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Abstract Sub-auroral polarization streams (SAPS) are one of the most intense manifestations of
magnetosphere-ionosphere coupling. Magnetospheric energy transport to the ionosphere within SAPS is
associated with Poynting flux and the precipitation of thermal energy (0.03-30 keV) plasma sheet particles.
However, much less is known about the precipitation of high-energy (=50 keV) ions and electrons and their
contribution to the low-altitude SAPS physics. This study examines precipitation within one SAPS event using a
combination of equatorial THEMIS and low-altitude DMSP and ELFIN observations, which, jointly, cover
from a few eV up to a few MeV energy range. Observed SAPS are embedding the ion isotropy boundary, which
includes strong 300-1,000 keV ion precipitation. SAPS are associated with intense precipitation of relativistic
electrons (<3 MeV), well equatorward of the electron isotropy boundary. Such relativistic electron precipitation
is likely due to electron scattering by electromagnetic ion cyclotron waves at the equator.

Plain Language Summary Magnetosphere-ionosphere coupling and dynamics are modified by
precipitating ion and electron energy fluxes that alter the ionosphere's characteristics. Sub-auroral polarization
streams (SAPS) are a classical example of this coupling, encompassing precipitation of plasma sheet (<30 keV)
particles, intensification of field-aligned currents, and ionospheric feedback in the form of enhanced electric
fields. This study demonstrates, for the first time, that SAPS are associated with precipitation of energetic ions
(50-1,000 keV) and relativistic (up to a few MeV) electrons. The 50-1,000 keV ions may dominate the
precipitating energy flux at low latitudes, where scattering of plasmasheet ions is significantly reduced.
Relativistic electron precipitation significantly extends ionization enhancement effects to altitudes below

100 km, where these electrons deposit their energy.

1. Introduction

Sub-auroral polarization streams (SAPS), and their more intense counterpart, sub-auroral ion drifts (SAID), are
often associated with the earthward transport (e.g., substorm injections or enhanced convection) of hot ions, their
decoupling from electron motion due to diamagnetic drifts, and the formation of strong polarization electric fields
and ionospheric flows (see the review by Mishin & Streltsov, 2021; Yu et al., 2022, and references therein).
SAPS/SAID are formed between the inner edge of electron and ion plasma sheet (Anderson et al., 1993; Brandt
et al., 2008), close to the plasmapause (see low-altitude and equatorial statistical observations of SAPS/SAID, in
He et al., 2014; Nishimura et al., 2022). The magnetosphere-ionosphere connection within SAPS/SAID is pro-
vided by ring current (<30 keV) ion precipitation and field-aligned currents (Burke & Lai, 2021; Figueiredo
etal., 2004; W. Wang et al., 2021), which may be part of the substorm current wedge system (Mishin et al., 2017,
Z. Wang et al., 2019). Strong polarization electric fields within SAPS/SAID are responsible for the equatorial and
ionospheric plasma azimuthal drifts (Foster & Burke, 2002; Galperin et al., 1974; Puhl-Quinn et al., 2007; Spiro
et al., 1979). Such fields are subject to filamentation into small-scales (likely due to kinetic Alfven wave gen-
eration, see Streltsov & Mishin, 2020). The resultant finite field-aligned electric field component of these waves is
responsible for the formation of field-aligned electron streams (Damiano et al., 2016; Hull et al., 2022; Shiokawa
etal., 1999). The strong plasma flows and precipitation of ring current ions and plasma sheet electrons (<30 keV)
result in ionospheric plasma heating (Moffett et al., 1998; Sheng et al., 2019, 2021) and large-scale density
perturbations (Deng et al., 2019; Foster, 2008; Lyons et al., 2021). These SAPS/SAID characteristics are co-
located with the middle latitude ionosphere trough (MIT, see Vo & Foster, 2001; Rodger, 2008), or its equa-
torward edge (e.g., Kunduri et al., 2021; Mishin, 2013).
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Although the magnetosphere-ionosphere coupling within SAPS/SAID is mostly attributed to the precipitation
of <30 keV particles (plasma sheet electrons and low-energy ring current ions; see, e.g., Mishin and Strelt-
sov (2021); Mishin (2023) and references therein), the physics of SAPS/SAID at the equatorial magnetosphere
likely involves the dynamics of energetic (>50 keV) particles. A strong electric field around SAPS/SAID can
cause 50-200 keV electron injections deep into the plasmapshere (Califf et al., 2022; Lejosne et al., 2018),
whereas nonlinear instabilities (i.e., wave-wave interaction processes, see Main & Sotnikov, 2020) of SAPS/
SAID electric fields can lead to the generation of hiss-like whistler-mode waves (Mishin & Sotnikov, 2017).
These waves can scatter and precipitate energetic electrons to the ionosphere (Mishin et al., 2011, 2019)
affecting the low-altitude ionosphere conductance (see discussion in Liang et al., 2022; Lin et al., 2021; Yu
et al., 2018). Under extreme geomagnetic conditions, the inward motion of the plasmapause (the preferred
region of SAPS/SAID) may cause SAPS/SAID to intensify VLF-transmitter whistler-mode waves, which can
effectively scatter energetic electrons (the so-called concept of impenetrable barrier, see Foster et al., 2016).
Furthermore, unlike the strongly magnetized electrons, energetic ions can be scattered by the magnetic field
line curvature even within the outer radiation belt (quite close to the plasmapause). These scattered ions can
then contribute to the energy flux precipitating into the SAPS region. To date, studies of energetic (>50 keV)
particle precipitation into the low-altitude (ionosphere) within SAPS/SAID are very limited. This stems, in part,
from the lack of energetic particle measurements on low-altitude satellites capable of measuring plasma flows,
such as the Defense Meteorological Satellite Program (DMSP; see Greenspan et al., 1986; Hardy et al., 1984;
Rich & Hairston, 1994) and Swarm (Friis-Christensen et al., 2008), the main observational data sets for SAPS/
SAID investigations.

Energetic particle precipitation may significantly alter the physics of magnetosphere-ionosphere coupling within
SAPS. Relativistic electrons will extend the altitude range of ionization enhancement to <100 km (see Miyoshi
et al., 2021; Oyama et al., 2017), while energetic ion precipitation will extend its latitudinal range. In this paper,
we study energetic particle precipitation during SAPS using observations from the low-altitude ELFIN CubeSats
(Angelopoulos et al., 2020, 2023). ELFIN measures 50-6,000 keV ion and electron fluxes with high pitch-angle
and energy resolution. We combine those with low energy measurements from DMSP also at low altitude and
with low- and high-energy measurements from the near-equatorial THEMIS satellites (Angelopoulos, 2008). We
thus can investigate the full energy range of ion and electron precipitation along the entire flux-tube connected to
SAPS/SAID. The selected event contains a combination of ELFIN energetic electron and ion (available only in
the 2022 tail season) measurements accompanied by DMSP and near-equatorial THEMIS measurements.
Although this is not the only SAPS event captured by ELFIN, but it is a rather fortuitous one that has ion data
available during the ELFIN/DMSP conjunction.

2. Spacecraft Observations

We examine the 6-hour interval, 17:00-23:00 UT on 2022-08-07, which includes near-equatorial THEMIS
observations of the inner magnetosphere and the near-Earth plasma sheet, two crossings of the nightside MLT
sector by ELFIN B and three crossings by DMSP-16&17. Ancillary, GOES-16 equatorial observations were
also available at this time. Figure 1 shows an overview of the equatorial measurements. The event occurred
during a moderate storm (Sym — H < —50 nT, AE > 300 nT) with one strong AE intensification
(AE ~ 1000 nT) around 21:30 UT, likely a substorm. THEMIS E crossed the pre-midnight (MLT ~ 22)
plasmapause around 18:30 UT, as seen from the plasma density profile derived from the spacecraft potential
(see Bonnell et al., 2008; Nishimura et al., 2013). It also detected clear equatorial signatures of SAPS (see for
details Nishimura et al., 2022): dispersive plasma sheet ion structure with higher energies penetrating deeper
into the plasmasphere and strong gradient of plasma sheet electron fluxes (measured by ion and electron
electrostatic analyzers at <30 keV, see McFadden et al., 2008). The THEMIS electric field instrument (Bonnell
et al., 2008; Cully et al., 2008) detected whistler-mode hiss waves at the earthward side of this region (before
18:00 UT) and bursts of broadband electromagnetic (also detected by the search-coil magnetometer; Le Contel
et al., 2008) waves on the tailward side. The latter are likely kinetic-Alfven waves accompanying plasma sheet
injections (see Chaston et al., 2012, 2015; Malaspina et al., 2014). In the near-Earth plasma sheet, THEMIS E
observed several nearly dispersionless injections (increases of energetic electron fluxes) measured by the solid-
state detector (Angelopoulos et al., 2008), marked by the vertical dashed lines at ~20:30, 20:45, 21:00, 21:45,
and 22:10 UT. They were associated with magnetic field dipolarizations (I1B,| decreases and B, increases), as
measured by the fluxgate magnetometer, see Auster et al. (2008)). The injections were accompanied by
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Figure 1. Overview of equatorial (THEMIS E and GOES-16) measurements during a SAPS event: (a) AE and Sym-H
geomagnetic indexes, (b) two magnetic field components and plasma density from THEMIS spacecraft potential, (c) wave
electric field within the 30-4,000 Hz frequency range (white curves show electron cyclotron frequency, f.,, and f, /2, f,./40),
omnidirectional electron fluxes from (d) THEMIS SST and (e) ESA (<30 keV), (f) omnidirectional ion fluxes from THEMIS
ESA (<30keV), (g) GOES-16 energetic proton fluxes, (h) projections of THEMIS E, GOES-16, ELFIN B, and DMSP-16,17
orbits to the equator.

~100 km/s plasma flows (not shown), measured by the THEMIS electrostatic analyzer (McFadden
et al., 2008). The first injection, at ~20:30 UT, was detected ~8 min later at GOES-16, at geostationary orbit,
(by its space weather suite of instruments, see Dichter et al., 2015; Boudouridis et al., 2020). Therefore, this
event displays all the elements of equatorial plasma dynamics that usually accompany SAPS (see, e.g., Mishin
& Streltsov, 2021, and references therein). Note that similar, active-time (AE ~ 1000 nT) dispersive plasma
sheet ion structures, typical of SAPS were also observed by the ERG spacecraft (Miyoshi et al., 2017, 2018) at
~17:30 UT (MLT ~ 19) and at ~15:00 UT (MLT ~ 14.5). They too occurred near (though, after) a series of
strong injections seen at both ERG and GOES-16 around 14:00-15:00 UT (not shown). In other words, this
SAPS event lasted several hours and exhibited a significant MLT extent (14.5-22).
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Figure 2. Comparison of ELFIN B (around 18:50 UT) and DMSP-17 (around 17:50 UT) measurements during the same events in Figure 1: (a) DMSP plasma density
and TEC along the ELFIN orbit, (b, c) components of plasma drift and magnetic field perturbations measured by DMSP, (d) comparison of locally trapped energetic
electron fluxes (from ELFIN) and <30 keV precipitating electron fluxes (from DMSP), (e) precipitating-to-trapped electron flux ratio at ELFIN, (f) comparison of
locally trapped energetic ion fluxes (from ELFIN) and <30 keV precipitating ion fluxes (from DMSP), (g) precipitating-to-trapped ion flux ratio at ELFIN. Striped
regions in panels (d, f) mark those with precipitating-to-trapped flux ratios above 0.5. The boundary of these regions is shown by the solid black contour.

We then examined ELFIN B crossings at the nightside, with one around 18:50 UT (near the THEMIS E encounter
of the equatorial signature of SAPS) and another at ~21:55 UT (after the strong substorm injection). We also
examined three DMSP pre-midnight oval crossings, at 17:50, 18:20, and 22:45 UT. Figure 2 shows the first
ELFIN B/DMSP-17 orbit. Strong cross-field ion drift (b), characteristic of SAPS, is seen over a large latitudinal
range, 60—72°, including the MIT region with density depletion at 62-65° (Figure 2a), within the region 2 (R2)
current system (6B,,_;,/OMLAT > 0 (Figure 2c). Note that ELFIN B and DMSP-17 are in opposite hemispheres,
which may introduce mapping uncertainties from one to the other (Laundal et al., 2017; Ohma et al., 2018). To
compare the two, we employ the one-dimensional profile of the total electron content (TEC) measurements within
+2° in longitude around the ELFIN orbit (see Figure S1 in Supporting Information S1 for the ELFIN projection to
the TEC map) and match it with the density measured by DMSP. After shifting ELFIN by AMLAT ~ 1.5°, the
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TEC maximum at ~66° and the equatorward TEC decrease (associated with MIT region, see Vo & Foster, 2001;
Yizengaw & Moldwin, 2005) coincide with the plasma density maximum at ~66° and the equatorward minimum
as measured by DMSP-17 (see Figure 2a). Although TEC represents the receiver-satellite path-integrated electron
density and cannot be quantitatively compared with the locally measured plasma density, the similarity between
the TEC along the ELFIN orbit and the in-situ plasma density profiles measured by DMSP-17 validates our
further comparison of MLAT profiles between DMSP and ELFIN measurements. The shift of AMLAT ~ 1.5° is
confirmed by an ELFIN and POES/MetOp energetic particle data comparison (see discussion below).

Figures 2d and 2f show locally trapped (outside the bounce loss-cone) spectra of electrons and ions, respectively.
Figures 2e and 2g show the precipitating-to-trapped flux ratios, jj,s/jqp» for €electrons and ions, respectively.
Where these exceed 0.5 the panels above them, (d) and (f) then have been demarcated with striped areas. The ion
isotropy boundary, that is, the energy/L-shell dispersive feature in the precipitation ratio (see Wilkins et al., 2023,
and references therein) is located within MLAT € [62.5, 64.0]° (also see Ganushkina et al., 2005; Newell
etal., 1998; Nishimura et al., 2020). Energetic ion precipitation is captured in the MLAT range of 63—70°, with the
ion isotropy boundary at ~63°. This precipitation is at energies not measured by DMSP-17, but is clearly seen in
ELFIN. Precipitating fluxes of <30 keV ions measured by DMSP-17 exhibit weak dispersive features around
MILAT ~ 64.5°. These are contiguous to the low energy portion of the ion isotropy boundary at ELFIN B.
However, the dominant precipitation of <30 keV ions occurs within the ion plasma sheet, seen at DMSP at
MIAT > 65° (Figure 2f).

The electron isotropy boundary (MLAT € [65.5, 66.5]°) is located 1.5°-3.0° poleward of the ion isotropy
boundary, as expected (e.g., Sergeev et al., 1993; Sergeev et al., 2012). Nevertheless, both ion and electron
isotropy boundaries still fall within a region characterized by strong ionospheric ion drifts (>500 m/s, Figure 2b)
and in the R2 current system (6B._,,,/SMLAT > 0, Figure 2c). Figure S2 in Supporting Information S1 shows the
location of ion and electron isotropy boundaries detected by several POES/MetOp satellites, close (in MLT) to the
DMSP-17 orbit: between 18:10-18:30 UT, POES 15, 18, and 19 detected the ion isotropy boundary at MLT € [19,
20] around MLAT € [62°, 63°], whereas POES 19 also detected the electron isotropy boundary around
MILAT ~ 66°. The MLATs of these boundaries coincide with those detected by ELFIN, validating the comparison

of latitudinal profiles between ELFIN B and DMSP-17 measurements.

DMSP-17 observed precipitation of plasma sheet electrons with energies <10 keV and ions with energies
<30 keV poleward of the ELFIN-B electron isotropy boundary. Electron isotropy boundary and the weak pre-
cipitation of relativistic electrons captured by ELFIN at MLAT € [62.5°, 64°] (Figure 2e) is roughly located
around the MIT region, within the uncertainty level of ELFIN and DMSP MLAT profile comparison (note that this
uncertainty is at least about AMLAT = 1.5°, which is used to match the DMSP density profile and the TEC profile
along the ELFIN orbit). This is a transition region between the ion plasma sheet at MLAT > 64°, and the ring
current region characterized by >300 keV ion fluxes. The precipitation of relativistic electrons is likely caused by
the near-equatorial electron resonance with electromagnetic ion cyclotron (EMIC) waves (see, e.g., Angelopoulos
et al., 2023; Capannolo et al., 2022; Grach et al., 2022; A. G. Yahnin et al., 2016). Generation of EMIC waves
requires transverse ion anisotropy, that is, lower field-aligned fluxes in comparison with equatorial (90°) fluxes
(Chen et al., 2009, and references therein). Indeed, DMSP observations show low fluxes of (precipitating)
<30keV ions within the region of relativistic electron precipitation, that can be explained insufficiently strong ion
scattering at the equator resulted in lower field-aligned fluxes. This also holds true for <200 keV ions measured
by ELFIN at MLAT < 64° (equatorward of the isotropy boundary). In other words, ions at these energies may also
exhibit strong transverse anisotropy and contribute to EMIC wave generation. Figure 2 demonstrates that the
SAPS (and likely also MIT) includes the [50,500] keV ion isotropy boundary (region I), the electron isotropy
boundary (region II), and bursts of relativistic (>500 keV) electron precipitation, which are likely driven by EMIC
wave scattering.

During this event, DMSP-16 was also in close proximity to ELFIN's orbit in time. However, it was situated
slightly farther away in MLT (duskward) from DMSP-17 (see Figure 1h). The main difference between DMSP-16
and DMSP-17 observations is that the dispersive <30 keV ion precipitation burst at DMSP-16 (but not at DMSP-
17) occurred right around the ion isotropy boundary captured by ELFIN B. That is at MLAT ~ 62.5° in region |
(refer to Figure S3 in Supporting Information S1). Other ionospheric signatures of SAPS are consistent between
DMSP-16 and DMSP-17. This suggests that this SAPS event persists for a long time (hours), justifying our
comparison of DMSP-17 data at ~17:50 UT with ELFIN B at ~18:50 UT.

ARTEMYEV ET AL.

Sof 12

woxy papeojumo( ‘¥ “+70T ‘L008FT61

//:5d1) SUOBIPUOD) PuE SWLd L U} 998 “[$Z0T/€0/€0] U0 ATeIqrT FUIUO Ad[1A “9Bu S0 - BIWIONIE) JO ANSIOANN Aq [€£L01 TOETOT/6TO101/10P/wOd K1

suttoy/woo* Koy ATeaqrout

pue

25001 SUOWI0)) 2ATEAX)) dqeatdde o) Aq POIaA0S oIe SOJTIIE YO (SN JO Sa[nI 10§ ATeIqrT AuuQ KSIAY UO (SUor



A7

Fa\“ 4V i
et Geophysical Research Letters 10.1029/2023GL107731
5 sx10° DMSP-16, AMLAT=5"
>
z
3, 2194
s 1000 ¢ cros
> 2(5)8 =—vert
8 250
o 0
360 __azim
= 250 ___down
= 0 vel
£ —250 —
ELFIN B _
> P - 10 &
£ e ahede 3 =S
2 1o 10° @
5 104 electrons T
5 10l DMSP-16 i
107 fram—tme——— - | e - h 5
£ 10°: () L L A . - I 10°, .
L. : 2
Eﬁ =1 [ E ) g " II %8—2 «;—-\
g ; 19107 7
5 | L L
0/ g 10
100 =
% 1M s
~ 107 -
o) 1 L ¥ 10 %
5 1 ions 2l ] 02
® 10°t DMSP-16 10; D
107! g ] ‘ b — 10
> 0
L0 (@ ] 101 -
- S
%53 . 1072 F
n
5 1008 M . . 110
54 55 66 67 68

IMLAT], °

Figure 3. Comparison of ELFIN B (around 21:55 UT) and DMSP-16 (around 21:45 UT) measurements: (a) DMSP plasma density, (b, ¢c) components of plasma drift and
magnetic field perturbations measured by DMSP, (d) comparison of locally trapped energetic electron fluxes (from ELFIN) and <30 keV precipitating electron fluxes
(from DMSP), (e) precipitating-to-trapped electron flux ratio at ELFIN, (f) comparison of locally trapped energetic ion fluxes (from ELFIN) and <30 keV precipitating
ion fluxes (from DMSP), (g) precipitating-to-trapped ion flux ratio at ELFIN. Striped regions in panels (d, f) mark those with precipitating-to-trapped flux ratios above
0.1. The boundary of these regions is shown by the solid black contour. Note that during this event, TEC data along the ELFIN orbit are fragmentary, so we cannot infer
the TEC profile along ELFIN orbit in panel (a).

Interestingly, Figure 2 does not show any sub-relativistic (<500 keV) electron precipitation equatorward from the
electron isotropy boundary, within SAPS (as expected from electron scattering by whistler-mode waves, see
Mishin et al., 2011; Mishin & Sotnikov, 2017). Instead, it reveals weak relativistic electron precipitation likely
driven by EMIC waves. Such precipitation can be enhanced after a series of strong ion injections, as observed by
GOES-16 between 20:30 UT and 22:00 UT (see Figure 1f). This is because these injections bring in hot,
anisotropic ions to drive the EMIC waves (e.g., Chen et al., 2010; Jun et al., 2019). Figure 3 shows the second
ELFIN B orbit crossing the nightside magnetosphere at ~22:00 UT, in the aftermath of these injections. As shown
in Figure S3 in Supporting Information S1, there is a AMLAT = 4° shift between DMSP-16 and DMSP-17
latitudinal profiles. Figure 2a shows a good agreement in density/TEC profiles between DMSP-17 and ELFIN
B. To match the density peak (as seen by both DMSP-16, 17) and the electron isotropy boundary at ELFIN B (as
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in Figure 2), we shift DMSP-16 latitudinal profiles by AMLAT = 5° (which is also consistent with the relative
MLAT shift between DMSP-16 and DMSP-17; see Figure S3 in Supporting Information S1). Note that this shift
also set a scale of AMLAT uncertainty of ELFIN and DMSP comparison.

As shown in Figure 3, the electron isotropy boundary is not that evident at ELFIN measurements, but there are
isotropic electron (<200 keV) precipitation at the earthward (inner edge) edge of the electron plasma sheet (region
II). ELFIN did not detect the low-altitude projection of the energetic electron plasma sheet (DMSP-16 detected
<1 keV plasma sheet electrons at MLAT > 65°), because it occurred during the late stage of the magnetotail
current sheet thinning (see the |IB | increase before 22:10 UT in Figure 1b), when the near-Earth plasma sheet filled
by energetic electrons is projected to a quite narrow latitudinal region, AMLAT ~ 1°, at low altitudes (see details
in Artemyev et al., 2022).

Similar to Figure 2, the ion isotropy boundary at ELFIN B (region I, MLAT € [58, 59°]) in Figure 3 is within
the SAPS region characterized by the large ion drift flow (MLAT < 64°). Figure S4 in Supporting Informa-
tion S1 confirms the locations of ion and electron isotropy boundaries in the MLT sector of DMSP-16: around
21:30-22:10 UT at MLT € [19, 21], POES 15, 18, 19, and MetOp-1 detected the ion isotropy boundary at
MLAT € [59, 60]°. The SAPS also coincides strong precipitation of relativistic (up to 3 MeV) electrons. One
such burst is at MLAT ~ 60°. ELFIN B captured another large burst of relativistic electron precipitation at
MIAT ~ 58°, right in the middle of the SAPS. This burst is accompanied by sub-relativistic precipitation,
which might be driven by whistler-mode waves. However, the main attribute of whistler-driven precipitation is
the maximum precipitating fluxes (and precipitating-to-trapped flux ratio) at the lowest energy channels (50—
100 keV), because the whistler-mode diffusion rate is maximizes at energies below 100 keV (see Tsai
et al., 2022; Zhang et al., 2022, 2023, for discussion and data/model comparison for whistler-driven precipi-
tation patterns observed by ELFIN). The sub-relativistic precipitation around MLAT ~ 58° are rather the low-
energy tail of relativistic electron precipitation and do not show a peak of precipitating-to-trapped flux ratio at
50-100 keV. This precipitation pattern is reminiscent of EMIC-driven precipitation with contributions from
high-frequency EMIC wave spectra (Angelopoulos et al., 2023) and nonresonant effects (An et al., 2022). An
additional feature of this precipitation pattern is that it locates well equatorward from the isotropic <100 keV
electron precipitation from the plasma sheet and shows signatures of energy/L-shell dispersion (contours of
constant precipitating-to-trapped flux ratio show an energy increase with L-shell increase within [58.5°, 60°],
see panels (d, e)). ELFIN detected multiple such events during strong substorms (see Artemyev et al., 2023, for
discussions of the energy/L-shell dispersion in EMIC-driven precipitation), the preferable condition for the
SAPS formation, confirming that the event from Figures 2 and 3 is not unique, but rather a typical SAPS-
associated electron precipitation pattern.

A summary of the observations in Figures 2 and 3 is shown in Figure 4 (top and bottom panels, respectively),
which depicts the density and the integrated energy flux of precipitating electrons (J5 5o keV, J. 500 keV) and of
precipitating ions (J, 5o keV). Poleward of the electron isotropy boundary, the density variations can be attributed
to plasma sheet (<10 keV) precipitation that heats the polar ionosphere (Moffett et al., 1998; Sheng et al., 2019).
However, at sub-auroral latitudes, there only exist energetic electron precipitation bursts driven by wave-particle
interactions and energetic ion precipitation. The latter one may be driven by EMIC waves (e.g., A. Yahnin &
Yahnina, 2007) and curvature scattering (e.g., Sergeev et al., 2012). Figures 2 and 3 demonstrate strong energy/L-
shell dispersion of energetic ion precipitation (at 63° and 58.5°, respectively), the main signature of the curvature
scattering effect (e.g., Newell et al., 1998; Sergeev et al., 1993), and thus the ion precipitation poleward from the
isotropy boundary is likely driven by the curvature scattering in the plasma sheet. As shown in the integrated
precipitating fluxes, the red curve is quite close to the blue one, indicating that the precipitating electron energy
fluxes are dominated by relativistic electrons (though still smaller than ion energy fluxes). Within the uncertainty
level of ELFIN and DMSP latitudinal profiles, the electron precipitation within the electron isotropy boundary (as
shown in Figure 2) and electron precipitation due to EMIC waves (as shown in Figure 3) are well inside the SAPS
region, and likely also inside MIT region (see Figure 4). Precipitating relativistic electrons deposit most of their
energy in the lower (below 80 km) ionosphere (in the D-region and below, see, e.g., Pettit et al., 2023; Xu
et al., 2020). Thus, they cannot directly affect the F/E-regions where SAPS are formed (e.g., Mishin & Strelt-
sov, 2021; Yu et al., 2022, and references therein). On the other hand, energetic ions, with energy fluxes higher
than electron fluxes during this event, will deposit their energy above 100 km, well within the E-region (Fang
et al., 2013; Tian et al., 2023). Therefore, observations of such relativistic electron precipitation imply that SAPS
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Figure 4. Comparison of the density profile (from DMSP measurements in panels (a) of Figures 2 and 3) and integrated energy flux of precipitating electrons and ions
(from ELFIN measurements in panels (d, ) of Figures 2 and 3). Electron isotropy boundary /B, and EMIC-driven precipitation regions are indicated.

may lead to dynamics in the lower altitude ionosphere, whereas the much more spread energetic ion precipitation
which affects conductivity may expand the latitudinal range of SAPS effects.

3. Conclusions

In this study we examined the energetic (up to relativistic energies) electron and ion precipitation within the SAPS
region. The comparison of DMSP and ELFIN measurements shows that SAPS includes (is embedded with) strong
precipitation of [100,1000] keV ions at the ion isotropy boundary and strong precipitation of >100 keV electrons
at the electron isotropy boundary. Within the ion isotropy boundary, ELFIN also detected relativistic electron

precipitation bursts, likely resulting from electron scattering by EMIC waves. Within the uncertainty level of

ELFIN and DMSP latitudinal profiles, [10,1000] keV ion (observed by DMSP and ELFIN) and [100,3000] keV
electron precipitation (observed by ELFIN) are likely inside the MIT region.

As also demonstrated in this comparison between DMSP and ELFIN, measurements of energetic electron and ion
(>100 keV) can more effectively delineate the edges (the equatorial region with strong curvature scattering) and
precipitation bursts (due to wave-particle resonant interactions) than <30 keV particle measurements. The
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correlation between relativistic electron precipitation and SAPS highlights the importance of mesoscale tran-
sients, such as plasma sheet injections contributing to SAPS formation, in the energy input into the lower
ionosphere (D-region, <80 km) and magnetosphere-ionosphere coupling (see also discussions in Heelis &
Maute, 2020; Huang, 2021).

Data Availability Statement

Fluxes measured by ELFIN are available in the ELFIN data archive in CDF format (ELFIN, 2023). Total electron
content (TEC) maps are provided by MIT Haystack via the Madrigal database (TEC, 2023); see Rideout and
Coster (2006), Coster et al. (2013), and Vierinen et al. (2015). Data analysis was done using SPEDAS V4.1
(Angelopoulos et al., 2019). The software can be downloaded from (SPEDAS, 2023).
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