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Fluorescence-encoded infrared (FEIR) spectroscopy is an emerging technique for per-

forming vibrational spectroscopy in solution with detection sensitivity down to single

molecules. FEIR experiments use ultrashort pulses to excite a fluorescent molecule’s vi-

brational and electronic transitions in a sequential, time-resolved manner, and are therefore

sensitive to intervening vibrational dynamics on the ground state, vibronic coupling, and

the relative orientation of vibrational and electronic transition dipole moments. This se-

ries of papers presents a theoretical treatment of FEIR spectroscopy that describes these

phenomena and examines their manifestation in experimental data. This first paper de-

velops a nonlinear response function description of Fourier-transform FEIR experiments

for a two-level electronic system coupled to multiple vibrations, which is then applied to

interpret experimental measurements in the second paper. Vibrational coherence between

pairs of modes produce oscillatory features that interfere with the vibrations’ population

response in a manner dependent on the relative signs of their respective Franck-Condon

wavefunction overlaps, leading to time-dependent distortions in FEIR spectra. The orien-

tational response of population and coherence contributions are analyzed and the ability

of polarization-dependent experiments to extract relative transition dipole angles is dis-

cussed. Overall, this work presents a framework for understanding the full spectroscopic

information content of FEIR measurements to aid data interpretation and inform optimal

experimental design.

a)Author to whom correspondence should be addressed: tokmakoff@uchicago.edu
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I. INTRODUCTION

The development of ultrasensitive vibrational spectroscopy tools for single-molecule applica-

tions is a diverse area of research that has led to fundamental advances in chemistry, materials sci-

ence, and molecular and optical physics. The experimental challenges posed by the weakness of

molecular vibrations’ light-matter interactions have been addressed in a variety of ways, and typi-

cally include either near-field enhancement by plasmonic effects, the coupling of the vibrations to

more sensitive spectroscopic observables, or both.1–7 Near-field approaches, such as surface- and

tip-enhanced Raman methods, have been incredibly successful in single-molecule science, but are

limited to investigations at metallic interfaces.8,9 Recently, our group has developed fluorescence-

encoded infrared (FEIR) spectroscopy as a strategy for single-molecule vibrational investigation

in solution.10 FEIR spectroscopy operates on fluorescent molecules and works by coupling their

ground-state vibrational signals into fluorescence emission, which may then be detected with high

sensitivity.

The principle of operation in an FEIR experiment can be described schematically by three

sequential molecular steps: (1) excitation of a vibration by resonant IR absorption, (2) upconver-

sion of the excited vibrational level to the electronic excited state by resonant visible absorption

(‘encoding’), and (3) emission of the fluorescence photon. The visible field used for encoding is

tuned to be pre-resonant with the equilibrium electronic transition so that only the vibrationally

excited molecules are selected, and steps (1) and (2) together (i.e. FEIR excitation) can be con-

sidered as a double-resonance pumping process. Underlying these steps are fast vibrational and

electronic dynamics, making the overall process intrinsically time-dependent as well as nonlin-

ear. Picosecond vibrational population relaxation ubiquitous in the condensed phase necessitates

the use of short pulse excitation for steps (1) and (2) to ensure the overall process can be made

sufficiently efficient. FEIR experiments with femtosecond pulses significantly shorter than these

lifetimes are consequently directly sensitive to vibrational dynamics on the ground state prior to

encoding. Furthermore, the encoding step is contingent on vibronic coupling between the probed

vibrational coordinates and the electronic transition, and the nature of this coupling accordingly

controls how vibrational signatures appear in FEIR signals. Additionally, the relative orientation

of the transition dipole moments probed in steps (1) and (2) manifest experimentally in the polar-

ization dependence of signals. Developing a detailed understanding of the molecular information

content accessible in FEIR spectroscopy requires a theoretical treatment capable of properly cap-
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turing these phenomena.

Our previous work on high sensitivity FEIR spectroscopy has largely explored the experimental

principles for optimizing detection sensitivity toward single-molecule measurements.10–12 Earlier

work using instrumentation geared toward high concentration measurements and incorporating

a two-photon encoding transition demonstrated how ultrafast vibrational dynamics, in particular

multimode coherence, appear in FEIR signals, and explained these results within a simplified

response function picture.13,14 Building on this earlier analysis, here we develop a more compre-

hensive response function description of FEIR spectroscopy with one-photon encoding and use it

to investigate the spectroscopic details of our current experimental implementation.

An important simplification in describing the overall FEIR process arises from the large sepa-

ration of timescale between the femtosecond to picosecond vibrational dynamics and the nanosec-

ond electronic relaxation involved in fluorescence emission. Namely, we can assume that the

processes of FEIR excitation (steps (1) and (2)) and fluorescence emission (step (3)) are essen-

tially independent. Our strategy is to describe the excitation process using the perturbative non-

linear response function formalism widely employed in multidimensional spectroscopy,15,16 and

then treat the emission process phenomenologically. This approach is characteristic of “action

spectroscopy”—the class of techniques where the detected observable is an indirect read-out of

the spectroscopic excitation, in contrast to conventional “coherent” methods that directly moni-

tor absorption, scattering, interference, or amplification of the interrogating electromagnetic field

and are described via the material polarization. Action observables are taken to be proportional

to the population of an excited state or set of states that the system is driven into by the excita-

tion method. Action techniques that detect fluorescence,17–21 photocurrent,22–27 photoelectrons,28

and photoionization,29–32 are gaining wider use in the field of multidimensional spectroscopy,

and their formal relationship to conventional coherent spectroscopies in terms of response func-

tion theory—a system’s coherent and action response corresponding at nonlinear orders n and

n+ 1, respectively—has been well established.33–37 This correspondence is exemplified in the

link between coherent two-dimensional (2D) electronic spectroscopy, described by the nonlin-

ear polarization to third order, and its fluorescence-detected counterpart, described by the excited

population to fourth order.

Casting FEIR excitation in density matrix perturbation theory language requires developing

the light-matter interaction to fourth order, as two perturbation-theoretic interactions each are re-

quired to describe the transfer of population in steps (1) and (2). In terms of nonlinear response,
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FEIR spectroscopy is therefore on par with existing fourth-order action techniques, and by the

correspondence discussed above also to third-order coherent techniques. We will use the result-

ing conceptual and technical analogies to our advantage by describing FEIR experiments in the

well-developed language of these ultrafast nonlinear methods. Specifically, FEIR is a three-pulse

(IR-IR-visible) experiment, in which the delay between two IR pulses generated by an interfer-

ometer (τIR) is scanned to resolve the vibrational excitation frequency via Fourier transformation,

while the delay before the third pulse (τenc) acts as a waiting time in which the system evolves be-

fore the encoding step. These aspects of the experiment have direct analogies in 2D spectroscopy,

although FEIR does not go on to resolve a second coherence period and conjugate frequency after

the waiting time. As such, many direct similarities exist in the spectroscopic information content

and how it is visualized, as well as in the practicalities of how measurements are conducted and

data is processed. Mixed IR/visible techniques such as 2D vibrational-electronic (2D VE) spec-

troscopy and vibrationally promoted electronic resonance (VIPER) spectroscopy are especially

closely related.38–42

While these analogies are useful, the primary motivations for developing FEIR spectroscopy—

namely, for performing single-molecule experiments—are different from those of ultrafast and

multidimensional spectroscopies and lead to different priorities in experimental design. For ex-

ample, a more important goal would be to measure one-dimensional vibrational spectra with the

highest possible detection sensitivity, while developing FEIR measurements that can probe ul-

trafast system dynamics or reveal the correlation between multiple transitions are of secondary

importance. Nevertheless, this richness in spectroscopic information content is still important to

understand, as it can have a major impact on the appearance of FEIR spectra and their interpreta-

tion.

Our analysis describes how FEIR measurements with broadband pulses contain contributions

from two types of molecular response: single-mode population pathways involving individual

vibrations, and multimode coherence pathways connecting pairs of coupled vibrations. The pop-

ulation response represents the sequential double-resonance pumping picture put forward initially

and produces spectroscopically intuitive features—absorptive vibrational resonances with peak in-

tensities that scale with the squares of the transition moments for the vibrational fundamental and

vibronic encoding transitions, respectively, and decay away in τenc with the vibrational lifetime.

On the other hand, coherence pathways arise from using broadband IR excitation pulses that cover

multiple vibrational bands, and produce oscillatory signatures in τenc originating from the coherent
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evolution of pairs of vibrational fundamentals. In FEIR spectra, these coherence pathways mani-

fest as additional features overlapped on the population peaks that undergo τenc-dependent phase

modulation and decay through coherence dephasing. The coherence amplitude is governed by a

cyclic product of four transition dipoles that can have either positive or negative sign, resulting in

either constructive or destructive interference against the population response at early τenc.

In terms of orientational response, the population pathways are governed by orientational corre-

lation functions involving two unique dipoles, yielding polarization dependencies with anisotropy

of the familiar second Legendre polynomial form common to many spectroscopic techniques that

probe orientation.43 FEIR anisotropy measurements performed by controlling the polarization an-

gle between the IR and visible pulses can therefore be used to extract the relative orientation of the

vibrational and vibronic encoding transitions in a molecule. However, coherence pathways have

a more complicated orientational contribution—in the Condon approximation governed by three

unique dipoles—which can also adopt a variable positive or negative sign. As we will demonstrate

in Paper II, the combined effect of these possibilities in the vibronic and orientational response

have a profound impact on the shape of FEIR spectra at early τenc before coherence has dephased.

This paper is organized as follows. Section II describes the fourth-order action response frame-

work for calculating FEIR signals. Section III discusses the relationship between two useful exper-

imental FEIR observables, spectra and two-pulse transients, and describes the phenomenology of

population and coherence pathways in these measurements. Section IV analyzes the orientational

response and discusses polarization-dependent measurements. Finally, Sec. V concludes Paper I

and introduces Paper II.

II. FOURTH-ORDER ACTION DESCRIPTION OF FEIR SPECTROSCOPY

A. Model system

We consider a two-level electronic system consisting of a ground (g) and excited (e) state

coupled to multiple vibrational coordinates. Owing to the resonance conditions and order of non-

linearity considered, on the electronic ground state only the singly-excited levels of the vibrations

can be accessed in our description. Specifically, neither overtone nor combination states need

to be considered, and FEIR measurements are consequently not directly sensitive to vibrational

anharmonicity. We therefore adopt the level structure and notation shown in Figure 1(a), where
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the ground electronic manifold is composed of the global ground state |g,0⟩ = |g⟩|0g⟩ with zero

quanta in all vibrational oscillators, and the set of singly-excited vibrational states |g,1i⟩= |g⟩|1g
i ⟩

in which the i-th mode has one quantum of excitation while all others remain in the ground state.

The vibrational frequencies are assumed to be substantially higher than kBT/h̄ so that this one-

quantum manifold is not appreciably populated at equilibrium. Similarly, the electronic excited

manifold has the zero-quantum level |e,0⟩= |e⟩|0e⟩ and corresponding set of one-quantum levels

|e,1i⟩= |e⟩|1e
i ⟩.

...

|g,0〉

|g,1i〉

|e,0〉

|e,1i〉 ...

ħωIR

ħωvis

tt=0

E1 E3E2

τIR τenc

τ1 τ2 τ3 τ4

t1 t2 t3 t4

b

N(4)(t)

a

N(4)¯

FIG. 1. Energy level diagram, pulse sequence, and target population in an FEIR experiment. (a) Generalized

energy level diagram for FEIR excitation. Relative energy gaps are not to scale. (b) Pulse sequence (top),

target excited population (bottom), and relevant time variables for the calculation of the system response.

The light-matter interaction taken in the electric dipole-approximation is

V (t) =−M ·E(t), (1)

where E(t) is the incident electric field and M is the system dipole operator. A generic matrix

element connecting system states a and b is given by

⟨b|M|a⟩= Mbam̂ba, (2)
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where Mba is a scalar amplitude describing the strength of the transition dipole and m̂ba is a

unit vector describing its orientation in the molecular frame. Specifically, to denote vibrational

transition moments on the ground electronic state, e.g. |a⟩ = |g,0⟩ and |b⟩ = |g,1i⟩, we use the

notation µi0µ̂i0.

Vibronic transitions between the electronic ground and excited manifolds are sensitive to

vibrational-electronic coupling, which is correspondingly a critical molecular property required

for FEIR signal generation. In the simplest case of no vibrational coordinate-dependence to the

electronic transition moment (Condon approximation), the vibronic transition dipole moment

factorizes,40,44 e.g. for |a⟩= |g,1i⟩ and |b⟩= |e,0⟩

⟨e,0|M|g,1i⟩= ⟨0e|1g
i ⟩µegµ̂eg, (3)

where µeg and µ̂eg are the magnitude and orientation of the bare electronic transition, and ⟨0e|1g
i ⟩

is the vibrational wavefunction overlap, i.e. the Franck-Condon (FC) factor. We note that the term

FC factor is sometimes used to refer to the square of the overlap integral, however in this work we

use it to denote the overlap itself. Importantly, in the Condon approximation the orientation of the

vibronic transitions are therefore aligned along µ̂eg.

The IR field (photon energy h̄ωIR indicated by red arrow in Fig. 1(a)) is tuned to resonance

with the vibrational fundamentals, and has sufficient bandwidth to cover multiple transitions. The

visible encoding field (blue arrow) is tuned to be resonant with the transitions from |g,1i⟩ to |e,0⟩.

Importantly, the visible frequency ωvis is below resonance with any transitions from the equilib-

rium ground state |g,0⟩ to the electronic excited state, as otherwise direct one-photon absorption,

e.g. creating excited electronic population to second-order in the light-matter interaction, would

dominate. As a consequence of this resonance condition, transitions between the |g,1i⟩ and |e,1i⟩

manifolds are also out of resonance. Therefore, we only need to consider |e,0⟩, and the higher

vibrational levels can be ignored.

In general, the visible field should be made narrowband with respect to the electronic linewidth

to ensure good spectral selectivity of double-resonance FEIR vs. one-photon excitation. The

typical breadth of the electronic lineshape in solution, with associated inverse timescale of tens

of femtoseconds, easily facilitates the selection of such a narrowband visible pulse (e.g. of a few

hundred femtoseconds duration) that is still short compared to the picosecond vibrational lifetimes.

Overall, optimizing the electronic pre-resonance condition is critical for successful measurements

in practice, and has been investigated in Ref. 12.
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B. Fluorescence signal

An action description assumes the spectroscopic signal is proportional to the population of a

target excited state or set of states that the system is driven into by the incident electric fields.

In our case we consider a single target state | f ⟩ = |e,0⟩, and calculate its population with the

projection operator

A = | f ⟩⟨ f |. (4)

The pulse sequence used in an FEIR experiment is depicted in Fig. 1(b). Explicitly, the total

incident electric field is

E(t) = E1(t + τenc + τIR)+E2(t + τenc)+E3(t), (5)

where E1 and E2 are a pair of IR pulses separated by delay τIR, and E3 is the visible encoding pulse

delayed with respect to E2 by the encoding delay τenc. These pulses propagate collinearly, and their

parallel wave-vectors will therefore be left out of the notation. Two light-matter interactions with

E3 are required to reach the target excited state, and barring cases of IR/Vis pulse overlap they

must be directly sequential.

For well-separated pulses in the “proper” ordering shown in Fig. 1(b), the fourth-order contri-

bution to the time-dependent target population N(t) is

N(4)(t) =
∫

∞

0
dτ4

∫
∞

0
dτ3

∫
∞

0
dτ2

∫
∞

0
dτ1 R(4)(τ4,τ3,τ2,τ1)

×E3(t − τ4)E3(t − τ4 − τ3)E2(t − τ4 − τ3 − τ2 + τenc)

×E1(t − τ4 − τ3 − τ2 − τ1 + τenc + τIR), (6)

where the multiplication of the fourth-rank tensorial response function R(4) with the four field

vectors is understood as a tensor contraction. The response function is

R(4)(τ4,τ3,τ2,τ1) =( i
h̄

)4
θ(τ4)θ(τ3)θ(τ2)θ(τ1)Tr{A(τ4 + τ3 + τ2 + τ1)

× [M(τ3 + τ2 + τ1), [M(τ2 + τ1), [M(τ1), [M(0),ρ0]]]]}, (7)

where ρ0 is the equilibrium reduced system density operator, the τi are the time-delays between

sequential interactions, θ(τi) is the Heaviside step function, and Tr{· · ·} denotes the trace.
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Equation 6 describes the full time-evolution of the target population, which in principle could

be made to include the radiative and nonradiative relaxation processes that lead to fluorescence

emission and its quantum yield. However, the action approach aims to simply describe the signal

by the final target population following the last light-matter interaction, with the quantum yield as a

proportionality constant. In the impulsive limit where the electric field envelopes are much shorter

than any system dynamics, this is accomplished straightforwardly by setting τ4 = 0. To develop a

more general expression that works for finite duration pulses, we assume the relaxation timescale

of the target state τ f is much longer than the final pulse duration τp, and calculate the limiting

target population N̄(4) after the last pulse has finished interacting but before appreciable relaxation

has set in, as is relevant for femtosecond excitation of strongly fluorescent molecules with excited-

state lifetimes in the nanosecond range. Figure 1(b) depicts this limiting procedure. Specifically,

we change variables to the absolute time of the last interaction t4 = t − τ4, which modifies the

final integration in Eq. 6 by
∫

∞

0 dτ4 →
∫ t
−∞

dt4. Because the target population’s relaxation is

assumed to be slow, A is approximately a constant of the motion under free system evolution so

that A(τ4 + τ3 + τ2 + τ1) ≈ A in the response function (Eq. 7). Then the upper integration limit

of the t4 integral is safely extended to t → ∞, as the product of the four electric fields will be

essentially zero for these t4 values. This also takes care of causality, so the step function θ(t − t4)

can be dropped from the response function. The result is

N̄(4) =
∫

∞

−∞

dt4
∫

∞

0
dτ3

∫
∞

0
dτ2

∫
∞

0
dτ1 R(4)(τ3,τ2,τ1)

×E3(t4)E3(t4 − τ3)E2(t4 − τ3 − τ2 + τenc)

×E1(t4 − τ3 − τ2 − τ1 + τenc + τIR), (8)

where the modified response function is

R(4)(τ3,τ2,τ1) =
( i

h̄

)4
θ(τ3)θ(τ2)θ(τ1)

×Tr{A[M(τ3 + τ2 + τ1), [M(τ2 + τ1),

[M(τ1), [M(0),ρ0]]]]}. (9)

This effective action response function does not depend on τ4, rather only on the time intervals

between the four successive light-matter interactions, and from here on out we will exclusively

work with this version of the response function.

Accounting for the fluorescence quantum yield φ , the average number of molecules in the

observation volume ⟨n⟩, the overall detection efficiency of a fluorescence photon η , and the
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repetition-rate of the experiment r, the average FEIR signal count rate from the sample is

F(τIR,τenc) = rηφ⟨n⟩N̄(4)(τIR,τenc), (10)

where we have explicitly notated the dependence on the experimental inter-pulse delays implicit in

Eq. 8. The total fluorescence count rate from the sample (excluding non-molecular background)

is

Ftot(τIR,τenc) = F(τIR,τenc)+F0 (11)

where F0 is a background component due to direct one-photon visible excitation of the molecule

(not described by Eq. 8).12

We will treat the effects of finite pulse durations, including different pulse interaction orderings

that occur during their temporal overlap in Paper II. For the remainder of the current paper we will

restrict our analysis to the impulsive limit.

C. Response function

The four nested commutators in the action response function (Eq. 9) produce 24 = 16 Liouville

pathways grouped into pairs, which represent 8 unique four-point dipole correlation functions and

their complex conjugates. The formal correspondence between pathways in fourth-order action

and third-order coherent response has been discussed extensively in the context of fluorescence-

detected 2D electronic spectroscopy.33–36,45 The resonance conditions of FEIR spectroscopy im-

pose constraints that greatly reduce the number of pathways that need to be considered. Specifi-

cally, because the target state is only accessible through two-photon material resonances involving

the singly-excited vibrational states as intermediates (Fig. 1(a)), two bra- and ket-side interac-

tions each are required per pathway. This condition is only satisfied by 3 out of the 8 correlation

functions, which we take to constitute the response function as follows

R(4)(τ3,τ2,τ1) =

1
h̄4 θ(t3)θ(τ2)θ(τ3)

3

∑
α=1

[
Cα(τ3,τ2,τ1)+Cα(τ3,τ2,τ1)

∗
]

(12a)
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where

C1(τ3,τ2,τ1) =

Tr{AM(τ2 + τ1)M(0)ρ0M(τ1)M(τ3 + τ2 + τ1)} (12b)

C2(τ3,τ2,τ1) =

Tr{AM(τ3 + τ2 + τ1)M(0)ρ0M(τ1)M(τ2 + τ1)} (12c)

C3(τ3,τ2,τ1) =

Tr{AM(τ1)M(0)ρ0M(τ2 + τ1)M(τ3 + τ2 + τ1)}. (12d)

These three correlation functions also represent the subset of fourth-order pathways relevant for

two-photon absorption spectroscopies.46,47 We note that R(4) is proportional to the real parts of its

constituent correlation functions (i.e. complex conjugate terms are summed), which is a general

feature of the even-order, while odd-order response functions instead depend on the imaginary

parts of the dipole correlation functions.15,45

C1 C2 C3

|0〉

|1〉

|e〉

|0〉

|1〉

|e〉

|0〉

|1〉

|e〉

τ3τ2τ1

|0〉〈0|

|1〉〈0|

|1〉〈1|

|e〉〈1|

|e〉〈e|

|0〉〈0|

|1〉〈0|

|1〉〈1|

|1〉〈e|

|e〉〈e|

|0〉〈0|

|1〉〈0|

|e〉〈0|

|e〉〈1|

|e〉〈e|
τ3

τ2

τ1

a

b

FIG. 2. (a) Double-sided Feynman diagrams and (b) ladder diagrams for the unique pathway contributing to

each correlation function C1, C2, and C3 in the case of a single vibration coupled to the electronic transition.

Red and blue arrows indicate IR and visible field interactions, respectively. C3 pathways do not contribute

to FEIR signals under typical experimental conditions and can be neglected.

Assuming that the system’s vibronic and rotational dynamics are independent,48,49 the correla-

tion functions can be factorized when expanded over system eigenstates indexed by a, b, c, and d
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as

(Cα)IJKL(τ3,τ2,τ1) =

∑
a,b,c,d

Ca,b,c,d
α (τ3,τ2,τ1)(Yα)

a,b,c,d
IJKL (τ3,τ2,τ1), (13)

where Ca,b,c,d
α are scalar pathways describing the system’s vibronic response, while (Yα)

a,b,c,d
IJKL

make up the tensorial orientational correlation functions with I,J,K and L each indexing the

laboratory-frame Cartesian coordinates X ,Y , and Z. These orientational pathways will be treated

in Sec. IV, and the remainder of this section and Sec. III will discuss the vibronic response only.

In the homogeneous limit, i.e. adopting independent optical Bloch propagators for each time

interval, the scalar vibronic pathways are

Ca,b,c,d
1 (τ3,τ2,τ1) =δ f cMdcMcbMadMbaP(a)

× exp
(
−iωcdτ3 − iωbdτ2 − iωbaτ1

)
× exp

(
−Γcdτ3 −Γbdτ2 −Γbaτ1

)
(14a)

Ca,b,c,d
2 (τ3,τ2,τ1) =δ f cMcbMdcMadMbaP(a)

× exp
(
−iωbcτ3 − iωbdτ2 − iωbaτ1

)
× exp

(
−Γbcτ3 −Γbdτ2 −Γbaτ1

)
(14b)

Ca,b,c,d
3 (τ3,τ2,τ1) =δ f cMdcMadMcbMbaP(a)

× exp
(
−iωcdτ3 − iωcaτ2 − iωbaτ1

)
× exp

(
−Γcdτ3 −Γcaτ2 −Γbaτ1

)
. (14c)

Here ωi j = (Ei −E j)/h̄ are system eigenfrequencies, Γi j is a population relaxation rate for i = j

and a dephasing rate for i ̸= j, P(a) is the equilibrium population of the initial state a, and the

Kroenecker delta δ f i is the effect of the projection operator A (Eq. 4) ensuring the final state in the

pathway is the target state | f ⟩.

Figure 2 shows double-sided Feynman and ladder diagrams for these pathways for a three-level

system (discussed in Sec. III B). In the conventional language of ultrafast and multidimensional

spectroscopy, pathways belonging to C1 and C2 represent excited-state absorption, while C3 path-

ways represent double quantum coherence. C1 and C2 have non-rephasing and rephasing character,

respectively, although this distinction does not produce important spectroscopic consequences as

the τ3 interval is not experimentally resolved (discussed further in Sec. III B). In each case, all
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four interactions are absorptive and the pathway carries an overall positive sign due to having two

bra-side interactions, thereby contributing a gain in fluorescence output from the molecule. These

qualities are precisely those we selected for when invoking the resonance conditions to restrict the

number of correlation functions under consideration—ground-state bleaching or stimulated emis-

sion pathways consequently do not contribute. Under these conditions we may therefore consider

N̄(4) as representing an overall FEIR excitation probability, as discussed heuristically in Ref. 12.

We note that alternative resonance conditions could in principle be used where these assump-

tions no longer hold. For example, in Ref. 13 a “fluorescence-loss” resonance condition was

demonstrated in which the encoding field was tuned to be maximally resonant with the equilib-

rium electronic transition (in that case, a two-photon resonance), resulting in a negative-going

FEIR signal (i.e. a decrease in total fluorescence relative to F0 in Eq. 11). Within that resonance

condition bleaching pathways dominate and a different subset of the 8 fourth-order correlation

functions would need to be considered.

III. SINGLE-MODE AND MULTIMODE PATHWAYS IN FEIR SIGNALS

A. Two- and three-pulse signals and FEIR spectra

The full pulse sequence shown in Fig. 1(b) facilitates the measurement of Fourier transform

(FT) vibrational spectra as a function of encoding delay τenc. The total FEIR signal is the sum of

the following three contributions

F(τIR,τenc) = F12(τIR,τenc)+F1(τIR + τenc)+F2(τenc), (15)

where we have suppressed the dependence on pulse polarization (discussed later in Sec. IV).

The contribution F12, termed the three-pulse signal, is due to one interaction each with E1 and

E2 and two with the encoding field E3. Equation 8 explicitly calculates only this three-pulse

contribution to N̄(4). The three-pulse signal resolves the vibrational free-induction decay in τIR

and is consequently the desired signal for measuring vibrational spectra. The contributions F1

and F2 are two-pulse signals where both IR-vibrational interactions occur with either E1 or E2,

respectively, and can be found from Eq. 8 by modifying the product of the four pulse electric

fields accordingly. The coexistence of these signal components is analogous to 2D spectroscopy

experiments performed in the pump-probe geometry, where the 2D signal (analogous to F12) must

be separated from the pump-probe signals (analogous to F1 and F2).50–53

13



E1 E3E2 E1/E2 E3

ba τIR τenc

1550 1600 1650
0

1

10.50
0

1

2

3

τ e
nc
 (p

s)

Frequency (cm-1)

Norm. Amp.

N
or

m
. A

m
p.

ω10

τenc

S(ω, τenc) F(τenc)

S(ω, τenc= 0)

0

1

FIG. 3. Projection-slice relationship between (a) the FEIR spectrum S(ω,τenc) derived from the three-pulse
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By symmetry, the two- and three-pulse signals are related via

F12(τIR = 0,τenc) ∝ F1(τenc) = F2(τenc). (16)

The FEIR spectrum, shown in Fig. 3(a), is given by the real part of the one-sided FT of the

three-pulse signal

S(ω,τenc) = Re
∫

∞

0
F12(τIR,τenc)eiωτIRdτIR. (17)

The two-pulse signal (Fig. 3(b)) measures the τenc-dependence of the integrated vibrational reso-

nances projected onto the τenc axis, as described formally by the projection-slice theorem

F12(τIR = 0,τenc) =
∫

∞

−∞

S(ω,τenc)dω (18)

in conjunction with Eq. 16. Along the same lines, this relationship between the FEIR spectrum and

two-pulse signal is directly analogous to that between the absorptive 2D spectrum and dispersed

pump-probe signal.
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In practice, the two-pulse signal can be measured either by blocking E1 (measuring F2(τenc)),

or setting τIR = 0 (measuring F12(τIR = 0,τenc)+F1(τenc)+F2(τenc)). Due to the effect of con-

structive interference, this latter method produces a 4 times larger signal size than the former, as

will be demonstrated experimentally in Paper II. For brevity, we will refer to the two-pulse signal

simply by F(τenc).

B. Single-mode population response

The primary molecular response interrogated in FEIR spectroscopy is due to the excitation and

encoding of individual vibrational modes. In these single-mode pathways, both IR light-matter

interactions occur with the same vibrational transition, and consequently both visible interactions

also occur with the same vibronic transition. To describe the contribution of these single-mode

pathways we therefore consider the simplest case of a single vibrational oscillator coupled to the

electronic transition. Simplifying the notation in Fig. 1(a), this case is represented by a three-level

system consisting of the global ground state |0⟩ ≡ |g,0⟩, first vibrational excited state |1⟩ ≡ |g,1⟩,

and zero-quantum level of the excited electronic state |e⟩ ≡ |e,0⟩ which is the target state. This

model produces one unique material pathway per correlation function, which are shown in Fig.

2 as both double-sided Feynman diagrams and ladder diagrams. Filling in the eigenstate indices

according to Eq. 14, the single-mode pathways C0,1,e,1
1 and C0,1,e,1

2 will be referred to as population

pathways, as they report on the excited population of the vibration being pumped.

In the homogeneous limit the population pathways have the form

C0,1,e,1
1 = |µeg|2⟨0e|1g⟩2|µ10|2 exp

[(
−i(ωe0 −ω10)−Γe1

)
τ3

−Γ11τ2 +(−iω10 −Γ10)τ1

]
(19a)

C0,1,e,1
2 = |µeg|2⟨0e|1g⟩2|µ10|2 exp

[(
i(ωe0 −ω10)−Γe1

)
τ3

−Γ11τ2 +(−iω10 −Γ10)τ1

]
. (19b)

The τ1- and τ3-dependence describe the frequency and linewidth of the vibrational and vibronic

transitions, respectively, while vibrational population relaxation during τ2 causes the response

to decay and represents a loss channel for the overall FEIR excitation probability. Because the

squared electronic transition matrix element |µeg|2 will always be present in any pathway’s am-

plitude, we will call the product ⟨0e|1g⟩2|µ10|2 the (Condon approximation) FEIR activity of the

vibration. Within a given molecule, the FEIR activity is a simple indicator of the strength of
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a vibration’s FEIR response, although orientational factors also contribute (Sec. IV). For a dis-

placed harmonic oscillator model which characterizes vibronic coupling by the Huang-Rhys factor

S = d2/2 where d is the dimensionless displacement between the ground and excited nuclear po-

tentials, the squared FC factor is ⟨0e|1g⟩2 = Sexp(−S)≈ S where the last approximation holds for

small S. In this case, the FEIR activity is succinctly given by S|µ10|2. In some systems, notably

those where symmetry constraints cause FC factors to vanish, non-Condon effects could also play

a role in FEIR activity which would require a more general description of the vibronic transition

moment Me1.40,54,55

While the C3 pathway satisfies the resonance conditions, it involves the mixed IR-Vis-IR-Vis

ordering of light-matter interactions, and therefore can only contribute during the temporal overlap

of the IR and visible fields, i.e. when |τenc|≲ τp, where τp is the longest pulse duration. Explicitly,

C0,1,e,1
3 = |µeg|2⟨0e|1g⟩2|µ10|2 exp

[(
−i(ωe0 −ω10)−Γe1

)
τ3

+
(
−iωe0 −Γe0

)
τ2 +(−iω10 −Γ10)τ1

]
. (20)

This pathway involves a rapidly oscillating electronic coherence |e⟩⟨0| during τ2 which typically

dephases within tens of femtoseconds, and will not contribute to the signal with the pulse durations

used in our experiments. Specifically, we will show in Paper II that C3 pathways do not survive

the finite-pulse convolution integrals in simulations, and can be safely neglected.

In the impulsive limit, the τ1-dependence is mapped out in the IR pulse-pair delay τIR, τ2 be-

comes the encoding delay τenc, and τ3 = 0 as the two interactions with E3 become time-coincident.

Similarly, C3 ∝ δ (τenc) and therefore vanishes for positive τenc and will be ignored. Explicitly, the

three-pulse signal is

F12(τIR,τenc)∼

θ(τenc)θ(τIR)
[
C1(0,τenc,τIR)+C2(0,τenc,τIR)+ c.c.

]
= θ(τenc)θ(τIR)4|µeg|2⟨0e|1g⟩2|µ10|2 exp(−Γ11τenc)

× cos(ω10τIR)exp(−Γ10τIR). (21)

The resulting FEIR spectrum (ω > 0) is

S(ω,τenc)∼

θ(τenc)|µeg|2⟨0e|1g⟩2|µ10|2
Γ10 exp(−Γ11τenc)

(ω −ω10)2 +Γ2
10

, (22)
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which is shown in Fig. 3(a). The spectrum resolves the vibrational fundamental’s frequency and

lineshape in an identical manner to a conventional linear IR absorption spectrum, and decays in

τenc due to vibrational population relaxation. The two-pulse signal

F(τenc)∼ θ(τenc)
[
C1(0,τenc,0)+C2(0,τenc,0)+ c.c.

]
= θ(τenc)4|µeg|2⟨0e|1g⟩2|µ10|2 exp(−Γ11τenc) (23)

correspondingly tracks this relaxation directly without resolving the lineshape via the projection-

slice relationship (Fig. 3(b)).

The C1 and C2 pathways differ only in the sign of their τ3 phase evolution. The C1 pathway

has the same sign of phase evolution during τ1 and τ3 and can therefore be classified as a non-

rephasing pathway, while the C2 pathway exhibits opposite signs and is consequently a rephasing

pathway. The presence of correlated heterogeneity between the vibrational and electronic transi-

tion frequencies will therefore affect these pathways differently, although the large mismatch in

magnitude of these frequencies precludes strong echo behavior.56 Furthermore, because both the

third and fourth light-matter interaction occur with the same pulse, the phase evolution in τ3 is

not directly monitored. These pathways are therefore not distinguishable in experiment, and con-

tribute similarly to the measured signals. FEIR spectroscopy is consequently not directly sensitive

to heterogeneity in the way that the related non-degenerate third-order technique 2D VE is.38,39

The rephasing/non-rephasing terminology is however still useful for bookkeeping purposes when

setting up finite-pulse calculations in Paper II.

C. Multimode coherence

1. Coherence pathway pairs

When multiple vibrational modes are covered within the bandwidth of the IR pulses, pairs

of fundamentals may be excited coherently if the vibrations are coupled. A system of k modes

will therefore in general produce k!/(2!(k − 2)!) coherences connecting all pairs of modes. To

describe the phenomenology of these coherent signals, we consider a two-mode system resulting

in four levels: the ground state |0⟩, singly-excited vibrational states |m⟩ ≡ |g,1m⟩ and |n⟩ ≡ |g,1n⟩,

and the target excited state |e⟩. In addition to the population pathways residing in either |m⟩⟨m|

or |n⟩⟨n| during τ2 described above, there is the possibility for pathways residing in an |m⟩⟨n| or
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FIG. 4. Vibrational coherence pathways and their τenc-dependent signatures. (a) Ladder diagrams for the

pair of C1 coherence pathways connecting fundamentals m and n. (b) Isolated contribution of the coherence

pair (C0,m,e,n
1 +C0,n,e,m

1 +C0,m,e,n
2 +C0,n,e,m

2 +c.c.) to the impulsive two-pulse signal. The fundamentals have

frequencies ωm0 = 1570 cm-1 and ωn0 = 1630 cm-1, are lifetime-broadened with Γ−1
mm = Γ−1

nn = Γ
−1
m0 = Γ

−1
n0 =

1000 fs, and the coherence dephasing is Γ−1
nm = 500 fs. (c) Lineshapes of the coherence pair contribution to

the FEIR spectrum after acquiring phases of φmn = 0,π/2,π , and 3π/2 through τenc-evolution (dephasing

removed to better demonstrate the cycle of phase). (d) Contribution of the coherence pair to the impulsive

τenc-dependent FEIR spectrum, with Γ−1
nm = 500 fs. Color-coded dashed lines in (b) and (d) indicate the τenc

values corresponding to the different coherence phases in (c).

|n⟩⟨m| coherence during τ2. Specifically, each correlation function has a matched pair of coherence

pathways formed by exchanging the roles of the two vibrations m and n, i.e. that differ by which

mode is excited first. Such a pair of pathways is shown for C1 in Fig. 4(a), while the analogous

pair for C2 would be found by switching the order of the final two interactions with the visible
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field. Explicitly, this pair of pathways has the form

C0,m,e,n
1 = M∗

enMemM∗
n0Mm0

× exp
[
(−i(ωeg −ωn0)−Γen)τ3

+(−iωmn −Γmn)τ2 +(−iωm0 −Γm0)τ1

]
, (24a)

C0,n,e,m
1 = M∗

emMenM∗
m0Mn0

× exp
[
(−i(ωeg −ωm0)−Γem)τ3

+(−iωnm −Γnm)τ2 +(−iωn0 −Γn0)τ1

]
. (24b)

As the C1 and C2 pathways contribute identically to the FEIR signal, we will refer to the sum

C0,m,e,n
1 +C0,n,e,m

1 +C0,m,e,n
2 +C0,n,e,m

2 + c.c. as the coherence contribution to the signal, or coher-

ence pathway pair, from the two vibrations.

2. Coherence oscillation and lineshape

The pair of coherence pathways exhibit oscillatory behavior in τ2 at the difference frequency

|ωmn| between the vibrational fundamentals. In the two-pulse signal, shown in Fig. 4(b), the

coherence pair manifests as an oscillatory signal damped by the coherence dephasing rate Γmn. In

the FEIR spectrum, the oscillating part of the τ2-dependence acts as a phase-shift (i.e. φmn(τ2) =

ωmnτ2 in Eq. 24(a)) on the vibrational lineshape encoded in the pathway’s τ1-dependence. This

phase has opposite sign for the two members of the coherence pair, φmn(τ2) = −φnm(τ2). The

resulting contribution of the coherence to the spectrum is shown in Fig. 4(c), with the dephasing

Γnm = Γmn = 0 for purposes of illustration. At τ2 = 0 the coherence phase is zero, and C0,m,e,n
1

and C0,n,e,m
1 produce absorptive vibrational lineshapes centered at ωm0 and ωn0, respectively. As

τ2 increases, the phase evolves with opposite signs over each resonance, leading to dispersive

lineshapes with overlapping negative lobes at φmn =−φnm = π/2, inverted absorptive lineshapes at

φmn =−φnm = π , and then dispersive lineshapes with overlapping positive lobes at φmn =−φnm =

3π/2. We note that the sign of phase evolution is fixed by the frequency ordering of the modes,

i.e. the lower lying resonance (ωm0 in Fig. 4) always acquires positive phase φmn > 0 while the

higher lying resonance (ωn0) acquires negative phase φnm < 0. Represented as an (ω ,τenc) surface

(Fig. 4(d)), the nodal lines over each resonance are therefore always “tilted away” from each other.

This cyclic phase-twisting behavior is reminiscent of certain phase modulation effects in 2D peak
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lineshapes caused by multilevel coherence during the waiting time,16,57 although the involvement

of a larger number of pathways and the distinction between rephasing and non-rephasing character

make the behavior and its explanation more complicated in the latter case.

The coherence dephasing rate Γnm has contributions from both energy relaxation (i.e. the con-

comitant decay of the excited |m⟩ and |n⟩ populations) and phase relaxation (pure dephasing). The

pure dephasing component of Γnm in general arises from environmentally-induced fluctuations

in the energies of each level.15 When the vibrations are completely uncoupled, e.g. on different

molecules where the use of a common ground state is not physically meaningful, these fluctuations

must be completely uncorrelated so that the coherence pathway cannot survive the equilibrium av-

erage of Eq. 12(b)-(d) and will not contribute to the signal. The presence of coherence in a

measurement is therefore a marker of coupling between the vibrations, although the coherent sig-

nature is not directly sensitive to the strength of the coupling. Conversely, as we will discuss in

Section IV, in some cases coupled vibrations can fail to produce a coherence due to their transition

dipoles’ orientational configuration within the molecule.

3. Coherence magnitude and sign

The product of the four unique transition dipole moments in a coherence pathway is always

real, owing to the closed loop form of the ladder diagrams (Fig. 4(a)).51 Alternatively, the indi-

vidual dipole matrix elements may simply be taken to be real by invoking time-reversal symmetry

arguments.51,58 In either case, the amplitudes of the matched pathways in a coherence pair are

therefore identical. Explicitly, the Condon approximation amplitude is

M∗
enMemM∗

n0Mm0 = M∗
emMenM∗

m0Mn0

= |µeg|2⟨0e|1g
n⟩⟨0e|1g

m⟩µn0µm0. (25)

The transition dipole moments of both vibrations and their respective FC factors contribute to the

pathway pair’s amplitude. As such, the strength of the coherence can be thought of as being de-

termined by a “mixture” (specifically, the geometric mean) of the two vibrations’ FEIR activities.

Crucially, the product of these four factors can be positive or negative, contributing an overall sign

to the coherence. This sign, if negative, can equivalently be considered as an initial π phase-shift

to the coherence cycle, the situation discussed above in Fig. 4 being the case of a positively-signed

coherence. Furthermore, as we will discuss in Sec. IV, the orientational response for the coherence
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FIG. 5. Interference between population and coherence contributions of positive (+) or negative (-) sign for

a system of two coupled modes. Contributions to the impulsive-limit τenc-dependent FEIR spectrum from

(a) population pathways (C0,m,e,m
1 +C0,n,e,n

1 +C0,m,e,m
2 +C0,n,e,n

2 + c.c.), (b) coherence pathways (C0,m,e,n
1 +

C0,n,e,m
1 +C0,m,e,n

2 +C0,n,e,m
2 +c.c.), and (c) the resulting total spectrum, i.e. the sum over all pathways, in the

case of a positively-signed coherence (similarly-signed FC factors). (d)-(f) show the analogous case for a

negatively-signed coherence (oppositely-signed FC factors). (h) and (i) show the corresponding two-pulse

signal and its population and coherence contributions for the positively- and negatively-signed coherence

cases, respectively. In each case, amplitudes are normalized to the maximum of the population response,

and population and coherence contributions add up to the total signal.
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can additionally influence both its magnitude and sign.

Without loss of generality we take the vibrational matrix elements µm0 and µn0 to be positive,

and let their dipole unit vectors in the orientational correlation functions assume any direction. In

the Condon approximation the vibronic transitions are aligned along the bare electronic transition

dipole unit vector µ̂eg (Eq. 3). Therefore we set both the vibronic transition dipole unit vectors to

be µ̂eg in the orientational correlation functions, while the FC factors ⟨0e|1g
m⟩ and ⟨0e|1g

n⟩ can vary

in sign. For example, in the displaced harmonic oscillator model ⟨0e|1g
i ⟩= (di/

√
2)exp(−d2

i /4).

In this case, the FC factor sign is controlled by the sign of the dimensionless displacement di, i.e.

whether the relaxed nuclear geometry in the excited state is extended (positive di) or contracted

(negative di) along mode i relative to the ground state. Changes in mode frequency between

the ground and excited sates cannot change the FC factor sign, while Duschinksy mixing can in

general affect the sign.45 If both FC factors ⟨0e|1g
m⟩ and ⟨0e|1g

n⟩ have the same sign, the coherence

amplitude (Eq. 25) is positive, while opposite signs consequently lead to a negative coherence

amplitude.

D. Interference of population and coherence pathways

The overall sign of the coherence amplitude has dramatic consequences for the way in which

population and coherence contributions interfere to produce the total FEIR signal, and are demon-

strated in Fig. 5. Panels (a), (b), and (c) show the contribution to the vibronic response of the pop-

ulation pathways, coherence pathways, and both in the two-mode system’s τenc-dependent FEIR

spectrum for the case were both FC factors have the same sign, resulting in a positively-signed

coherence. At τenc = 0 fs the positive absorptive coherence lineshape interferes constructively

with the population features, leading to maximally intense, absorptive lineshapes in the spectrum.

This constructive interference correspondingly leads to a maximum at τenc = 0 fs in the two-pulse

signal, shown in Fig. 5(h).

The case of oppositely-signed FC factors resulting in a negatively-signed coherence is shown

analogously in Figs. 5(d)-(f) and (i). The population features in panel (d) are unchanged (c.f. panel

(a)), as they depend on the squared magnitude of matrix elements (i.e. the vibrations’ respective

FEIR activities Eq. 19). However, the coherence amplitude is inverted, producing π phase-shifted

oscillations relative to panel (b). As a result, the total spectrum is subject to destructive interference

between the population and coherence features at τenc = 0 fs. In this example the modes have equal
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FEIR activities and linewidths, so this destructive interference is complete, as can be seen by the

total cancellation of two-pulse signal at τenc = 0 fs in Fig. 5(i). Instead, the two-pulse signal

is peaked at the first half-cycle of coherence phase evolution near τenc ∼ 250 fs, where the total

spectrum’s lineshape is also fully absorptive. We note that the two-pulse signal remains non-

negative in all cases, even with unequal FEIR activities (not shown)—a direct consequence of

retaining only the correlation functions C1 and C2 that, when all material pathways are summed

over, contribute positively to N̄(4).

An approach to separating the population and coherence contributions in broadband FEIR sig-

nals using a Fourier transform along τenc was investigated in Ref. 14. Similar to "beating maps"

and related Fourier analyses of waiting-time-dependent 2D spectra,59–63 this method relies on

sufficient separation between the frequency content of coherent beating (centered at the vibra-

tional difference frequency |ωi j| with spread given by the dephasing Γi j) and population decay

(zero-centered with spread determined by the relaxation rate Γii). While the isolated population

response could in principle be recovered for systems satisfying this condition, the large amount of

data required (i.e. a series of spectra properly sampled in τenc) is incompatible with the limited

photon budgets encountered in single-molecule measurements.

IV. ORIENTATIONAL RESPONSE

A. Orientational correlation functions and polarization-dependence of FEIR signals

The orientational contribution to the response function encodes the relative molecular frame

orientation of the multiple transitions involved in each pathway and any dynamics that reorient

them between successive light-matter interactions. The direct formal correspondence in orien-

tational response between FEIR and third-order coherent techniques—both being described by

four-point dipole unit vector correlation functions—leads to useful analogies in the design of

polarization-dependent experiments and allows us to adopt similar notation in their theoretical

description. Earlier work on picosecond IR-UV/Vis double-resonance fluorescence techniques,

which are closely-related precursors of FEIR spectroscopy, investigated the polarization depen-

dence of signals in terms of the relative angle between the vibrational and electronic transitions

and its relaxation.64–66 The more general response function description we employ here allows

us to treat orientational effects for both the population and coherent response in multimode FEIR
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experiments.

The orientational pathways in Eq. 13 are

(Y1)
a,b,c,d
IJKL (τ3,τ2,τ1) =

∑
i jkl

T̃ i jkl
IJKL(τ3,τ2,τ1)

[
m̂dc · î

][
m̂cb · ĵ

][
m̂ad · k̂

][
m̂ba · l̂

]
(26a)

(Y2)
a,b,c,d
IJKL (τ3,τ2,τ1) =

∑
i jkl

T̃ i jkl
IJKL(τ3,τ2,τ1)

[
m̂cb · î

][
m̂dc · ĵ

][
m̂ad · k̂

][
m̂ba · l̂

]
(26b)

(Y3)
a,b,c,d
IJKL (τ3,τ2,τ1) =

∑
i jkl

T̃ i jkl
IJKL(τ3,τ2,τ1)

[
m̂dc · î

][
m̂ad · ĵ

][
m̂cb · k̂

][
m̂ba · l̂

]
. (26c)

where î, ĵ, k̂, and l̂ are the unit vectors along the Cartesian coordinates x, y, and z in the molecular

frame. Here T̃ i jkl
IJKL(τ3,τ2,τ1) accounts for orientational dynamics and performs the orientational

average to transform the molecular-frame to lab-frame coordinates. As the pathways only differ in

the sequential ordering of the four transition dipole unit vectors, we will denote a generic pathway

by listing these molecular-frame dipoles as superscripts from right to left in order of interaction,

e.g. Yσρνµ
IJKL represents (Y1)

a,b,c,d
IJKL in Eq. 26 when µ = µ̂ba, ν = µ̂ad , ρ = µ̂cb, and σ = µ̂dc.

Alternatively, these superscripts will be suppressed when discussing properties of the orientational

tensor common to any set of dipoles.

We will use isotropic rotational averaging consistent with a solution-phase ensemble. In this

case, evaluation of the sums in Eq. 26 is simplified by the symmetries of isotropic tensors,67

reducing the number of terms from 34 = 81 to 21,

Yσρνµ
IJKL = ∑

i jkl
T̃ i jkl

IJKLσiρ jνkµl

= ∑
i̸= j

[
T̃ iiii

IJKLσiρiνiµi + T̃ ii j j
IJKLσiρiν jµ j

+ T̃ i ji j
IJKLσiρ jνiµ j + T̃ i j ji

IJKLσiρ jν jµi

]
, (27)

where the time-dependence has been suppressed for clarity. Expressions for the nonvanishing

elements T̃ i jkl
IJKL(τ3,τ2,τ1) derived for the orientational relaxation of a spherical rotor within a clas-

sical small-angle rotational diffusion equation are well-established.43,68,69 In the absence of ori-

entational dynamics, T̃ i jkl
IJKL is simply the fourth-rank isotropic tensor that performs the rotational
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average, and has a straightforward expression in terms of rotational invariants.16,70,71 In the con-

text of FEIR experiments, orientational relaxation is largely due to body-fixed rotation of the entire

molecule, which for typical fluorophores in solution occurs on the timescale of tens to hundreds of

picoseconds or longer72,73—usually significantly slower than vibrational dephasing and popula-

tion relaxation. For simplicity we will therefore leave orientational relaxation out of the notation,

although its effects may be readily incorporated by substituting time-dependent versions of the

T̃ i jkl
IJKL in the expressions.
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FIG. 6. Polarized FEIR pulse sequence and orientational correlation functions for two (population path-

ways) and three (coherence pathways) independent transition dipole directions. (a) Pulse sequence indicat-

ing the experimental polarization angle Θ. (b) Angular variables describing three arbitrarily oriented dipole

unit vectors in the molecular frame. (c) Two-dipole orientational correlation functions Yσσµµ
ZZZZ and Yσσµµ

ZZYY

as a function of the projection angle θ1 (Eqs. 29(a) and (b)). (d) Three-dipole correlation functions Yσσνµ
ZZZZ

and (e) Yσσνµ
ZZYY in the case of co-planar dipoles (Eqs. 32(a) and (b)).

The polarization geometry of an FEIR experiment is shown in Fig. 6(a), where each pulse’s
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electric field polarization unit vector is denoted by êα for α = 1,2, or 3. Both IR pulses ê1 and

ê2 have the same linear polarization, which may be varied by an angle Θ with respect to the

linear polarization of the encoding pulse ê3. This arrangement is directly analogous to that in

polarization-dependent 2D spectroscopy experiments in the pump-probe geometry.52 Taking the

beam’s direction of propagation to lie along the lab-frame X axis and ê3 along the Z axis, the

polarization-dependence of any signal F (neglecting C3 pathways) is given by the linear combina-

tion

F(Θ) ∝ (YZZZZ −YZZYY )cos2(Θ)+YZZYY . (28)

The parallel FZZZZ ≡ F(Θ = 0◦) and perpendicular FZZYY ≡ F(Θ = 90◦) signals isolate the re-

spective tensor elements accordingly.

B. Orientational correlation functions for population and coherence pathways

In FEIR spectroscopy the number of unique transitions appearing in any pathway can either be

two (for population pathways), or four (for coherence pathways). Population pathways involve one

vibrational fundamental, µ = ν, and one vibronic transition ρ = σ. In this case the orientational

response depends only the projection angle of one dipole onto the other, shown e.g. by θ1 between

µ and σ in Fig. 6(b). This case is common to the 2D spectroscopy of coupled transitions, e.g.

the orientational dependence of a cross-peak.69 Specifically, evaluating Eq. 27 the two-dipole

orientational correlation functions are

Yσσµµ
ZZZZ =

1
15

(
2cos2

θ1 +1
)
, (29a)

Yσσµµ
ZZYY =

1
15

(
2− cos2

θ1

)
, (29b)

which are plotted in Fig. 6(c).

On the other hand, coherence pathways involve four different transition dipoles, which in the

most general case could each have unique orientations in the molecular frame. This most general

case therefore has an intrinsic dependence on five angles: one to set the relative orientation of

the first two dipoles, then two more for each successive dipole to fully determine its orientation

relative to the first two. If all dipoles are co-planar the problem reduces to three angular degrees

of freedom.49 Here we will take the Condon approximation where the vibronic transitions are all

parallel to the bare electronic transition (Eq. 3). In this case the number of unique transition
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dipole unit vectors in a coherence pathway reduces to three—two ground state vibrational transi-

tion dipoles µ and ν, and the electronic transition dipole ρ = σ, and in general three angles are

required.

Figure 6(b) shows the arrangement of the three unit dipoles in the molecular frame. We take the

electronic transition dipole σ to be aligned along the z axis. Then without loss of generality, one of

the vibrational transition dipoles, µ, can be taken to lie in the xz plane with polar angle θ1, while

the other, ν, is described by the polar and azimuthal angles θ2 and φ2, respectively. Explicitly, the

molecular-frame components of each unit dipole are

σ =


σx

σy

σz

=


0

0

1

 , µ=


sinθ1

0

cosθ1

 , ν =


cosφ2 sinθ2

sinφ2 sinθ2

cosθ2

 . (30)

In the all parallel polarization geometry, we find only two non-vanishing terms in Eq. 27

Yσσνµ
ZZZZ = T̃ zzzz

ZZZZ(σz)
2
νzµz + T̃ zzxx

ZZZZ(σz)
2
νxµx

=
1
5

cosθ1 cosθ2 +
1

15
cosφ2 sinθ1 sinθ2. (31a)

Similarly, for perpendicular polarization we have

Yσσνµ
ZZYY = T̃ zzzz

ZZYY (σz)
2
νzµz + T̃ zzxx

ZZYY (σz)
2
νxµx

=
1

15
cosθ1 cosθ2 +

2
15

cosφ2 sinθ1 sinθ2. (31b)

The fluorophores used in FEIR experiments are electronically-conjugated molecules in which the

electronic transition dipole is typically contained in the plane of the conjugated core. The mid-

IR vibrations being interrogated most often involve the in-plane motion of the core’s nuclei, and

therefore also have transition dipoles in this same plane. In this case, all transition dipoles are

co-planar, and φ2 can be set to zero. The resulting three-dipole orientational correlation functions

in the co-planar limit are

Yσσνµ
ZZZZ =

1
5

cosθ1 cosθ2 +
1

15
sinθ1 sinθ2

=
1
15

(
2cos(θ1 −θ2)+ cos(θ1 +θ2)

)
, (32a)

Yσσνµ
ZZYY =

1
15

cosθ1 cosθ2 +
2

15
sinθ1 sinθ2

=
1
30

(
3cos(θ1 −θ2)− cos(θ1 +θ2)

)
, (32b)
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and are plotted in Fig. 6(d) and (e). These expressions can be seen to coincide with those derived

for four co-planar dipoles in Ref. 74 by Khalil and coworkers for 2D VE and 2D EV experiments

when two of the four become parallel. We note that the three-dipole orientational correlation

functions are anti-symmetric with respect to π shifts in either angle, e.g. YZZZZ(θ1 + π,θ2) =

−YZZZZ(θ1,θ2) = YZZZZ(θ1,θ2 + π). When µ = ν, only a single projection angle θ1 = θ2 is at

play, and these expressions reduce to the two-dipole orientational correlation functions in Eq. 29.

Unlike the more commonly encountered two-dipole orientational terms, the three-dipole terms

can achieve either positive or negative values, which has important consequences for how co-

herences manifest in FEIR signals. Specifically, the coherence’s sign, and consequently whether

constructive or destructive interference with the population pathways occurs at early times, can

be influenced by the orientational contribution. For example, two modes which have oppositely

signed ⟨0e|1g⟩ FC overlaps and therefore produce a negatively-signed coherence in the vibronic

response could in fact contribute a positively-signed coherence due to a negative orientational re-

sponse. Furthermore, the variable sign produces zero-crossings where the orientational response

vanishes. Specifically, the locus of zero-crossings indicated by the white contours in Figs. 6(d)

and (e) indicate molecular-frame dipole orientations where coherences cannot occur in one po-

larization geometry or the other. These curves intersect at angle-pair locations that correspond to

one vibrational dipole aligned parallel to the electronic transition and the other perpendicular to it.

This molecular configuration cannot produce a coherence in any polarization geometry. Similarly,

coherences with vibrational transition dipoles falling in regions of the (θ1,θ2) plane where YZZZZ

and YZZYY have opposite sign, i.e. that are bounded between their zero-crossing curves, can be

made to vanish with an appropriate choice of polarization angle Θ.

C. Polarization anisotropy

In analogy to its use in third-order spectroscopies,16,69,75–79 the polarization anisotropy r of the

FEIR signal may be defined as

r =
FZZZZ −FZZYY

FZZZZ +2FZZYY
. (33)

The anisotropy is especially useful when the orientational response is due to two-dipole terms,

i.e. when the isolated population response can be measured. Specifically, in a single-mode system

without any orientational dynamics the anisotropy has the well-known second Legendre polyno-
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mial form

r =
1
5

(
3cos2

θ −1
)
, (34)

where θ is the projection angle between the vibrational and electronic (or in the more general

non-Condon case, vibronic) transition dipole unit vectors. This expression can be used to extract

the projection angle up to the degeneracy between θ and π −θ , and can be applied individually to

well-resolved bands in an FEIR spectrum if coherence contributions are negligibly small or have

dephased. As coherence pathways have more complicated three-dipole orientational dependencies

described by Eqs. 31 or 32, their contribution to the anisotropy is likely too complex for practical

experimental utility.

In the case of orientational motion due to body-fixed rotation of the molecule, the population

response anisotropy decay is independent of population dynamics and can be used as a probe of

orientational dynamics. The opposite effect, i.e. removing the orientational contribution to the

signal, may be accomplished by recording the isotropic component of the FEIR signal

Fiso =
1
3
(FZZZZ +2FZZYY ), (35)

i.e. from the denominator in Eq. 33. This isotropic component may equivalently be measured

directly using magic angle polarization Θ = arctan(
√

2)≈ 54.7◦.

V. CONCLUSIONS

In this work we have presented a theoretical framework for describing FEIR spectroscopy ex-

periments based on a fourth-order action response function, and developed homogeneous-limit

expressions for the vibronic and orientational response relevant for a two-level electronic system

coupled to multiple vibrations in the Condon approximation. The restrictions posed by the reso-

nance conditions and system level structure select a relatively small number of pathways that can

contribute to the molecular response, consistent with the physical picture of a sequential double-

resonance excitation process. These pathways are differentiated in whether they exist in an excited

vibrational population or a coherence between vibrational excited states during the encoding delay.

The population pathways produce intuitive spectroscopic features that are desirable for measuring

one-dimensional spectra, for example in applications of FEIR spectroscopy for highly-sensitive or

single-molecule vibrational detection. The coherence pathways complicate this situation by pro-
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ducing phase-modulated lineshapes that can interfere with the population features in complex and

often non-intuitive ways, especially owing to their variable sign.

The polarization dependence of population features is controlled by orientational correlation

functions involving the vibrational and electronic transition dipole unit vectors, and can be used to

extract their relative projection angle, e.g. via the polarization anisotropy. This spectroscopic in-

formation is useful in a number of ways, as accessing the relative orientation of multiple transitions

in a molecule provides further insight into its structure, while also helping to assign the features of

complicated spectra. From a detection sensitivity standpoint, polarization dependence could be a

useful control parameter to maximize signal brightness from a given vibration or suppress that of

another. Coherence pathways bear more complex orientational dependencies that may complicate

the extraction of projection angles from polarization-dependent experiments. However, the vari-

able sign of these orientational factors indicate that in some cases coherences can be suppressed

or removed entirely by controlling polarization.

While the presence of vibrational coherence can represent a complicating factor in FEIR mea-

surements, it also offers potentially useful molecular information not contained in the population

response. Besides indicating that vibrations are coupled within a molecule, which could be used

to differentiate a mixture of distinct chemical species, the sensitivity of coherence to the relative

sign of the vibrations’ FC factors could in principle be of interest. These signs, which are typically

not measurable in vibronic spectroscopies, provide a more detailed geometric view of vibronic

coupling in the molecule. For example, in the displaced harmonic oscillator model the sign of

⟨0e|1g
i ⟩ reflects the sign of the displacement between the ground and electronic states along the

vibrational coordinate. Overall, the ability to extract useful information from FEIR observables

and achieve high detection sensitivity are deeply related and highly dependent on experimental

design. Paper II of this series explores how the spectroscopic features presented here appear in

experimental data, and discusses how these data can be interpreted.
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