction overlap integrals were calculated using FCClasses (version 2.1) developed

by Santoro and co-workers.48,49 We used FCClasses to obtain the dimensionless displacements of

the optimized excited state minimum relative to the ground state minimum along the normal mode

coordinates, and the Duschinsky matrix to compute the FC factors ⟨0e|1g
i ⟩ using the relationships

outlined in Ref. 50. This method accounts for displacements, frequency changes, and Duschinsky

mixing of the normal modes between the ground and excited states. In this work, the normal

mode frequency, transition dipole, and FC factor calculations are used to assign vibrational spectra

and obtain parameters for the response function simulations that qualitatively demonstrate how

features in experimental FEIR data can be seen to arise from the molecular response. A study

of how predictive these electronic structure methods are for quantitative aspects of FEIR signal

strength will be presented elsewhere.
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III. FINITE-PULSE EFFECTS IN A SIMULATED TWO-MODE SYSTEM

A. Model system
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FIG. 2. Spectral characteristics of the two-mode model system and its FEIR resonance conditions. (a)

FEIR activity spectrum Svibr, IR pulse spectrum |ẼIR|2, and their product. (b) Lineshapes of the encoding

transitions S(1m → e) and S(1n → e) for mode m and n, respectively, and the bare 0-0 electronic transition

S(0 → e). The visible pulse spectrum |Ẽvis|2 is overlayed.

In this section we examine the impact of finite pulses in the simulated FEIR spectroscopy of

a system of two coupled vibrations. Since a two-mode system is the minimal case that exhibits

vibrational coherence, this model system captures many of the features common to multimode

FEIR experiments. Paper I treated the phenomenology of two-mode FEIR signals in the impulsive

limit. Building on that discussion, we demonstrate the most important finite-pulse effects, includ-

ing the windowing of vibrational spectra by the finite IR bandwidth, the distortion of coherence

evolution in τenc, and the resulting consequences to the interference between population and co-
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Mode ωi0 (cm-1) µi0 ⟨0e|1g
i ⟩ Γ

−1
i0 = Γ

−1
ii (fs) Γ

−1
ei (fs)

m 1515 1/
√

2 0.1 1000 10

n 1585 1 0.1 1000 10

TABLE I. Response function parameters for the two-mode model system. The singly-excited vibrational

states are indexed by i = m,n and the intermode coherence dephasing is set to Γ−1
mn = 500 fs.

herence contributions. We will restrict our analysis to transform-limited pulses. We will ignore

the orientational response, which in the limit of slow orientational dynamics only acts to re-weight

pathway amplitudes.

Figure 2 depicts the model system and its resonance conditions, which are chosen to reflect

a situation commonly encountered in the coumarin experiments where modes differ both in their

FEIR activity and coverage by the IR pulse spectrum. Table III A lists the molecular parameters

in the response function. The two modes have a frequency difference of 70 cm-1, which produces

a coherence period of 476.5 fs. The modes are lifetime broadened with identical linewidths, and

we set the FEIR activity, i.e. the squared product of the vibrational transition moment µi0 and FC

factor ⟨0e|1g
i ⟩, of the lower frequency mode m to be half that of mode n. We note that µi0 and

⟨0e|1g
i ⟩ always appear multiplied together in the response function, and as we are not interested in

calculating absolute signal levels, only the relative FEIR activity between modes is meaningful.

Therefore, here and in all other calculations the µi0 are defined scaled relative to the largest and the

electronic transition moment µeg is set to unity. The FC factors are set to have the same sign, so the

resulting coherence will be positively signed as discussed in Paper I. Figure 2(a) plots the vibronic

FEIR activity spectrum Svibr, defined as the linear IR absorption spectrum with each vibrational

resonance weighted by the square of its FC factor. This spectrum reflects the FEIR activity of each

mode and is formally equivalent to the impulsive FEIR spectrum at τenc = 0 with all coherence

pathways removed. The resulting IR spectral coverage is such that the weaker mode falls in the

low-frequency wing of the pulse spectrum. This difference in intensity of the IR spectrum |ẼIR|2

over each mode is evident by comparing Svibr with the product Svibr ×|ẼIR|2.

Figure 2(b) shows the lineshapes of the encoding transitions for each mode as well as the

bare 0-0 electronic transition for reference, although this latter transition does not play any role
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in the calculation. The dephasing time of each of these transitions is set to 10 fs, which results

in a Lorentzian FWHM of 1062 cm-1 that is over an order of magnitude broader than the visible

encoding pulse spectrum (∆ωvis = 46.7 cm-1). The resonance conditions are set with respect to the

bare electronic transition so that ωe0 = ωIR +ωvis. Given the breadth of the encoding transitions’

lineshapes, the difference in their degree of resonance with the visible pulse spectrum is negligible

under these conditions.
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FIG. 3. Two-pulse FEIR signal from the two-mode system in (a) the impulsive limit and (b) with finite

pulses. In both cases the total signal (black) is normalized to its maximum value, and the population (red)

and coherence (blue) components add up to reproduce the total signal amplitude. The IRF is shown in (b)

for reference.

B. Two-pulse signal

We first demonstrate the impact of the finite pulses on the system’s two-pulse FEIR signal.

Figure 3(a) shows the total signal as well as its decomposition into population and coherence con-
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tributions in the impulsive limit. The coherence dephasing time has been set at Γ−1
mn = 500 fs, and

the positively-signed coherence leads to constructive interference with the population contribution

at τenc = 0 fs. Figure 3(b) shows the same signal and its population and coherence components

from the finite-pulse calculation. The IRF with duration τcc =
√

τ2
p,IR + τ2

p,vis = 332 fs is shown

for reference. Perhaps the most apparent effect of the finite pulses is to reduce the amplitude of

the coherence pathways relative to the population pathways, leading to a strong suppression of the

beating in the total signal. This can be understood by considering the finite duration of the IRF

as a low-pass convolution filter which preferentially washes away the high-frequency variations

along τenc.51 This suppression is particularly strong over the first half-cycle of the coherence phase

occurring during pulse overlap. The result of the interference from the weakened coherence path-

ways is that the total signal peaks with the first recurrence of the coherence phase at τenc ∼ 500 fs,

which is well beyond the decay of the IRF.

C. FEIR spectrum

Next, we analyze the effects of finite pulses on the FEIR spectrum, and particularly its evolution

in τenc. Figure 4 compares the impulsive and finite-pulse τenc-dependent FEIR spectra and their

respective population and coherence contributions. Starting with the impulsive limit, we note

that the smaller FEIR activity of mode m leads to a slightly deeper relative coherent modulation

over ωm0 compared to ωn0, as can be seen in Figs. 4(a) and (g). This occurs because, whereas

the population response of each mode is determined by its FEIR activity (Fig. 4(b)), the coherent

response is determined by the “mixed” activity µm0µn0⟨0e|1g
m⟩⟨0e|1g

n⟩ and is therefore always equal

over both resonances (Fig. 4(c)). The total spectrum at ωm0 correspondingly has a larger fractional

coherence contribution than at ωn0, and therefore a more pronounced modulation.

With finite pulses the reduction in amplitude of the coherence contribution seen in the two-

pulse signal is also strongly apparent in the spectra (note the additional ×3 scaling in Fig. 4(f)),

as required by the projection-slice relation. However, the manner in which the coherence and

population amplitudes are modified along the vibrational frequency axis are importantly different.

Namely, a comparison of Figs. 4(e) and (b) shows that the mode m population feature is sup-

pressed relative to that of mode n due to the lower IR spectral intensity at its location in the wing

of the pulse spectrum. However, the amplitudes of the coherence pathways are still equal over

both modes outside of the pulse overlap region (cf. Figs. 4(f) and (c)). The result is that the frac-

14



-500

0

500

1000

1500

2000

1450 1500 1550 1600 1650
Frequency (cm-1)

-500

0

500

1000

1500

2000

1450 1500 1550 1600 1650 1450 1500 1550 1600 1650

τ e
nc

 (f
s)

τ e
nc

 (f
s)

Frequency (cm-1) Frequency (cm-1)

-1

0

1

0.5

-0.5

-1

0

1

0.5

-0.5

a b c

d e f

-500 0 500 1000 1500 2000

0

0.5

1

-500 0 500 1000 1500 2000

0

0.5

1

τenc (fs) τenc (fs)

N
or

m
al

iz
ed

 A
m

pl
itu

de

N
or

m
al

iz
ed

 A
m

pl
itu

de1585 cm-1

1515 cm-1
1585 cm-1

1515 cm-1

g h

×3

×3

|ẼIR(ω)|2Svibr

ωm0 ωn0

IRF

FIG. 4. Comparison of the impulsive and finite-pulse τenc-dependent FEIR spectrum for the two-mode

system. Impulsive limit (a) total spectrum, (b) population contribution, and (c) coherence contribution.

The upper panels plot the FEIR activity spectrum Svibr and IR pulse spectrum |ẼIR|2 for reference. (d)-

(f) show the analogous quantities as (a)-(c) for the finite-pulse case. In both cases the total spectrum is

normalized to its maximum value, and the population and coherence components are plotted on the same

scale. Contouring spacing is set at 6.7%. Panel (f) has been additionally scaled by a factor of 3 for better

visualization of the small amplitude. (g) and (h) show slices through the two vibrational resonances ωm0 =

1515 cm-1 and ωn0 = 1585 cm-1 for the impulsive and finite-pulse τenc-dependent spectra, respectively. The

IRF is included in (h), and the 1515 cm-1 trace has also been scaled by a factor of 3.

tional coherence contribution in the total spectrum over the lower-frequency band is even further
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amplified relative to that in the impulsive limit, producing the much deeper coherent modulation

in the τenc-slice along ωm0 compared to that along ωn0 (Fig. 4(h)).
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FIG. 5. Effect of IR spectral filtering and pump-normalization on FEIR spectra for the two-mode system.

Finite-pulse FEIR spectra (black) at (a) τenc = 250 fs and (b) τenc = 500 fs including the decomposition into

population (red) and coherence (blue) contributions (spectra and population component vertically offset

for clarity). The IR pulse spectrum |ẼIR|2 (red fill) and IR-vibronic spectrum Svibr (gray fill) are plotted

behind the total spectrum, while their product Svibr × |ẼIR|2 (dashed gray) is overlayed on both the total

spectrum and population contribution. (c) τenc = 250 fs and (d) τenc = 500 fs pump-normalized FEIR spectra

with decomposition into population and coherence components. Svibr (dashed gray) is plotted over the total

spectrum and population component.

D. Spectral filtering and pump-normalization

The spectral filtering effect of the finite IR bandwidth is examined in more detail in Fig. 5. The

finite-pulse FEIR spectrum and its population and coherence contributions are shown at encoding
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delays corresponding to a coherence phase of φmn ∼ π (τenc = 250 fs, Fig. 5(a)) and φmn ∼ 2π

(τenc = 500 fs, Fig. 5(b)). In both cases, the population response is simply windowed by the IR

pulse spectrum, as can be seen by the nearly perfect overlay of the population contribution on

Svibr × |ẼIR|2. This straightforward spectral reshaping of the population features is in line with

the intuitive double-resonance absorption picture for FEIR excitation—namely, the magnitude of

response at a given vibrational frequency is simply scaled by the IR intensity at that frequency. On

the other hand, the excitation of vibrational coherence is non-local in frequency in that it depends

on the IR pump intensity over both resonances. As a result, the coherence amplitude remains

equal and symmetric over both bands, as evident in Figs. 5(a) and (b). In general, this state of

affairs holds for any pair of vibrations with arbitrary transform-limited pulses outside the pulse-

overlap region. Within IR/Vis pulse overlap additional distortions appear, for example leading

to the enhancement of the coherence amplitude near the center of the IR spectrum evident in Fig.

4(f). Additionally, the population features are subject to an IR detuning-dependent phase distortion

(producing the barely noticeable band-asymmetry near τenc = 0 evident in the lowest contour in

Fig. 4(e)), which is discussed further in Sec. S2. The differing ways in which pulse spectra filter

population and coherence pathways is a generic phenomenon in ultrafast experiments, and has

been described in 2D spectroscopy.17,34,52

Because the IR pulse spectrum reshapes the FEIR response in the frequency domain, it would

appear reasonable to pump-normalize the data, i.e. divide the FEIR spectrum by the IR pump

spectrum used in the measurement

Spnorm(ω,τenc) =
S(ω,τenc)

|ẼIR(ω)|2
. (1)

Figures 5(c) and (d) show the pump-normalized FEIR spectra and their population and coherence

components corresponding to panels (a) and (b), respectively. In light of the discussion in the pre-

vious paragraph, this pump-normalization procedure correctly “undoes” the spectral windowing

of the population pathways (outside of pulse overlap), but incorrectly treats the coherence path-

ways. Specifically, while the pump-normalized population contribution overlays onto Svibr, pump-

normalizing the coherence contribution artificially inflates its amplitude over the weaker ωm0 band

in the wing of the IR spectrum. When the coherence phase is negative absorptive (φmn ∼ πk for

integer k and positively-signed coherence) as in Fig. 5(c), the result is an apparent suppression of

the weaker mode’s amplitude compared to Svibr. Conversely, on the positive absorptive side of the

coherence cycle (φmn ∼ 2πk), the weak mode’s amplitude is exaggerated, as in Fig. 5(d).
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It is important to note that the presence of vibrational coherence will always complicate the

correspondence between a multimode FEIR spectrum and the ideal FEIR activity spectrum Svibr,

even in the impulsive limit. However, as this analysis shows, the effect of the IR pulse spectrum

can further complicate the apparent strength of a given resonance through the different way in

which population and coherence pathways are affected. For example, a naive assessment of the

relative FEIR activity of modes m and n based on their relative peak band intensities from the

pump-corrected spectra in Figs. 5(c) or (d) would alternately underestimate the activity of mode

m by 56%, or overestimate it by 54%, respectively. We will not consider pump-normalized FEIR

spectra in our analysis of experiments in the remainder of the paper. In situations were it is possible

to separate the population and coherence contributions, i.e. by way of Fourier transformation

along τenc,53 the isolated population-only spectrum may in principle be pump-corrected by Eq. 1,

although phase distortions to the population response within IR/Vis pulse-overlap (Sec. S2) may

complicate this separation procedure and will not be removed.

IV. IMPACT OF VIBRATIONAL COHERENCE IN THE FEIR SPECTROSCOPY OF

C6

A. Experimental IR spectrum and simulated model system

In this section we analyze experimental FEIR signals from the high frequency ring modes of C6

with the aid of descriptive response function calculations. C6 is an important model system that

we have used previously to benchmark the sensitivity limits of FEIR detection.9,16,54 However,

we have so far not discussed in detail the τenc-dependent behavior of these FEIR measurements.

Interestingly, the signal in these experiments is especially well-suited to high-sensitivity detection,

because the FEIR spectrum exhibits intuitive absorptive features at the encoding delay of peak

brightness (τenc = 0.6 ps, see Fig. 1). Here we show how vibrational coherence and finite-pulse

effects conspire to produce these beneficial τenc-dependent characteristics.

Figure 6 shows the experimental FTIR absorption spectrum of C6 with DFT-calculated ground-

state normal mode frequencies and intensities overlayed. The experimental FEIR measurements

can be adequately described by considering only the three most intense bands, labelled in order

of descending frequency as νR1 (experimental frequency 1616 cm-1), νR2 (1586 cm-1), and νR3

(1515 cm-1). Based on the DFT calculation we assign these three bands to various in-plane ring
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FIG. 6. C6 experimental FTIR absorption spectrum and normal modes calculated by DFT. (a) Solvent-

subtracted and normalized FTIR absorption (left y axis) with frequencies and intensities of DFT-calculated

normal modes (right y axis) overlayed. The calculated frequencies have been scaled by a factor of 0.973 for

convenient visualization. The three normal modes involved in the FEIR calculation νR3, νR2, νR1, are as-

signed in (a), and their atomic displacements are shown with the same color-coding in (b)-(d), respectively.

The displacement vectors are normalized to the largest in each normal mode.

vibrations of the coumarin core, for which normal mode atomic displacement vectors are shown

in Figs. 6(b)-(d). The mode νR3 also has substantial contributions from bending motions of the

diethylamino substituent. The DFT-calculated transition dipole vectors of these three ring modes

are all aligned roughly parallel to the S0 → S1 electronic transition dipole (Fig. S18). The band at

1712 cm-1 in experiment corresponds to the lactone carbonyl stretch νC=O, but is not sufficiently

FEIR active to contribute significantly to the measurement with the IR pump spectrum used, and

will not be included in the calculation.
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Mode ω10 (cm-1) µ10 ⟨0e|1g⟩ Γ
−1
10 = Γ

−1
11 (fs)

νR3 1515 0.945 0.137 1178

νR2 1586 1 0.266 935

νR1 1616 0.961 -0.094 846

TABLE II. Response function parameters for the C6 calculation. The vibrational transition moments are

defined relative to νR2. The intermode coherence dephasing between each pair of fundamentals is set to Γ
−1
i j

= 400 fs.

The experiments are performed in ZZZZ polarization, however, we only calculate the vibronic

response as the roughly parallel transition dipoles produce a uniform orientational contribution

across every pathway. The relevant parameters for the response function are listed in Table II.

The fundamental frequencies ω10, vibrational transition moments µ10, and dephasings Γ
−1
10 are

taken from Lorentzian fits to the respective bands in the FTIR spectrum (Sec. S7), and vibrational

population relaxation is set by assuming lifetime broadening. We use the DFT-calculated values of

the FC factors. There are three pairs of intermode vibrational coherences, and we set the dephasing

time for each to 400 fs. As in Sec. III, the dephasing time of the encoding transitions are all set to

Γ
−1
e1 = 10 fs, and we use the same transform-limited pulses satisfying ωe0 = ωIR +ωvis.

B. Encoding-delay dependence of the FEIR spectrum and two-pulse signal

The overall comparison of experimental and calculated τenc-dependent FEIR signals is shown

in Figs. 7 and 8. Figs. 7(a) and (d) compare the coverage of the vibrational resonances by the IR

pulse spectrum in the experiment and model calculation, respectively. Both the model’s linear IR

absorption spectrum SIR and FEIR activity spectrum Svibr are shown to indicate the differing FC

activity of the modes.

We start by identifying some of the most salient features of the experimental signals. Figure

7(b) shows the full τenc-dependent FEIR spectrum, with slices taken along the frequencies of the

three bands plotted in Fig. 7(c). Overall, the response is dominated the νR2 mode. Coherent

modulation is strongly apparent over the νR3 band, but less obvious on the other two resonances.
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FIG. 7. Comparison of (a)-(c) experimental and (d)-(f) calculated τenc-dependent FEIR spectra of C6. (a)

Experimental FTIR spectrum (dashed black), IR pulse spectrum (gray), and FEIR spectrum at τenc = 0.6

ps (red). (b) Experimental τenc-dependent FEIR spectrum. (c) Slices along the three vibrational mode

frequencies νR1 (1616 cm-1), νR2 (1586 cm-1), and νR3 (1515 cm-1). Dashed lines in (b) and (c) indicate

τenc = 0.6 ps. Panels (d)-(f) show the calculated signals analogous to those in (a)-(c), where τenc = 0.5 ps

has been used instead. Contour spacing for both surfaces (b) and (e) is set at 5%. In (c) and (f) the νR1 and

νR3 traces have been scaled up by a factor of 2 for more convenient visualization.

Figure 8(a) shows the experimental two-pulse signal. The τenc-projection of the surface in Fig.

7(b) has been superimposed to demonstrate the projection-slice relationship between these two

measurements. The two-pulse signal exhibits very little obvious beating, although subtle features
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in its τenc-dependent shape are visible. Notably, this signal is peaked at τenc ∼ 0.6 ps—safely

beyond the pulse-overlap region as shown in Fig. 1. At this encoding delay, the bands in the FEIR

spectrum (Fig. 7(a)) have essentially absorptive lineshapes that closely match those in the FTIR

spectrum, although their relative amplitudes are reweighed by the differing vibronic activities.

Taken together, these characteristics, i.e. an intuitive spectrum at maximum signal strength, make

this system an ideal example case for demonstrating high sensitivity FEIR vibrational detection,

hence its use in Refs. 9, 16, and 54.
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FIG. 8. Comparison of experimental and calculated two-pulse signals from C6. (a) Experimental two-pulse

signal (solid) and τenc-projection of the spectrum (circles). (b) Calculated two-pulse signal (black) and its

decomposition into population (red) and coherence (blue) contributions. Vertical dashed lines indicate τenc

= 600 and 500 fs in (a) and (b), respectively.

To gain insight into the origin of these features we turn to the calculated signals, shown in

Figs. 7(d)-(f) and Fig. 8(b). The three-mode model with finite pulses succeeds in qualitatively

capturing the τenc-dependence of the spectrum and two-pulse transient across the entire early-time
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region including pulse overlap. Overall, the observed behavior can be seen to originate from the

dominant FEIR activity of the νR2 mode (modelled activities appearing in ratio νR3:νR2:νR1 =

0.24:1:0.12), the signs of the coherences, and the coverage by the IR pulse spectrum. Because

νR2 has a much larger FEIR activity than νR1 and νR3, the amplitudes of the νR2-νR1 and νR2-

νR3 coherences are significant relative to the νR1 and νR3 population features, but only minor

contributions relative to the strong νR2 population band. The relative signs of the FC factors—

(+,+,−) for (νR3,νR2,νR1)—are such that the νR2-νR3 coherence is positively signed, while the

νR2-νR1 coherence is negatively signed. The νR1-νR3 coherence is negligible in comparison due to

the small FEIR activities of the modes involved. The signature of the positive νR2-νR3 coherence is

seen in the appearance of the first oscillatory peak of the νR3 band near τenc = 0 ps (Figs. 7(e)-(f)).

On the contrary, the negative νR2-νR1 coherence results in a shallow negative dip along the νR1

mode near τenc = 0 ps, followed by a first maximum near τenc = 0.5 ps (roughly half of the ∼1.1 ps

coherence period). This slow coherence evolution—with a period longer than its dephasing time so

that not quite a full cycle is apparent—makes the νR1 band appear to “grow in” with a delay, which

could possibly lead to an incorrect interpretation of the data in terms of vibrational energy transfer.

The negative sign of the νR2-νR1 coherence is a thus a dominant factor in shaping the early-time

spectrum, which can be further appreciated by comparing against the poor experimental match of

an otherwise identical simulation with this sign flipped (Fig. S19).

A more detailed view of these interferences as well as the effect of finite pulses is presented

in Fig. 9, which shows the population and coherence decomposition of the calculated impulsive

and finite-pulse spectra. The frequency differences between the modes, ωR2 −ωR3 = 71 cm-1 and

ωR1 −ωR2 = 30 cm-1, are such that ωR2 −ωR3 ≈ 2(ωR1 −ωR2). This approximate frequency-

difference relation between the mode pairs, together with their oppositely-signed coherences, pro-

duces a striking coincidental alignment of their coherence phases. Specifically, the location of

the negative νR2-νR1 coherence’s first maximum near τenc ∼ 0.5 ps (coherence phase φi j ∼ π)

roughly coincides with the positive νR2-νR3 coherence’s first recurrence (φi j ∼ 2π). As a result,

the total coherence lineshape is essentially positive absorptive across all modes at this encoding

delay, which can be seen in Figs. 9(c) and (f). The finite-pulse amplitude of the νR2-νR3 co-

herence is greatly reduced relative to that of νR2-νR1 (evident in Fig. 9(f)) through both spectral

windowing by the IR pulse as well as the τenc convolution filter effect. Applying the γ2 = -7800

fs2 second-order dispersion to chirp the IR pulse out to the experimentally-measured duration

produces slightly better agreement with the shape of the experimental τenc-dependent spectrum,
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The upper panels plot the IR pulse spectrum overlayed on the IR-vibronic spectrum Svibr. (d)-(f) show the

analogous quantities as (a)-(c) for the finite-pulse case. In both cases the total spectrum is normalized to its

maximum value, and the components are plotted on the same scale. In all cases the contour spacing is set at

6.7%. Panel (f) has been additionally scaled by a factor of 3 for better visualization of the small amplitude.

notably with a minor delay of the νR3 coherence beating (Fig. S25).

The combined effect of the interference between these coherences and the population response

are therefore seen to give rise to the convenient features of the C6 response mentioned above.

Namely, the peaking of the νR1 and νR2 bands near τenc = 0.4-0.5 ps in the calculation is due to

alternating destructive and constructive interference of their negatively-signed coherence’s φi j =

0 minimum (τenc ∼ 0 ps) and φi j = π maximum (τenc ∼ 0.5 ps) with the population response,

respectively. As these two resonances together make up the majority of the overall response under

these IR pump conditions, the two-pulse signal is correspondingly peaked near τenc ∼ 0.5 ps in

simulation as well. In fact, as shown in Fig. 8(b), roughly 20% of the total FEIR signal at its
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maximum is due to coherence. The fact the all three modes then exhibit absorptive lineshapes

at this encoding delay is due to the approximate alignment of coherence phases resulting from

the chance frequency-difference relationship ωR2 −ωR3 ≈ 2(ωR1 −ωR2). We note that the τenc

Fourier transform approach to separating population and coherence contributions introduced in

Ref. 53 cannot be successfully applied to these FEIR experiments, as the frequency content of

the coherence beating is not cleanly separated from that of the population decay (notably for the

νR2-νR1 coherence). This is also the case for the measurements on C343 analyzed in Sec. V B.

C. Assessment of experimental τenc = 0 assignment

The overall qualitative agreement between the early-time τenc-dependence of the experimental

and calculated signals supports our assignment of τenc = 0 in experiment. However, a more careful

comparison reveals a discrepancy of ∼100-150 fs in timing between the calculation and experi-

ment, e.g. evident by the relative offset between the maxima of two-pulse signals in Figs. 8(a) and

(b) as well as the τenc-dependent spectra in Fig. 7. On the side of the calculation, one contribution

to the discrepancy is our use of transform-limited Gaussian pulses, of which the IR is notably

shorter (∼105 fs) than the chirped and spectrally non-Gaussian IR pulse in experiment (∼230 fs).

Simulations using chirped IR pulses with durations matched to those in experiment further delay

the two-pulse signal peak by ∼70 fs and produce better overall agreement with the τenc evolution

of the spectrum (Figs. S24 and S25 in the supplementary material), but do not fully account for

the timing discrepancy. Another possible contribution is from the highly idealized nature of our

homogeneous-limit three-mode model, whose parameters have not been allowed to vary to opti-

mize the fit against the FEIR experiment. On the other hand, this discrepancy is also within the

instrumental uncertainty in τenc timing from sample to sample and could therefore represent an

error in our experimental τenc = 0 assignment.

V. POLARIZATION DEPENDENCE AND ORIENTATIONAL EFFECTS

A. Polarization-dependent response of a single-mode system: C337 nitrile stretch

We begin our demonstration of orientational effects in FEIR spectroscopy by analyzing

polarization-dependent experiments on the simplest case of a single-mode system. As the FEIR

signal is entirely composed of population response free of vibrational coherence, its orientational
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contribution is governed by the simpler two-dipole orientational correlation functions and we can

more clearly evaluate the predictions of the theoretical description in Paper I. For this purpose,

the nitrile stretch vibration of C337 shown in Fig. 10(a) is a convenient choice of model sys-

tem, as the vibrational resonance is spectrally isolated as well as being a local mode that has an

intuitive transition dipole orientation within the molecule. As calculated by DFT, the nitrile’s

transition dipole is oriented nearly anti-parallel to the S0 → S1 electronic transition dipole, form-

ing an angle of θ = 172◦. The electronic transition dipole falls roughly along a line connecting

the electron-donating amino substituent with the electron-withdrawing nitrile, consistent with the

charge-transfer character of the transition.55,56 This orientation of the electronic transition dipole

within the coumarin core is roughly conserved in DFT calculations of the coumarins studied in

this work.

Figure 10(b) shows the nitrile’s FTIR absorption spectrum and τenc-dependent FEIR spectrum

for ZZZZ polarization. During pulse overlap, the FEIR signal is contaminated by a TPA signal

extended along the IR pulse spectrum. Interestingly, within the TPA feature at τenc = 0 ps the nitrile

band appears as a fully dispersive resonance resembling a Fano lineshape.57 This phase distortion

is not accounted for by the pulse-overlap induced phase artifact mentioned in Sec. III and discussed

in Sec. S2, which would have an oppositely-signed twist. A possible explanation might involve

coupling of the IR-vibrational resonance to the molecule’s polarizability. This dispersive feature

fully decays with the IRF, and by τenc > 0.5 ps an intuitive absorptive lineshape matching that of

the FTIR spectrum is present, indicative of pure population response.

The experimental polarization-dependence of the two-pulse FEIR signal at τenc = 1 ps is shown

in Figure 10(c). This dependence is well fit by the form acos2 Θ+ b predicted by the theory in

Paper I. The fit produces an anisotropy of r = 0.29, which corresponds to a relative angle of θ =

154◦ by Eq. 34 of Paper I, and is somewhat lower than r = 0.39 predicted using the DFT-calculated

relative angle θ = 172◦. One potential explanation for this discrepancy on the experimental side

is the effect of impure linear polarization, and possibly out-of-plane components of the IR and

visible fields resulting from the high numerical aperture focusing in the FEIR microscope.58,59

Further characterization of this effect would be necessary to ensure quantitative anisotropies can

be reliably measured.

The two-pulse signals in ZZZZ and ZZYY polarization and resulting anisotropy decay are

shown in Figure 10(e). The pulse-overlap TPA signal produces the large spike at τenc = 0 ps

in both polarizations, and the amplitude of the ensuing true FEIR response is significantly smaller.

26



2100 2200 2300 2400

0

1

2

3

4

Frequency (cm-1)

N
or

m
. A

m
p.

τ e
nc

 (p
s)

0

1

0.5

|ẼIR|2

FTIR
τenc= 1 ps

b

a

μeg

μC≡N

ZZZZ ZZYY r

0 90 180 270 360
6

8

10

12

τenc (ps)

F 
(k

H
z)

0 5 10 15

0

50

100

150

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
ni

so
tro

py
 (r

)

Θ (deg)

F 
(k

H
z)

exp fit

cos2 fit

d

c τenc= 1 ps

FIG. 10. Polarization-dependent FEIR signals from the C337 nitrile stretch. (a) DFT optimized ground-

state structure of C337, showing the atomic displacement vectors associated with the nitrile stretch (orange),

its transition dipole unit vector (red), and the S0 → S1 electronic transition dipole unit vector (blue). (b)

Top panel: ZZZZ FEIR spectrum at τenc = 1 ps (red) and pump-scaled FTIR spectrum (dashed black) of

the nitrile stretch mode. The IR pump spectrum is overlayed in gray. Bottom panel: τenc-dependent FEIR

spectrum with the pulse overlap region (1/e2 full-width) indicated by a grayed-out box. Contour spacing is

set at 5%. (c) Polarization-dependence of the background-subtracted two-pulse FEIR signal at τenc = 1 ps

(black circles) fit by the model acos2 Θ+ b (red). (d) Left y axis: two-pulse FEIR signal (F , expressed as

a photon count rate) in ZZZZ (solid black) and ZZYY (dashed black) polarization, with the pulse overlap

region grayed-out. Right y axis: anisotropy (solid purple) calculated from the two-pulse signals, with an

exponential fit with no offset parameter (dashed green). The two-pulse measurements in (d) use a slightly

higher visible intensity that that in (c), resulting in the slightly higher count rate.

The anisotropy decay is fit to a single exponential with decay constant of τr = 15±3 ps, although

this time constant should be treated as highly approximate due to the limited scan range and noisy

anisotropy signal. For the orientational relaxation of a spherical rotor with rotational diffusion con-

stant Drot this time constant is given by τr = (6Drot)
−1.60–62 The measured FEIR anisotropy decay
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timescale is consistent with reorientation times of coumarins and similarly-sized chromophores

in simple polyatomic solvents measured by various time-resolved anisotropy methods.63–65 Given

these timescales, neglecting the effects of orientational dynamics is therefore a reasonable approx-

imation at early encoding delays.

B. Orientational effects in a multimode system: polarization-dependent spectra of C343

1. Orientational contributions to vibrational coherence

Polarization-dependence has the potential to be especially useful in the FEIR spectroscopy of

multimode systems, where measuring the relative orientation of the multiple vibrations can aid

in their assignment, alleviate spectral congestion, and provide more powerful structural insight.

However, the presence of vibrational coherence with its more complicated orientational depen-

dencies can also potentially complicate the extraction of molecular-frame angles from early-time

measurements. To investigate the impact of orientational effects in the coherent response and the

ability of anisotropy to inform orientational assignments, we examine experimental and simulated

polarization-dependent FEIR spectra of C343.

C343 presents a more complex vibrational spectrum, shown in Fig. 11(a), with six modes cov-

ered within the IR pulse bandwidth. Based on the DFT calculation (normal mode displacements

shown in Fig. S20), we assign the four lowest-frequency bands to ring modes (νR1 - νR4), while

the bands at 1673 cm-1 and 1739 cm-1 are dominated by stretching of the lactone carbonyl (νlac)

and the carboxyl carbonyl (νcarb), respectively. Figure 11(b) shows the DFT-calculated orienta-

tions of the transition dipoles for each vibration and the S0 → S1 electronic transition overlayed

on the optimized ground-state structure. All the transition dipoles are essentially co-planar within

the conjugated coumarin core (Fig. S20), so the orientational response can be fully characterized

by the collection of relative angles θ between the electronic transition dipole and each vibrational

transition dipole (Table III). Furthermore, the co-planar three-dipole orientational correlation func-

tions (Eq. 32 in Paper I) can be used for the coherence pathways. Overall, this system represents

an illustrative test case for demonstrating orientational effects, as a variety of different transition

dipole directions are present, including the geometrically intuitive and distinct local-mode car-

bonyl stretches νlac and νcarb.

Parameters for the response function calculation are determined in a similar manner to Sec. IV
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FIG. 11. Orientational effects controlling the interference of coherence and population features in C343.

(a) C343 FTIR absorption spectrum (left y axis) with DFT-calculated normal mode frequencies (scaled by

0.985) and intensities (right y axis). The IR pulse spectrum used for the FEIR measurement is overlaid.

(b) DFT-calculated transition dipole unit vectors for each vibrational mode and the electronic transition

superimposed over the optimized ground-state structure. (c) Experimental ZZZZ, (d) calculated ZZZZ, and

(e) calculated vibronic-only τenc-dependent FEIR spectra. Contouring is set at 5% intervals. The upper

panels show FEIR spectra at τenc = 0 ps (blue) and τenc = 0.5 ps (orange), with a horizontal dashed line

indicating the zero level. Vertical dashed lines indicate ω10 for each mode in Table III.

using the experimental FTIR spectrum to extract IR intensities and linewidths, and are summarized

in Table III. The magnitudes of the FC factors are adjusted slightly from their DFT-calculated

values (Sec. S10) to better match experiment, but their signs are left unchanged. The relative

vibrational-electronic dipole angles θ described above are taken as is from the DFT calculation.

We use the same transform-limited pulses as before in Secs. III and IV.

Figures 11(c)-(e) compare the experimental ZZZZ, calculated ZZZZ, and calculated vibronic-
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Mode ω10 (cm-1) µ10 ⟨0e|1g⟩ Γ
−1
10 = Γ

−1
11 (fs) θ (deg)

νR4 1524 1 0.075 868 175

νR3 1563 0.398 0.075 1566 178

νR2 1585 0.892 -0.075 827 174

νR1 1612 0.683 -0.085 630 13

νlac 1673 0.536 -0.25 442 120

νcarb 1739 0.696 0.06 744 66

TABLE III. Response function parameters for the C343 calculation. The vibrational transition moments are

defined relative to νR4. The intermode coherence dephasing between each pair of fundamentals is set to Γ
−1
i j

= 300 fs.

only τenc-dependent FEIR spectrum. At early τenc the experimental FEIR spectrum has a compli-

cated and non-intuitive structure due to interferences produced by the many coherence pathways.

In particular, the spectrum at τenc = 0 ps bears little resemblance to the absorptive features in the

FTIR spectrum, with a striking “hole” in between νR2 and νR1, a ridge connecting νR1 and νlac,

and nearly every resonance exhibiting severe phase twists. By τenc = 0.5 ps the features are largely

absorptive with only minor phase modulation persisting until ∼1 ps, and each resonance can be

more or less straightforwardly mapped to one in the FTIR spectrum (νcarb is not visible within the

contouring of Fig. 11(c)).

The importance of the orientational response in shaping the early-time data can be appreciated

by contrasting the quality of match against experiment for the calculated ZZZZ (Fig. 11(d)) and

vibronic-only (Fig. 11(e)) spectra. The ZZZZ calculation qualitatively captures the complex fea-

tures near τenc = 0 ps, including the hole between νR2 and νR1 and the ridge connecting νR1 and

νlac. In contrast, the vibronic-only calculation bears little resemblance to the experiment, with a

completely different pattern of peaks within the first few hundred fs. Importantly, both calculations

employ identical FC factors, whose set of relative signs evidently do not account for the pattern

of interfering coherences on their own. As shown in Sec. S11, the orientational factors for the
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coherence pathways play the major role in reshaping the spectrum, largely caused by sign changes

produced by the opposing dipole direction of νR1 relative to the other ring modes. The orienta-

tional response of the population features also re-weights the relative band intensities, which is

evident for τenc > 0.5 ps where the coherence has significantly dephased.

Although the ZZZZ simulation qualitatively captures the full τenc-evolution of the experimental

spectrum, a discrepancy exists in the amplitude within pulse-overlap that could be indicative of a

minor TPA artifact in the experiment. This is evident at τenc = 0 ps in experiment by the larger

magnitude of ridge between νR1 and νlac and less negative hole between νR2 and νR1, which is

consistent with the addition of a broad positive feature spanning the IR spectrum. Employing a

chirped IR pulse in the simulation further improves the agreement with experiment, notably by

capturing the slightly delayed grow-in of low-frequency vs. high-frequency resonances (Fig. S25

in the supplementary material).

2. Determining vibrational dipole orientation with polarization anisotropy

Next we demonstrate the degree to which anisotropy can be used to extract the θ angles between

each vibrational dipole and the electronic transition. Figure 12 shows the FEIR spectra at τenc = 0.5

ps in both ZZZZ and ZZYY polarizations, along with the resulting spectral anisotropy r calculated

from Eq. 33 in Paper I. Anisotropy values are only interpretable in terms of individual θ angles in

the absence of coherence, which, although much reduced at this encoding delay, is still present in

the spectrum. The anisotropy exhibits distinct variations over the spectrum, and we record values

for each mode by averaging over the respective bands indicated in Fig. 12.

The resulting anisotropies and corresponding angles (Eq. 34 in Paper I) are summarized in

Table IV along with those from the DFT calculation. Qualitatively, these anisotropies and extracted

angles show reasonable agreement with the calculation, although as discussed in Section V A, the

experimental anisotropies do not achieve the highest values near 0.4, here predicted for the ring

modes νR1−R4. Additionally, the presence of residual coherence at τenc = 0.5 ps likely causes small

variations in the anisotropies from their population response values.

Despite these potential complications the spectral anisotropy measurements provide qualita-

tively useful structural insight. For example, if the frequency ordering of the two carbonyls

νcarb and νlac was not known ahead of time by DFT calculation, the difference in their mea-

sured anisotropies combined with chemical intuition about how the C=O bonds should be oriented
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FIG. 12. C343 ZZZZ and ZZYY FEIR spectra and anisotropy at τenc = 0.5 ps. Top panel: FTIR spectrum

with the IR pulse spectrum used in the FEIR measurements overlaid. Bottom panel: FEIR spectra (left y

axis) in ZZZZ (blue) and ZZYY (red) polarizations, and the anisotropy (right y axis, black circles). The

ZZZZ and ZZYY spectra are commonly normalized to the brightest feature in the ZZZZ spectrum. The gray

bands indicate the regions the anisotropy is averaged over to produce the values in Table IV. We note that

these measurements used a slightly red-shifted IR spectrum relative to that in Fig. 11.

against the electronic transition in the molecule would lead us to correctly assign νlac as the lower

frequency of the two bands. Additionally, these measurements demonstrate how pulse polarization

could be used as a control variable to preferentially select the response of a particular vibration.

Specifically, in this case the relative strength of νlac can be amplified while suppressing the ring

modes by using ZZYY polarization, which could be potentially beneficial for experiments seeking

to use this mode as a vibrational probe of local environment.

VI. CONCLUSIONS

In this work, we have analyzed the features of τenc- and polarization-dependent FEIR spectra

in the early-time region and discussed how they arise from the underlying dynamic molecular

response and experimental pulse characteristics. The nonlinear response function framework de-

veloped in Paper I of this series and augmented here by numerical finite-pulse convolution is suc-
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Mode r (exp) r (calc) θ (exp) θ (calc)

νR4 0.31 0.40 157◦ 175◦

νR3 0.34 0.40 162◦ 178◦

νR2 0.31 0.39 158◦ 174◦

νR1 0.28 0.37 26◦ 13◦

νlac -0.03 -0.05 122◦ 120◦

νcarb -0.12 -0.10 68◦ 66◦

TABLE IV. Experimental (τenc = 0.5 ps, from Fig. 12) and calculated (population response) FEIR anisotropy

and relative transition dipole angles for the vibrations in C343. The choice of reporting θ vs. π − θ for

angles extracted from experimental anisotropies was made to best correspond to the calculated angles.

cessful in capturing essentially all of the τenc-dependent behavior of experimental FEIR signals.

At early τenc, multimode FEIR experiments with short pulse excitation are characterized by the

presence of vibrational coherence, which can interfere with the vibrational population response to

create complicated spectra often difficult to interpret at face value. Our analysis provides a guide

to understanding these spectra and the molecular information they contain.

Finite pulse spectra and durations influence the population and coherence contributions in dif-

ferent ways, and can deceptively re-weight bands in a spectrum depending on the choice of encod-

ing delay. The relative sign of a pair of vibrations’ FC factors controls the sign of their intermode

coherence amplitude, which plays a prominent role in the appearance of spectra at the earliest

τenc. This critical sign can be further influenced by the dipole orientation of the two vibrations

against the electronic transition. Taken together, these characteristics make vibrational coherence

signatures in FEIR extremely sensitive to the geometric details of vibronic coupling and dipole

orientation, although the extraction and utility of this information in practice requires further in-

vestigation.

When coherence has dephased, interpreting FEIR spectra is much more straightforward. In this
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regime the band intensities are simply proportional to FEIR activities of the individual modes, and

polarization-dependent experiments provide a means to measure the relative orientation of each

vibration’s transition dipole against that of the electronic transition. This orientational information

can help assign multimode spectra and in general provides an additional spectroscopic handle for

probing chemical structure and intermolecular interactions.

Applications of FEIR spectroscopy to single-molecule experiments are likely to employ short

encoding delays where signal sizes are largest. In these scenarios the photon budget is limited, and

the richness and complexity of the FEIR data investigated here, although potentially insightful,

could represent complicating factors. While using short pulses to pump and encode vibrations

within their picosecond lifetimes is one of the central design principles for FEIR spectroscopy,

our current experiments use significantly shorter pulses than this principle necessarily dictates.

Modified approaches to FEIR excitation that employ slightly longer pulses, e.g. lifetime matched

to individual modes,8 to more straightforwardly map vibrational absorption to emitted fluorescence

photons are especially interesting to consider, and could be readily assessed with the theoretical

and computational methods presented here.

SUPPLEMENTARY MATERIAL

See the supplementary material for details on the finite-pulse response function calculations,

lineshape distortions during pulse overlap, processing steps for obtaining spectra from three-pulse

experiments, description of TPA artifacts, temporal pulse and IRF characterization, τenc-dependent

FEIR spectra for the coumarin series in Fig. 1, DFT-calculated dipole orientational and normal

modes of C6 and C343, vibrational parameter extraction from FTIR spectra, simulated FEIR spec-

tra of C6 with altered FC factor signs, and the effect of IR pulse dispersion in simulated FEIR data.
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S1 Finite-pulse response function calculations

S1.1 Mixed time-ordering in the response function convolution integrals

As discussed in Paper I, calculating the final target population, and hence FEIR signal, generated
by finite-duration pulses requires evaluating the multiple convolution integrals against the response
function

N̄ (4) ≡ lim
t→∞

N (4)(t) =

∫ ∞

−∞
dt4

∫ ∞

0
dτ3

∫ ∞

0
dτ2

∫ ∞

0
dτ1R

(4)(τ3, τ2, τ1)

× E(t4)E(t4 − τ3)E(t4 − τ3 − τ2)E(t4 − τ3 − τ2 − τ1). (S1)

Here we have reverted to the most general case where the four fields in the product each represent
the sum of all pulses, in order to allow for all possible time-orderings to contribute to the response
(cf. Eq. 8 in Paper I). For simplicity of notation we have suppressed the tensorial nature of the
response function and electric fields vectors.

The perturbation-theoretic delays τi in this expression are fully time-ordered, e.g. the τ2 interval
must always proceed the τ1 interval etc., regardless of the sequence of the pulse envelopes. To
separate the different time-ordered contributions permitted for an arbitrary set of inter-pulse delays
and durations, we will recast the integration in terms of partially time-ordered “pulse-specific” light-
matter interaction time variables (Figure S1).1 First, to avoid confusion between the identities of
each pulse when considering their different possible orderings, we will rename each pulse electric
field in the sequence as follows: the IR pulse from the moving arm of the interferometer E1 ≡ Ea,
the IR pulse from the stationary arm E2 ≡ Eb, and the visible encoding pulse E3 ≡ Ec. The total
electric field is given by

E(t) = Ec(t) + Eb(t+ τenc) + Ea(t+ τenc + τIR). (S2)

As shown in Figure S1, the pulse-specific interaction delay τα for α = a, b, c specifies the time-delay
between the perturbation-theoretic light-matter interaction facilitated by pulse Eα and the final
interaction with the encoding pulse Ec at time t4. Each pulse-specific delay is causally restricted
to positive values, however they can assume any relative ordering among themselves. The final
interaction time t4 is not a causally restricted interval, and occurs anywhere within the profile of Ec.
The relationship between these pulse-specific interaction delays and the conventional, fully-time-
ordered variables ti and τi introduced early are shown in Figure S1a in the case of a well-separated,
properly-ordered pulse sequence.

Two IR and two visible light-matter interactions are always required in FEIR, so the product of
real-valued electric fields in Eq. S1 can be written in terms of pulse-specific delays as

Ec(t4)Ec(t4 − τc)Eb(t4 + τenc − τb)Ea(t4 + τenc + τIR − τa). (S3)

Specifically, this field product describes the three-pulse signal F12(τIR, τenc) where each of the two IR
pulses contributes one interaction. However, as the two IR pulses are identical copies, to calculate
the two-pulse signal we can simply set τIR = 0 in Eq. S3 (i.e. using Eq. 16 in Paper I). With the
pulse-specific time variables, this field product handles all possible time-orderings of light-matter
interactions allowed by the resonance conditions and system level structure. The task of keeping
track of these different time-orderings is in turn accorded to the response function and will be
tackled next.
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tt=0
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τa τb
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a
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τa
τb

τc

b c
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t1
t2 t3 t4

τ1 τ2 τ3

τa
τb

τc

τIR

τenc

τIR

τenc

Proper: τa > τb > τc 

Improper IR: τb > τa > τc Improper IR/Vis: τb > τc > τa 
τa > τc > τb 



¯

Figure S1: Pulse-specific interaction time variables τα and their relationship to the fully time-
ordered light-matter interaction times ti and time-delays τi. (a) Relationship between all sets of
time variables in the properly time-ordered case τa < τb < τc with well-separated pulses obeying
τIR > 0 and τenc > 0. (b) Improperly-ordered IR interactions τb < τa < τc with τIR < 0. (c)
Improperly-ordered IR-vis-IR-vis interaction when |τenc| < τp, where τp is the longer of the IR and
visible pulses. Specifically shown is the case τa > τc > τb with τenc < 0 and τIR > |τenc|.

To apply the rotating wave approximation (RWA) we decompose each real-valued pulse electric
field into its complex positive and negative frequency components

Eα(t) = E+
α (t) + E−

α (t), (S4a)

E+
α (t) =

1

2
eα(t)e

−iωαt, (S4b)

E−
α (t) = (E+

α )
∗, (S4c)

where ωα is the center frequency, eα(t) is the (in general complex) pulse envelope, and α = a, b, c.
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Specifically,

ωa = ωb = ωIR, (S5)

ωc = ωvis. (S6)

The specific characteristics of these fields, including temporal profile, spectrum, and spectral phase,
are described in Section S1.2.

Expanding each real-valued field in Eq. S3 into its pair of counter-rotating complex parts via Eq.
S4 yields 24 = 16 terms. Our analysis of the FEIR response function in Paper I established that
each pathway must involve four absorptive interactions: one bra/ket-side pair resonant with the
IR and the other bra/ket-side pair resonant with the visible. As a result there are only two unique
choices (up to complex conjugation) of the product of four complex fields that can contribute within
the RWA, which we will term EI and EII:

EI(τIR, τenc, t4, τc, τb, τa) ≡ E+
c (t4)E

−
c (t4 − τc)E

−
b (t4 + τenc − τb)E

+
a (t4 + τenc + τIR − τa)

= ec(t4)e
∗
c(t4 − τc)e

∗
b(t4 + τenc − τb)ea(t4 + τenc + τIR − τa)

× e−iωvisτceiωIR(τa−τb)e−iωIRτIR , (S7a)

EII(τIR, τenc, t4, τc, τb, τa) ≡ E−
c (t4)E

+
c (t4 − τc)E

−
b (t4 + τenc − τb)E

+
a (t4 + τenc + τIR − τa)

= e∗c(t4)ec(t4 − τc)e
∗
b(t4 + τenc − τb)ea(t4 + τenc + τIR − τa)

× eiωvisτceiωIR(τa−τb)e−iωIRτIR . (S7b)

These field combinations differ in the ordering of the two oppositely-signed encoding field carriers.

The total response N̄ (4)(τIR, τenc) is then expressed as the sum of the two real-valued contributions
which result from these two field combinations

N̄ (4)(τIR, τenc) = N̄
(4)
I (τIR, τenc) + N̄

(4)
II (τIR, τenc), (S8a)

N̄
(4)
I (τIR, τenc) =

∫ ∞

−∞
dt4

∫ ∞

0
dτc

∫ ∞

0
dτb

∫ ∞

0
dτa

× S
(4)
I (τc, τb, τa)EI(τIR, τenc, t4, τc, τb, τa) + c.c., (S8b)

N̄
(4)
II (τIR, τenc) =

∫ ∞

−∞
dt4

∫ ∞

0
dτc

∫ ∞

0
dτb

∫ ∞

0
dτa

× S
(4)
II (τc, τb, τa)EII(τIR, τenc, t4, τc, τb, τa) + c.c. (S8c)

The “mixed” response functions S
(4)
I and S

(4)
II (explicit expressions given in Eq. S9) are piece-wise

functions of the different time-orderings of pulse-specific delays that account for the switching
between pathways depending on the sequentiality of field interactions. Table S1 summarizes
the “recipe” for their construction in terms of the correlation functions and fully time-ordered
interaction delays, while Figure S2 shows every double-sided Feynman diagram (excluding complex

conjugates) contributing to N̄
(4)
I and N̄

(4)
II for the single-oscillator system discussed in Section IIIB

of Paper I.

In general, there are 6 permutations for ordering the delays τa, τb, and τc. We will first consider
the two orderings in which both IR interactions precede the visible encoding interactions. The
abc ordering, i.e. τa > τb > τc, represents the “proper” sequence of interaction which occurs for
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Interaction order RWA conjugate to EI RWA conjugate to EII τ1 τ2 τ3

τa ≥ τb ≥ τc C2(τ3, τ2, τ1) C1(τ3, τ2, τ1) τa − τb τb − τc τc

τb > τa ≥ τc C∗
1 (τ3, τ2, τ1) C∗

2 (τ3, τ2, τ1) τb − τa τa − τc τc

τa ≥ τc > τb 0 C3(τ3, τ2, τ1) τa − τc τc − τb τb

τb > τc ≥ τa C∗
3 (τ3, τ2, τ1) 0 τb − τc τc − τa τa

τc ≥ τa > τb 0 0 τc − τa τa − τb τb

τc > τb > τa 0 0 τc − τb τb − τa τa

Table S1: RWA conjugated pathways for each pulse interaction order and their corresponding time
arguments in terms of pulse interaction delays.

well-separated pulses with τIR > 0 and τenc > 0 (Figure S1a). Measuring Fourier transform FEIR
spectra via the three-pulse signal uses one-sided time-domain data with τIR > 0, so this situation
reflects the dominant ordering, and is the only ordering that needs to be considered in the impulsive
limit. For this ordering, contribution I is comprised of rephasing pathways (C2), while contribution
II is non-rephasing (C1). This can be seen, for example, by inspection of the diagrams in Figure
S2. The bac ordering, i.e. the “improper IR” ordering when the stationary IR pulse Eb contributes
the first interaction, dominates for τIR < 0 (Figure S1b). As stated above, the τIR < 0 range is not
used when processing three-pulse data, because the τ1 and τ2 evolution periods are being varied
simultaneously. However, the bac ordering does contribute to the measured signal within the IR
pulse-pair overlap region when 0 < τIR ≲ τp,a = τp,b, and therefore cannot be ignored. Here the
rephasing/non-rephasing identity of I and II are switched, as the ordering of the two IR interactions
are reversed (Figure S2).
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Figure S2: Diagrams (excluding complex conjugates) for all contributing orderings of light-matter
interactions for a three-level system. For a generic multimode system more diagrams exist within
each correlation function, but this general structure holds.
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Next, we have the two mixed IR-Vis-IR-Vis orderings acb and bca. Both orderings can only
occur during IR/Vis pulse overlap, i.e. for |τenc| ≲ τp (Figure S1c). Both involve the double-
quantum coherence correlation function C3, which is a fundamentally different kind of excitation
pathway compared to the proper FEIR pathways C1 and C2. Importantly, because the two visible
interactions occur with the same pulse but are not directly sequential, the system evolution periods
are no longer simply connected to the experimentally-controlled inter-pulse delays. As we will see,
these contributions will generally not survive the convolution integrals under typical conditions.
Finally, the orderings cab and cba involve the visible field interacting first, and therefore do not
contribute under FEIR resonance conditions and can be ignored. For completeness, we give explicit
expressions for the mixed response functions below:

S
(4)
I (τc, τb, τa) =

1

ℏ4



C2(τc, τb − τc, τa − τb) τa > τb > τc

C∗
1 (τc, τa − τc , τb − τa) τb > τa > τc

0 τa > τc > τb

C∗
3 (τb, τc − τb, τa − τc) τc > τa > τb

0 τc > τa > τb

0 τc > τb > τa

, (S9a)

S
(4)
II (τc, τb, τa) =

1

ℏ4



C1(τc, τb − τc, τa − τb) τa > τb > τc

C∗
2 (τc, τa − τc , τb − τa) τb > τa > τc

C3(τb, τc − τb, τa − τc) τa > τc > τb

0 τc > τa > τb

0 τc > τa > τb

0 τc > τb > τa

. (S9b)

The positive-valued integration ranges of the τα enforce causality, so the usual Heaviside step-
functions do not need to be included.

The RWA is fully incorporated in the integrands of the I and II contributions. For example, we
can see this by considering the explicit expression for contribution I

N̄
(4)
I (τIR, τenc) = e−iωIRτIR

∫ ∞

−∞
dt4

∫ ∞

0
dτc

∫ ∞

0
dτb

∫ ∞

0
dτa

× S
(4)
I (τc, τb, τa)e

−iωvisτceiωIR(τa−τb)

× ec(t4)e
∗
c(t4 − τc)e

∗
b(t4 + τenc − τb)ea(t4 + τenc + τIR − τa) + c.c.,

(S10)

and specifically examining the abc time-ordering where S
(4)
I (τc, τb, τa) = C2(τc, τb − τc, τa − τb). For

the three-level system discussed in Section IIIB of Paper I this correlation function oscillates as
exp[i(ωe0 −ω10)τc − iω10(τa − τb)], while the complex field phase-factors oscillate as exp[−iωvisτc +
iωIR(τa− τb)]. On resonance when ωIR ≈ ω10 and ωvis ≈ ωe0−ω10, these complex phase oscillations
approximately cancel out, leaving behind a slowly varying function of the integration variables that
therefore survives the integration.

We also note that Eq. S10 (and the analogous expression for N̄
(4)
II (τIR, τenc)) is modulated by the
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IR carrier phase ωIRτIR outside of the integrals, which reflects the interferometric excitation by the
IR pulse-pair. Explicitly, we can write these expressions for m = I or II as

N̄ (4)
m (τIR, τenc) = N (4)

m (τIR, τenc)e
−iωIRτIR +

(
N (4)

m (τIR, τenc)
)∗
eiωIRτIR (S11a)

where

N (4)
I (τIR, τenc) =

∫ ∞

−∞
dt4

∫ ∞

0
dτc

∫ ∞

0
dτb

∫ ∞

0
dτa

× S
(4)
I (τc, τb, τa)e

−iωvisτceiωIR(τa−τb)

× ec(t4)e
∗
c(t4 − τc)e

∗
b(t4 + τenc − τb)ea(t4 + τenc + τIR − τa) (S11b)

N (4)
II (τIR, τenc) =

∫ ∞

−∞
dt4

∫ ∞

0
dτc

∫ ∞

0
dτb

∫ ∞

0
dτa

× S
(4)
II (τc, τb, τa)e

iωvisτceiωIR(τa−τb)

× e∗c(t4)ec(t4 − τc)e
∗
b(t4 + τenc − τb)ea(t4 + τenc + τIR − τa). (S11c)

These functions N (4)
m (τIR, τenc) can be interpreted as the complex analytic envelopes of the m =

I or II contributions to the three-pulse signal. In practice, to calculate the three-pulse signal we
therefore only calculate its complex envelope,

N (4)(τIR, τenc) =
∑

m=I,II

N (4)
m (τIR, τenc), (S12)

which evolves slowly in τIR and can therefore be sampled much more sparsely. Specifically, the
sampling interval only needs to be Nyquist for the difference frequency between the highest and
lowest frequency features in the response. This corresponds to working in a ‘fully-rotating’ frame
where the carrier ωIR is referenced to zero.2–4 For the two-pulse signal, τIR = 0 and the envelope is
real with N̄ (4)(τenc) = 2N (4)(τenc).

S1.2 Pulse characteristics

We will define our pulses in the frequency domain as

Ẽα(ω) = Aα(ω)e
iΦα(ω), (S13)

where Aα(ω) and Φα(ω) are real-valued functions describing the spectral amplitude and phase of
pulse α = a, b, or c, respectively. The frequency- and time-domain representations of the pulse
electric fields are related by Fourier transformation

Ẽα(ω) =

∫ ∞

−∞
Eα(t)e

iωtdt, (S14a)

Eα(t) =
1

2π

∫ ∞

−∞
Ẽα(ω)e

−iωtdω. (S14b)

The pulse spectrum is defined as the field’s frequency-domain power spectrum

|Ẽα(ω)|2 = Aα(ω)
2. (S15)
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The reality of the time-domain electric field imposes the condition

Ẽα(ω) = Ẽ∗
α(−ω), (S16)

and for brevity in what follows we will only explicitly address the positive frequency portion. For
simplicity, we will define our pulses to have Gaussian spectra with spectral bandwidth characterized
by FWHM ∆ωα

|Ẽα(ω)|2 =
(
Aα,0 exp(−2 ln(2) (ω − ωα)

2/∆ω2
α)
)2

, (S17)

where ωα is the center frequency and Aα,0 the spectral amplitude. The spectral phase is described
by the power series expansion

Φα(ω) =
γα,2
2!

(ω − ωα)
2 +

γα,3
3!

(ω − ωα)
3 + · · · (S18)

where γα,2 and γα,3 describe 2
nd-order and 3rd-order dispersion, respectively. The 0th- and 1st-order

terms would describe the carrier-envelope phase and a uniform temporal displacement, respectively,
and are ignored.5

The positive frequency component E+
α (t) of the time-domain field (Eq. S4) is given by the one-sided

Fourier transform

E+
α (t) =

1

π

∫ ∞

0
Ẽα(ω)e

−iωtdω, (S19)

and is the complex analytic representation of the real time-domain electric field.6,7 Our specific
decomposition of this complex field into envelope and carrier in Eq. S4 uses the same center
frequency ωα as the spectrum. Specifically, the temporal envelope eα(t) used in the simulations is
calculated by

eα(t) = 2eiωαtE+
α (t), (S20)

where E+
α (t) is found through numerically evaluating Eq. S19 by FFT. The temporal envelope

eα(t) is in general complex and can be expressed as

eα(t) = Eα(t)eiϕα(t), (S21)

where Eα(t) is a real-valued temporal amplitude function and ϕα(t) is a real-valued temporal phase
function. Because Eα(t) = 2|E+

α (t)|, the complex analytic representation uniquely determines the
temporal amplitude. However, ϕα(t) is arbitrary up to an additive factor of ω′t for any shift ω′,
provided the carrier phase ωαt in Eq. S20 is accordingly modified by −ω′t. This reflects the
formally arbitrary assignment of the carrier frequency. However, it can be shown generally that
defining ωα as the mean of the ω > 0 half of |Ẽα(ω)|2 produces the slowest-varying complex analytic
envelope eα(t) in the mean-squared sense, and is therefore in some sense the ‘best’ choice of carrier
frequency.6,8

If the pulse is transform-limited, i.e. the spectral phase Φα(ω) = 0, then the temporal phase
ϕα(t) = 0 as well, and the envelope function is real. For our Gaussian pulse spectrum this transform-
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limited envelope is also a Gaussian

eα(t) = eα,0 exp(−2 ln(2) t2/τ2p,α), (S22)

where the pulse duration τp,α is defined as the FWHM of the intensity profile |eα(t)|2 and eα,0 is
the peak field amplitude.

S1.3 Numerical evaluation by Monte Carlo integration

We use a Monte Carlo integration method to evaluate the expressions in Eq. S12. Generically, this
task can be characterised by evaluating the integral I of some function f(X) over some region Ω,

I =

∫
Ω
f(X)dX, (S23)

where in general X is a multidimensional variable and Ω is a correspondingly multidimensional
region with volume V =

∫
Ω dX. The premise of Monte Carlo integration is to construct an estimator

of this integral

IN =
1

N

N∑
i=1

f(Xi)

p(Xi)
(S24)

where X1, · · · ,XN ∈ Ω are points sampled from a probability distribution p(X) defined over the
integration region.9 The probabilities p(Xi) in the denominator account for the bias in sampling
such that, according to the law of large numbers

I = lim
N→∞

IN . (S25)

With sufficiently large N the Monte Carlo estimate IN thereby provides a sufficiently good value
for I, while a judicious choice of p(X) can speed up the convergence.

The integration region for the multiple convolutions we wish to evaluate in Eq. S12 is composed
of infinite intervals. However, the pulse envelope functions eα(t) are essentially zero beyond a few
multiples of the pulse duration and therefore effectively window the integrand, so we only need
to sample the integration variables within these envelopes. In particular, we use the following
sampling ranges

t4 ∈ [−Lτp,c, Lτp,c], (S26a)

τc ∈ [0, Lτp,c], (S26b)

τb ∈ [max(0,−Lτp,b + τenc), Lτp,b + τenc], (S26c)

τa ∈ [max(0,−Lτp,a + τenc + τIR), Lτp,a + τenc + τIR], (S26d)

where τp,α is the FWHM of pulse α’s temporal intensity profile |eα(t)|2, and L is a multiplier that
determines how far out in the profile to sample. Within each of these ranges, the variables are
drawn from truncated Gaussian distributions that roughly mimic the field envelopes. Specifically,
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these distributions are generated from the “parent” Normal distributions N (µ, σ)

t4 : N (0, τp,c/
√
ln 2), (S27a)

τc : N (0, τp,c/
√
ln 2), (S27b)

τb : N (τenc, τp,b/
√
ln 2), (S27c)

τa : N (τenc + τIR, τp,a/
√
ln 2), (S27d)

which are then each truncated to within the respective ranges in Eq. S26. We note that this
sampling strategy, while providing faster convergence than uniformly sampling the ranges in Eq.
S26, does not actually follow the distribution of the product of pulse profiles, which would involve
correlation among the variables. A more optimized sampling incorporating these correlations may
further speed up convergence.

We use the value L = 2.5, which was used by Jonas and co-workers in their deterministic numerical
integration procedure for calculating 3rd-order signals.1 We note that using smaller values of L
produces faster convergence, as the largest regions of the integrand are being sampled more densely,
however significant distortions begin to appear for L = 1.5 and lower. The lower range limits of the
τα in Eq. S26 are constrained to be non-negative to enforce causality, and if the inter-pulse delays
and pulse durations are such that any of their upper range limits become negative, the value of the
integral is simply set to zero.

For every fixed combination of the inter-pulse delays τenc and τIR desired, N samples of the 4
integration variables τa, τb, τc, and t4 are drawn from their respective distributions, and the Monte

Carlo estimates of N (4)
m (τIR, τenc) for m = I and II are computed via Eq. S24, where f(X) represents

the integrand in Eq. S11(b) or (c). In both cases the overall probability p(Xi) for each sampling
point is the product of the four individual probabilities evaluated from the truncated Gaussian
distributions. Every sample of the integration variables is first categorized by its ordering (abc,
bac, etc.), which determines which piece of the mixed response functions (Eq. S9) is used to
compute the integrand. The correlation functions making up the mixed response functions are
expressed analytically in the homogeneous limit with the RWA conjugate field phase factors directly
incorporated, and are evaluated numerically for every sample of the integration variables. The
pulses electric fields are specified in the frequency domain via Eq. S13, and their envelope functions
are computed numerically via FFT. The product of the envelopes is then evaluated by lookup table
for each Monte Carlo sample.

S1.3.1 Two-pulse signal

Figure S3 shows an example calculation of the two-pulse signal for the single-oscillator system
discussed in Sec. IIIB of Paper I using the same molecular parameters, i.e. a lifetime-broadened
mode at ω10 = 1600 cm-1 with 1 ps lifetime. The electronic dephasing time of the encoding
transition is set to Γ−1

e1 = 10 fs. We recall that the FEIR response of this system is only composed
of population pathways. The pulses are transform-limited with spectra/durations chosen to be
roughly representative of the those used in experiment. The IR pulse Ea = Eb = EIR is set
directly on resonance with ωIR = 1600 cm-1 and has ∆ωIR = 120 cm-1 bandwidth, which produces
a transform-limited duration of τp,IR = 123 fs. This bandwidth is slightly narrower than the ∆ωIR

= 140 cm-1 used for the coumarin response function simulations in the main text. The visible
encoding pulse Ec = Evis has ∆ωvis = 50 cm-1 bandwidth resulting in a 297 fs pulse duration, and
is tuned such that the encoding transition is directly on resonance.
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Figure S3: Finite-pulse calculation of the two-pulse signal for a single-oscillator system. (a)
Relative amplitude of the abc, bac, acb, and bca time-ordered contributions to the total finite-pulse
signal, with the impulsive limit signal shown for reference. (b) Relative frequency of sampling the
abc, bac, acb, and bca time-orderings in evaluating the Monte Carlo estimate with L = 2.5. The
intensity profiles of the IR pulse |ea(t)|2 = |eb(t)|2 and visible pulse |ec(t)|2 are overlayed at τenc =
0.

Figure S3a shows the contributions of the 4 allowed time-orderings abc, bac, acb, and bca overlayed
on the impulsive signal, with N = 5 × 107 samples used for every τenc point. Because τIR = 0,
or equivalently because both IR interactions occur within the same IR pulse profile, the abc and
bac contributions are identical within noise. Neither of the misordered IR/Vis contributions acb or
bca contribute any amplitude above noise (∼10-4 times the maximum abc response). The relative
frequency of sampling the 4 different time-orderings are shown in Figure S3(b), with the intensity
profiles of the IR and visible pulses overlayed at τenc = 0 for visual reference. We note that the
τenc-dependent appearance of these relative sampling frequencies is influenced by the multiplier L,
and is not indicative of the weight of the different time-orderings in the signal, but merely reflects
how often they are sampled by the Monte Carlo algorithm.

The full two-pulse signal is the sum over all time-orderings, and therefore resembles the abc and bac
contributions. Overall, the appearance of this finite-pulse signal is consistent with the convolution of
the impulsive signal with an instrument response of duration given by the temporal cross-correlation

of the IR and visible intensity profiles,
√

τ2p,IR + τ2p,vis = 321 fs. Namely, the signal rises to roughly

half its maximum by τenc = 0, and is peaked at ∼ 300 fs. Because the pulse cross-correlation is
meaningfully shorter than the vibrational lifetime in this case, the decay of the signal beyond the
pulse-overlap region is still a good measure of the system’s population relaxation kinetics.
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Figure S4: Finite-pulse calculation of the τenc = 500 fs three-pulse signal and FEIR spectrum for
the same single-mode system as Figure S3. (a) abc, bac, acb, and bca time-ordered contributions,
and the total signal overlayed on the impulsive signal. (b) Relative Monte Carlo sampling frequency
of the abc, bac, acb, and bca time-orderings. (c) Impulsive FEIR spectrum plotted over the IR pulse
spectrum. (d) Total finite-pulse FEIR spectrum and its abc and bac contributions. The lower panel
shows magnified detail around the baseline.

S1.3.2 Three-pulse signal and FEIR spectrum

Next we calculate the three-pulse signal and FEIR spectrum of the same system with the same
pulses. The encoding delay is fixed at τenc = 500 fs, which is beyond the bulk of the pulse-overlap
region. As we will show in Section S2, spectra within the pulse-overlap region can be subject to
additional lineshape distortions. Figure S4(a) shows the real part of the total three-pulse envelope
N (4)(τIR, τenc), its decomposition into the 4 time-orderings, and the impulsive signal envelope (abc
ordering only). In this specific case the envelope happens to be fully real because the IR and
visible fields have symmetric spectra, are transform-limited, and are exactly on resonance with
the symmetric vibrational resonance. As before, the Monte Carlo sampling frequencies of each
time-ordering are shown below in Figure S4(b). Because the vibration is lifetime-broadened, i.e.
the dephasing and population relaxation rates are the same Γ10 = Γ11, the abc contribution to the
three-pulse envelope has a similar τIR-dependence to the τenc-dependence of the two-pulse signal.
As in the two-pulse case, neither of the mixed IR/Vis time-orderings acb or bca contribute any
signal amplitude above noise. The bac contribution dominates for negative τIR but then falls off
to zero when Ea starts arriving after Ec for |τIR| > τenc. However, a quickly decaying portion of
the bac contribution does appear for positive τIR and will therefore play a role in the spectrum as
discussed below.

The spectrum of the IR pulse is shown overlayed on the impulsive FEIR spectrum in Figure S4c.
The finite-pulse FEIR spectrum is found by Fourier transformation of the τIR ≥ 0 portion of the
signal. Specifically, the real part of the FFT of the one-sided complex envelope N (4)(τIR ≥ 0, τenc)
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is first calculated, and then shifted up to the carrier frequency ωIR. We note that in general the
complex-valued nature of the time-domain envelope ensures that its frequency components can be
properly assigned above or below the carrier.3 Figure S4(d) shows the resulting FEIR spectrum
as well as its decomposition into the abc and bac contributions. As the IR pulse is broadband
compared to the vibrational linewidth (∼11 cm-1), the spectrum matches the impulsive limit very
closely. The contribution of the abc ordering on its own almost entirely determines the spectrum.
However, it has a small distortion in the form of shallow negative wings along the breadth of the
pulse spectrum, as can be seen in a magnified view of the baseline region (lower panel of Figure
S4(d)). This spectral distortion is caused by the delayed peak of the abc contribution along τIR
due to the finite pulse convolutions. However, the bac contribution is a broad positive feature that
perfectly cancels out this distortion, resulting in the proper absorptive appearance of the complete
spectrum. As we will discuss in Section S2, in the IR/Vis pulse-overlap region the abc and bac
contributions are mis-weighted and no longer add up to give an absorptive lineshape, leading to
spectral distortions.

S2 Lineshape distortions during pulse-overlap
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Figure S5: IR/Vis pulse-overlap lineshape phase distortion for a single-mode population feature,
and its dependence on the IR-vibrational detuning ∆ = ωIR − ω10. The upper panels show the
FEIR spectrum at τenc = 0 fs and 500 fs overlayed on the IR pulse spectrum. Lower panels show
contour plots of the full τenc-dependent FEIR spectrum, with the FWHM and 1/e2 full-width of
the IR/Vis intensity cross-correlation indicated. Contour spacing is set at 5%.

As mentioned in main text Sec. IIID, additional distortions to FEIR spectra can occur during
IR/Vis pulse overlap. Here we demonstrate a specific lineshape distortion to the population features.
Figure S5 shows τenc-dependent FEIR spectra of the single-mode system discussed in Sec. S1.3 with
four different IR center frequencies, resulting in IR-vibrational detunings of ∆ = ωIR −ω10 = -100,
-50, 50, and 100 cm-1. In each case the IR pulse is transform-limited and Gaussian with bandwidth
∆ωIR = 120 cm-1, and the visible pulse is likewise the same as that used previously in Secs. S1.3.1
and S1.3.2. At τenc = 0 the vibrational lineshape exhibits a phase twist that depends on the
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magnitude and sign of ∆. For ∆ = -100 cm-1, when the vibrational resonance is deep in the
red-wing of the IR pulse spectrum, this phase distortion produces a negative/positive wing on the
low/high frequency side of the band, respectively. For smaller |∆| this phase twist becomes less
extreme, while it switches sign when ∆ becomes positive. This lineshape distortion is contained
within the pulse overlap region, whose extent is indicated by both the IR/Vis cross-correlation

FWHM (
√

τ2p,IR + τ2p,vis = 321 fs) and 1/e2 full-width (2w =
√
2FWHM/

√
ln 2 = 546 fs). With

these pulses, the spectrum is essentially free of distortion by τenc = 500 fs. This type of distortion
is likely at play in the carbonyl feature above 1700 cm-1 for C337 and C153 (Fig. S14), which are
excited by the wing of the IR pulse spectrum.10

This apparent phase distortion in the population response is likely related to the improper weighting
of the abc and bac time-ordered contributions discussed in Section S1.3, although a detailed
understanding of its origins requires further investigation. Coherence features are also distorted
(although not in the same way) during pulse-overlap, as can be seen e.g. in Figure 4(f) of the
main text, where the amplitude near the center of the IR pulse spectrum is additionally enhanced.
Overall, FEIR spectra for τenc within pulse-overlap should be approached with caution, although
familiarity with the phenomenology of these artifacts should help build confidence in interpreting
(or not over-interpreting) early-time data.

S3 Signal processing for three-pulse Fourier transform experiments

As discussed in Paper I, the FEIR signal in a three-pulse experiment has the following components

F (τIR, τenc) = F12(τIR, τenc) + F1(τIR + τenc) + F2(τenc). (S28)

Specifically, F1(τIR + τenc) = F2(τenc) are two-pulse signals were both IR-vibrational interactions
occur with either E1 or E2, respectively, while F12(τIR, τenc) is the three-pulse signal due to one
interaction each with E1 and E2 and two with the encoding pulse E3.

Figure S6(a) shows the full background-subtracted time-domain FEIR signal F (τIR, τenc) from the
C6 measurement presented in Section IV. The peak of the F2(τenc) component can be seen as a
horizontal stripe along τenc = 600 fs, while the other two-pulse component F1(τIR + τenc) produces
the stripe oriented along the anti-diagonal where τIR+ τenc = 600 fs. The three-pulse signal can be
made out as the rapidly oscillating component along τIR.

Figure S6(b) shows the 1D slices F (τIR, τenc = 600 fs), F (τIR = 0 fs, τenc) (the two-pulse signal
measured with the superposed pulse-pair), and F (τIR, τenc = −600 fs) (only capturing the F1 two-
pulse signal). Comparing these latter two versions of the two-pulse signal shows the 4:1 amplitude
ratio expected based on constructive interference (ratio of blue to orange arrow sizes in panel (b))
as referenced in Section IIIA of Paper I. Figure S6(c) shows the FEIR spectrum processed from the
three-pulse signal, as described next. The projection of this τenc-dependent spectrum onto the τenc
axis overlays with the independently measured two-pulse signal, demonstrating the projection-slice
relationship between these quantities.

When performing a three-pulse FEIR experiment, an IR reference (from the out of phase output,
or dark arm, of the Mach-Zehnder interferometer (MZI)) is collected either immediately before
or after collecting the FEIR signal. Figure S7(a)-(c) shows an example of the raw time-domain
three-pulse FEIR data with τenc = 600 fs with the corresponding IR reference. The Ftot level at
the far positive end of the τIR scan range is subtracted off to remove the F0 + B background and
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Figure S6: Signal contributions in a three-pulse experiment and projection slice relationship. (a)
Background-subtracted FEIR signal F (τIR, τenc) from C6. (b) Various 1D slices of the FEIR signal,
indicated by color-coded arrows in (a). (c) Processed FEIR spectrum and (d) projection of the
spectrum onto the τenc axis (black circles). The two-pulse signal is overlayed (solid black) to
illustrate the projection-slice relationship between these quantities.

constant F2 two-pulse signal. Next, the phase extracted from the IR reference is used to determine
the absolute timing between the IR pulse-pair in a similar manner to pump-probe geometry 2D
IR spectroscopy experiments.11–13 In practice, both FEIR and IR channels are Fourier transformed
after having been appropriately apodized, zero-padded, and rotated to an approximate time zero
bin in the τIR axis. The frequency domain FEIR data is divided by the complex phase factor
from the IR reference and transformed back to the time domain, where the now correctly assigned
negative τIR data is removed. A final FT of the one-sided data produces the FEIR spectrum as its
real part (Figure S7(d)), where the other two-pulse signal F1 has been filtered to the zero-frequency
band. For τenc-dependent three-pulse experiments, this process is done for each step of τenc using
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Figure S7: Acquisition and processing of the three-pulse signal to a spectrum. (a) Total count rate
Ftot in a three-pulse FEIR experiment on C6 at τenc = 600 fs and (b) IR reference data from the
forward scan direction. A constant offset voltage in (b) has been removed, and the slight asymmetry
between the amplitude of fringes above and below the zero level are caused by the onset of mild
detector saturation. (c) Detail of the two signals in (a) and (b), showing the π phase-shift from
the dark arm of the MZI. (d) Processed FEIR spectra from the forward scan direction (purple),
reverse direction (green), and the IR pulse spectrum (gray) processed from the IR reference. (e)
Detail of the baseline from the spectra in (d). The black dashed line along the baseline has been
added to guide the eye, and the peak at 1712 cm-1 with 2% relative amplitude is the weakly FEIR
active carbonyl mode.

the same IR reference.

Due to the direction-dependence of continuously-scanned τIR axes,10 this FT procedure is performed
separately for the forward and reverse directions of stage travel. As shown in Figure S7(e), there
may be small residual phase errors in the FEIR spectrum that vary between the two scan directions.
In this particular measurement these errors are small enough to be inconsequential (much less than
1% of the total amplitude), however errors at the 1-3% level are also common, and are not always
oppositely signed between directions. We suspect this artifact may originate from or at least be
exacerbated by the fact that the IR reference is not collected simultaneously with the FEIR data,
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allowing for instrumental drift (e.g. in the MZI pathlength difference) between acquisitions. The
character of this phase error is, however, also consistent with a minor thermal effect.10 In practice,
the forward and reverse spectra are averaged together, which often roughly cancels this effect.

S4 Vibrationally-nonresonant IR + visible two-photon absorption
(TPA)

S4.1 Modelling TPA fluorescence in FEIR experiments

Vibrationally-nonresonant TPA is a possible excitation route for generating target population,
and therefore represents a potential artifactual contribution to the fluorescence signal in an FEIR
experiment. Understanding how this signal artifact appears in the data is correspondingly important
for interpreting early-time signals. On the other hand, the nonresonant nature of the TPA response
(with respect to the IR or visible pulses individually) means that it reports in a direct way on
the temporal pulse characteristics, and therefore has utility as a pulse diagnostic tool for the
FEIR spectrometer. Specifically, the TPA response directly reports on the IR/Vis intensity cross-
correlation and can therefore be used to map out the experiment’s IRF.

From the perspective of the molecular system, this non-degenerate two-photon process involving
one IR and one visible photon is essentially instantaneous, occurring within the electronic dephasing
time of some 10’s of fs. In practice, TPA therefore only occurs during the temporal overlap of the
IR and visible pulse electric fields. The language conventionally used is of sequential excitation
mediated by a “virtual” state. Formally, this is short-hand for describing the overall transition
amplitude as a sum over two-step pathways involving all possible system states as intermediates,
which is related to the system’s polarizability by a Kramers-Heisenberg formula.14–17 In density-
matrix language, the overall two-photon excitation probability (i.e. the square modulus of the
overall transition amplitude) is given by the final target population, and is described to fourth-order
in the incident field.18 As a result, the formal structure for calculating TPA is closely related to our
fourth-order response function description of FEIR excitation. In principle, it would be possible to
model the TPA contribution along the same lines as the finite-pulse response calculations for the
FEIR signal, with the response function suitably replaced by sets of delta functions to reflect the
essentially impulsive molecular polarizability response.

However, a simpler approach is to assume that the instantaneous excitation rate is directly proportional
to the product of the IR and visible field intensities. This approach is typically adopted to describe
the practical phenomenology of how multi-photon or other nonlinear parametric signals depend
on the driving fields.5,19 The final accumulation of target population after the pulse sequence has
finished interacting with the sample is then proportional to the time integral

N̄TPA ∝
∫ ∞

−∞
(EIR(t))

2(Evis(t))
2dt. (S29)

With our FEIR pulse sequence the TPA fluorescence signal S ∝ N̄TPA is therefore

S(τIR, τenc) =

∫ ∞

−∞
(E1(t+ τIR + τenc) + E2(t+ τenc))

2(E3(t))
2dt. (S30)

To evaluate this expression we break the real-valued fields into their positive and negative frequency
components as before in Section S1.1. Invoking the RWA, we only keep the terms where the carrier
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phase oscillations between the four fields cancel,

S(τIR, τenc) =

∫ ∞

−∞
(E+

1 E
−
1 + E+

2 E
−
2 + E+

1 E
−
2 + E−

1 E
+
2 )(E

+
3 E

−
3 )dt

= S1(τIR + τenc) + S2(τenc) + S12(τIR, τenc), (S31a)

where

S1(τIR + τenc) =
1

4

∫ ∞

−∞
E2
1 (t+ τIR + τenc)E2

3 (t)dt, (S31b)

S2(τenc) =
1

4

∫ ∞

−∞
E2
2 (t+ τenc)E2

3 (t)dt, (S31c)

S12(τIR, τenc) =
1

2
Re

{
e−iωIRτIR

∫ ∞

−∞
E1(t+ τIR + τenc)E2(t+ τenc)E2

3 (t)e
i[ϕIR(t+τIR)−ϕIR(t)]dt

}
.

(S31d)

Here we have used the notation for temporal pulse amplitude and phase introduced in Section S1.2.
Specifically, ϕIR(t) is the temporal phase of the IR pulse, which is assumed to be the same for
both copies E1 and E2. Importantly, the TPA signal is not sensitive to the phase of the visible
pulse E3, which can be interpreted as a consequence of the bra- and ket-side pair of light-matter
interactions occurring within its envelope. The subscripts labelling the different contributions in
Eq. S31 indicate their dependence on the IR pulses in an analogous way to our notation for the
different FEIR signal contributions in Eq. S28 and Sec. IIIA of Paper I, i.e. S1 depends on E1

but not E2, while S12 depends on both. We note the clear similarity between these contributions
to the TPA signal versus those for FEIR. Specifically, the two-pulse and three-pulse contributions
are related among themselves by

S12(τIR = 0, τenc) = 2S2(τenc) = 2S1(τenc), (S32)

as can be verified directly from the expressions in Eq. S31.

Figure S8 shows a numerical calculation of the full three-pulse-resolved TPA signal S(τIR, τenc) as
well as slices along τenc and τIR, for the transform-limited Gaussian IR and visible pulses similar to
those used in the response function calculations (see figure caption). The three-pulse contribution
S12 is responsible for the interferometric oscillation along τIR, while the two-pulse contributions S1

and S2 form the cross-shaped pattern intersecting at the origin.

It is worth considering the similarities and differences between this three-pulse-resolved TPA signal
and various types of pulse characterization techniques using parametric nonlinear sample response,
e.g. interferometric autocorrelation, or the various flavors of frequency-resolved optical gating.5,19

The trace S(τIR, τenc = 0) (Figure S8(b)) qualitatively resembles an interferometric autocorrelation,
with the important differences that the intensity ratio of peak to baseline is 4:1, rather than 8:1,
and the oscillating component only has frequency content around ωIR, and not also at 2ωIR. These
differences arise because the TPA signal is only quadratic in EIR, rather than quartic in the case
of the interferometric autocorrelation. The trace S(τIR = 0, τenc) (Figure S8(c)) is formally the
IR/Vis intensity cross-correlation, which can also be seen explicitly in the expression Eq. S31(c) in
conjunction with Eq. S32. This cross-correlation represents the IRF of an FEIR experiments, and
its width is therefore a practical measure of the time-resolution. In a two-pulse FEIR measurement,
the TPA signal (if present) therefore appears as a spike riding on top of the FEIR signal at τenc =
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Figure S8: Appearance of the three-pulse-resolved TPA signal in the time-domain. The IR and
visible pulses are transform-limited and Gaussian with ∆ωIR = 120 cm-1 (τp,IR = 123 fs), and
∆ωvis = 50 cm-1 (τp,vis = 297 fs). (a) Fully-resolved signal S(τIR, τenc), (b) the slice S(τIR, τenc = 0),
and (c) the slice S(τIR = 0, τenc).

0, and indicates the pulse-overlap region.

S4.2 Frequency-resolved TPA signal and dependence on pulse durations and
IR spectral phase

Next, we examine the behavior of the TPA signal in the frequency-domain, i.e. as it would
appear when measuring FEIR spectra with the three-pulse experiment. From a pulse diagnostic
standpoint, more information about the IR spectral phase can be gleaned from this frequency-
domain representation of the TPA signal. The three-pulse-resolved TPA signal is processed in the
same way as three-pulse FEIR data, i.e. the spectrum is the real part of the one-sided Fourier
transform of τIR > 0 data

STPA(ω, τenc) = Re

∫ ∞

0
S12(τIR, τenc)e

iωτIRdτIR. (S33)

Just like the case for FEIR signals, a projection-slice relation connects the projection of the
frequency-resolved TPA signal onto the encoding delay to the IR/Vis intensity cross-correlation∫ ∞

−∞
STPA(ω, τenc)dω = S12(τIR = 0, τenc)

= 2S1(τenc) = 2S2(τenc) =
1

2
S(τIR = 0, τenc). (S34)

Figure S9 displays contour surface representations of STPA(ω, τenc) for a variety of different IR and
visible pulse characteristics. Figure S9(a) shows the case corresponding to the time-domain data
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Figure S9: Frequency-resolved TPA signals STPA(ω, τenc) with corresponding IR and visible
temporal intensity profiles and cross-correlations for a variety of relative pulse durations and values
of γIR,2. In all cases the IR spectrum is Gaussian with ωIR = 1600 cm-1 and ∆ωIR = 120 cm-1. In
(a)-(c) both pulses are transform-limited with τp,IR = 123 fs and (a) ∆ωvis = 50 cm-1 (τp,vis = 297
fs), (b) ∆ωvis = 300 cm-1 (τp,vis = 49 fs), and (c) ∆ωvis = 23 cm-1 (τp,vis = 640 fs). The top
panel of (a) shows the projection of the TPA signal onto the ω-axis overlayed on the IR spectrum.
(d)-(f) use the same spectra as (a), with a transform-limited visible pulse but chirped IR of (d)
γIR,2 = -8700 fs2 (τp,IR = 232 fs), (e) γIR,2 = -30,000 fs2 (τp,IR = 689 fs), and (f) γIR,2 = 30,000 fs2

(τp,IR = 689 fs).
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in Figure S8, i.e. transform-limited pulses with spectral bandwidth representative of our current
experiments. The overall frequency extent of the signal follows the IR pulse spectrum, and as shown
in the upper panel, the projection of STPA(ω, τenc) onto the ω-axis in fact exactly reproduces the
IR pulse spectrum. This equality between the ω-projection and IR spectrum holds for all the cases
shown in Figure S9, and is therefore not shown for the other cases.

The projection onto the τenc-axis, i.e. the IR/Vis cross-correlation, is shown on the right panel
superimposed on the IR and visible temporal intensity profiles. While the IR/Vis cross-correlation
is symmetric in τenc, the shape of the TPA spectrum varies asymmetrically in τenc, with small
negative side lobes for τenc < 0, switching to exaggerated positive wings for τenc > 0. Figures
S9(b) and (c) show cases where the IR pulse is the same as in (a), but with a transform-limited
visble pulse that is alternately much shorter (∆ωvis = 300 cm-1, τp,vis = 49 fs), or much longer
(∆ωvis = 23 cm-1, τp,vis = 640 fs), respectively. When the visible pulse is significantly shorter than
the IR (Figure S9(b)), the magnitude of this asymmetry is more significant (e.g. evident from
the deeper negative lobes), while in the opposite scenario (Figure S9(c)) the asymmetry is less
pronounced. This asymmetric τenc-evolution may have a physcial interpretation along similar lines
to that of the pulse-overlap lineshape distortion to FEIR spectra discussed previously in Section
S2.

The effect of second-order dispersion (γIR,2, Eq. S18), or chirp, on the IR pulse is demonstrated in
Figures S9(d)-(f). These three cases use the same IR and visible pulse spectra as in (a), and the
visible remains transform-limited. Figure S9(d) shows the case of γIR,2 = -8700 fs2, which produces
a duration of 232 fs duration, which is similar to the IR pulse used in experiment (with slightly
less bandwidth). The effect of this dispersion is to tilt the spectral feature in the ω-τenc plane,
and roll its phase asymmetrically to one side of ωIR. The direction of this tilt and asymmetry is
consistent with the sign of the γIR,2, in this case a negative sign corresponding to a “down-chirp”
where the high frequencies precede the low frequencies within the envelope. This sensitivity to
the sign of γIR,2 is demonstrated in more extreme circumstances in Figures S9(e) and (f), where
the tilt and asymmetry are flipped when switching between γIR,2 = -30,000 fs2 and 30,000 fs2,
respectively. In principle, evidence of higher-order IR spectral dispersion could be inferred from
the frequency-resolved TPA signal, although their characteristic signatures are more complicated.
For example, third-order dispersion contributes a triangular horn-shaped pattern (not shown).

Overall, we have seen how vibrationally-nonresonant TPA can manifest in FEIR measurements.
Specifically, the TPA response exists within the IR/Vis pulse-overlap region, and can therefore
potentially obscure the interpretation of the FEIR data at the earliest encoding delays. In two-
pulse experiments, the TPA response is exactly the IR/Vis intensity cross-correlation, and appears
as a spike at τenc = 0. In FEIR spectra derived from three-pulse measurements, the TPA response
spans the IR pulse spectrum as would be expected for a nonresonant process, although the τenc-
dependence is sensitive the pulses’ relative duration and the IR spectral phase. Because the TPA
response effectively maps out the pulse-overlap region, it can be used to characterize the temporal
pulse characteristics and provides a direct measure of the FEIR spectrometer’s instrument response
function as demonstrated next in Sec. S5.2.

S4.3 Presence of TPA artifacts in coumarin experiments

Because the resonance conditions for FEIR excitation are automatically the same as that for IR
+ visible TPA, a natural question of great practical importance is under what conditions will the
TPA response be present, and how large will it be relative to the proper FEIR signal? The strength

22



of the TPA response is presumably connected to the molecular polarizability, and might correlate
with the degenerate two-photon cross-section of the molecule’s electronic transition, which have
often been characterized for popular fluorophores. In cases where the FEIR activity of vibrations
under investigation are small, it might be expected that the relative size of the TPA response could
be significant.

A clear example of a strong TPA artifact is in the FEIR measurements on the C337 nitrile discussed
in main text Sec. VA. In this case, the TPA signal is likely prominent because the nitrile FEIR
activity is small, although the strength of the non-degenerate two-photon cross-section with these
resonance conditions could also be particularly large. We note that the additional Fano-like phase
distortion to the vibrational resonance within the TPA signal is not explained by the theory
presented here and requires further investigation.

In our experiments on the high frequency coumarin ring and carbonyl vibrations the true FEIR
response is dominant and it is not clear how much TPA signal is present in all cases. The two-pulse
signals from the full set of these experiments are shown in main text Fig. 1, and the τenc-dependent
spectra are shown in Sec. S6. The cases in which the two-pulse signal peaks at τenc = 0 ps
(C314, C337, C153, C343, C334) also show to varying degree a broad spectral feature roughly
spanning the pump spectrum during pulse overlap, both of which are consistent with a TPA signal
of sufficient strength to be competitive with the FEIR response. The presence of this potential TPA
contribution in the C343 measurement was mentioned in main text Sec. VB. The signal brightness
analysis conducted previously in Ref. [20] used the two-pulse signal amplitude averaged between
τenc = 0.4 and 0.8 ps to avoid any contributions from TPA.

On the other hand, the remaining coumarins investigated (C30, C6, C7, C525, C545) do not show
any significant evidence of TPA contributions, indicting that the FEIR response is comparatively
much stronger, and the τenc-dependent shape of their signals are well described by response function
simulations within the pulse-overlap region.

S5 Temporal pulse characterization and instrument response

S5.1 IR pulse characterization by interferometric autocorrelation

The IR pulse duration was characterized by interferometric autocorrelation (IAC) in a 0.5 mm
AgGaS2 (AGS) crystal at the sample position. The resulting SHG signal is collected through
the microscope with a reflective Schwartzchild replacing the refractive objective used for FEIR
measurements and a pair of removable mirrors directing the transmitted IR beam to an photovoltaic
MCT detector. Depending on the IR center frequency ωIR, different materials are placed in front
of the detector as transmission filters to block the fundamental while passing the SHG. For ωIR ∼3
µm clear acrylic is used, for ωIR between 4 and 5 µm 10 mm of N-BK7, and for ωIR > 5.5µm two
∼1 mm glass microscope slides. 1 mm of CaF2 is included in the optical path before the AGS
crystal to account for transmission into the sample cell.

Figure S10 shows the spectra and IACs for IR pulses used for the C6 and C343 experiments at ωIR

= 1620 cm-1 and the C337 nitrile experiments at ωIR = 2235 cm-1. The IAC data is shifted and
scaled so that the lowest fringe falls to zero and the long-time baseline is unity. The zero frequency
band of the data is the intensity autocorrelation (IA),5 which is extracted by a Fourier filter. We use
the FWHM of the temporal pulse intensity profile as a definition of pulse duration τp, IR. Assuming
a Gaussian profile, the pulse duration, taken as FWHM temporal intensity envelope, is related to
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Figure S10: IR pulse spectrum and interferometric autocorrelation (IAC) at (a)-(b) ωIR = 1620
cm-1 (6.17 µm) and (c)-(d) ωIR = 2235 cm-1 (4.47 µm). In (b) and (d) the extracted IA (red) is
shown over the IAC (blue).

the FWHM of the IA by τp = τIA/
√
2. We use this relation to report the pulse duration from a

Gaussian fit of the recovered IA.

For the 6 µm pulse, the resulting 232 fs IR pulse duration (transform limit of 107 fs) is consistent
with the dispersion that results from the summed GVD of materials in the optical path. This
includes the 4 mm thick LGS OPA crystal, BaF2 collimating lens, and two 1 mm thick Germanium
windows in the mid-IR OPA, the ZnSe beamsplitters in the interferometer, the ZnSe asphere in the
FEIR microscope, and 1 mm CaF2 bottom sample window. The 4.5 µm pulse is closer to transform-
limited, with a 182 fs duration (transform limit of 141 fs), due to the lower combined dispersion
from these materials at this shorter wavelength and smaller bandwidth over which dispersion can
play a role.

S5.2 IR/Vis temporal pulse overlap characterized by TPA

We characterize the effective temporal instrument response function (IRF) of the FEIR experiment
with fluorescence excited by TPA as introduced in Sec. S4. With independent knowledge of the
IR pulse characteristics, e.g. by IAC, the visible pulse duration can therefore be backed out. At
minimum, a fluorophore that can be used for this purpose must exhibit IR + Vis two-photon
electronic resonance, which operationally is automatically satisfied for the electronic pre-resonance
condition used for FEIR. However, it must also not contain any FEIR active vibrations (or better
yet, no vibrations at all) in resonance with the IR spectrum. Additionally, the molecule must have

24



a non-vanishing two-photon cross-section. In practice, this second criterion is difficult to achieve
in the 6 µm region, where most electronically-conjugated molecules have C=C ring stretching
vibrations. Using TPA to characterize the IRF for 6 µm experiments therefore remains a currently
unsolved problem. To characterize the visible pulse duration, we therefore employ the 4.5 µm IR
pulse used for the nitrile experiments, which lies in the typical IR clear window of organic molecules
(i.e. those lacking nitrile, azide or other specialized “vibrational probe” groups).
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Figure S11: TPA signals from C343 and C6 with vibrationally off-resonant IR pumping. (a)
Electronic absorption spectra for C343 and C6 indicating resonance conditions for ωIR = 2235 cm-1

(4.47 µm). (b) Background-subtracted, normalized two-pulse transients for C6 and C343. The two
signals have been offset for clarity. A Gaussian fit yielding a FWHM of 356 fs is shown for C343. (c)
Frequency-resolved TPA signal from C343. The projection of the surface onto the frequency axis
is shown overlayed on the IR pulse spectrum, while the projection onto the τenc axis is shown with
a Gaussian fit yielding a FWHM of 370 fs. (d) Calculation of frequency-resolved TPA signal with
using a Gaussian IR pulse spectrum with second-order dispersion consistent with the experimental
IAC, and a transform-limited 315 fs Gaussian visible pulse.

Figure S11 shows the pure TPA signals from coumarins 6 and 343 (C343) using the 4.5 µm IR pulse.
Neither of the coumarins have any vibrations within its bandwidth, while they both exhibit good
electronic resonance with the sum frequency ωIR + ωvis (Figure S11(a)). Background-subtracted
two-pulse transients for both molecules are shown in Figure S11(b), which are symmetric in τenc
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and fit well to Gaussians that decays fully to zero, indicative of a nonresonant pulse-overlap signal.
The frequency-resolved signal for C343 is shown in Figure S11(c). Its projection onto the frequency
axis matches well with the IR pulse spectrum, as predicted for the frequency-resolved TPA signal
in Sec. S4. Gaussian fits to the two-pulse signal and the projection of the frequency-resolved
signal onto the τenc axis yield FWHM values of 356 and 370 fs, respectively. Taking these values
to represent the FWHM of the IR/Vis intensity cross-correlation, and using the IR pulse duration
from the IAC, we back out the visible pulse duration of τp,vis =

√
3562 − 1822 = 306 fs or 322 fs

for the longer or shorter measurements, respectively. We take the average value of 315 fs as our
measure of the visible pulse duration. Figure S11(d) shows a calculation of the frequency-resolved
TPA signal using a Gaussian IR pulse spectrum with second-order dispersion consistent with the
experimental IAC, and a transform-limited 315 fs Gaussian visible pulse, yielding good agreement
with features in the TPA spectrum including the shallow negative wing on the red side of the pump
indicative of mild IR down-chirp.
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S6 Coumarin series τenc-dependent FEIR data with ωIR = 1620
cm-1

1500 1550 1600 1650 1700 1750 1800
-0.5

0

0.5

1

1.5

2

0 0.5 1

0

0.5

1
τenc= 0.3 ps|ẼIR|2

FTIR

Frequency (cm-1) Norm. Amp.

projection
2-pulse

C525

N
or

m
. A

m
p.

τ e
nc

 (p
s)

Figure S12: C525 τenc-dependent FEIR data. Top panel: FTIR spectrum (dashed black), IR pulse
spectrum (gray), and FEIR spectrum at the indicated encoding delay. Center panel: τenc-dependent
FEIR spectrum. Contour spacing is set at 5%. Right panel: Experimental two-pulse signal (solid)
and τenc-projection of the spectrum (circles). The encoding delay used for the FEIR spectrum in
the top panel is indicated by a dashed line across the central and right panels.
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Figure S13: C30 and C314 experimental τenc-dependent FEIR data. All panels are analogous to
Figure S12.

28



1500
1550

1600
1650

1700
1750

1800
-0.5 0

0.5 1

1.5 2

0
0.5

1
Frequency (cm

-1)

τ
enc = 0.5 ps

|Ẽ
IR | 2

FTIR

Norm. Amp.τenc (ps)

0

0.5 1

N
orm

. A
m

p.

projection
2-pulse

C
153

0
0.5

1
1500

1550
1600

1650
1700

1750
1800

-0.5 0

0.5 1

1.5 2 0

0.5 1

Frequency (cm
-1)

τ
enc = 0.5 ps

|Ẽ
IR | 2

Norm. Amp.τenc (ps)

N
orm

. A
m

p.

projection
2-pulse

C
337

FTIR

Figure S14: C153 and C337 experimental τenc-dependent FEIR data. All panels are analogous to
Figure S12.
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Figure S15: C343 and C334 experimental τenc-dependent FEIR data. All panels are analogous to
Figure S12. The τenc-dependent FEIR spectrum of C343 in main text Fig 11(c) is from a different
measurement using a slightly more red-shifted IR pulse spectrum.
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Figure S16: C7 and C6 experimental τenc-dependent FEIR data. All panels are analogous to Figure
S12.
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S7 Fitting of C6 and C343 FTIR spectra

1450 1500 1550 1600 1650 1700 1750 1800
Frequency (cm-1)

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 A
m

pl
itu

de

1450 1500 1550 1600 1650 1700 1750 1800
Frequency (cm-1)

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 A
m

pl
itu

de

data
fit

data
fit

a b

Figure S17: Normalized FTIR absorption spectrum (black) and Lorentzian fit (dashed red) for (a)
C6 and (b) C343.

Normalized FTIR spectra are fit to a sum of n Lorentzian functions of the form

Li(ω) =
aibi

(ω − ci)2 + b2i
, (S35)

with n = 3 for C6 (Fig. S17(a)) and n = 6 for C343 (Fig. S17(b)). For the ith mode the extracted
frequency is ω10 = ci, the transition dipole moment is µ10 =

√
ai, and dephasing rate is Γ10 = 2πc0bi

where c0 is the speed of light (in cm/fs for ω in cm-1 and Γ10 in fs-1). The set of µ10 are then scaled
relative to the largest in the set. These extracted parameters are listed in main text Tables II and
III for C6 and C343, respectively.

S8 C6 DFT-calculated transition dipole orientations
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μR2
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Figure S18: Transition dipole unit vectors for the 3 normal modes and the electronic transition
of C6 used in the calculation of main text Section IV, viewed (a) front-on and (b) side-on to the
coumarin core.
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S9 Calculated C6 FEIR spectra with flipped νR1 FC factor sign
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Figure S19: Comparison of simulated τenc-dependent FEIR spectra of C6 with negative (as in main
text Section IV) and positive νR2-νR1 coherence sign. (a) Experimental τenc-dependent spectrum.
Simulated τenc-dependent (b) total spectrum and (c) coherence contribution using FC factor signs
of (+,+,−) for (νR3,νR2,νR1) (same as main text Section IV). (d) and (e) are analogous to (b)
and (c) but with the νR1 sign flipped, yielding FC factor signs of (+,+,+). (f) Comparison of
experimental, simulated (+,+,−), and simulated (+,+,+) spectra at τenc = 0.1 ps, 0 ps, and 0 ps,
respectively. (g) Comparison of experimental, simulated (+,+,−), and simulated (+,+,+) spectra
at τenc = 0.6 ps, 0.5 ps, and 0.5 ps, respectively. In (a)-(e) contouring is set at 6.7% intervals, and
(c) and (e) have been scaled by a factor of 3 for better visualization of the smaller amplitude.
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S10 C343 DFT normal modes
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Figure S20: (a) Atomic displacements for the 6 normal modes of C343 used in the calculation
of main text Section VB. (b) Transition dipole unit vectors for the 6 normal modes (same color
coding) and the electronic transition (purple) viewed with the coumarin core side-on.
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Mode ⟨0e|1g⟩ (DFT) ⟨0e|1g⟩ (adjusted)

νR4 0.0839 0.075

νR3 0.1156 0.075

νR2 -0.0309 -0.075

νR1 -0.0904 -0.085

νlac -0.2552 -0.25

νcarb 0.0594 0.06

Table S2: DFT calculated and adjusted values of the FC factors for the 6 modes in the C343
simulation
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S11 C343 coherence and population features
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Figure S21: Vibronic and orientational contributions to pathway amplitudes in the C343 response
function calculation. Amplitudes are represented on an n × n grid where n = 6 is the number
of modes, with the row (i) and column (j) index indicating the modes involved in the first two
interactions in each pathway. Population pathways (both interactions with the same mode i = j)
are on the diagonal, while coherence pathways (i ̸= j) are off-diagonal. Paired coherence pathways
are reflected across the diagonal (exchanging i and j) with identical amplitudes. C1 and C2

pathways have identical amplitudes, and we ignore C3 pathways. (a) The vibronic component
µi0µj0⟨0e|1gi ⟩⟨0e|1

g
j ⟩, (b) the orientational component Y

σσµj0µi0

ZZZZ (Eq. 32(a) in Paper I) where σ is
the electronic transition dipole unit vector, and (c) the total amplitude given by their product.
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Figure S22: Population and coherence contributions to the calculated vibronic-only (top row) and
ZZZZ (bottom row) τenc-dependent FEIR spectrum of C343. Contouring is set at 5% intervals, and
the population and coherence amplitudes add up to the total spectrum amplitude. The coherence
contribution is heavily reshaped by the inversion of signs of the coherences involving νR1 produced
by the orientational factor evident in Fig. S22(b). The relative intensities of the population features
are also re-weighted.
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S12 Effect of chirped IR pulses in C6 and C343 simulations.
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Figure S23: Transform-limited (TL) and chirped IR pulse characteristics used in the response
function simulations. (a) Spectrum, spectral amplitude, and spectral phase of the IR pulse
(definitions in Sec. S1.2). The phase shown is for the chirped case with γ2 = -7800 fs2, while
the TL case has a uniform phase of zero. (b) Real (green) and imaginary (purple) parts of
the chirped pulse’s time-domain envelope eIR(t), its resulting intensity profile IIR = |eIR(t)|2
(black), and the intensity profile in the TL case (dashed grey). (c)-(d) IR and visible intensity
profiles and the IRF (IR/Vis intensity cross-correlation) for the TL and chirped cases, respectively.
The IRF duration τcc is indicated, and in both cases the visible pulse remains TL. (e)-(f) IR
interferometric autocorrelation (IAC) and intensity autocorrelation (AC) for the TL and chirped
cases, respectively. Pulse durations are indicated, which for the chirped case roughly match the
experimentally measured duration (cf. Fig. S10(b)).
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Figure S24: Comparison of calculated two-pulse FEIR signals for C6 using a TL and chirped IR
pulse (from Fig. S23). In both cases the total signal (black, population contribution (red), and
coherence contribution (blue) are shown. The TL case (same data as main text Fig. 8(b)) is plotted
with half-saturated colors, while the chirped IR case uses fully-saturated colors. The peak of the
total signal is shifted to longer τenc by about ∼70 fs for the chirped case.
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Figure S25: Comparison of calculated τenc-dependent FEIR spectra with the chirped IR pulses
from Fig. S23 (left column) and TL pulses (right column) for C6 (top row) and C343 (bottom
row). Dashed lines indicate τenc = 0 ps and τenc = 0.5 ps to aid in lining up the evolution of
various features. Overall, the effect of this dispersion is to delay features on the red side of the
pulse spectrum while advancing those on the blue side, creating a “tilted” appearance to the τenc-
dependent spectra. As in the related case of the frequency-resolved TPA signal discussed in Sec.
S4, this effect is consistent with the negative sign of γIR,2 resulting in a down-chirp where the redder
frequencies lag behind the bluer. This “tilting” behavior in the chirped simulations matches well
with the experimental spectra in main text Figs. 7(b) and 11(b), but is a rather subtle effect for
the magnitude of γIR,2 considered.
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