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Abstract Electromagnetic ion cyclotron (EMIC) waves can very rapidly and effectively scatter relativistic
electrons into the atmosphere. EMIC‐driven precipitation bursts can be detected by low‐altitude spacecraft, and
analysis of the fine structure of such bursts may reveal unique information about the near‐equatorial EMIC
source region. In this study, we report, for the first time, observations of EMIC‐driven electron precipitation
exhibiting energy, E, dispersion as a function of latitude (and hence L‐shell): two predominant categories exhibit
dE/dL > 0 and dE/dL < 0. We interpret precipitation with dE/dL < 0 as due to the typical inward radial gradient
of cold plasma density and equatorial magnetic field (∼65% of the statistics). Precipitation with dE/dL > 0 is
interpreted as due to an outward radial gradient of the equatorial magnetic field, likely produced by energetic
ions freshly injected into the ring current (∼35% of the statistics). The observed energy dispersion of EMIC‐
driven electron precipitation was reproduced in simulations.

Plain Language Summary Relativistic electron precipitation from the equatorial magnetosphere
deposits significant energy fluxes to the atmosphere below 50 km, and thus naturally alters the atmosphere
ionization and contributes to ozone destruction in the mesosphere. This precipitation is, in good part, due to
electron resonant interactions with electromagnetic ion cyclotron (EMIC) waves. Although basic theories of this
interaction have been well understood, the detailed electron precipitation pattern, which depends on the
background plasma and magnetic field conditions in the wave source regions, are not well studied. In this study,
we demonstrate a new property of electron precipitation driven by EMIC waves—the dispersion in energy
versus latitude as observed by the low‐altitude ELFIN CubeSats. Such dispersion can provide information about
the EMIC wave source region and, as it turns out, connect relativistic electron precipitation with one of the most
powerful phenomena in the magnetosphere, substorm plasma injections.

1. Introduction
Energetic electron resonant interaction with electromagnetic ion cyclotron (EMIC) waves is one of the key
mechanisms of radiation belt depletion (e.g., Millan & Thorne, 2007; Shprits et al., 2008). High wave amplitudes
and the resultant high rates of electron scattering (e.g., Summers & Thorne, 2003) make such interaction espe-
cially effective for relativistic electron losses (e.g., Drozdov et al., 2017; Kersten et al., 2014; Ma et al., 2015).
Depending on the wave intensity and coherence (wave spectral width), EMIC waves can scatter electrons into the
loss‐cone via diffusion (Kennel & Petschek, 1966; Thorne & Kennel, 1971) or nonlinear resonant transport
(Albert & Bortnik, 2009; Grach & Demekhov, 2020; Kubota et al., 2015; Omura & Zhao, 2012). The associated
precipitating electron fluxes have been previously identified at low‐altitude spacecraft, such as the Polar Oper-
ational Environmental Satellites (POES), in conjunction with near‐equatorial or ground‐based EMIC measure-
ments (e.g., Capannolo et al., 2018, 2019; Yahnin et al., 2016; Yahnin et al., 2017). These precipitating flux
measurements at low altitude can then be used to infer EMIC wave characteristics (Y. Zhang et al., 2017). Such
remote sensing is particularly important, given that many details of the EMIC source region and cold plasma
properties determining efficiency of electron losses often cannot be reliably measured in situ (e.g., details such as
the low‐intensity wave spectrum at high frequency, details of the dispersion relation as altered by the hot plasma
and ion composition, etc; see discussions in Chen et al., 2019; Bashir et al., 2022; Ross et al., 2021; Angelopoulos
et al., 2023). Therefore, inferring characteristics of EMIC waves from low‐altitude precipitation measurements is
useful to supplement statistical investigations of EMIC waves from equatorial measurements (Allen et al., 2016;
Keika et al., 2013; X.‐J. Zhang et al., 2016).
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The low energy resolution of the POES electron instrument prevents investigations of the energy‐dispersion
associated with EMIC‐driven electron precipitation. However, a new data set of EMIC‐driven precipitation
events with high energy and pitch‐angle resolution has been recently made available from the ELFIN CubeSat
measurements (see Angelopoulos et al., 2023; Capannolo et al., 2023). This data set enables us to probe the
characteristics of EMIC waves. It has been demonstrated by several case‐studies of conjugate EMIC wave
measurements and ELFIN observations of relativistic electron precipitation that this data set is very useful to
verify theoretical models of electron scattering by EMIC waves (e.g., An et al., 2022; Angelopoulos et al., 2023;
Capannolo et al., 2023; Grach et al., 2022). In this paper, we combine the theoretical model of electron pre-
cipitation due to quasi‐linear and nonlinear resonant interactions with EMIC waves (Grach & Demekhov, 2018;
Grach et al., 2021) and ELFIN observations of two types of EMIC‐driven precipitation signatures. These two
types of signatures are characterized by different energy versus L‐shell dispersion of precipitating electron fluxes,
dE/dL > 0 or dE/dL < 0, that is, when the minimum energy of efficient electron precipitation E increases or
decreases with radial distance. For the first time, we demonstrate clear evidence of both dispersion signatures in
the electron precipitation data, and provide a theoretical interpretation that may be used to infer the characteristics
of the EMIC wave source region.

2. Spacecraft Observations
We analyze in detail two events from the ELFIN data set of EMIC‐driven electron precipitation (Angelopoulos
et al., 2023; Capannolo et al., 2023). ELFIN CubeSats measure electrons in the energy range of 50–6000 keV with
16 energy channels and typically 8 pitch‐angle channels nominally spanning the entire 0–180° range twice per
∼3 s, the spin period (Angelopoulos et al., 2023). We use three derived data products from ELFIN's electron
distributions: energy spectrograms of precipitating fluxes (inside the local loss‐cone, jprec), locally trapped fluxes
(outside the local loss‐cone, jtrap), and precipitating‐to‐trapped flux ratios ( jprec/jtrap). EMIC‐driven precipitation
events can be well distinguished by jprec/jtrap maximizing (as a function of energy) at relativistic energies ( jprec/
jtrap ∼ 1 above 0.5 MeV) and staying almost zero at ∼100 keV, well below the EMIC minimum resonance energy
(see detailed investigations of ELFIN observed EMIC‐driven precipitation in, e.g., An et al., 2022; Grach
et al., 2022; Angelopoulos et al., 2023; Capannolo et al., 2023). The Supporting Information S1 shows the
overview of all 84 EMIC‐driven precipitation events with a clear dE/dL dispersion.

Figure 1 shows two examples of EMIC‐driven precipitation events with a clear dE/dL dispersion, where E is the
minimum energy for significant (i.e., >0.1) precipitating‐to‐trapped flux ratio. Panels (a1,a2) and (b1,b2) show
locally trapped fluxes and precipitating‐to‐trapped flux ratios. ELFIN traversed from right‐to‐left (backwards in
time) three magnetospheric regions: the plasma sheet (PS) region characterized by isotropic ( jprec/jtrap ∼ 1) fluxes
of <200 keV electrons (Artemyev et al., 2022); the outer radiation belt (ORB) region characterized by an en-
ergetic electron flux increase with decreasing L‐shell and strongly anisotropic fluxes ( jprec/jtrap ≪ 1) including a
burst of relativistic (>300 keV) electron precipitation demarcated by the two vertical dashed lines; and the
plasmasphere (PSh) characterized by decreased relativistic electron fluxes (which become more anisotropic due
to the scattering by whistler‐mode hiss waves on the dawn flank, see Mourenas et al., 2021). We will focus on the
two relativistic electron bursts observed at ∼23:51 UT (in the first event) and ∼11:08:40 UT (in the second event).
These bursts are due to electron scattering by EMIC waves (the absence of strong precipitation at 50–100 keV
shows that this precipitation is not associated with whistler‐mode waves, see discussions in Angelopoulos
et al., 2023). Supporting Information S1 shows projections of ELFIN orbits relative to the Lovozero (LOZ) and
Tuloma (TUL) ground‐based stations during these two events (data acquisition system is described in Pil'gaev
et al., 2021), which demonstrates Pc1 magnetic pulsations in conjunction with the ELFIN precipitation mea-
surements (see panels (d1, d2)). Note, although the stations are separated from ELFIN precipitating events in
latitude (but still within the range of most prolonged EMIC events, see Engebretson et al., 2015), their longitudes
(corresponding to the radial scale of the projected EMIC wave source region in the equator) are quite close (Pc1
pulsations on the ground corresponding to EMIC waves in the magnetosphere are typically observed <1,000 km
away from their secondary source region in the ionosphere, but can still be seen as far as ∼6,000 km away, see
Manchester, 1966; Manchester, 1968; Yahnin et al., 2008; Liu et al., 2023). Panels (c1, c2) show the fine structure
of precipitating‐to‐trapped flux ratio: there is a clear dE/dL < 0 dispersion for the first event and dE/dL > 0
dispersion for the second event. Note that the second event is longer but more structured than the first. However it
appears to be composed of three separate short bursts, each burst exhibiting an increase in minimum energy of
significant precipitation at progressively higher L‐shells. These are quite typical dispersion signatures in our
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ELFIN data set of EMIC‐driven precipitation (see Figures S2–S17 in Supporting Information S1 for 55 examples
of dE/dL < 0 and 29 examples of dE/dL > 0 events). We now discuss the possible formation mechanisms of such
dispersion.

EMIC waves are generated by a hot, transversely anisotropic ion population, which is either injected from
the plasmasheet and drifts duskward or heated locally at the dayside due to magnetospheric compression by
solar wind transients (Jun et al., 2019, 2021; Yahnin et al., 2019). Locally enhanced plasma density (or
plasma frequency to electron gyrofrequency ratio, fpe/fce), for example, within plasmaspheric plumes, can
significantly intensify EMIC wave generation by decreasing the resonance energy of ions and thus
increasing resonant ion fluxes (Chen et al., 2010, 2011). Such a combination of duskward ion drift and
increase of fpe/fce leads to EMIC wave generation and subsequent relativistic electron precipitation pre-
dominantly around the dusk‐side plasmapause (Capannolo et al., 2022; Thorne & Kennel, 1971; Yahnin
et al., 2016, 2017). Alternatively, EMIC waves may be generated right within the plasma sheet injection
region, on the night‐side (H. Kim et al., 2021), where large fpe/fce is provided by the magnetic field
depletion due to the diamagnetic effects of hot ions. The most representative examples of such magnetic
field depletions are the so‐called magnetic dips, a spatially localized magnetic field depletion filled by hot

Figure 1. Overview of two events showing ELFIN observations of EMIC‐driven precipitation in conjunction with ground‐based EMIC wave observations. Panels (a1,
a2) show locally trapped electron fluxes in different magnetospheric regions (as marked by the colored bars above, see details in the text). Panels (b1, b2) show
precipitating‐to‐trapped flux ratios and ELFIN MLAT, MLT along the track. EMIC‐driven precipitation bursts are shown by dashed boxes. Panels (c1, c2) show
expanded views of the precipitation bursts and L‐shell along ELFIN orbit (projected using the Tsyganenko, 1989, magnetic field empirical model). Panels (d1, d2) show
wave spectra from the ground‐based magnetometer station at LOZ, in conjunction with ELFIN at those times (see Figures S1 and S2 in Supporting Information S1 for
details). The yellow vertical lines mark the intervals as in panels (c1, c2).
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injected ions (Xia et al., 2019; Zhu et al., 2021). Hot ions trapped within magnetic dips can generate EMIC
waves (He et al., 2017; Yin et al., 2022; Yu et al., 2023). Such magnetic field depletions can change the
radial gradient of the fpe/fce ratio: for the dipole magnetic field fce ∝ L−3 and empirical plasma density
model (Sheeley et al., 2001) fpe ∝ L−2, the ratio fpe/fce ∝ L increases with radial distance. However, for a
significantly depleted magnetic field fce ∝ L−3+q, this ratio fpe/fce ∝ L1−q may decrease with the radial
distance (for q ≥ 1; note that around magnetic holes, q can be as large as 3 with almost no radial gradient
of the magnetic field; see Zhu et al. (2021); Yin et al. (2021); Zhao et al. (2023)).

With the cold plasma approximation (note, this approximation can be violated during cases with a large popu-
lation of hot ions, see, e.g. Chen et al., 2011), the minimum resonant energy of electrons scattered by EMIC waves
decreases with increasing f/fci (Summers & Thorne, 2003; Ukhorskiy et al., 2010), decreases with increasing fpe/
fce (Summers & Thorne, 2003), and also varies with ion composition (Ross et al., 2022):

Emin
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where k is the wavenumber. The factor fci/f can be either a constant (for large wave source regions where the wave
frequency traces local fci) or can vary as fci/f ∝ Lq−3 (for a localized wave source with f = const and subsequent
wave spread across a large L‐shell domain). In the first case, we have dEmin/dL ∝ q − 1, whereas in the second
case and low f (such that fci/f − 1 ≈ fci/f ) we have

1
Emin

dEmin

dL
∝ q − 1 + (q − 3)

fci − 1
2f

fci − f
∝ 2q − 4.

Note the second case with fci/f − 1 ≈ 1 gives dEmin/dL ∝ q − 1 + (3/2) (q − 3) = (5q − 11)/2. For electron
precipitation due to EMIC waves from a region with q < 2, we would expect a nominal dispersion dE/dL < 0 (this
criterion is q < 11/5 for fci/f − 1 ≈ 1). However, when the waves are within a region of strongly perturbed
magnetic field, where q > 2, the dispersion will be inverse, dE/dL > 0.

To verify the magnetic field deformation within the EMIC wave generation region for the event with dE/dL > 0
dispersion, we examine measurements from equatorial GOES‐17 (Loto'aniu et al., 2019; Dichter et al., 2015;
Boudouridis et al., 2020) and GEO‐KOMPSAT‐2A (Constantinescu et al., 2020; Magnes et al., 2020; Seon
et al., 2020) spacecraft. Figure 2 shows that 1 hour before ELFIN observations of EMIC‐driven precipitation at
MLT ∼ 15.6, there was a strong injection (around 10:10 UT) exhibiting a significant increase of energetic electron
and ion fluxes. This injection is associated with a magnetic field depletion observed by GOES‐17 (at MLT ∼ 1)
and KOMPSAT‐2A (at MLT ∼ 18.6). Observed by two near‐equatorial spacecraft with a separation of
ΔMLT ∼ 6, this depletion appears to be large scale. Such large regions of EMIC wave generation can exist at
times of storms for ∼12 hr (see Blum et al., 2020; Engebretson et al., 2015). Although the event discussed here did
not occur during a storm, it occurred under prolonged enhanced geomagnetic activity (AE peaked at ∼1000 nT at
10:30 UT and remained at or above 600 nT for an hour following that). Thus, it is reasonable to expect that the ion
injection activity and associated magnetic depletions may survive until the time of ELFIN's observations of
electron precipitation at 11:08 UT. Within the magnetic field depletion, KOMPSAT‐2A detected helium band
EMIC waves with frequencies ∈ [0.1, 0.3] Hz. Ground‐based observations associated with ELFIN observations of
precipitation show EMIC waves at higher frequencies, and thus EMIC waves responsible for the realistic electron
precipitation may be generated earthward of KOMPSAT‐2A (note that ELFIN's L‐shell should be interpreted as
only a rough estimate because of large uncertainties in mapping ELFIN to the equator, especially during enhanced
substorm activity at that sector). Near it's magnetic depletion region, GOES‐17 also detected wave activities
spanning the EMIC frequency range, but these fluctuations were broad‐banded and are more likely kinetic Alfven
waves (e.g., Chaston et al., 2015) obscuring the narrow‐banded, but less intense EMIC waves. In summary,
Figure 2 confirms that the dE/dL dispersive event of electron precipitation observed by ELFIN is preceded by a
strong plasma injection, magnetic field depletion and associated EMIC waves at geostationary orbit, in a wide
MLT range near the premidnight and dusk flank sectors.
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3. Simulation Setup and Results
To reproduce the energy versus L‐shell dispersion in the relativistic electron precipitation signature, we perform
test particle simulations with a wave packet. The wave packet is assumed to be generated by a single source near
the equator and propagates along the geomagnetic field B0 with wave number k and frequency ω = 2πf, and
amplitude Bw > 0. The packet has a finite size along the magnetic field and a much larger size across the field. The
equations, describing the interaction of a relativistic electron with a given EMIC wave packet for a fixed L, follow
(Grach & Demekhov, 2023; Grach et al., 2021) and are shown in Supporting Information S1. During the
interaction, electron energy E approximately remains constant and the result of the interaction can be fully
described by variations of the equatorial pitch‐angle αeq.

Figure 2. Overview of near‐equatorial observations from GEO‐KOMPSAT‐2A and GOES‐17 during the second event from
Figure 1: GSM magnetic field components and magnetic field spectrum from GEO‐KOMPSAT‐2A (a, b), GSM magnetic
field components and magnetic field spectrum from GOES‐17 (c, d), ion and electron energy spectra from GOES‐17 (e, f).
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For the two events from Figure 1, simulations were run for an ensemble of test particles with various initial E and
αeq. The parameters of plasma and wave packet are either directly based on observational data or, if such
observational information is not available, are chosen from the realm of possibility to ensure a realistic simulation
of the precipitation.

3.1. First Event, 06 October 2020

We define the wave packet frequency based on TUL data (see Figure 1d1) as f = const = 0.4 Hz, which, for a
dipole geomagnetic field and L ≥ 7, corresponds to the hydrogen band. Taking into account ELFIN data
(Figure 1b1), we choose L = 8.5–9.5 (note that the dipole magnetic field model is likely unrealistic for such high
L‐shells, especially in the pre‐midnight sector, hence more realistic field configurations, e.g., Sitnov et al., 2019,
should be incorporated in future simulations). We assume a dipole geomagnetic field B0 = Bdipole, Bdipoleeq ∝ L−3

and gyrotropic model of the electron density N = NeqB0/B0eq with Neq = 100 ⋅ (Lplp/L)
4 cm−3, where Lplp = 4.5 is

the plasmapause location (we use the 2D plasmapause model from Pierrard & Stegen, 2008, which is available
through the Community Coordinated Modeling Center), and NH+ = N (note that the absence of helium ions is
needed to explain the EMIC wave propagation to the ground stations, see Figure 1). The wave packet amplitude
profile is chosen as Bw = Bmax exp[−z2/ (2l2p)] with Bmax = 2 nT, klp = 5, and is shown in Figure 3a for three
values of L. The ratios fci/f (fci = fH+ ) and fce/fpe are shown in Figure 3b, and the corresponding minimum reso-
nance energy ERmin(L) is shown in Figure 3c. Test particle energies are E = 200–1500 keV with a 25‐keV step, at
initial equatorial pitch angles αeq0 = αeqLC + 0.25°–60° (step 0.25°), where αeqLC ≈ 1.4°–1.7° corresponds to the
loss cone at a given L.

Figure 3. Simulation model setup and results for the first event on 06 October 2020. (a): Wave packet amplitude profile for
three L values. (b): Frequency ratios as a function of L. (c): Minimum resonance energy ERmin and energy ESD

min,
corresponding to the first precipitation flux maximum (as marked by the x symbol in panel (e)). (d–e): Precipitation energy
spectra as a function of L. (f): The fraction of electrons scattered into the loss cone at three L values as a function of particle
initial energy and pitch‐angle.
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3.2. Second Event, 23 April 2022

Based on LOZ data, we implement a rising tone wave packet (see discussions on the rising tone formation in, e.g.,
Nakamura et al., 2016; Nakamura et al., 2019) with a linear frequency drift, f = −( ft − ff)z/2zedge + ( ft + ff)/2,
zedge = zf = −zt > 0, ff = 0.28 Hz, ft = 0.48 Hz (the subscripts f and t correspond to front and tail edges of the wave
packet, respectively). The wave packet amplitude profile is Bw = Bmax exp[−z2/ (2l2p)] with Bmax = 2 nT, kflp = 3,
Bw(zt) = Bw(zf) = 10−3Bmax. Such frequencies correspond to the helium band for L < 7. For L = 5.5–6.0, we
introduce a perturbation of the dipole geomagnetic field as B0 = (L/ Lmax)

qBdipole, where q = 4.5, Lmax = 6 (the
maximum decrease is at L = 5.5, B0 ≈ 2Bdipole/3). Electron density is N = NeqB0/B0eq with Neq = 200(Lplp/L)

4

cm−3, Lplp = 5 (the same plasmapause model as above) and NH+ = 0.8N, NHe+ = 0.2N. Amplitude and frequency
profiles for 3 values of L are shown in Figure 4a, the ratios B0/Bdipole, fci/feq ( feq = f|z = 0 = ( ff + ft)/2, fci = fHe+ ) and
fce/fpe are shown in Figure 4b. Figure 4c shows the minimum resonant energy ERmin (corresponding to the
maximum wave packet frequency ft) and minimum resonant energy Eeq

Rmin > ERmin, corresponding to feq (with
maximum amplitude). Test particle energies are E = 300–2000 keV with a 50‐keV step, and
αeq0 = αeqLC + 0.25°–60° (step 0.25°), αeqLC ≈ 2.85°–3.25°.

For both events, at each E and αeq0, we use 180 different initial phases Ψ that are uniformly distributed over
[0, 2π).

3.3. Simulation Results

We analyze the change in the particle equatorial pitch‐angle after a single pass through the wave packet and
calculate the flux ratio S = jprec/jtrap of precipitating (0 ≤ αeq < αeqLC) and trapped (αeqLC ≤ αeq ≤ αeqLC + 5°)

Figure 4. Simulation model setup and results for the second event on 23 April 2022. (a): Wave packet amplitude (dotted lines)
and wave frequency (solid lines) profiles for three L values. (b): Frequency ratios (solid lines) and disturbed geomagnetic
field (dashed line) as a function of L. (c): Minimum resonance energies ERmin, Eeq

Rmin and energy ESD
min, corresponding to the

first precipitation flux maximum (as marked by the x in panel (e)). (d–e): Precipitation energy spectra as a function of L. (f): The
fraction of electrons scattered into the loss cone at three L values as a function of particle initial energy and pitch‐angle.

Geophysical Research Letters 10.1029/2023GL107604

GRACH ET AL. 7 of 12

 19448007, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L107604 by U
niversity O

f C
alifornia, Los, W

iley O
nline Library on [10/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



electrons (see Grach et al. (2022); Grach and Demekhov (2020) for the calculation details). The value S = 1
corresponds to the strong diffusion limit (Kennel, 1969). In panels (b) of Figures 3 and 4, we plot S(E) for 3 values
of L; for the same L in panels (f), we plot the fraction of electrons that are scattered into the loss cone. The 2D‐
function S(E, L) is plotted in Figures 3d and 4d. For a fixed L, in both events S grows rapidly with energy and
reaches value S ≳ 1 at E = ESD

min (ESD
min is defined as the energy of the first precipitation flux maximum, as marked

by the x symbol in panels (e)), stays roughly constant in the range E = ESD
min–ESD

max (ESD
max is defined as the energy of

the last precipitation flux maximum, as marked by the o symbol in panels (e), though it is most often outside of the
energy range of interest), and decreases smoothly with energy for E > ESD

max. Similar dependencies S(E) were
obtained in Grach et al. (2022).

Figures 3e, 3f, 4e, and 4f show that force bunching (Bortnik et al., 2022; Grach & Demekhov, 2020; Grach
et al., 2021, 2022; Kitahara & Katoh, 2019; Lundin & Shkliar, 1977) is effective at E = ESD

min–ESD
max: precipitation

from small pitch angles near the loss cone is substituted by precipitation of electrons at higher αeq0 (see dis-
cussions in Grach et al., 2022; Hanzelka, Li, & Ma, 2023), which are precipitated due to interactions in the linear
regime, with possible contributions from nonlinear phase trapping that is less effective for shorter packets (see
discussions in Grach et al., 2022).

As one can see from Figures 3 and 4, the function ESD
min(L) is similar to ERmin(L) and qualitatively follows fci/f, fce/

fpe giving dE/dL < 0 for the first event and dE/dL > 0 for the second event. Also, for the first event (at a constant
frequency) ESD

min < ERmin, while for the second event (with a frequency drift) ERmin < ESD
min < Eeq

Rmin. The precipi-
tation below ERmin is caused by the short packet length. For short packets, the wave number spectra become wider,
which in turn broadens the resonant energy range and makes the interaction effective for E < ERmin (An
et al., 2022; Grach & Demekhov, 2023). It was shown in Omura and Zhao (2012); Omura and Zhao (2013);
Kubota and Omura (2017) that frequency drift with a rising tone makes precipitation due to nonlinear phase
trapping more effective. At the same time, as discussed in Grach et al. (2022), for relatively short packets the
frequency drift shifts precipitation to higher energies in comparison to packets with constant frequency (for the
cases where constant frequency f is higher than the wave packet average frequency, f > ( fmin + fmax)/2).

4. Discussion and Conclusions
We have described, for the first time, detailed properties of the EMIC‐driven electron precipitation signatures,
that is, energy versus L‐shell dispersion of precipitating electron fluxes. This dispersion can be positive dE/dL > 0
or negative dE/dL < 0. The latter case is more widespread (55/84 = 65% of the observed events) and can be
explained by the typical radial gradients of equatorial plasma density ∝ L−4 (Sheeley et al., 2001) and magnetic
field B0eq ∝ L−3, which give fpe/fce ∝ L and minimum resonance energy ER min ∝ fce/fpe ∝ L−1 for a fixed f/fci and a
spatially broad EMIC source. A more realistic, spatially localized EMIC source (Blum et al., 2016, 2017) with
fixed f and wave spreading during propagation (e.g., E.‐H. Kim & Johnson, 2016; Hanzelka, Li, Ma, Qin,
et al., 2023) will lead to a stronger E dependence on L and make the dE/dL < 0 dispersion more evident. The
positive dispersion of electron precipitation, dE/dL > 0, observed for 29/84 = 35% of events, requires a significant
deformation of the equatorial magnetic field configuration, B0eq ∝ L−3+q. For a spatially distributed wave source
with fixed f/fci, we have E ∝ fce/fpe ∝ Lq−1, and q > 1 is required. A more realistic, spatially localized EMIC source
(Blum et al., 2016, 2017) with fixed f would require q > 2 to reverse E ∝ (fce/ fpe) (fci/ f ) ∝ L2q−4 variation with L
and lead to dE/dL > 0. Both dispersions have been reproduced in the test particle simulation model with the
observed EMIC wave characteristics.

The observations and simulation results suggest that low‐altitude measurements of electron precipitation, if well
resolved in time and energy, may reveal not only wave characteristics (as has been shown in Y. Zhang et al., 2017;
Li et al., 2013; Shumko et al., 2021), but also characteristics of the equatorial wave generation region. For
example, the magnetic field deformation required to explain the positive dispersion, dE/dL > 0, is likely produced
by diamagnetic currents of hot injected ions (Yin et al., 2021; Zhao et al., 2023; Zhu et al., 2021). Therefore, the
difference between dE/dL > 0 and dE/dL < 0 events may be attributed to the difference of the equatorial ion
pressure within the EMIC wave generation region (see details in Xia et al., 2019; Zhu et al., 2021).

Although in this study we propose the magnetic field depletion by hot injected ions as a viable candidate for the
formation of dE/dL > 0 dispersion, there are other possible alternatives due to plasma density gradients instead of
magnetic field gradients. As shown in Supporting Information S1, ∼50% events with dE/dL > 0 are observed at
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the dusk flank, where plasma density plumes are often detected (e.g., Darrouzet et al., 2008). Such plumes can
produce EMIC waves (Chen et al., 2009), guide them to higher latitudes (Hanzelka, Li, Ma, Qin, et al., 2023), and
decrease the electron minimum resonant energy due to high density (high fpe/fce). Generation of dE/dL > 0
dispersion within plasma plumes may be explained by the strong density ( fpe/fce) gradient and requires further
investigation via numerical simulations.

Data Availability Statement
Fluxes measured by ELFIN are available in ELFIN data archive (ELFIN, 2024) in CDF format. Ground‐based
measurements of wave magnetic field at LOZ and TUL stations are available at (PGIA, 2024). GOES‐R mag-
netic field and energetic particle fluxes are available at (GOES‐R, 2024). GEO‐KOMPSAT‐2A (SOSMAG) data
is made available (following registration) via ESA's Space Safety Programme and its provision forms part of the
ESA Space Weather Service System at (SOSMAG, 2024). In this study we use Recalibrated L2 Magnetic Field
Data set, SOSMAG‐GK‐2A‐L2. Data analysis was done using SPEDAS V4.1 (Angelopoulos et al., 2019).
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