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1. Introduction. We assume the Riemann hypothesis (RH) throughout
this paper. Let 1/2+iγ be a nontrivial zero of the Riemann zeta-function ζ(s),
and let m(γ) denote its multiplicity. While we expect that these zeros are all
simple with m(γ) = 1, currently we cannot exclude the existence of multiple
zeros. In this paper, we address how the possible existence of multiple zeros
affects the results we can prove on close pairs of zeros. We consider both
the nondecreasing sequence {γ} of positive ordinates γ > 0 which counts
multiplicity, and also the increasing sequence {γd} of distinct zeros with
ordinates γd > 0 which does not count multiplicity. If all the zeros are simple,
then these sequences are identical. As usual, we let N(T ) denote the number
of zeros with 0 < γ ≤ T , counting multiplicity. Then

(1) N(T ) :=
∑

0<γ≤T

1 =
∑

0<γd≤T

m(γd) =
T

2π
log

T

2π
− T

2π
+
7

8
+S(T )+O

(
1

T

)
for T ≥ 2, where the remainder term S(T ) equals 1

π arg ζ
(
1
2 + iT

)
for T ̸= γ,

with the argument obtained by a continuous variation along the line segments
joining the points 2, 2 + iT and 1

2 + iT starting with the value arg ζ(2) = 0.
It is known that S(T ) = O(log T ) as T → ∞.

There are two possible types of close pairs of zeros: pairs arising from a
multiple zero and close pairs from two distinct zeros which have a positive
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distance between them. Of course, two distinct zeros can both be multiple
zeros generating many pairs of zeros of each type. We use the word spacing
between zeros for both types of close pairs of zeros, and reserve the word
gap between pairs of zeros to mean a spacing with a strictly positive length.
Denote by γ+ the next term γ ≤ γ+ after γ in the sequence of ordinates of
zeros. Similarly, we denote by γ+d the next term γd < γ+d in the sequence of
distinct ordinates. By (1), the average of the consecutive spacings γ+ − γ is
2π/log γ, and to measure how close these zeros can get, we define

(2) µ := lim inf
γ→∞

(γ+ − γ)
log γ

2π
.

Similarly, to measure small gaps between consecutive distinct zeros, we define

(3) µd := lim inf
γd→∞

(γ+d − γd)
log γd
2π

.

More generally, we consider the distribution functions

(4) D(λ, T ) :=
1

N(T )

∑
0<γ≤T

γ+−γ≤ 2πλ
log T

1 and Dd(λ, T ) :=
1

N(T )

∑
0<γd≤T

γ+
d −γd≤ 2πλ

log T

1.

Corresponding to (2) and (3), we define

µD := inf
λ

{
λ : lim inf

T→∞
D(λ, T ) > 0

}
µDd

:= inf
λ

{
λ : lim inf

T→∞
Dd(λ, T ) > 0

}
.

Thus, if λ > µD, then there are a positive proportion of spacings of con-
secutive zeros of length at most λ times the average spacing. Likewise, if
λ > µDd

, then there are a positive proportion of gaps between distinct con-
secutive zeros with length at most λ times the average spacing. Note trivially
that

µ ≤ µd ≤ µDd
and µ ≤ µD ≤ µDd

.

There are three known methods for proving the existence of close pairs of
zeros. The first method is due to Selberg, who proved unconditionally that,
for a small positive constant δ,

(5) µD ≤ 1− δ.

Selberg’s proof is based on moments of the remainder term S(T ) in (1).
Though his proof was never published, Fujii [15, 16] gave an abbreviated
proof of (5), and a more detailed argument was given by Heath-Brown in
the appendix to Titchmarsh [34, Chapter 9]. For references to these results
and corrections to some misprints that have occurred, see [13]. Selberg’s proof
is in two steps. First, it is proved that a positive proportion of consecutive
zeros have gaps larger than the average spacing, and then this result is used
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to infer a positive proportion of consecutive zeros with spacing less than the
average spacing. In [31], the value δ = 1

2 × 10−3·1013 is obtained.
Another method, which depends on RH, was introduced by Montgomery

and Odlyzko [25], who used it to obtain the estimate µ ≤ 0.5179. There have
been many refinements made (e.g. [3, 9, 14]), and the current best result is
due to Preobrazhenskĭı [28], who proved that

µ ≤ 0.515396.

Two different proofs of this method are given in [25] and [9] and the limita-
tions of the method are discussed in [20]. This method has also been modified
by Conrey, Ghosh, Goldston, Gonek, Heath-Brown [8] in 1985 to produce
the positive proportion result µD ≤ 0.77. Soundararajan [32] refined it to
obtain µD ≤ 0.6876, and Wu [35] later obtained

µD ≤ 0.6653.

A third method for finding close pairs of zeros is due to Montgomery [24]
in his paper on pair correlation of zeros, and also assumes RH. Originally,
Montgomery obtained the estimate µ ≤ 0.68. This method has been refined
by other authors (see e.g. [5, 18]), with the current best result

(6) µ ≤ 0.6039

due to Chirre, Gonçalves, and de Laat [7]. In the present paper, we prove that
Montgomery’s pair correlation method actually gives a result for a positive
proportion of spacings, improving the best known bounds from the previous
method used in [8, 32, 35].

Theorem 1. Assuming RH, we have

µD ≤ 0.6039.

The results mentioned above, for all three methods, fail to exclude the
possibility that the small spacings that are detected are composed entirely
from zero spacings between multiple zeros (and not from actual gaps). We
suspect that none of the three methods can be modified to prove the exis-
tence of gaps between zeros smaller than the average spacing, in other words
that these methods are incapable of proving that µd < 1. In this paper,
we introduce a new method specifically designed to find small gaps between
distinct zeros.

Theorem 2. Assuming RH, we have

µd ≤ 0.991.

The method we introduce produces gaps between a simple zero and a
distinct zero of odd multiplicity. Both configurations of γd and γ+d , where γd
is a simple zero or γ+d is a simple zero, occur. However, we cannot guarantee
that both of these distinct zeros are simple. Furthermore, our method does
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not produce a positive proportion of gaps and so we do not obtain a result
for µDd

. Nevertheless, in an interval [T, 2T ], we can show that there are
≫ε T

1−ε such small gaps between distinct zeros for any ε > 0.

Corollary 1. Assume RH and let T be large. Then, for any constant
C > log 4, there are

≫ T exp

(
−C

log T

log log T

)
consecutive ordinates γd, γ

+
d ∈ [T, 2T ] of distinct zeros with γd < γ+d and

γ+d − γd ≤ 0.991 2π
log T .

We conclude the introduction by mentioning that this paper was inspired,
in part, by the recent work of Rodgers and Tao [30], who proved that the
de Bruijn–Newman constant is nonnegative. The last step of their proof
relied on knowing that µD < 1. There are also other reasons for studying
small gaps and small spacings between zeta zeros. For instance, there is
a well-known connection between the existence of small spacings between
the zeros of the zeta function and the class number problem for imaginary
quadratic fields. See the works of Conrey and Iwaniec [12] and Montgomery
and Weinberger [27] for more on this connection. For an overview of results
on the complementary problem of proving the existence of large gaps between
zeros of the zeta function, see [2] and the references therein.

2. Pair correlation of zeta zeros and the proof of Theorem 1. In
this section, we investigate small spacings and small gaps between zeta zeros
using Montgomery’s pair correlation method [24]. As usual, we define

F (α) = F (α, T ) =
1

N(T )

∑
0<γ,γ′≤T

T iα(γ−γ′)w(γ − γ′),

where α and T ≥ 2 are real, w(u) = 4/(4 + u2). By Fourier inversion, for
any function r ∈ L1(R) such that r̂ ∈ L1(R), we have

(7)
∑

0<γ,γ′≤T

r

(
(γ − γ′)

log T

2π

)
w(γ − γ′) = N(T )

�

R

r̂(α)F (α) dα,

where the Fourier transform r̂ is defined by

r̂(α) =
�

R

r(u)e(−αu) du, e(x) := e2πix.

Assuming RH, it is known that F is real-valued, even, nonnegative, and that

(8) F (α) = (1 + o(1))T−2α log T + α+ o(1)

uniformly for 0 ≤ |α| ≤ 1 (see [19, 24]). Therefore, we can asymptotically
evaluate the right-hand side of (7) when supp(r̂) ⊆ [−1, 1]. By exploiting
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the fact that F is nonnegative, we can further specialize our conditions on r
to prove the existence of close pairs of zeros.

For λ > 0, let A(λ) denote the class of even, continuous, and real-valued
functions r ∈ L1(R) satisfying the following three conditions:

(i) r(0) = 1;
(ii) r(u) ≤ 0 if |u| > λ;
(iii) r̂(α) ≥ 0 for all α ∈ R.

It can be shown that if r ∈ A(λ), then r̂ ∈ L1(R). We also let

n∗ := lim sup
T→∞

1

N(T )

∑
0<γd≤T

m(γd)
2

and, by (1), we note that n∗ ≥ 1. Then the following theorem holds.

Theorem 3. Assume RH. Let r ∈ A(λ) and define

(9) c(λ; r) := r̂(0)− 1 + 2

1�

0

αr̂(α) dα.

If there exists a λ0 > 0 and an r ∈ A(λ0) such that c(λ0; r) > 0 for suffi-
ciently large T , then we have

(10) D(λ0, T ) ≫ 1 and µD ≤ λ0.

If there exists a λ∗ > 0 and an r ∈ A(λ∗) such that c(λ∗; r) > n∗ − 1 for
sufficiently large T , then we have

(11) Dd(λ
∗, T ) ≫ c(λ∗; r)4 and µDd

≤ λ∗.

We now show how Theorem 3 implies Theorem 1.

Proof of Theorem 1. The claim that µD ≤ 0.6039 follows from Theorem 3
and the example of Chirre, Gonçalves, and de Laat [7] used to prove (6).
Observe that if r is contained in the class ALP of functions described in [7],
then r ∈ A(λ) for any λ ≥ inf {a > 0 : r(x) ≤ 0 for |x| ≥ a} and therefore r
satisfies the conditions of Theorem 3.

We also deduce the following corollary from Theorem 3.

Corollary 2. Assuming RH, we have

µDd
≤ 1.0522.

This result for µDd
is derived in §4. It may seem paradoxical that the

bound we obtain for µDd
is larger than the average spacing between zeros, but

presently (on RH) we only know that at least 84.77% of the nontrivial zeros
of ζ(s) are distinct, see [7, Theorem 4]. In other words, the average spacing
between distinct zeros could be as large as 1.17966 times the average spacing
between all zeros, counting multiplicity. Therefore our result does find small
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gaps between distinct zeros with respect to the worst case scenario for the
average spacing of distinct zeros.

Our proof of Theorem 3 is based upon the following two propositions.

Proposition 1. Assume RH. If r ∈ A(λ), then

(12)
∑

0<γd≤T

m(γd)(m(γd)− 1) +
∑

0<γ,γ′≤T

0<|γ−γ′|≤ 2πλ
log T

1 ≥ (c(λ; r)− o(1))N(T ),

where c(λ; r) is defined in (9).

If we can find an r and a λ0 > 0 such that c(λ0; r) > 0, then from (12) we
immediately conclude that µ ≤ λ0. In fact, the previous results on small gaps
established using Montgomery’s pair correlation method in [5, 7, 18, 24] all
use Proposition 1 to prove the existence of close pairs of zeros assuming RH.
To deduce that one can obtain positive proportions for gap results from
Proposition 1, we use the following result whose proof relies on techniques
introduced by Selberg in the 1940s.

Proposition 2. Assume RH. Suppose that T ≥ 2 and that k is a positive
integer. Let

(13) n(t, λ) = N

(
t+

2πλ

log T

)
−N(t).

Then there is a positive absolute constant C such that

(14)
∑

0<γ≤T

n(γ, k)2k ≤ (Ck)2kT log T

and

(15)
∑

0<γ≤T

m(γ)2k−1 =
∑

0<γd≤T

m(γd)
2k < (Ck)2k−1T log T.

As described in §3, our proof of Proposition 2 overlaps earlier results of a
number of authors. We conclude this section with the proof of Proposition 1.

Proof of Proposition 1. For functions r ∈ A(λ), it follows that

r(u) ≤ |r(u)| =
∣∣∣�
R

r̂(α)e(αu) dα
∣∣∣ ≤ �

R

|r̂(α)| dα =
�

R

r̂(α) dα = r(0) = 1.

Hence∑
0<γ,γ′≤T

|γ−γ′|≤ 2πλ
log T

1 ≥
∑

0<γ,γ′≤T

r

(
(γ − γ′)

log T

2π

)
w(γ − γ′) = N(T )

�

R

r̂(α)F (α) dα.

Since F and r̂ are nonnegative, the inequality is still valid if we restrict the
integral on the right-hand side to any finite interval. Since F and r̂ are even,
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by (8) we see that∑
0<γ,γ′≤T

|γ−γ′|≤ 2πλ
log T

1 ≥ N(T )

1�

−1

r̂(α)F (α) dα = N(T )
(
r̂(0) + 2

1�

0

αr̂(α) dα+ o(1)
)

= N(T )(1 + c(λ; r) + o(1)).

On the other hand, note that∑
0<γ,γ′≤T

|γ−γ′|≤ 2πλ
log T

1 =
∑

0<γd≤T

m(γd)
2 +

∑
0<γ,γ′≤T

0<|γ−γ′|≤ 2πλ
log T

1.

Therefore∑
0<γd≤T

m(γd)
2 +

∑
0<γ,γ′≤T

0<|γ−γ′|≤ 2πλ
log T

1 ≥ N(T )(1 + c(λ; r) + o(1)).

Making use of the identity

N(T ) =
∑

0<γd≤T

m(γd)

and then rearranging terms, the desired result in (12) follows.

3. Proof of Proposition 2. In this section, after establishing two pre-
liminary results, we prove Proposition 2. First, we obtain a useful explicit
formula relating zeros in short intervals to a Dirichlet polynomial over primes.
A version of this explicit formula first appeared in a paper of Montgomery
and Odlyzko [25], and later in the works of Gonek [21] and Radziwiłł [29]. We
require a version with a slightly more precise error term for our application.

Lemma 1. Assume RH. Then, for τ ≥ 2, we have

(16)
∑
γ

(
sin 1

2(γ − τ) log x
1
2(γ − τ) log x

)2

=
log τ

2π

log x
− 2

log x

∑
n≤x

Λ(n)

n1/2

(
1− log n

log x

)
cos(τ log n)

+O

(
1

τ log x

)
+O

(
x1/2

(τ log x)2

)
.

Proof. Let α(s) =
∑

n≥1 ann
−s be a Dirichlet series with abscissa of

convergence σc. If a > max(0, σc), then∑
n≤x

an log
x

n
=

1

2πi

a+i∞�

a−i∞
α(s)

xs

s2
ds for x > 0.

Note that the sum on the left-hand side is either empty or equals zero if
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x ≤ 1. Therefore, by three applications of this identity, we deduce that∑
n≤x

an log
x

n
=

1

2πi

a+i∞�

a−i∞
α(s)

(xs/2 − x−s/2)2

s2
ds

for x > 1. We take α(s) = − ζ′

ζ

(
s+ 1

2 + iτ
)

and see that

(17)
∑
n≤x

Λ(n)

n1/2+iτ
log

x

n
= − 1

2πi

a+i∞�

a−i∞

ζ ′

ζ

(
s+

1

2
+ iτ

)
(xs/2 − x−s/2)2

s2
ds.

We move the contour of integration to the imaginary axis. In doing so, we
encounter a pole at s = 1

2 − iτ . On the imaginary axis we form semicircular
paths around the poles at the points s = i(γ − τ). We shrink the radii of
these semicircles to zero, which gives half-residues, and the integral on the
imaginary axis is defined by taking the Cauchy Principal Value at the point
s = i(γ − τ). Thus, (17) becomes

(18)
∑
n≤x

Λ(n)

n
1
2
+iτ

log
x

n
= − 2

π

∞�

−∞

ζ ′

ζ

(
1

2
+ it+ iτ

)(
sin 1

2 t log x

t

)2

dt

− 1

2

∑
γ

(
sin 1

2(γ − τ) log x
1
2(γ − τ)

)2

+

(
x

1
2
( 1
2
−iτ) − x−

1
2
( 1
2
−iτ)

1
2 − iτ

)2

.

Recall from [17] that, for 1
2 ≤ σ ≤ 2, t ≥ 2, and s ̸= 1

2 + iγ, we have

Re
ζ ′

ζ
(σ + it) = −1

2
log

t

2π
+
∑
γ

σ − 1
2(

σ − 1
2

)2
+ (t− γ)2

+O(1/t)

and therefore
Re

ζ ′

ζ

(
1

2
+ it

)
= −1

2
log

t

2π
+O(1/t)

for t ≥ 2 and t ̸= γ. We take the real parts of both sides of (18). An
easy calculation shows that the real part of the integral in (18) is equal to
1
2(log x) log

τ
2π + O((log x)/τ) for τ ≥ 2. Multiplying both sides of (18) by

2/(log x)2 and then rearranging, we see that

(19)
∑
ρ

(
sin 1

2(γ − τ) log x
1
2(γ − τ) log x

)2

=
log τ

2π

log x
− 2

log x

∑
n≤x

Λ(n)

n1/2

(
1− log n

log x

)
cos(τ log n)

+O

(
1

τ log x

)
+O

(
x1/2

(τ log x)2

)
.

This completes the proof of Lemma 1.



Small gaps and small spacings between zeta zeros 141

Lemma 2. Assume RH. Let T ≥ 2 be given. If k ∈ N, then there is a
positive absolute constant C such that

(20)
T�

0

n(t, k)2k dt < (Ck)2k T.

Proof. Since (sinx)/x is decreasing for 0 ≤ x ≤ π, it follows that the
summand on the left-hand side of (19) is greater than or equal to 4/π2 if
|γ − τ | ≤ π/log x. Let k be a positive integer, and set x = T 1/k ≥ 2. Then,
for 0 ≤ τ ≤ T , from Lemma 1 we see that

(21) N

(
τ +

πk

log T

)
−N

(
τ − πk

log T

)
≪ k +

k

log T

∣∣∣∣∑
n≤x

Λ(n)

n1/2

(
1− log n

log x

)
cos(τ log n)

∣∣∣∣+ T 1/2k

τ + 2
.

By (13) we see the left-hand side of (21) is n(t, k) with t = τ −πk/log T . We
raise both sides of (21) to the power 2k, and integrate. Since |Re z| ≤ |z| for
any complex number z, it follows that

(22)
T�

0

n(t, k)2k dt < (Ck)2kT+

(
Ck

log T

)2k T�

0

∣∣∣∣∑
n≤x

Λ(n)

n1/2+it

(
1− log n

log x

)∣∣∣∣2kdt.
Here C is a suitable absolute constant which may be increased appropriately
between steps in the argument.

For any real number b > 0, we have |f(t) + g(t)|b ≤ 2b (|f(t)|b + |g(t)|b),
and therefore we can divide the sum on the right-hand side into the sum over
primes plus the sum over prime powers, and estimate them separately. For
the sum over prime powers, the series over the prime powers pℓ with ℓ > 2
converges absolutely and makes the contribution < (Ck/log T )2kT . The sum
over squares of primes is trivially ≪ log x, which makes a contribution ≪
C2kT . Thus both of these errors are covered by the first error term on the
right-hand side of (22).

For the contribution coming from primes, put R = π(x), and let p1, . . . , pR
denote the first R primes. By the multinomial theorem,(∑

p≤x

log p

p1/2+it

(
1− log p

log x

))k

=
∑

µ1,...,µR∑
r µr=k

(
k

µ1 · · · µR

) R∏
r=1

(
log pr

p
1/2+it
r

(
1− log pr

log x

))µr

=
∑
n

c(n)n−it.

Here n =
∏

r p
µr
r , and c(n) = 0 if n > xk = T . By the usual approximate
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Parseval identity for Dirichlet polynomials [26, Corollary 3], we see that
T�

0

∣∣∣∣∑
p≤x

log p

p1/2+it

(
1− log p

log x

)∣∣∣∣2k dt ≪ T
∑
n

|c(n)|2

= T
∑

µ1,...,µR∑
r µr=k

(
k

µ1 · · · µR

)2 R∏
r=1

(
log pr

p
1/2
r

(
1− log pr

log x

))2µr

.

The multinomial coefficient above is less than or equal to k! for any collection
of µr, so the above is

≤ k!T
∑

µ1,...,µR∑
µr=k

(
k

µ1 · · · µR

) R∏
r=1

(
log pr

p
1/2
r

(
1− log pr

log x

))2µr

,

which by the multinomial theorem is

= k!T

(∑
p≤x

log2 p

p

(
1− log p

log x

)2)k

∼ k!T

(
log2 x

12

)k

<

(
C

k

)k

T (log T )2k.

Hence the contribution from primes in the second term on the right-hand side
of (22) is less than (Ck)kT , which for large k is smaller than the contribution
of the first term. This completes the proof of Lemma 2.

Remarks. (1) It is trivial that
T�

0

n(t, k) dt ∼ kT

as T → ∞ with k fixed.
(2) A form of Lemma 2 has been proved unconditionally by Fujii [16],

and he also proved there unconditionally a form of the multiplicity bound
(15) in Proposition 2.

(3) The second term on the right-hand side of (22) contributes less than
the first term, which suggests the possibility that

T�

0

(n(t, k)− k)2k dt < (Ck)kT.

It might be interesting, and perhaps even valuable in some contexts, to
establish such a result.

(4) Our estimate for the 2kth moment for a Dirichlet polynomial over
primes in the above proof is essentially the same as the proof of Lemma 3
of Soundararajan [33]. The use of the approximate Parseval identity for
Dirichlet polynomials in our argument allows us to replace the condition
xk ≤ T/log T appearing in [33] by xk ≪ T .
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Proof of Proposition 2. For t ∈ R such that 0 < t ≤ T , we put I(t) =
[t, t + 2π/log T ]. We observe that if γ ∈ I(t), then (γ, γ + 2πk/log T ] ⊂
(t, t+ 2π(k + 1)/log T ], and hence for such γ we have n(γ, k) ≤ n(t, k + 1).
For ordinates γ with 0 < γ ≤ T , we put J(γ) = [γ − 2π/log T, γ] and we
note that γ ∈ I(t) if and only if t ∈ J(γ). Thus n(γ, k)2k ≤ n(t, k + 1)2k for
t ∈ J(γ). We average over these t to see that

n(γ, k)2k ≤ log T

2π

�

J(γ)

n(t, k + 1)2k dt.

Summing over γ, we see that∑
0<γ≤T

n(γ, k)2k ≤ log T

2π

∑
γ≤T

�

J(γ)

n(t, k + 1)2k dt

=
log T

2π

T�

0

n(t, k + 1)2k
( ∑
γ∈I(t)

1
)
dt.

The number of γ ∈ I(t) is n(t, 1) unless t is the ordinate of a zero, which
occurs at only finitely many points in (0, T ]. Thus, the right-hand side above
equals

log T

2π

T�

0

n(t, k + 1)2k n(t, 1) dt ≤ log T

2π

T�

0

n(t, k + 1)2k+1 dt.

Now n(t, k+1) is a nonnegative integer, so n(t, k+1)2k+1 ≤ n(t, k+1)2k+2

for all t. Hence, by Lemma 2, the right-hand side above is

≤ log T

2π

T�

0

n(t, k + 1)2k+2 dt ≪ (Ck)2kT log T.

This establishes the desired bound in (14).
To prove (15), observe that

n(t, k)2k =
( ∑
t≤γd≤t+2πk/log T

m(γd)
)2k

≥
∑

t≤γd≤t+2πk/log T

m(γd)
2k.

Integrating both sides of this inequality and applying Lemma 2, it follows
that

T�

0

∑
t≤γd≤t+2πk/log T

m(γd)
2k dt ≤

T�

0

n(t, k)2k dt < (Ck)2kT.

Moreover, the left-hand side above is

≥
∑

0<γd≤T

m(γd)
2k

γd�

γd−2πk/log T

1 dt =
2πk

log T

∑
0<γd≤T

m(γd)
2k.
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Combining these estimates gives the bound in (15). This completes the proof
of Proposition 2.

There is considerable overlap between (14) in Proposition 2 and Lem-
ma 10 of Radziwiłł [29]. Radziwiłł proves a relationship between small gaps
between zeros of ζ(s) and zeros of ζ ′(s) close to the half-line. Assuming RH,
he proves a form of our Lemma 1 and then uses a moment argument based
on the Landau–Gonek formula [21]. In contrast, as mentioned above, our
proof of Lemma 2 is similar to the argument used by Soundararajan [33,
Lemma 3].

4. Proofs of Theorem 3 and Corollary 2. We now deduce Theorem 3
from Propositions 1 and 2.

Proof of Theorem 3. Assume RH. For r ∈ A(λ), suppose that λ > 0 is a
number for which c(λ; r) > 0. Then, by (12), we have∑

0<γd≤T

m(γd)(m(γd)− 1) +
∑

0<γ,γ′≤T

0<|γ−γ′|≤ 2πλ
log T

1 ≥ 1
2c(λ; r)N(T )

for sufficiently large T . Consequently, at least one of the following is true:

(23)
∑

0<γd≤T

m(γd)(m(γd)− 1) ≥ 1
4c(λ; r)N(T )

or

(24)
∑

0<γ,γ′≤T

0<|γ−γ′|≤ 2πλ
log T

1 ≥ 1
4c(λ; r)N(T ).

If (23) holds, then by Cauchy’s inequality we have(
1
4c(λ; r)N(T )

)2 ≤ ( ∑
0<γd≤T
m(γd)>1

1
)( ∑

0<γd≤T

m(γd)
4
)
.

By taking k = 2 in Proposition 2, we see that the second factor on the
right-hand side above is ≪ T log T . Therefore

c(λ; r)2N(T ) ≪
∑

0<γd≤T
m(γd)>1

1 ≤ N(T )D(0, T ) ≤ N(T )D(λ, T ),

which proves (10) in this case.
We now need to consider the case where (24) holds. For this, we first

need to find an upper bound for the sum on the left-hand side of (24). By
definition, n(t, λ) counts ordinates (with multiplicity) in the interval (t, t +
2πλ/log T ]. Hence n(γ, λ) counts ordinates γ′ with multiplicity m(γ′) such
that γ < γ′ ≤ γ + 2πλ/log T . Thus
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0<γ,γ′≤T

0<|γ−γ′|≤ 2πλ
log T

1 = 2
∑

0<γ≤T

n(γ, λ) = 2
∑

0<γd≤T

m(γd)n(γd, λ).

Two applications of Cauchy’s inequality give∑
0<γ,γ′≤T

0<|γ−γ′|≤ 2πλ
log T

1 ≤ 2
( ∑
0<γd≤T

m(γd)
2
)1/2( ∑

0<γd≤T
n(γd,λ)≥1

1
)1/4( ∑

0<γ≤T

n(γ, λ)4
)1/4

.

Since n(γd, λ) ≥ 1 if and only if γ+d − γd ≤ 2πλ/log T , we conclude from
both (14) and (15) of Proposition 2 and the definitions in (4) that

(25)
∑

0<γ,γ′≤T

0<|γ−γ′|≤ 2πλ
log T

1 ≪ (T log T )Dd(λ, T )
1/4 ≤ (T log T )D(λ, T )1/4.

Assuming that (24) holds, we see from (25) that D(λ, T ) ≫ c(λ; r)4 and (10)
is established.

To prove (11), we have∑
0<γd≤T

m(γd)(m(γd)− 1) ≤ (n∗ − 1 + o(1))N(T ),

and the result follows immediately from (12) and (25). This completes the
proof of Theorem 3.

Proof of Corollary 2. To make our calculations easy to verify, we will use
the Selberg minorant for the characteristic function of the interval [−1, 1].
Slightly better results can be obtained by using the more elaborate methods
of [7]. Let

(26) R(x) =

(
sinπx

πx

)2 1

1− x2

so that R(0) = 1 and R(x) ≤ 0 for |x| ≥ 1. We note that

R̂(t) =

1− |t|+ sin 2π|t|
2π

if |t| ≤ 1,

0 otherwise.

Hence R ∈ A(1). For any λ > 0, set r(u) = R(u/λ) and note that r ∈ A(λ)

with r̂(α) = λR̂(λα). Thus

c(λ; r) = r̂(0)− 1 + 2

1�

0

αr̂(α) dα

= λ− 1 + 2λ

min(1,1/λ)�

0

α

(
1− λα+

sin 2πλα

2π

)
dα,
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and a straightforward numerical calculation shows that

c(0.60729; r) > 0.

Therefore, by Theorem 3, we conclude that µD ≤ 0.60729. By comparison,
the result µD ≤ 0.6039 in (6) is obtained from a much more complicated
minorant.

To find distinct gaps, we need c(λ; r) > n∗ − 1. Using the best known
bound n∗ ≤ 1.3208 from [7], we find that c(1.05214; r) > 0.3208, which
establishes the bound µDd

≤ 1.05214.

Remark. We mention in passing that since

c(1; r) =
1

3
− 1

2π2
= 0.282673 . . . ,

in order to prove µDd
< 1, we would need a bound of n∗ ≤ 1.2826.

5. Proof of Theorem 2. We now introduce a new method in order to
prove that µd < 1. Write the functional equation for the zeta function as
ζ(s) = χ(s)ζ(1 − s), where χ(s) = 2sπs−1 sin

(
π
2 s

)
Γ (1 − s). It is not hard

to see that χ(s) = χ(1 − s)−1 and
∣∣χ(12 + it

)∣∣ = 1 for real t. The Hardy
Z-function is defined by

Z(t) = χ
(
1
2 − it

)1/2
ζ
(
1
2 + it

)
= χ

(
1
2 + it

)1/2
ζ
(
1
2 − it

)
.

It follows from the functional equation that Z(t) is real for t ∈ R, that
|Z(t)| =

∣∣ζ(12 + it
)∣∣, and that Z(t) changes sign when t corresponds to an

ordinate of a zero of odd multiplicity of ζ(s) on the critical line.
Assume RH. If γ ∈ [T, 2T ] is an ordinate of a simple zero of ζ(s), and

0 < a < µd, then

Z ′(γ)Z

(
γ +

2πa

log T

)
> 0

when T is sufficiently large. This inequality is easily established by consid-
ering cases. If Z ′(γ) > 0, then Z

(
γ+ 2πa

log T

)
> 0 for 0 < a < µd. If Z ′(γ) < 0,

then Z
(
γ + 2πa

log T

)
< 0 for 0 < a < µd. Finally, if Z ′(γ) = 0, then γ corre-

sponds to a multiple zero of ζ(s). Likewise, under the same assumptions,

Z ′(γ)Z

(
γ +

2πa

log T

)
|f(γ)|2 ≥ 0

for any function f . Consequently, if there exist choices of κ and f such that∑
T<γ≤2T

Z ′(γ)Z

(
γ +

2πκ

log T

)
|f(γ)|2 < 0

when T is sufficiently large, then it follows that µd ≤ κ. Note that this
method is detecting spacings between simple zeros of Z(t) and sign changes
of Z(t) at another location. In other words, it is detecting (nonzero) gaps
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between the ordinates of simple zeros of ζ(s) and ordinates of zeros of ζ(s)
of odd multiplicity. We could alternatively study mean-values of the form∑

T<γ≤2T

Z ′(γ)Z

(
γ − 2πκ

log T

)
|f(γ)|2

in order to detect gaps between zeros of odd multiplicity followed by simple
zeros.

As in Selberg’s proof that a positive proportion of the zeros of ζ(s) are
on the critical line, we are studying sign changes of the Hardy Z-function on
the scale of average spacing between zeros. This intuition suggests that we
should choose the test function f to mollify the product Z ′(γ)Z

(
γ + 2πκ

log T

)
.

It is convenient to choose a mollifier of the form

M(s, P ) =
∑
n≤y

µ(n)P
( log y/n

log y

)
ns

,

where µ(n) is the Möbius function, y = T ϑ, and P (x) is a polynomial satis-
fying P (0) = 0. Thus, if there exist choices of κ, η, ϑ, P such that

Σ(κ; η, P ) :=
∑

T<γ≤2T

Z ′(γ)Z

(
γ +

2πκ

log T

)∣∣∣∣M(
1

2
+ iγ +

2πiη

log T
, P

)∣∣∣∣2 < 0

when T is sufficiently large, then µd ≤ κ. We choose 0 < η < κ, so that we
are simultaneously mollifying both Z ′(γ) and Z

(
γ+ 2πκ

log T

)
. This mean-value

can be analyzed using techniques similar to those introduced by Conrey,
Ghosh, and Gonek [11] and Bui and Heath-Brown [1], who were interested
in estimating the proportion of simple zeros of the zeta function.

In particular, let

M(s, g) =
∑
n≤y

µ(n)g
( log y/n

log y

)
ns

,

where y = T ϑ and g is entire with g(0) = 0. Let Q1, Q2 be polynomials and
let

I(a, b, g1, g2, Q1, Q2) =
∑

T<γ≤2T

Q1

(
− d

da

)
ζ

(
ρ+

a

log T

)

×Q2

(
− d

db

)
ζ

(
1− ρ+

b

log T

)
M(ρ, g1)M(1− ρ, g2).

Then the following estimate holds.

Theorem 4 (Conrey–Ghosh–Gonek). If 0 < ϑ < 1/2 and a, b ≪ 1, then
as T → ∞ we have
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I(a, b, g1, g2, Q1, Q2) ∼
T log T

2π

∂2

∂u∂v

{(
1

ϑ

1�

0

g1g2 dx+

1�

0

g1 dx

1�

0

g2 dx

)

×
( 1�

0

TaQ1TbQ2 dx−
1�

0

TaQ1 dx

1�

0

TbQ2 dx
)

+

1�

0

g1 dx

1�

0

g2 dx
(
Q1(0)−

1�

0

TaQ1 dx
)(

Q2(0)−
1�

0

TbQ2 dx
)}∣∣∣∣

u=v=0

,

where g1 = g1(x+ u), g2 = g2(x+ v),

TaQ1 = e−a(x+ϑu)Q1(x+ ϑu),

and

TbQ2 = e−b(x+ϑv)Q2(x+ ϑv).

This result was stated without a proof by Conrey, Ghosh, and Gonek
[10, Theorem 2]. It can be deduced in a straightforward manner from the
more general result of Heap, Li, and Zhao [22, Theorem 2], which builds on
the previous work in [1, 11].

Proof of Theorem 2. It is not difficult to convert the mean-value Σ(κ; η, P )
into a mean-value of the form that is estimated in Theorem 4. We start by
observing that if ρ = 1

2+iγ is a zero of ζ(s), then it follows from the definition
of Z(t) that

Z ′(γ) = −iχ(ρ)1/2ζ ′(1− ρ).

Hence

Z ′(γ)Z

(
γ +

2πκ

log T

)
= −iχ(ρ)1/2χ

(
1− ρ− 2πiκ

log T

)1/2

ζ ′(1− ρ)ζ

(
ρ+

2πiκ

log T

)
.

Using the Stirling’s formula approximation

χ(s+ a)χ(1− s+ b) =

(
t

2π

)−a−b(
1 +O

(
1

1 + |t|

))
for t large and a, b uniformly bounded, we have

χ(ρ)1/2χ

(
1− ρ− 2πiκ

log T

)1/2

=

(
γ

2π

)πiκ/log T(
1 +O

(
1

T

))
= eπiκ

(
1 +O((log T )−1)

)
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for γ ∈ (T, 2T ]. Therefore

(27) Σ(κ; η, P ) = −ieπiκ
∑

T<γ≤2T

ζ ′(1− ρ)ζ

(
ρ+

2πiκ

log T

)

× M

(
1− ρ− 2πiη

log T
, P

)
M

(
ρ+

2πiη

log T
, P

)
+O

(
(log T )−1

∑
T<γ≤2T

∣∣∣∣ζ ′(1− ρ)ζ

(
ρ+

2πiκ

log T

)∣∣∣∣ ∣∣∣∣M(
ρ+

2πiη

log T
, P

)∣∣∣∣2).
Using Theorem 4 and Cauchy’s integral formula, we can deduce the bounds∑

T<γ≤2T

∣∣∣∣ζ(ρ+ 2πiκ

log T

)
M

(
ρ+

2πiη

log T
, P

)∣∣∣∣2 ≪ T log T,

∑
T<γ≤2T

∣∣∣∣ζ ′(ρ)M(
ρ+

2πiη

log T
, P

)∣∣∣∣2 ≪ T log3 T,

for any fixed κ, η, and P . Hence, using Cauchy’s inequality and these bounds
to estimate the error term in (27), it follows from Theorem 4 that

Σ(κ; η, P ) = −ieπiκ
∑

T<γ≤2T

ζ ′(1− ρ)ζ

(
ρ+

2πiκ

log T

)

×M

(
1− ρ− 2πiη

log T
, P

)
M

(
ρ+

2πiη

log T
, P

)
+O(T log T )

= −ieπiκ(log T )I(2πiκ, 0, g1, g2, 1,−x) +O(T log T )

with

g1(x) = P (x) exp (−2πiϑη(1− x))

and
g2(x) = P (x) exp (2πiϑη(1− x)).

The choice ϑ = 0.4999, κ = 0.991, η = 0.6, and P (x) = x gives

Σ(0.991; 0.6, x) = (−0.00155 . . .+ o(1))
T log2 T

2π
,

and hence Theorem 2 follows.

Remark. We have not tried to find the smallest admissible value of κ
in the above argument, and instead focussed on finding simple choices of η
and P that yield a value of κ < 1.
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6. Proof of Corollary 1. Let T be large and let ϑ, κ, η, P be chosen as
in the proof of Theorem 2. Then∑

T<γ≤2T

Z ′(γ)Z

(
γ +

2πκ

log T

)∣∣∣∣M(
1

2
+ iγ +

2πiη

log T
, P

)∣∣∣∣2 < 0.

Observe that every negative term in this sum corresponds to a zero with
Z ′(γ)Z

(
γ + 2πκ

log T

)
< 0, however not necessarily every term in this sum is

negative. Moreover, Theorem 4 shows that this sum is ≫ T log2 T in mag-
nitude. Therefore,

T log2 T ≪
∣∣∣∣ ∑
T<γ≤2T

Z ′(γ)Z

(
γ +

2πκ

log T

)∣∣∣∣M(
1

2
+ iγ +

2πiη

log T
, P

)∣∣∣∣2∣∣∣∣
≤

∣∣∣∣ ∑
T<γ≤2T

Z′(γ)Z(γ+ 2πκ
log T

)<0

Z ′(γ)Z

(
γ +

2πκ

log T

)∣∣∣∣M(
1

2
+ iγ +

2πiη

log T
, P

)∣∣∣∣2∣∣∣∣.
Applying Cauchy’s inequality to the latter sum, we deduce that

T 2 log4 T ≤
( ∑

T<γ≤2T
Z′(γ)Z(γ+ 2πκ

log T
)<0

1

)

×
( ∑

T<γ≤2T

Z ′(γ)2Z

(
γ +

2πκ

log T

)2∣∣∣∣M(
1

2
+ iγ +

2πiη

log T
, P

)∣∣∣∣4),
where (by positivity) we have extended the second sum on the right-hand
side to all zeros with T < γ ≤ 2T . By [4] and [6], for T < γ ≤ 2T , we have

Z ′(γ)2Z

(
γ +

2πκ

log T

)2

≪ exp

(
(log 4 + o(1))

log T

log log T

)
.

An upper bound for
∣∣ζ(12 + it

)∣∣ is given in [6], whereas the results in [4]
combined with a standard argument using the functional equation, Stirling’s
formula, and Cauchy’s integral formula can be used to show that a bound
of similar strength holds for

∣∣ζ ′(12 + it
)∣∣ and |Z ′(t)|.

Now for {a(n)} ⊆ C with |a(n)| ≪ nε and x ≤ T 1−ε for ε > 0, it is
known (e.g. using the Landau–Gonek explicit formula [21, Theorem 1] or
contour integration [23, Theorem 5.1]) that∑

0<γ≤T

∣∣∣∣∑
n≤x

a(n)

n1/2+iγ

∣∣∣∣2 ∼ N(T )
∑
n≤x

|a(n)|2

n
− T

π
Re

∑
n≤x

(Λ ∗ a)(n)a(n)
n

as T → ∞. From this, letting d(n) denote the number of divisors of n, it
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follows that∑
T<γ≤2T

∣∣∣∣M(
1

2
+ iγ +

2πiκ

log T
, P

)∣∣∣∣4
≪ T log T

∑
n≤y2

d(n)2

n
+ T

∑
n≤y2

(Λ ∗ d)(n)d(n)
n

≪ T log5 T

for our choice of M(s, P ) and y in the proof of Theorem 2. Hence∑
T<γ≤2T

Z ′(γ)2Z

(
γ +

2πκ

log T

)2∣∣∣∣M(
1

2
+ iγ +

2πiη

log T
, P

)∣∣∣∣4
≪ T exp

(
(log 4 + o(1))

log T

log log T

)
.

Combining these estimates, we conclude that∑
T<γ≤2T

Z′(γ)Z(γ+ 2πκ
log T

)<0

1 ≫ T exp

(
−(log 4 + o(1))

log T

log log T

)
.

In this way, we deduce Corollary 1 from the proof of Theorem 2.
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