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Abstract Precipitation of relativistic electrons into the Earth's atmosphere regulates the outer radiation belt
fluxes and contributes to magnetosphere‐atmosphere coupling. One of the main drivers of such precipitation is
electron scattering by whistler‐mode waves. Such waves typically originate at the equator, where they can
resonate with and scatter sub‐relativistic (tens to a few hundred keV) electrons. However, they can occasionally
propagate far away from the equator along field lines, reaching middle latitudes, where they can resonate with
and scatter relativistic (>500 keV) electrons. Such a propagation is typical for the dayside, but statistically has
not been found on the nightside where the waves are quickly damped along their propagation due to Landau
damping. Here we explore two events of relativistic electron precipitation from low‐altitude observations on the
nightside. Combining measurements of whistler‐mode waves from ground observatories, relativistic electron
precipitation from low‐altitude satellites, total electron content maps from GPS receivers, and magnetic field
and electron flux from equatorial satellites, we show wave ducting by plasma density gradients is the possible
channel that allows the waves to reach middle latitudes and scatter relativistic electrons. We suggest that both
whistler‐mode wave generation and ducting can be driven by equatorial mesoscale (with spatial scales of about
one Earth radius) transient structures during nightside injections. We also compare these nightside events with
observations of ducted waves and relativistic electron precipitation at the dayside, where wave generation and
ducting are driven by ultra‐low‐frequency waves. This study demonstrates the potential importance of
mesoscale transients in relativistic electron precipitation, but does not however unequivocally establish that
ducted whistler‐mode waves are the primary cause of the observed electron precipitation.

1. Introduction
Energetic electron precipitation from the outer radiation belt into the Earth's atmosphere is predominantly driven
by electron resonant interactions with whistler‐mode waves (see reviews by Millan and Thorne (2007), Tsurutani
et al. (2013), Li and Hudson (2019), and Thorne et al. (2021)). The characteristics of precipitation events, such as
the precipitating electron energy, are dictated by the properties of the waves and of the background plasma and
magnetic field. The key characteristic that determines energies of electrons scattered by the most intense, field‐
aligned waves is the latitudinal distribution of wave intensity (Agapitov et al., 2018; Mourenas et al., 2014;
Summers et al., 2007b; D. Wang & Shprits, 2019). At high latitudes, the higher ratio of cyclotron to plasma
frequency increases the electron resonance energy with whistler‐mode waves, so that relativistic electrons
(>500 keV) can be scattered into the loss‐cone even though this is not possible for equatorial electrons (Artemyev
et al., 2021; L. Chen et al., 2022; Miyoshi et al., 2020, 2021; Shumko et al., 2021; Tsai et al., 2022). Present
radiation belt models are empirically parameterized by temporal and spatial averages of wave properties, using
multi‐year spacecraft observations (e.g., Agapitov et al., 2013; Li, Ma, et al., 2015; Malaspina et al., 2017;
Meredith et al., 2012). The use of such averages is justified by the commonly used quasi‐linear diffusion theory,
which describes wave‐particle interactions based on the assumption of a turbulent spectrum of low‐amplitude
waves, for which the average wave intensity is a sufficiently good measure (Andronov & Trakhtengerts, 1964;
Kennel & Engelmann, 1966; Lyons et al., 1972). Transient populations of intense waves that can interact with the
electrons nonlinearly, may be smoothed out in such averages and not represented in empirical wave models.
However, these intense waves are likely responsible for the most intense precipitation events, such as microburst
precipitation (e.g., Breneman et al., 2017; Hikishima et al., 2010; Mozer et al., 2018; O’Brien et al., 2004; Shumko
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et al., 2018; Thorne et al., 2005). Modern models of relativistic microburst precipitation suggest that such a high
rate of electron scattering can be caused by intense waves that are ducted (propagating along magnetic field‐lines)
and propagate to middle latitudes (L. Chen et al., 2020, 2022; Miyoshi et al., 2020). In the absence of wave
ducting, the whistler‐mode waves will usually be damped away from the equator and their intensity at middle/
high latitudes is rather weak, which significantly reduces the resultant relativistic electron losses (L. Chen
et al., 2021).

Ducted whistler‐mode waves are trapped by local plasma density enhancements or depletions (Helliwell, 1965;
Karpman & Kaufman, 1982; Laird & Nunn, 1975; Pasmanik & Trakhtengerts, 2005). An important property of
ducted whistler‐mode waves is their ability to propagate along the field lines away from their equatorial source, to
middle and high latitudes, without experiencing much Landau damping (Bell et al., 2002; Bortnik et al., 2007;
Maxworth & Golkowski, 2017; Watt et al., 2013) and wave divergence (Shklyar et al., 2004; L. Chen et al., 2013).
Therefore, ducted waves may have a high wave intensity at mid‐to‐high latitudes, providing effective scattering
and precipitation of relativistic electrons. The most direct evidence of whistler‐mode wave ducting is their
propagation to the ionosphere and transformation to electromagnetic waves reaching ground‐based VLF (very‐
low frequency) wave receivers (see examples in Manninen et al. (2013), Titova et al. (2015), Martinez‐Calderon
et al. (2015), and Shiokawa et al. (2017)). Previous ground‐based VLF observations (with or without conjugate
wave measurements at the equator) have demonstrated that ducted wave propagation is actually common
(Demekhov et al., 2020; Martinez‐Calderon et al., 2016, 2020; Y. Shen et al., 2021; Titova et al., 2017). Near‐
equatorial measurements (R. Chen et al., 2021; Hosseini et al., 2021; Ke et al., 2021; Streltsov & Bengt-
son, 2020) and numerical simulations (Hanzelka & Santolík, 2019; Inan & Bell, 1977; Streltsov & Goyal, 2021;
Woodroffe & Streltsov, 2013) of whistler‐mode wave propagation around strong plasma density gradients further
reveal parameters of wave ducting and ducted wave characteristics. However, neither ground‐based nor
magnetospheric wave measurements alone can quantify the role of ducted waves in energetic electron scattering
and precipitation. To do so, one needs to combine low‐altitude spacecraft measurements of precipitating electrons
and modeling/observations of ducted waves (e.g., Artemyev et al., 2021; L. Chen et al., 2022).

Because of magnetic mapping uncertainties, however, it is difficult to establish the one‐to‐one correlation be-
tween relativistic electron precipitation at low altitudes and equatorial plasma structures potentially responsible
for whistler‐mode wave ducting. To resolve this issue, in this paper we project low‐altitude precipitation mea-
surements to the ionospheric total electron content (TEC) maps, which can be used to identify magnetospheric
plasma boundaries but do not suffer from as large magnetic mapping uncertainties (Belehaki et al., 2004; Heise
et al., 2002; Lee et al., 2013; Vo & Foster, 2001; Yizengaw & Moldwin, 2005). We analyze in detail three
precipitation events from the Electron Losses and Fields Investigation (ELFIN) CubeSats (Angelopoulos
et al., 2020), in conjunction with ducted whistler‐mode waves at VLF receivers on the ground (Demekhov
et al., 2017; Fedorenko et al., 2014) and TEC maps in the ionosphere. Ground‐based wave measurements support
that the observed precipitation is likely driven by ducted whistler‐mode waves, whereas TEC maps can pinpoint
the location of these precipitation events relative to the equatorial projections of magnetospheric plasma
boundaries. The rest of this paper is arranged as follows: we start with a description of the available data sets in
Section 2, and then analyze the two nighside events (in Sections 3.1 and 3.2), for which the relativistic electron
precipitation cannot be described by the near‐equatorial field‐aligned wave distribution from previous statistics.
In Section 3.3, we analyze two possible explanations of the relativistic, night‐side precipitation events: whistler‐
mode wave ducting or resonances with very oblique waves. Then, we compare the nightside events with one
dayside event that shows relativistic precipitation and ducted whistler‐mode waves (Section 3.4). Finally, in
Section 4, we discuss our findings and summarize our conclusions.

2. Data Sets
We have identified a number of relativistic electron precipitation events at ELFIN (see also Tsai et al. (2023)): out
of the dozen events, we present here three of them that are in good conjunctions with the ground station measuring
waves in the whistler‐mode frequency range. The precipitation burst and ground station was only separated by
≤5° in latitude (longitudinal separation varies from 10° to 40°). This latitudinal/longitudinal separation is within
the spatial scales of ducted whistler‐mode waves, as inferred from equatorial and ground‐based observations, see
Titova et al. (2015), Titova et al. (2017), Demekhov et al. (2017), Martinez‐Calderon et al. (2016, 2020), and
Bezděková et al. (2020). We have marked the locations of the ground station (LOZ) and precipitation bursts in
Figures 2, 8, and 12, respectively. For other events with relativistic electron precipitation, the ground‐based
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observations do not show wave activities either because of a large separation from the ELFIN orbit, or because the
waves do not reach the ionosphere, for example, due to partial ducting up to the middle latitudes (see discussions
in L. Chen et al., 2022; Y. Shen et al., 2021) or due to oblique propagation (see discussion below).

These three relativistic electron precipitation events were observed by the two identical ELFIN CubeSats
(ELFIN‐A and ELFIN‐B) at ∼440 km altitude (Angelopoulos et al., 2020). Their energetic particle detector
measures ∈[50, 6000] keV electron fluxes with energy resolution ΔE/E ∼ 0.4 and pitch‐angle resolution ∼22.5°
(see examples of electron pitch‐angle distributions in, e.g., Mourenas et al., 2021; Angelopoulos et al., 2022).
There is no proton contamination to the ELFIN electron detector (Angelopoulos et al., 2020), and we only keep
those data with >4counts per second at each energy or angular bin. In this study, we define trapped jtrap and
precipitating jprec electron fluxes as those averaged over the pitch‐angles outside and inside the local loss‐cone,
respectively (see details of this data product and examples in Tsai et al. (2022), X.‐J. Zhang et al. (2022), and
Mourenas et al. (2021)).

There are only three well‐known mechanisms for the relativistic electron scattering and precipitation: scattering
due to magnetic field line curvature, resonant scattering by electromagnetic ion cyclotron (EMIC) waves, and
resonant scattering by whistler‐mode waves. The curvature scattering is characterized by the distinguishing
signature of the energy/latitudinal dispersion (see Sergeev et al. (2023) and Wilkins et al. (2023)), which is not
observed during the three selected events, so we can exclude curvature scattering as the potential mechanism for
the observed precipitation. Moreover, these three events are characterized not only by relativistic electron pre-
cipitation (which can alternatively be attributed to electron scattering by electromagnetic ion cyclotron (EMIC)
waves; see Grach et al. (2022) and Capannolo et al. (2023)), but also strong precipitation down to 50 keV, well
below the lowest energy in electron precipitation driven by EMIC waves (An et al., 2022; Capannolo et al., 2021;
Summers & Thorne, 2003). Such a wide energy range of precipitating electrons precludes electron scattering by
EMIC waves as a potential mechanism for the observed precipitation. The only mechanism that can be
responsible for the dispersionless precipitation of 50 keV–1 MeV electrons is then the electron scattering by
whistler‐mode waves (Summers et al., 2007a, 2007b); see similar observations by ELFIN in Tsai et al. (2022), Shi
et al. (2022b), and X.‐J. Zhang et al. (2023). Therefore, we analyze our events by assuming this mechanism as the
main candidate for the observed electron precipitation.

For each event, we analyze ground‐based measurements of electromagnetic waves in the frequency range
1 − 10 kHz from the receiver at Lovozero (LOZ) in north Russia (67.98°N, 35.08°E; LIGRF ∼ 5.54; see Fedorenko
et al. (2014) and Demekhov et al. (2020)). We also use total electron content (TEC) maps provided by MIT
Haystack via the Madrigal database (http://cedar.openmadrigal.org; see Rideout and Coster (2006), Coster
et al. (2013), and Vierinen et al. (2015)). The spatial resolution of the TEC map is 1° × 1°.

During these events, low‐altitude and ground‐based measurements are further supplemented by equatorial
measurements of omnidirectional energetic electron fluxes and background magnetic fields from THEMIS
(Angelopoulos, 2008), MMS (Burch et al., 2016), and GOES 16&17 (see description of these instruments in
Angelopoulos et al. (2008), Blake et al. (2016), Dichter et al. (2015), Boudouridis et al. (2020), Auster
et al. (2008), Russell et al. (2016), and Singer et al. (1996)). For the third event, we also examine <30 keV ion flux
measurements from THEMIS in the Earth's foreshock region (see the instrument description in McFadden
et al. (2008)). To put the ELFIN measurements into the context of ion precipitation, we use ion measurements
from POES/NOAA and MetOp satellites (Evans & Greer, 2004).

3. Event Analysis
3.1. Event #1

The first event, at ∼01:00 UT on 2020‐09‐26, occurs in the beginning of the recovery phase of a moderate storm
(Sym − H ∼ − 60 nT and starts growing), and in the middle of an intense substorm (AE ∼ 800 nT, around the
peak). This complicates the projection of ELFIN orbit to the equatorial plane, especially in the night‐side region
where substorm dynamics may significantly deform the magnetic field line configuration (Sitnov et al., 2019;
Stephens & Sitnov, 2021). Thus, to confirm our speculation about projections of ELFIN observed precipitation
bursts relative to the plasma sheet/inner magnetosphere/plasmasphere boundaries, we use the TEC data set
(which have much lower uncertainties in projecting to ELFIN observations).
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Figures 1a–1c shows an overview of ELFIN A observations during the first event in the post midnight (MLT ∈ [2,
3]) region. Prior to 01:00:20 UT, ELFIN was conjugate to the plasma sheet and measured ≤100 keV isotropic
fluxes with jprec/jtrap ∼ 1. Around 01:00:30 UT, ELFIN crossed the low‐altitude projection of the transition region
between the plasma sheet and the outer radiation belt. This region is characterized by an increase of the minimum
energy of isotropic electron flux ( jprec/jtrap ∼ 1) with decreasing latitude. This so‐called isotropy boundary of
electrons of a given energy (the latitude‐boundary corresponding to flux isotropy at that fixed energy) is due to
electron scattering by the magnetic field line curvature that is only possible at progressively higher energies as the
magnetic field strength and curvature radius increase at lower latitudes (Imhof et al., 1977; Sergeev et al., 1998,
2012). Note that while this dispersion is clearly evident in the second night‐side event in our study, and a rather
common occurrence at midnight (Artemyev, Angelopoulos, et al., 2022; Wilkins et al., 2023), the dispersion is
not very clear in Figure 1, likely because it is latitudinally narrow and cannot be well‐resolved by the 3s spin
period of ELFIN.

After 01:00:40 UT, ELFIN maps to the outer radiation belt, based on its observations of intense fluxes of trapped
electrons and transient bursts of precipitation (as evidenced in the precipitation ratio of precipitating to trapped
fluxes: jprec/jtrap ∈ [0.1, 0.3]) in the energy range <300 keV (during 01:00:40–01:01:10 UT). The precipitation
ratio in these events increases with decreasing energy down to ∼50 keV. We conclude that they are most likely
produced by whistler‐mode wave scattering (see, e.g., Tsai et al., 2022, for examples of simulations of such
precipitation events observed by ELFIN).

To reveal the location of whistler‐mode wave origin, we compare ELFIN observations and the TEC map.
Figure 1e shows the temporal and spatial average of the TEC along the ELFIN orbit. The precipitation burst
(shaded in dark blue) occurs right around the strong TEC gradient. Figure 2 further projects the ELFIN orbit on
the ionospheric map of TEC (precipitation burst is shown by the trick trace along the track). ELFIN was on the
night‐side during this event. The TEC along its track is typical for that longitude: at high magnetic latitudes
(≳60°) the TEC is driven by plasma sheet electron precipitation; at lower magnetic latitudes (≲55°) it is due to the
dense plasmasphere (Weygand et al., 2021; Yizengaw & Moldwin, 2005). A TEC local minimum at intermediate
latitudes is colocated with the mid‐altitude ionospheric trough (MIT, see Aa et al., 2020; Carpenter & Lem-
aire, 2004) which is associated with strong convection electric fields and hot ion precipitation right tailward from
the plasmapause (Heilig et al., 2022; Shinbori et al., 2021). Such 2D TEC pictures therefore provide context for
the relativistic electron precipitation burst seen by ELFIN at around 01:01:20 UT in this equatorward science‐
zone traversal. The burst is observed well before the TEC minimum in the MIT and after ELFIN's entry in the
inner magnetosphere at 01:01:00 UT (based on the TEC enhancement, likely due to plasma sheet electron pre-
cipitation by curvature scattering at the isotropy boundary seen in Figure 1c). At magnetic latitudes corresponding
to the outer radiation belt (equatorward from the plasma sheet latitudes) the TEC map shows an enhancement that
is localized in both longitudes and latitudes. Right at the high‐latitude boundary of this TEC enhancement ELFIN
captured the relativistic electron precipitation. Such a localized TEC enhancement may be driven by electron
precipitation from the plasma sheet injection region (e.g., Lyons et al., 2016; Zou et al., 2011).

Additional support on the localization of electron precipitation burst relative to the plasma sheet injection region
can be derived from comparing ELFIN measurements and NOAA POES/MetOp measurements (Evans &
Greer, 2004) of ion precipitating fluxes: latitudinal location of the transition between isotropic (where
precipitating‐to‐trapped flux ratio is about one) and anisotropic ion fluxes at low altitudes is commonly treated as
the projection of the inner edge of the ion plasma sheet (see, e.g., Dubyagin et al., 2002, 2018; Sergeev et al., 2012,
and references therein), where plasma sheet injections break (e.g., Dubyagin et al., 2011; Sergeev et al., 2011,
2014). Figure 3 shows that the latitudinal range of electron isotropic precipitation (electron plasma sheet) co-
incides at ELFIN and NOAA 15/MetOp 2, which cross night‐side/dawn sector within ±30 min from the ELFIN
crossing. This justifies the comparison of ELFIN and NOAA 15, MetOp 2 measurements: the relativistic electron
precipitation burst is located right equatorward of the ion isotropy boundary (i.e., the inner edge of the ion plasma
sheet as shown in 30–80 keV and 80 − 240 keV proton fluxes), that is, well within the plasma sheet injection
region. Moreover, compared to NOAA 15, MetOp 2 captures much more electron precipitation bursts associated
with whistler‐mode waves (enhancements of electron precipitation fluxes over a broad energy range of >40 keV
with transient precipitation bursts in >130 keV electron fluxes; see discussions of such observations in (Y. Chen
et al., 2014; Li et al., 2013, 2014)) equatorward of the ion isotropy boundary. Latitudinal distribution of >40 keV
electron precipitation is broader at MetOp 2, which also observes >130 keV precipitation bursts at lower latitudes
than NOAA 15. This suggests that between NOAA 15 and MetOp 2 observations (note that ELFIN observations
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Figure 1.
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are closer to MetOp 2 observations in time), there was likely a plasma sheet injection that brings hot anisotropic
electrons into the outer radiation belt and drives whistler‐mode waves and electron precipitation (e.g., Tao
et al., 2011; Ukhorskiy et al., 2022).

Although there are no equatorial spacecraft observations in the same MLT sector as ELFIN, the dusk‐side
equatorial observations suggest that the event #1 occurs right around the time of a plasma injection. Figure 4
shows that MMS, THEMIS, and GOES 16&17 observed several dispersed injections on the dusk flank, at
MLT ∈ [15, 21]. These are likely electron injections that penetrate into the post‐midnight inner magnetosphere
and reach the spacecraft at pre‐midnight, after drifting around the Earth (e.g., Turner et al., 2017). Therefore,
Figures 2–4 support the localization of relativistic electron precipitation within the injection region.

3.2. Event #2

The second event, at ∼01:00 UT on 2020‐09‐04, occurs right after the onset of a moderate substorm (peak
AE < 500 nT and AE ∼ 200 nT during the ELFIN observations). Thus, we may rely on the empirical magnetic
field model (Tsyganenko, 1989; Tsyganenko & Sitnov, 2005) for ELFIN projections to the equatorial plane. We
also verify this projection using the TEC data set.

Figure 1. Overview plot of 3 minutes of data during the first event. Panels (a), (b), and (c) show ELFIN measurements of trapped fluxes, precipitating fluxes, and
precipitating‐to‐trapped flux ratio. Panel (d) shows ELFIN MLT and L‐shell derived using the T89 (Tsyganenko, 1989) magnetic model. Note that this event occurs
during a moderate storm, when T89 model may not be very accurate. We have thus checked that TS04 (Tsyganenko & Sitnov, 2005) model provides L ≈ 5.5 instead of
L ≈ 6 of T89 for the main precipitating burst at 01:01:15 UT. Panel (e) shows TEC along the entire, 5 min long date collection, on this ELFIN science zone crossing of
the auroral zone and radiation belt: the gray swath bounded by two black lines represents the TEC variation within ±2° around the orbit; the light blue vertical shading
marks the time‐interval plotted in panels (a–c), and the dark blue shade denotes the time of the relativistic electron precipitation at ELFIN. Panel (f) shows the spectrum
of VLF wave measurements at the ground‐based station over a much larger, 40 min interval, centered at this ELFIN science zone crossing of interest. Panel (g) shows an
expanded view of the VLF wave measurements during the interval from panel (e).

Figure 2. TEC map and ELFIN orbit for the event from Figure 1. Diamonds and asterisks mark the start and end times of the
trajectories; crosses are 1 min tickmarks; thick trace denotes times of relativistic electron precipitation identified from
Figure 1c. TEC data gaps (due to lack of Global Navigation Satellite System ground receivers) are shown as white. The local
TEC minimum associated with the plasmapause (Heilig et al., 2022; Shinbori et al., 2021) is shown by the white curve.
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Figures 5a–5c shows ELFIN A observations during the second event, which shows similar signatures to the first
one: ELFIN observed a burst of relativistic electron precipitation at ∼01:12:22 UT in the night‐side inner
magnetosphere. The burst occurred in the outer radiation belt (the plasma sheet and the isotropy boundary
marking ELFIN's entry into the outer radiation belt can be clearly seen before 01:12:05 UT and within 01:12:05–
01:12:20 UT, respectively). During the burst, the precipitating electron energy reaches ∼2 MeV.

To put the ELFIN observations of relativistic electron precipitation bursts into the context of the ion plasma sheet,
we compare ELFIN measurements with NOAA 19, 15 data sets that include precipitating ion fluxes. Figure 6
shows that the relativistic electron precipitation burst is observed almost at the ion isotropy boundary (or slightly
equatorward of it), which can be identified from equivalent trapped and precipitating proton fluxes at 30 − 80 keV

Figure 3. Comparison of ELFIN precipitating‐to‐trapped flux ratio from Figure 1 and NOAA 15, MetOp‐2 observations of
precipitating (solid) and trapped (dashed) fluxes of 30 − − 80 keV and 80 − 240 keV protons (blue), >40 keV and >13 keV
electrons (black). Magnetic latitude calculated from T89 (Tsyganenko, 1989) model is shown in the x‐axis. ELFIN, NOAA,
and MetOp MLT and time intervals are marked in the corresponding panels. Approximate locations of electron (IBe) and
proton (IBp) isotropy boundaries are shown by vertical bars; see text for details. Regions of isotropic electron precipitation
(electron plasma sheet (PS)) and ion precipitation (ion plasma sheet) are shown by arrows.
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and 80 − 240 keV. Although NOAA 19, 15 measurements of electron precipitation in the plasma sheet are quite
fluctuating and do not allow us to determine the exact position of electron isotropy boundary, the region around
and equatorward of the ion isotropy boundary is filled by transient precipitation bursts that are likely driven by
whistler‐mode waves (see >40 and >130 keV precipitation bursts mostly seen by NOAA 15). Thus, NOAA 19,
15 and ELFIN measurements consistently indicate that relativistic electron precipitation bursts are within the
plasma injection region, around the equatorial inner edge of the ion plasma sheet. THEMIS and GOES 16 ob-
servations of electron flux increases accompanied by Bz variations around 30 min before ELFIN/NOAA19 orbits
also support that the electron precipitation driven by whistler‐mode waves is likely generated by the newly

Figure 4. From top to bottom: GOES 17, GOES 16, MMS, and THEMIS E measurements of energetic electron fluxes
(reddish traces) and Bz field (blue) during one hour around the first event. The bottom panel shows projections of spacecraft
trajectories onto the (L, MLT ) plane. Subintervals showing electron flux increases and Bz perturbations likely associated with
a plasma injection are shaded in gray.
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Figure 5. Overview plot of the second event. Panels (a), (b), and (c) show ELFIN measurements of trapped fluxes, precipitating fluxes, and precipitating‐to‐trapped flux
ratio. Panel (d) shows ELFIN MLT and L‐shell using the T89 (Tsyganenko, 1989) model. Note that this event occurs during a quiet time, when TS04 (Tsyganenko &
Sitnov, 2005) and T89 models give the same L‐shell for the intense precipitation burst at 01:12:25 UT. Panel (e) shows TEC along the ELFIN orbit: the gray color marks
TEC variation within ±2° around the orbit, the light blue shade marks the interval from panels (a–c), and the dark blue shade marks the time of the relativistic electron
precipitation at ELFIN. Panel (f) shows the spectrum of VLF wave measurements at the ground‐based station. Panel (g) shows the expanded view of the VLF wave
measurements during the interval from panel (e).
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injected, anisotropic electron population (see more discussions in Le Contel et al., 2009; Tao et al., 2011; X.
Zhang et al., 2018).

Figure 8 projects the ELFIN orbit to the TEC map (the relativistic electron precipitation is shown in thick traces
along the track). Prior to 01:12:00 UT both TEC maps and ELFIN observations are consistent with ELFIN being
on plasma sheet field lines (the high TEC is interpreted as due to plasma sheet electron precipitation). The MIT
minimum (and the plasmapause; see Shinbori et al. (2021) and Heilig et al. (2022)) occurred around 01:14:00 UT
(∼60 − 65°). Thus, the relativistic electron precipitation burst is captured by ELFIN between the inner edge of the
plasma sheet and the plasmapause, that is, in the outer radiation belt outside the plasmasphere. Intense whistler‐

Figure 6. Comparison of ELFIN precipitating‐to‐trapped flux ratio from Figure 5 and NOAA 19, NOAA 15 observations of
precipitating (solid) and trapped (dashed) fluxes of 30 − − 80 keV and 80 − 240 keV protons (blue), >40 keV and >13 keV
electrons (black). Magnetic latitude calculated from T89 (Tsyganenko, 1989) model is shown in the x‐axis. ELFIN and
NOAA 15, 19 MLT and time intervals are marked in the corresponding panels. Approximate locations of proton (IBp)
isotropy boundaries are shown by vertical bars; see text for details. Regions of isotropic ion precipitation (ion plasma sheet)
are shown by arrows.
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mode wave activity within the night‐side outer radiation belt are likely associated with the plasma sheet injection.
Indeed, THEMIS and GOES 16 captured injections at ∼01:00 UT (see Figure 7), whereas the TEC around the
ELFIN orbit shows strong variations that are localized in MLT (see Figures 5e and 8). These variations may be
due to the TEC increase as a result of plasma sheet electron precipitation from the injection region. Note that
ELFIN observations are post‐midnight, where injected electrons and the whistler‐mode wave source region can
drift to from the original injection region at pre‐midnight (Tao et al., 2011). This may explain the absence of
strong TEC gradients during this event (in comparison with the first event) potentially associated with ELFIN
directly traversing the injection region.

Figure 7. From top to bottom: GOES 17, GOES 16, and THEMIS E measurements of energetic electron fluxes (reddish
traces) and Bz field (blue) during two hours centered around the second event. The bottom panel shows projections of
spacecraft trajectories onto the (L, MLT ) plane. Subintervals showing electron flux increases and Bz perturbations likely
associated with a plasma injection are shaded in gray.
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3.3. Two Possible Explanations of the Relativistic Electron Precipitation

Both events #1, 2 show precipitation of electrons over a very wide energy range, 50 keV–1 MeV. Let us discuss
two possible mechanisms for such precipitation as observed by ELFIN, in conjunction with wave observations on
the ground.

3.3.1. Event #1

For a fixed whistler‐mode wave frequency and field‐aligned wave propagation, the upper energy limit for electron
precipitation largely depends on the maximum latitudinal extent of the wave intensity. Statistical wave distri-
bution models suggest that in the night‐side inner magnetosphere, whistler‐mode waves are confined below 20° of
magnetic latitude (Agapitov et al., 2013; Meredith et al., 2012), and thus usually scatter <300 keV electrons for
typical wave frequencies (∼0.35 of equatorial electron gyrofrequency) and cold plasma densities from empirical
models (see, e.g., discussion in Artemyev et al., 2021; Artemyev, Zhang, et al., 2022; Tsai et al., 2023). During
event #1 (around 01:01:10–01:01:20 UT on 2020‐09‐26), the electron precipitation up to ∼1 MeV, therefore,
implies a much wider latitudinal distribution than statistical models, if we assume the precipitation to be caused by
field‐aligned whistler‐mode wave scattering. Figure 9 further quantifies this discrepancy, by showing that the
precipitating‐to‐trapped flux ratio at ELFIN (the black curve in Panel (c)) remains high at resonant energies
corresponding to latitudes where field‐aligned whistler‐mode wave power distributions (Agapitov et al., 2018)
exhibit a significant decrease (Panel (b)). One possible explanation of this discrepancy is that wave ducting during
this event enables the waves to propagate to higher latitudes (mid‐latitudes, around ∼30 − 40°) than statistical
models (Panel (a) in Figure 9). Indeed, the ground‐based VLF receiver conjugate to ELFIN did measure waves in
the whistler‐mode frequency range, implying that the waves in our event were able to propagate to higher lati-
tudes, reach the ionosphere and the ground. This is evident in Figure 1f, which shows 40 min of ground‐based
VLF measurements (see also panel (g) with expanded timescale of the VLF wave interval). There is a weak,
but clear signal at f ∈ [1.5, 3]kHz, which corresponds to f/fce ∈ [0.27, 0.55] for the equatorial fce expected at
L ≈ 5.5 (the approximate L‐shell where ELFIN observed the relativistic electron precipitation). Therefore, both
the precipitating energies at ELFIN and VLF measurements on the ground suggest that the strong precipitation
burst at 01:01:10–01:01:20 UT may be associated with ducting of the magnetospheric whistler‐mode waves. Note
that in contrast to the most evidently correlated whistler‐mode wave observations at the equator and on the ground

Figure 8. TEC map and the projected ELFIN orbit for the event from Figure 5. Diamonds and asterisks mark the start and end
times of the trajectories; crosses are 1 min tickmarks; thick trace denotes times of relativistic electron precipitation identified
from Figure 5c. TEC data gaps (due to lack of Global Navigation Satellite System ground receivers) are shown as white. The
local TEC minimum associated with the plasmapause (Heilig et al., 2022; Shinbori et al., 2021) is shown by the white curve.
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(e.g., Demekhov et al., 2020; Martinez‐Calderon et al., 2020; Titova et al., 2017), we do not have measurements
of individual wave elements during this event. Instead, the ground‐based measurements show a significantly
higher wave intensity than the background level over the whistler‐mode frequency range. Moreover, these waves
are clearly right‐hand polarized, with a well‐defined polarization ellipse (not shown). These wave signals at the
ground‐based VLF receiver clearly manifest whistler‐mode waves arriving from the magnetosphere (the ground‐
based VLF transmitters operate at much higher frequencies, have narrowband spectra, and thus cannot contribute
to these signals; see Ma et al., 2017; Meredith et al., 2019; Z. Zhang et al., 2018).

The second possible explanation of the observed [50, 1000] keV electron precipitation is the electron resonant
interaction with very oblique whistler‐mode waves (such an interaction includes high‐order resonances that
significantly increase the scattering efficiency of relativistic electrons, see, e.g. Lorentzen et al., 2001; Mourenas
et al., 2014). Comparison of the precipitation spectra for events conjugate to very oblique waves at the equator
(Gan et al., 2023; X.‐J. Zhang, Artemyev, et al., 2022) and events conjugate to field‐aligned (and most likely
ducted) waves (L. Chen et al., 2022) shows that oblique waves usually provide quite small precipitating‐to‐
trapped flux ratios at >0.5 MeV, which is not the case in our events. However, we cannot fully exclude the
possibility that such oblique waves are responsible for the very effective precipitation of relativistic electrons as
shown in Figure 1. We perform a simple comparison of the expected very oblique and field‐aligned wave
characteristics, as required by the high precipitating‐to‐trapped flux ratio (about one) at 1 MeV. We adopt
analytical models of bounce‐averaged diffusion rates based on the empirical wave model (Agapitov et al., 2018)
for field‐aligned and very oblique waves (Artemyev et al., 2013; Mourenas et al., 2014). Then the diffusion rates
are converted to the precipitating‐to‐trapped flux ratio following equations from Kennel and Petschek (1966).
Figure 9 shows the precipitating‐to‐trapped flux ratio in the space of wave amplitude (normalized to the model
wave intensity) and fpe/fce (plasma frequency to gyrofrequency at the equator) normalized to the ratio derived
from (Sheeley et al., 2001) model. For the event from Figure 1, at L‐shell ≈6, the wave amplitude should be
increased by a factor of × 5 − 10 to provide the observed precipitating‐to‐trapped flux ratio via scattering either by
field‐aligned or very oblique waves for the fpe/fce from (Sheeley et al., 2001) model. However, a lower fpe/fce will
reduce the required wave intensity, to a larger extent for field‐aligned waves. Therefore, Figure 9c demonstrates
that the observed strong precipitation of relativistic electrons requires unusually large wave intensity or low fpe/fce

(note that such a low fpe/fce is associated with substorm activity in the nightside and often correlated with whistler‐
mode wave enhancements, see Agapitov et al., 2019).

As shown in Figures 3 and 4, low‐altitude measurements from POES and near‐equatorial measurements from
THEMIS, GOES, MMS suggest that the relativistic electron precipitation is associated with the plasma sheet
injection. An important characteristic of such injections is the plasma density gradient, usually observed at the
injection front (e.g., Gkioulidou et al., 2015; Liu et al., 2016), which separated hot, rarefied injected plasma from

Figure 9. (a) Minimum electron resonance energy as a function of magnetic latitude and L‐shell using the Sheeley et al. (2001) and Denton et al. (2006) density models
and the Agapitov et al. (2018) wave frequency model. (b) Night‐side wave intensity distribution as a function of latitude from Agapitov et al. (2018). Solid and dashed
curves are profiles for strong and moderate geomagnetic activities, respectively. Both distributions are normalized to the equatorial value, that for strong activity.
(c) Precipitating‐to‐trapped flux ratio (averaged ELFIN data over several spins) as a function of resonant latitude (the latitude where plasma conditions are consistent
with minimum resonance energy for that ratio; based on the energy‐latitude relationship shown in panel (a)), Black curve shows results for the first event (of Figure 1)
and blue curve for the second event (of Figure 5). (d) Contour lines show the fpe/fce ratio, normalized to the one from Sheeley et al. (2001) model, and wave amplitude,
normalized to the value from Agapitov et al. (2018) model, corresponding to different magnitudes of precipitating‐to‐trapped flux ratio (numbers shown on the figure)
for 1 MeV electrons. We show results for two L‐shell values (corresponding to events from Figures 1 and 5, respectively: solid lines for L = 6 and dotted lines for L = 9)
and two whistler modes: field‐aligned waves (black lines) and very oblique waves (white lines); see text for details.
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the dense ambient plasma (e.g., Sergeev et al., 2009; Vasko et al., 2017). This plasma density gradient may duct
intense whistler‐mode waves around plasma injections (e.g., Breuillard et al., 2016; Deng et al., 2010; Le Contel
et al., 2009). Such a combination will greatly enhance relativistic electron scattering at middle latitudes: plasma
injections transport hot, transversely anisotropic electrons, which generate whistler‐mode waves (see Tao
et al. (2011) and X. Zhang et al. (2018)) and the associated plasma density gradient (injection fronts are char-
acterized by strong Hall fields that move ambient plasma ahead of the front and generate cross‐front plasma
gradients, see Sergeev et al. (2009) and Runov et al. (2009, 2011)) may serve as a viable channel to duct whistlers
to middle latitudes. Note that the proposed mechanism cannot be fully supported by observations shown in
Figure 4, because of (a) the large distance (several hours in MLT) between near‐equatorial and ELFIN obser-
vations, (b) the absence of direct measurements of anisotropic electrons around the equatorial projection of
ELFIN. Therefore, this is prospective, but yet to be verified by more fortunate conjunctions between near‐
equatorial, low‐altitude, and ground‐based measurements (see, e.g., Artemyev, Neishtadt, & Angelopou-
los, 2022, for analysis of ELFIN‐THEMIS conjunctions during plasma injections). Moreover, it has been pro-
posed that intense very‐oblique waves (also observed in the radiation belts, see Cully et al., 2008; C. Cattell
et al., 2008; C. A. Cattell et al., 2015; Agapitov et al., 2014) are likely correlated with plasma sheet injections
(Artemyev & Mourenas, 2020; Mourenas et al., 2015), but this remains to be fully verified. Therefore, further
investigations are needed to demonstrate the efficiency of very oblique waves in producing strong, bursty pre-
cipitation of ∼1 MeV electrons with the precipitating‐to‐trapped flux ratio about one.

3.3.2. Event #2

Figure 5 shows a relativistic electron precipitation burst likely produced by electron scattering due to whistler‐
mode waves, because the precipitation extends over a very large energy range, from ∼2 MeV to 50 keV (pre-
cipitation of these energies are well correlated with near‐equatorial whistler‐mode waves, see Y. Chen et al., 2014;
Li et al., 2013, 2014). Relativistic electrons can resonate with field‐aligned whistler‐mode waves if these waves
propagate well above the equator, reaching latitudes at or above 30° (see the blue curve in Figure 9c). Curiously, at
such latitudes, whistler‐mode wave power is rather low at the nightside, according to statistical models of the wave
power distribution (see Figures 9b and Meredith et al. (2012); Agapitov et al. (2018)). Yet the observed precip-
itation at ELFIN is quite intense and transient: there exist flux variations on sub‐spin scales (<3s), which cause the
precipitating‐to‐trapped flux ratio to increase above one due to temporal aliasing or nonlinear effects (see more
examples and explanation of such large flux ratio measurements in X.‐J. Zhang, Angelopoulos, et al., 2022).
Therefore, similar to the first event, we shall consider two possible explanations for the electron precipitation. The
first interpretation suggests that the observed precipitation of 2 MeV electrons, which can resonate with field‐
aligned whistler‐mode waves only at middle latitudes, indicate wave ducting. And indeed, the ground‐based
VLF receiver conjugate to ELFIN during this event confirms that f ∼ 1.5 2.5 kHz whistler‐mode waves reach
the ionosphere (Panels (f,g)). Note that the ELFIN L‐shell derived from (Tsyganenko, 1989) model may not be
accurate, because ELFIN observations are right after a strong substorm injection and dipolarization (see Figure 7
with THEMIS and GOES16&17 observations in the pre‐midnight sector). The measured VLF waves are
significantly higher than the background and have a well‐defined polarization ellipse (not shown). These waves
are likely whistler‐mode waves arriving from the magnetosphere, because waves generated by VLF transmitters
would be observed at much higher frequencies (e.g., Ma et al., 2017; Meredith et al., 2019; Z. Zhang et al., 2018).

Similar to the first event, the low‐altitude measurements from POES and near‐equatorial measurements from
THEMIS, GOES (see Figures 6 and 7) indicate a possible correlation between the relativistic electron precipi-
tation burst and the plasma sheet injection. Therefore, this precipitation burst may be produced by intense, field‐
aligned whistler‐mode waves that are ducted by the plasma density gradient at the injection front and propagate to
middle latitudes (the first possible mechanism). Alternatively, as suggested by the second explanation, the
relativistic electron precipitation burst may be produced by electron scattering due to very oblique whistler‐mode
waves (see Figure 9). There are sufficient observational evidences for either one of these two mechanisms, and
further numerical simulations and theoretical models are needed to either support the field‐aligned wave ducting
or the generation of very oblique waves within the plasma injection region.

3.4. Event #3

The third event, at ∼08:40 UT on 2020‐11‐22, occurs in the middle of a prolonged interval with moderate
geomagnetic activities (Sym − H is around − 30 nT and AE ∈ [300, 600] nT during the entire day) driven by the
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fast solar wind (velocity increases to 500 km/s and dynamical pressure reaches ∼5 nPa at the beginning of the
day). ELFIN observations are around the noon, where solar wind compression likely deforms magnetic field lines
and may provide additional uncertainties for projecting ELFIN observations to the equatorial plane. Thus, to
verify our speculations about the ELFIN location relative to the plasmapause, we use TEC data set.

Figures 10a–10c shows ELFIN A measurements for the third event: ELFIN moved from lower L to higher L, and
observed isotropic electron fluxes at <300 keV after 08:39:00 UT. ELFIN mapped to L > 9 there (using the T96
(Tsyganenko, 1995) magnetic field model), and thus this isotropic precipitation is likely due to dayside plasma
sheet electrons scattered at high L. Although no curvature scattering is expected at the dayside, where the
magnetic field is only weakly curved, transversely anisotropic hot electrons are often seen at the dayside due to
solar wind compression, and such anisotropy can generate intense whistler‐mode waves (Li, Thorne, et al., 2015).
Thus, we can surmise that ELFIN A's observed electron precipitation after 08:39:00 UT was likely driven by

Figure 10. Overview of the third event of a relativistic electron precipitation burst. Panels (a), (b), and (c) show ELFIN measurements of trapped fluxes, precipitating
fluxes, and precipitating‐to‐trapped flux ratio. Panel (d) shows ELFIN MLT and L‐shell using the T89 (Tsyganenko, 1989) model. Panel (e) shows TEC along the
ELFIN orbit: gray shading represents the TEC variation within ±2° around the orbit; light blue vertical shading denotes the time interval plotted in Panels (a–c); dark
blue shading depicts the time of the relativistic electron precipitation burst. Panel (f) depicts the spectrum of VLF wave measurements at the ground‐based station.
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strong whistler‐mode waves at the dayside plasma sheet region (the small equatorial loss‐cone size at L > 9 can
easily result in electron scattering at the strong diffusion and lead to isotropic fluxes, see Kennel (1969)).

Between 08:37:00 UT and 08:39:00 UT, ELFIN maps to the outer radiation belt with high fluxes of trapped
electrons. Within this region ELFIN detected several bursts of electron precipitation. The strongest bursts are
observed at 08:38:00–08:38:15 UT, where precipitating fluxes approach the levels of trapped fluxes over nearly
the entire energy range as evidenced by the flux ratio attaining values near unity (note there are no precipitations
above 700 keV likely because there are no trapped fluxes to be scattered by whistler‐mode waves). Precipitation
bursts before 08:38:00 UT and after 08:38:25 UT are weaker: the precipitating‐to‐trapped flux ratio is high only
up to an upper energy around ∼300 − 400 keV.

The quasi‐periodicity of precipitating electron bursts can be explained by the spatial and temporal periodicity of
whistler‐mode wave sources modulated by dayside compressional ultra‐low‐frequency (ULF) waves (e.g.,
Artemyev et al., 2021; X. J. Zhang et al., 2020; X.‐J. Zhang et al., 2023; Shi et al., 2022a). Indeed, ground‐based
VLF receiver at LOZ detected such periodic waves in the whistler‐mode frequency range (see Figure 10f). At the
VLF receiver, the wave frequency increases with time, that is, the wave frequency increases in the source region
conjugate to the receiver. Taking into account that whistler‐mode waves are usually generated at the equator with
f/fce ∈ [0.2, 0.4] (see the latitudinal distribution of f in Agapitov et al., 2018), the observed wave frequency in-
crease indicates an increase of fce in the conjugate equatorial region. This increase is likely because of the
continuous magnetic field compression by the solar wind with the progressively earthward motion of the whistler‐
mode generation region. During this interval, THEMIS captured quasi‐periodic foreshock transients on the
dayside: magnetic field perturbations and ion spectrum thermalization (see Figure 11). Such transients are known
to drive ULF waves and compression of the magnetosphere (see Hartinger et al., 2013; Hartinger et al., 2014).

Therefore, Figure 10 consistently shows spatially periodic precipitation bursts, likely as a result of periodic
whistler‐mode wave emissions propagating to the ionosphere. For the most intense precipitation burst at
08:38:00–08:38:25 UT, energies of the measured electron precipitation do not require wave ducting. This is
because <700 keV electrons can be scattered by the dayside whistler‐mode waves that typically spread along
magnetic field lines up to 40° latitudes (Agapitov et al., 2013; Meredith et al., 2012). However, the presence of
whistler waves at the conjugate ground‐based VLF receiver demonstrates that wave ducting actually does occur.
Thus we are compelled to consider how such ducting contributes to the most intense precipitation burst. Pro-
jection of this burst to the TEC map (Figure 12) shows that it too coincides with a local minimum of TEC. On this
poleward ELFIN orbit, prior to 08:38:00 UT, the TEC increases toward lower L‐shells, consistent with the
equatorial cold density increase from the plasmasheet to the plasmapause (Sheeley et al., 2001). After 08:38:30
UT, the TEC along the ELFIN orbit slightly increases toward higher L‐shells, likely due to the enhanced electron
precipitation at the plasma sheet (although due to the absence of TEC coverage and a weak plasma sheet pre-
cipitation at the dusk flank, this TEC increase is almost indistinguishable). Therefore, the projection of ELFIN
onto the TEC map shows that the most intense relativistic electron precipitation burst is associated with the
boundary between the plasma sheet (filled by hot, rarefied electrons) and the inner magnetosphere (filled by cold,
dense electrons). The plasma density gradient at this boundary layer are sustained by high‐amplitude, ultra‐low‐
frequency waves, and these gradients may duct whistler‐mode waves, facilitating their propagation to the ground‐
based VLF receiver. Wave ducting provides an almost high wave intensity up to high latitudes, which may explain
the constant precipitating‐to‐trapped flux ratio during this precipitation burst.

4. Discussion and Conclusions
In this study we analyze three events of strong relativistic electron precipitation observed by ELFIN: two on the
night‐side and one on the dayside. The energies of the precipitating electrons range from 50 keV to a 1–2 MeV,
suggesting that these electrons were scattered into the loss‐cone via resonant interactions with whistler‐mode
waves. There are two scenarios for whistler‐mode waves to scatter relativistic electrons: field‐aligned wave
ducting to the middle latitudes (Miyoshi et al., 2020; L. Chen et al., 2022) and near‐equatorial electron scattering
by very oblique waves (Lorentzen et al., 2001).

All three events are associated with ground‐based observations of VLF waves, supporting the first explanation of
whistler‐mode waves ducting. The two night‐side relativistic electron precipitation events map magnetically to
latitudes between the localized TEC minimum at lower latitudes (the MIT region associated with the plasmapause
location (Heilig et al., 2022; Shinbori et al., 2021; Weygand et al., 2021; Yizengaw & Moldwin, 2005)) and the
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TEC enhancement at higher latitudes due to plasma sheet electron precipitation. Combining with ELFIN mea-
surements of the flux anisotropy (precipitating‐to‐trapped flux ratio) around the precipitation bursts, we can
speculate that these bursts occur between the middle of the outer radiation belt (on the lower latitude side) and just
earthward of the inner edge of the plasma sheet (on the higher latitude side). Thus, these precipitation bursts are
observed well outside the plasmasphere, which likely excludes the plasmapause (Inan & Bell, 1977; R. Chen
et al., 2021) as a candidate for wave ducts during these events. As in the two night‐side events, the precipitation
occurred after substorm injections, and this may explain both the generation and ducting of intense whistler‐mode
waves. Injections can transport hot, transversely anisotropic electrons (Fu et al., 2014; Motoba et al., 2020; Tao
et al., 2011) and host wave generation sources (Le Contel et al., 2009; Deng et al., 2010; Breuillard et al., 2016; X.
Zhang et al., 2018), whereas the injection front separates the background dense plasma front the rarefied plasma
from the middle tail reconnection (e.g., Runov et al., 2011, 2015; Sergeev et al., 2009). Density variations across
the front are often ≥50% (Runov et al., 2011), which well exceeds the threshold of density variation for whistler‐
mode wave ducting (e.g., Williams & Streltsov, 2021, and references therein). Therefore, plasma injections that
penetrate into the inner magnetosphere and break there can form a short‐living, spatially localized region for
intense whistler‐mode generation and ducting. This region is seen by ELFIN as a burst of relativistic electron
precipitation. Most plasma sheet injections will break before reaching the geostationary orbit, well before the

Figure 11. THEMIS observations at the foreshock: (a) magnetic field, (b) ion energy spectrum, (c) THEMIS location relative
to the modeled magnetopause (Shue et al., 1997) and bow shock (Wu et al., 2000) locations.
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plasmapause (Dubyagin et al., 2011). This explains why the precipitation burst is projected to a region between
the plasma sheet inner edge and the plasmapause.

The second mechanism is electron scattering by near‐equatorial, very oblique whistler‐mode waves (Artemyev
et al., 2016; Lorentzen et al., 2001; Mourenas et al., 2014). These waves are indeed observed in the outer radiation
belt (Agapitov et al., 2014; Cully et al., 2008; C. Cattell et al., 2008; C. A. Cattell et al., 2015). On the other hand,
case studies of their role in electron precipitation do not show strong ∼1 MeV precipitation (with precipitation‐to‐
trapped flux ratio about one) (Gan et al., 2023; X.‐J. Zhang, Artemyev, et al., 2022), that is, further investigations
are needed to reveal the role of such very oblique waves in losses of relativistic electrons.

The dayside event shows a picture similar to night‐side events: whistler‐mode waves precipitate relativistic
electrons at the outer edge of the inner magnetosphere (the inner edge of the dayside plasma sheet). The ground‐
based observations during this event show a very clear pattern of whistler‐mode wave ducting. However, the
relativistic electron precipitation burst is projected well outside the plasmapause. Therefore, other density gra-
dients than those related to the plasmapause are needed to duct the whistler‐mode waves. Although there are no
plasma sheet injections on the day side, transient magnetopshere compressions can play a similar role in
generating the whistler‐mode waves and density perturbations (as needed for wave ducting). Such compressions
can be produced by foreshock transients (Bentley et al., 2018; X. C. Shen et al., 2015; C.‐P. Wang et al., 2017) and
magnetopause dynamics (Agapitov et al., 2009; Hartinger et al., 2015; Hwang & Sibeck, 2016; Plaschke, 2016).
Propagating into the inner magnetosphere as drifting mirror modes (Pokhotelov et al., 2001, 2003; Rae
et al., 2007; Soto‐Chavez et al., 2019) or standing Alfven waves (Wright & Elsden, 2020), compressional per-
turbations can modulate whistler‐mode wave generation and cold plasma density structures (Li et al., 2011; Xia
et al., 2020; X.‐J. Zhang et al., 2019). Thus, such perturbations may provide sufficient conditions for whistler‐
mode wave ducting and relativistic electron precipitation.

To conclude, we have demonstrated relativistic electron precipitation events that cannot be explained by near‐
equatorial electron scattering due to field‐aligned whistler‐mode waves. Two possible mechanisms for these
relativistic electron precipitation are wave ducting and propagation to the middle latitudes, and near‐equatorial
generation of very oblique waves. The ground‐based measurements of whistler‐mode waves support the wave
ducting explanation. However, projection of ELFIN measurements to TEC maps reveals that if such wave ducting
is associated with the relativistic precipitation events at ELFIN, it should occur well outside the plasmapause.
Night‐side injections and dayside transient compressions are potential candidate mechanisms to explain both

Figure 12. TEC map and the projected ELFIN orbit for the event from Figure 10. Diamonds and asterisks mark the start and
end times of the trajectories; crosses are 1 min tickmarks; thick trace denotes times of relativistic electron precipitation
identified from Figure 10c.
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whistler‐mode wave generation and the density gradients as needed for wave ducting. Further statistical inves-
tigation of relativistic electron precipitation observed by ELFIN together with TEC maps will reveal how often
such precipitation events are observed outside the plasmapause and inside the inner edge of the plasma sheet. Note
our data set includes only three events because the requirement of ground‐based VLF measurements in
conjunction with ELFIN observations is quite strict. However, these events are not unique from the point of view
of ELFIN and equatorial measurements, and thus can be considered as representative of the subset of observed
relativistic electron precipitation patterns. Note while we find ducted whistler mode waves as a reasonable
explanation to explain the observed electron precipitation, our study falls short of categorically establishing
ducting as the primary agent producing the precipitation.

Data Availability Statement
ELFIN data is available at https://data.elfin.ucla.edu/, THEMIS data is available at http://themis.ssl.berkeley.edu.
MMS data is available at https://lasp.colorado.edu/mms/sdc/public/about/browse‐wrapper/. GOES data is
available at https://satdat.ngdc.noaa.gov/sem/goes/data/science/. POES data is available at https://www.ngdc.
noaa.gov/stp/satellite/poes/index.html. Data access and processing was done using SPEDAS V3.1, see Ange-
lopoulos et al. (2019). Data of ground‐based VLF receivers is available at http://aurora.pgia.ru:8071/.
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