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Abstract Energetic electron losses by pitch‐angle scattering and precipitation to the atmosphere from the
radiation belts are controlled, to a great extent, by resonant wave particle interactions with whistler‐mode waves.
The efficacy of such precipitation is primarily modulated by wave intensity, although its relative importance,
compared to other wave and plasma parameters, remains unclear. Precipitation spectra from the low‐altitude,
polar‐orbiting ELFIN mission have previously been demonstrated to be consistent with energetic precipitation
modeling derived from empirical models of field‐aligned wave power across a wide swath of local‐time sectors.
However, such modeling could not explain the intense, relativistic electron precipitation observed on the
nightside. Therefore, this study aims to additionally consider the contributions of three modifications—wave
obliquity, frequency spectrum, and local plasma density—to explain this discrepancy on the nightside. By
incorporating these effects into both test particle simulations and quasi‐linear diffusion modeling, we find that
realistic implementations of each individual modification result in only slight changes to the electron
precipitation spectrum. However, these modifications, when combined, enable more accurate modeling of
ELFIN‐observed spectra. In particular, a significant reduction in plasma density enables lower frequency waves,
oblique, or even quasi field‐aligned waves to resonate with near ∼1 MeV electrons closer to the equator. We
demonstrate that the levels of modification required to accurately reproduce the nightside spectra of whistler‐
mode wave‐driven relativistic electron precipitation match empirical expectations and should therefore be
included in future radiation belt modeling.

Plain Language Summary Whistler‐mode waves are a type of electromagnetic wave that mediate
electron dynamics in Earth's radiation belts and are simultaneously important for energizing electrons and
driving loss mechanisms. Most radiation belt models today do not adequately capture the effects of these waves
on relativistic electrons, which are important to study because these energetic electrons are often called “Killer
Electrons” for their ability to degrade spacecraft electronics. Additionally, when lost into Earth's atmosphere,
these electrons can also change atmospheric chemistry and ionospheric properties, making them important input
parameters for atmospheric, ionospheric, and magnetospheric modeling. This study uses two different modeling
methods to determine which properties of whistler‐mode waves are most important for accurately capturing
these wave‐particle interactions on the nightside, where plasma interactions are more dynamic. The results agree
well with statistical results from the Electron Losses and Fields INvestigation mission, allowing us to fully
explain the mechanisms behind whistler‐mode wave‐driven electron losses on the nightside.

1. Introduction
Earth's inner magnetosphere is filled with energetic electrons injected from the plasma sheet, that are then further
accelerated via resonant interactions with electromagnetic whistler‐mode (chorus) waves (Millan & Baker, 2012;
Shprits et al., 2008). These wave‐particle interactions are, in great part, also responsible for energetic electron
pitch‐angle scattering into the loss cone and subsequent electron loss through precipitation into the Earth's at-
mosphere (Chen et al., 2023; Gao et al., 2023; Millan & Thorne, 2007; Shprits et al., 2008). This contribution to
both acceleration and pitch‐angle scattering of energetic electrons makes the whistler‐mode wave a crucial
element of outer radiation belt dynamics (Bortnik & Thorne, 2007; Li & Hudson, 2019; Thorne, 2010). Not only
do energetic radiation belt electrons serve as an important space weather proxy (Horne et al., 2013), relativistic
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electrons can also penetrate deep into the thermosphere/mesosphere (Xu et al., 2020) contributing to ozone
depletion (Lam et al., 2010; Thorne, 1980; Turunen et al., 2016). Understanding the mechanisms behind the
global distribution of energetic electron losses are therefore important for studying radiation belt dynamics and
atmospheric chemistry.

Energetic (≳100 keV) electron losses due to whistler‐mode waves is one such topic that has yet to be fully
investigated. It is known that these waves can scatter electrons up to 1 MeV (Blake & O’Brien, 2016; Breneman
et al., 2017; O’Brien et al., 2004; Shumko et al., 2018; Thorne et al., 2005), which is problematic because current
radiation belt models typically only incorporate diffusive losses of sub‐relativistic electrons (up to ∼500 keV).
Additionally, previous research (Tsai et al., 2023) has revealed a day‐night difference in energetic electrons
scattered by whistler‐mode waves, with more intense electron precipitation on the dayside than on the nightside.
This is attributed to two system‐level properties—(a) nightside regions generally have a lower plasma density and
(b) nightside wave activity is generally more confined to the equatorial plane (Agapitov et al., 2013; Meredith
et al., 2001, 2003)—which both cause strong resonant wave particle interactions to preferentially occur on the
dayside, resulting in more extreme energetic electron losses (e.g., Aryan et al., 2020; Mourenas, Artemyev,
Agapitov, & Krasnoselskikh, 2014; Thorne et al., 2005; Wang & Shprits, 2019). This is supported by Tsai
et al. (2023), which used modeled electron precipitation spectra derived from statistically averaged wave intensity
distributions from Agapitov et al. (2018) to directly compare with statistical observations of precipitating electron
fluxes from ELFIN (Angelopoulos et al., 2020). Although these model‐data comparisons showed good agreement
between electron precipitation and wave power in the dusk and daysides, ELFIN‐measured nightside relativistic
(≳500 keV) precipitating flux rates were substantially larger than anticipated (i.e., modeled) and nearly com-
parable to those on the dayside. Understanding mechanisms that can cause such intense energetic precipitation is a
prerequisite for accurately modeling electron loss in the radiation belts, therefore motivating the need to explore
what key factors actually determine nightside electron losses.

There are a few prime candidates that determine the efficiency of wave‐particle resonant interactions (and,
particularly, the energy dependence of whistler‐mode wave driven electron scattering):

1. Wave intensity distribution along magnetic field lines (see discussion in Thorne et al., 2005; Wang &
Shprits, 2019).

2. Obliquity of wave propagation relative to the background magnetic field, that is, the angle between the wave
vector and the background magnetic field (see discussion in Artemyev et al., 2016; Lorentzen et al., 2001;
Mourenas, Artemyev, Agapitov, & Krasnoselskikh, 2014).

3. Wave frequency spectrum and its variation along magnetic field lines (see discussion in Agapitov et al., 2018)
4. Equatorial plasma density magnitude (see discussion in Agapitov et al., 2019; Allison & Shprits, 2020; Thorne

et al., 2013) and its variation along magnetic field lines (see discussion in Artemyev et al., 2013; Summers &
Ni, 2008).

Having already examined the importance of wave amplitude in Tsai et al. (2023), we now study the remaining
three mechanisms that could potentially modulate nightside electron precipitating spectra. First, intense nightside
whistler‐mode waves are typically associated with strong plasma sheet injections (Fu et al., 2014; Tao et al., 2011;
X. Zhang et al., 2018) which are often accompanied by an enhanced convection electric field that transports cold
plasma Earthward, thereby decreasing equatorial plasma density (Agapitov et al., 2019; Vasko, Agapitov, Mozer,
Bonnell, et al., 2017). A lower plasma density results in a lower plasma frequency; a lower plasma frequency to
gyrofrequency ratio, fpe/fce, yields a higher cyclotron resonance energy ER ∝ (fce/ fpe)

2 to fce/fpe (from low to high
energy) of electrons for given wave frequencies, wave normal angles, and electron pitch angles (Allison
et al., 2021; Li, Thorne, Nishimura, et al., 2010; Stix, 1962; Summers et al., 2007). This nightside localized
density reduction can thus potentially increase the scattering rate of relativistic electrons.

Second, statistical observations have shown a clear trend in which the average wave frequency decreases with
latitude along field lines (i.e., increasing distance from the equatorial plane) (Agapitov et al., 2018). This is likely
caused by preferential Landau damping of higher‐frequency waves resonating with suprathermal electrons (L.
Chen et al., 2013; Maxworth & Golkowski, 2017; Watt et al., 2013). A lower normalized wave frequency f/fce

means a higher cyclotron resonance energy ER ∝ (fce/ f ) (1 − f / fce)
3 to (fce/ f )

1/ 2
(1 − f / fce)

3/ 2 from low to high
energy (Li, Thorne, Nishimura, et al., 2010; Mourenas et al., 2012). Thus, this reduction in the mean wave
frequency in the nightside off‐equatorial region may also increase the scattering rate of relativistic electrons.
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Third, plasma injections are often associated with enhanced electrostatic turbulence (Agapitov, Krasnoselskikh,
et al., 2015; Malaspina et al., 2018; Mozer et al., 2015; Vasko, Agapitov, Mozer, Artemyev, et al., 2017) that
forms a plateau in the field‐aligned velocity distribution and significantly reduces Landau damping of oblique
whistler‐mode waves (see discussion in Artemyev & Mourenas, 2020; Ma et al., 2017; Mourenas et al., 2015). In
this regime, oblique (with wave normal angles θ (the angle between the wave vector and the background magnetic
field) below the Gendrin angle θG ≈ acos(2f/fce)) and very oblique (with wave normal angle up to the resonant
cone angle θr ≈ acos( f/fce)) waves may survive Landau damping (see R. Chen et al., 2019; Ke et al., 2022; Min
et al., 2014; Sauer et al., 2020). These waves then become oblique off the equatorial plane (Bortnik et al., 2007; L.
Chen et al., 2013), or, in more unusual cases, are generated within the equatorial source region (Agapitov
et al., 2016; Artemyev et al., 2016; Li, Mourenas, et al., 2016). Wave obliquity not only increases the resonant
interaction energy with electrons as ER ∝ 1/ k‖2 ∝ (fce cos θ − f )/ (f cos2 θ) , where k‖ is the wave number par-
allel to the background magnetic field (e.g., Mourenas et al., 2015; Verkhoglyadova et al., 2010), but also allows
for interactions with electrons at higher‐order cyclotron resonances ω + nΩce = k‖v‖ with |n| ≫ 1, n the resonance
order, and v‖ the electron velocity parallel to the background magnetic field (e.g., Albert, 2017; Artemyev
et al., 2013; Mourenas et al., 2012; Shklyar & Matsumoto, 2009), which can drastically increase the resonance
energy ER ∝ n2 (e.g., Gan, Artemyev, et al., 2023; Lorentzen et al., 2001). Thus, nightside whistler‐mode wave
obliquity could also potentially increase the scattering rate of relativistic electrons.

Here, we examine each of these three mechanisms to see whether they can explain the enhanced precipitation of
relativistic electrons in the nightside MLT sector using a combination of statistics from ELFIN observations
(Angelopoulos et al., 2020), test particle simulations (Tsai et al., 2022, 2023), and quasi‐linear diffusion code
(Ma et al., 2012, 2015). This paper is organized as follows: Section 2 details ELFIN observations/statistics and
presents observational evidence of intense nightside precipitation of relativistic electrons; Section 3 describes
the basics of the test particle simulation and quasi‐linear diffusion codes; Section 4 compares ELFIN data to
results from a variety of runs exploring the three main modifications: reduced plasma density, wave obliquity,
and wave frequency variation along magnetic field lines; finally, Section 5 summarizes and discusses the
obtained results.

2. Data Sets
The ELFIN CubeSats (ELFIN A and B) are identically equipped with an Energetic Particle Detector for Electrons
(EPDE), capable of measuring energy and pitch‐angle distributions of energetic electrons with ΔE/E = 40%
across 16 logarithmically spaced energy channels between 50 keV and 5 MeV (Angelopoulos et al., 2020).
Spinning at just over 21 revolutions per minute (spin period ≈2.8 s), ELFIN's 16 sectors per spin yields a spin
phase resolution of Δα = 22.5°. The main data product used in this study is the precipitating‐to‐trapped flux ratio,
jprec/jtrap(E), where jtrap(E) is the locally trapped (outside of the local bounce loss‐cone) electron flux and jprec(E)
is the flux integrated over the local loss‐cone with a correction to remove backscattered fluxes from the opposite
hemisphere (see details in Angelopoulos et al., 2023; Mourenas et al., 2021). Figure 1 shows two typical examples
of ELFIN outer radiation belt crossings on the nightside with jtrap(E) (a, d) and jprec/jtrap (b, e) distributions.

This study utilized 30 months (January 2020–June 2022) of ELFIN's jtrap(E) and jprec(E) measurements during
strong and bursty energetic electron precipitation events (for details regarding statistical coverage, see Figure 5
in Tsai et al., 2023). In order to obtain a statistical representation of whistler‐mode‐driven electron precipi-
tation, data was selected based on data quality (minimum 4 counts/second for any given energy or pitch angle
bin) and precipitation intensity ( jprec(E)/jtrap(E) > 0.5 at ELFIN's lowest energy bin of 63 keV). In addition,
there were provisions to identify and remove electron precipitation events driven by field‐line curvature
scattering, EMIC‐driven precipitation, and microbursts. Curvature scattering (Büchner & Zelenyi, 1989; Imhof
et al., 1977; Sergeev et al., 1983) of plasma sheet and radiation belt electrons can be identified by its sharp
energy/latitude dispersion (isotropy boundary) that results in high precipitating‐to‐trapped flux ratio at rela-
tivistic energies closer to the planet (see the IB precipitating pattern in Figure 1b and statistical results in
Wilkins et al. (2023)). Such data, in addition to the isotropic precipitation with jprec/jtrap ∼ 1 of <300 keV
electrons poleward from the isotropy boundary (Artemyev, Angelopoulos, et al., 2022), are removed from our
statistics. Next, electromagnetic ion cyclotron (EMIC) waves, which are caused by nightside ion injections (Jun
et al., 2019; Kim et al., 2021) and efficiently scatter and precipitate relativistic electrons (e.g., Blum, Halford,
et al., 2015; Blum, Li, & Denton, 2015; Capannolo et al., 2019, 2023; Chen et al., 2023; Yahnin et al., 2016,
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2017), are excluded. These EMIC‐driven observations are identified by precipitating‐to‐trapped ratios that
reach their peak at ≥500 keV energy (see examples in X. An et al., 2022; Angelopoulos et al., 2023; Capannolo
et al., 2023; Grach et al., 2022). Additionally, whistler‐mode hiss waves provide a wide energy range of
scattering, from weak scattering further from the plasmasphere to precipitation of relativistic electrons within
the plasmasphere (see discussion of ELFIN observations of such precipitation in Angelopoulos et al., 2023;
Mourenas et al., 2021; X.‐C. Shen et al., 2023); these hiss precipitation events are also eliminated. Figure 1e
shows this particular pattern, which is recognizable by a low jprec/jtrap ratio peaking at ≥500 keV energy at low
L‐shells. Finally, we exclude all precipitation patterns showing microburst‐like flux variation within one spin
(such events are characterized by precipitating‐to‐trapped flux ratio exceeding one for relativistic electron
energies, see X.‐J. Zhang et al., 2022, for further examples).

All these effects are programmatically eliminated from statistics, leaving us with only one type of precipitating
energy distribution: a precipitating‐to‐trapped ratio monotonically decreasing with energy, observed primarily
within L‐shells ∈ [4, 8], corresponding to the outer radiation belt outside the plasmasphere (e.g., Mourenas
et al., 2021). This type of precipitation can only be caused by whistler‐mode waves (see more details and ex-
amples in Tsai et al., 2022; X.‐J. Zhang et al., 2022, 2023), and is demonstrated in Figures 1b–1e.

We combined all ELFIN observations from the nightside MLT sector (27,950 spins across 4,458 radiation belt
crossings) and plotted the averaged precipitating‐to‐trapped flux spectra for three geomagnetic activity levels and
two L‐shell domains (4.5 − 5.5 and 5.5 − 7.5) for AE ∈ [100, 300] nT in Figure 2d. Figures 2a–2c show that the
precipitating‐to‐trapped electron flux ratio jprec/jtrap above 100 keV increases significantly as AE increases. The
precipitating‐to‐trapped flux ratio reaches jprec/jtrap ∼ 0.1 up to 200–400 keV when AE > 300 nT. This result is
consistent with past observations of stronger energetic electron injections from the plasma sheet during periods of
higher AE (Gabrielse et al., 2014; Runov et al., 2015; Tao et al., 2011), leading to even more intense whistler‐
mode waves (Meredith et al., 2001; X. J. Zhang et al., 2018) which can efficiently precipitate 50–500 keV
electrons (Agapitov et al., 2018; Aryan et al., 2020; Summers et al., 2004; Thorne et al., 2005). The ratio jprec/jtrap

is also higher at L = 5.5–7.5 than at L = 4.5–5.5 in Figure 2, in agreement with the higher chorus wave power at
higher L > 5.0–5.5 in the night sector in spacecraft statistics (Agapitov et al., 2018; Meredith et al., 2020). The
smooth decrease of jprec/jtrap as electron energy increases in Figure 2d is consistent with the well‐known decrease
of chorus wave‐driven quasi‐linear diffusion coefficients as electron energy increases (Aryan et al., 2020;
Mourenas, Artemyev, Agapitov, & Krasnoselskikh, 2014; Thorne et al., 2010) for a fixed wave power at
cyclotron resonance near the loss‐cone. The latitudinal increase of cyclotron resonance as energy increases leads
to further reduced electron diffusion coefficients and precipitating fluxes at higher energy in the presence of a
decreasing chorus wave power toward higher latitudes (Agapitov et al., 2018; Meredith et al., 2020).

Figure 1. Two examples of ELFIN observations with strong precipitation of energetic electrons in the nightside MLT sector
showing locally trapped electron fluxes (a, d), precipitating‐to‐trapped flux ratio (b, e), and ELFIN's MLT, L‐shell
coordinates from Tsyganenko (1989) model (c, f).
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3. Simulation
Calculating the precipitating‐to‐trapped flux ratios is useful because it eliminates the trapped flux variability
(which can vary by orders of magnitude). The slope of the ratio's energy spectra now represents only the relative
effects of resonant interactions with whistler‐mode waves. To then compare with ELFIN statistics, we obtain
modeled precipitating‐to‐trapped flux ratios using two different types of simulations: (a) a configurable large‐
ensemble test particle simulation for electron resonant interactions, as used in previous work (Tsai
et al., 2022, 2023), and (b) a quasi‐linear diffusion code which has been used in previous radiation belt simulations
(Ma et al., 2012, 2015). The test particle simulations include potential non‐linear resonant effects and consider
only purely monochromatic waves, whereas the quasi‐linear diffusion code models electron scattering by an
ensemble of oblique waves with higher order resonant interactions across a distribution of frequencies. Thus, by
comparing the results obtained by these two approaches, we can fully capture the importance of different resonant
effects for electron scattering and losses.

3.1. Test Particle Simulation

Our test particle simulation (Tsai et al., 2022, 2023) is designed to compute the expected energy distribution of the
electron precipitation flux ratio given realistic wave parameters. In order to obtain enough statistics—especially at
higher energies where it is less likely for electrons to be scattered into the loss cone—we use a large number of
particles for all test particle simulations in this study with N = 5 × 106. For this to run in a reasonable amount of
time, we parallelize the code and implement it in Julia 1.9.3 (Bezanson et al., 2017) using the differential
equations package (Rackauckas & Nie, 2017). The Hamiltonian formulation for wave‐particle resonant in-
teractions (Albert et al., 2013; Vainchtein et al., 2018) incorporates nonlinear effects such as phase bunching,
phase trapping, and anomalous trapping (Albert et al., 2021; Bortnik et al., 2008; Demekhov et al., 2006; Katoh
et al., 2008; Kitahara & Katoh, 2019; Omura et al., 2007). The simulation uses monochromatic waves, which is
generally valid for describing diffusive scattering in a background dipolar magnetic field due to its strong
magnetic field gradient (Albert, 2001, 2010; Shklyar, 2021). Critically, the wave field is modified by the function
Bw(λ, L, MLT, Kp) which describes the wave amplitude variation along magnetic field lines using an empirical
chorus wave model built using 14 years of Cluster and Van Allen Probe statistics. The wave model depends on
latitude, geographic location, and geomagnetic activity (see model and coefficients in Agapitov et al., 2018),
which is necessary for realistic modeling of energetic electron losses. Further details of the test particle simulation
implementation can be found in Tsai et al. (2022, 2023). The peak wave amplitude is normalized to 100 pT, and
the same peak amplitude is used for the quasi‐linear diffusion code (see below).

Figure 2. Plots (a–c) show the statistical distributions of precipitating‐to‐trapped electron spectra in (MLT, energy) space for several levels of geomagnetic activity. Plots
(d) show energy profiles of precipitating‐to‐trapped fluxes for three geomagnetic activity levels in the nightside MLT ∈ [18, 4]. The shaded blue range regions represent
the upper (AE > 300 nT) and lower (AE < 100 nT) bounds of geomagnetic activity levels while the central black curve depicts AE ∈ [100, 300] nT.
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In this study, we have further augmented the test particle simulation to explore the latitudinal dependence of wave
frequency and obliquity so that wave frequency ω(λ, θ) is a function of both latitude and wave normal angle.
Changing into dimensionless variables allows us to provide a mean normalized wave frequency ωm(λ) = ω(λ)/Ωce,

eq and mean wave normal angle θ(λ) both as functions of magnetic latitude λ (as described in Section 3.3). With
dimensionless variables, the normalized plasma frequency is defined as Ωpe = ωpe,eq/Ωce,eq.

3.2. Quasi‐Linear Diffusion Code

To instill further confidence in test particle simulation results, we calculate the quasi‐linear diffusion coefficients
using the Full Diffusion Code (Ma et al., 2018; Ni et al., 2008, 2011; Shprits & Ni, 2009) and model the
precipitating electron flux using the Fokker‐Planck diffusion code (Ma et al., 2012, 2015). This quasi‐linear
diffusion code physically differs from the test particle simulations primarily in the fact that it prescribes
Gaussian distributions for the wave frequency (Glauert & Horne, 2005):

B̂2
(ω) ∼ exp[−

(ω − ωm(λ))
2

δω2 ]

and the wave normal angle:

g(θ) ∼ exp[−
( tan θ − tanθm(λ))

2

( tan δθ)
2 ]

where mean values ωm and θm with bandwidths δω and δθ represent wave frequency and normal angle,
respectively. These distributions are provided relative to mean values, ωm(λ) and θm(λ), which are given as
functions of magnetic latitude λ and discussed in the next section (see details in Artemyev et al., 2013; Agapitov
et al., 2018; Aryan et al., 2020).

We use the bounce‐averaged Fokker‐Planck equation to model the electron precipitation rate (Glauert &
Horne, 2005; Lyons et al., 1972):

∂f
∂t

=
1

τb (αeq) sin 2αeq

∂
∂αeq

(τb (αeq) sin 2αeq (〈Dαα〉
∂f

∂αeq
)) −

f
τloss

(1)

where αeq is the equatorial pitch angle, τb ≈ 1.38 − 0.32(sinαeq + sin2αeq) (see Orlova & Shprits, 2011), 〈Dαα〉

is the bounce‐averaged diffusion rate, and τloss(t) is the bounce loss time (and is set to be a quarter of the bounce
period inside the local loss‐cone and infinity outside the loss cone). We use the quasi‐linear diffusion code to

numerically solve Equation 1, with diffusion rates derived from B̂2
(ω) and g(θ) distributions (see Ma et al., 2015,

2018; Ni et al., 2008; Ni et al., 2011). Zero‐gradient boundary conditions in pitch angle are set to simulate the loss
cone filling of electrons due to wave scattering (Ma et al., 2022).

3.3. Frequency and Obliquity Models

In both simulations, we use the following two models to compare the effects of whistler‐mode wave frequency
(normalized to the equatorial gyrofrequency) at peak wave power ωm = ω/Ωce,eq:

Model 1: normalized wave frequency at peak wave power held constant at ωm = 0.35, the typical frequency
of whistler mode chorus waves near the equator (Agapitov et al., 2018).

Model 2: normalized wave frequency at peak wave power ω(λ) linearly decreasing from 0.41Ωce,eq at the
equator until reaching a constant 0.16Ωce,eq for λ ≥ 20°. This model is based on statistics of off‐equatorial
parallel and oblique lower‐band chorus waves from the Van Allen Probes (Agapitov et al., 2018).

We use the following four models to describe the mean wave normal angle (WNA) θm. A scaling factor Θ(λ) = λ/
(15° + λ) is adopted to modify the WNA increase from 0 at the equator to Θ(45°) = 0.75 at 45° latitude in WNA1
and WNA2.
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FAW: a field‐aligned wave model (with purely parallel waves with θ = 0° in test particle simulations and
quasi‐parallel waves with θm = 0°, δθ = 30° or δθ = 5° in the quasi‐linear diffusion code) that describes
the most intense population of waves (Agapitov et al., 2013; Li, Santolik, et al., 2016) as they remain
field‐aligned off equator due to wave ducting by small‐scale density structures (Hanzelka & Santo-
lík, 2019; Hosseini et al., 2021; Ke et al., 2021; Y. Shen et al., 2021).

WNA1: a moderately oblique WNA model with θ1(λ) = θG(λ) ⋅Θ(λ), where θG = arccos(2ω/Ωce) is the
Gendrin angle (Gendrin, 1961). This model describes field‐aligned waves that are generated at the
equator, but become mildly oblique as they propagate through the inhomogeneous plasma (e.g.,
Breuillard et al., 2012; L. Chen et al., 2013; Ke et al., 2017).

WNA2: a very oblique WNA model with θ2(λ) = θr(λ) ⋅Θ(λ), where θr = arccos(ω/Ωce) is the resonance
cone angle. This describes field‐aligned waves that are generated at the equator, but become very oblique
as they propagate through the inhomogeneous plasma in the case of suppressed Landau damping (see
discussion in Artemyev & Mourenas, 2020).

WNA3: an extremely oblique WNA model with θ3(λ) = θr(λ) − 2°. This model describes very oblique waves
that are generated in the equatorial source region in the presence of field‐aligned electron streams that
suppress Landau damping (R. Chen et al., 2019; Kong et al., 2021; Li, Mourenas, et al., 2016; Mourenas
et al., 2015).

The quasi‐linear simulations also require a bandwidth parameter which sets the width of the wave frequency and
normal angle Gaussian distributions, defined in Section 3.2. Frequency bandwidth δω is set to 0.125, and the
lower and upper cutoff frequencies are set to be ωm − 2δω and 0.5, respectively. Wave normal angle bandwidth is
set to either δθ = 5° or δθ = 30° for the parallel or quasi‐parallel FAW model, and δθ = 10° for the other models; if
θr(λ) − θm(λ) < 20°, we set δθ = (θr(λ) − θm(λ))/2. The lower (θLC) and upper (θUC) cutoff wave normal angles are
set as tan θLC = max(0, tan θm − 2 tan δθ) and tan θUC = min(tan 89.9°, tan θm + 2 tan δθ), respectively.

Finally, the magnetic wave power distribution B2
w(λ) is taken from an empirical statistical model (Agapitov

et al., 2018) at 23 MLT and L = 6 for Kp = 3. Note that we use Kp = 3 as a reasonable estimate of the average
geomagnetic activity level for ELFIN observations of electron precipitation driven by resonance with whistler‐
mode waves (see Tsai et al., 2023, for further discussion). For quiet conditions Kp ≤ 2, the wave intensity
provides insufficient levels of precipitating electron fluxes, which is generally corroborated by the extremely low
levels (i.e., near background) of precipitating fluxes ELFIN observes during quiet periods. During disturbed storm
times (Kp > 4), the precipitating and locally trapped fluxes are occasionally too large and approach saturation of
ELFIN's EPDE instrument (see details in X.‐J. Zhang et al., 2022). Both types of ELFIN observations (either
background‐level precipitation or nearly saturated measurements) are excluded from the statistical analysis.

4. Data‐Model Comparison
In this section, the precipitating‐to‐trapped electron flux ratio jprec/jtrap, calculated through test particle simula-
tions (TPS) or Quasi‐Linear Diffusion Code (QLDC), are compared with jprec/jtrap as measured by ELFIN. This
allows us to assess the different roles potentially played by plasma density, wave obliquity, and wave frequency
based on precipitating flux ratio variation with energy.

For proper comparison, the simulated jprec/jtrap flux ratio is normalized to the observed jprec/jtrap flux ratio at
ELFIN's second energy bin (∼97 keV), thereby removing wave amplitude variability such that the spectral slope
can be compared for across various scenarios. This is valid because the ∼30–100 keV precipitating‐to‐trapped
electron flux ratio correlates well with the equatorial wave amplitude (Li et al., 2013; Ni et al., 2014). In addi-
tion, spurious variations in jprec/jtrap modeled using our test particle simulations tend to become larger below
97 keV, despite the large number of particle runs per energy bin. These oscillations are absent from results of the
quasi‐linear diffusion code and correlate well with test particle simulation results above 97 keV after
normalization.

4.1. Role of Plasma Density

Figure 3a shows a comparison between the precipitating‐to‐trapped electron flux ratio jprec/jtrap measured by
ELFIN at L > 5 and 18‐4 MLT (black) with jprec/jtrap obtained from TPS (solid red) and QLDC (dashed red) with
quasi‐parallel (FAW model) lower‐band chorus waves (adopting θ = 0° in test particle simulations, δθ = 30° in
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the quasi‐linear diffusion code), using wave frequency Model 1 of constant frequency (ωm = 0.35) chorus waves
and a typical plasma frequency to gyrofrequency ratio Ωpe = 6.5 at L = 6.5 and 23 MLT (Sheeley et al., 2001). We
hereafter focus on the 18‐4 MLT sector due to the more homogeneous precipitating‐to‐trapped flux spectra within
this domain in Figure 2, in agreement with statistics of the latitudinal distribution of chorus wave power from
combined Van Allen Probes and Cluster data (Agapitov et al., 2018). In Figure 3a (and remaining Figures 3–7),
the gray shaded regions of ELFIN data denote the boundaries of quiet (AE < 100 nT) and active (AE > 350 nT)
times. The normalized ratios jprec/jtrap obtained from TPS and QLDC are quite similar (compare solid with dashed
lines of the same color), validating the reliability of the quasi‐linear approach (Albert, 2005; Glauert &
Horne, 2005; Kennel & Engelmann, 1966; Lyons et al., 1972; Mourenas, Artemyev, Agapitov, & Krasno-
selskikh, 2014; Mourenas et al., 2012). Although nonlinear interactions can become important in particular events

Figure 3. (a) Shows ELFIN‐measured precipitating‐to‐trapped electron flux ratio at L > 5 on the nightside (18 − 4 MLT) as a function of energy (black curve). The
corresponding jprec/jtrap flux ratio obtained from test particle simulations is shown for parallel (FAW model, θ = 0°) lower‐band chorus waves, using frequency Model 1
(ωm = constant) and a typical Ωpe = 6.5 at L = 6.5 and 23 MLT (solid red). Results from the quasi‐linear diffusion code using the same parameters are shown in dashed
red. Similarly, the cases of reduced density Ωpe = 3 modeled with test particle simulation (solid purple), quasi‐linear diffusion code using narrow‐band field aligned
waves (δθ = 5°, dashed purple), and quasi‐parallel waves (δθ = 30°, dashed blue), are shown. All simulation results are normalized to observations at 97 keV. (b) Shows
jprec/jtrap flux ratios relative to the baseline case (red dashed line) on a linear scale.

Figure 4. To compare the effects of two frequency models, precipitating‐to‐trapped electron flux ratio jprec/jtrap plotted for ELFIN statistics on the nightside (black) is
shown in comparison with jprec/jtrap ratios obtained from test particle simulations (TPS, solid lines) and quasi‐linear diffusion code (QLDC, dashed lines). In (a),
Frequency Model 2 (frequency decreasing toward higher latitudes, blue) produces slightly higher precipitation rates at 100 keV relative to 1 MeV as compared to a
constant ωm = 0.35 (red). Plot (b) shows results from a variety of normalized wave frequency values that do not vary as a function of magnetic latitude, demonstrating
that absolute frequency has little effect on the slope of the precipitation energy spectra.
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Figure 5. ELFIN‐observed jprec/jtrap flux ratio at L > 5 on the nightside (18 − 4 MLT) as a function of electron energy (black). The corresponding ratios jprec/jtrap
obtained from test particle simulations (TPS, solid curves) and from the quasi‐linear diffusion code (QLDC, dashed curves) are displayed for lower‐band chorus waves
in (a), using frequency Model 1 of constant frequency, and parameterized by four wave normal angle models: FAW (red), WNA1 (green), WNA2 (blue), and WNA3
(purple), with a normalization to observations at 97 keV, adopting a typical Ωpe = 6.5 at L = 6.5 and 23 MLT. (c) Shows QLDC results for the same four wave normal
angle models but for a reduced plasma density of Ωpe = 3.0. (b, d) Show relative comparisons for each corresponding plot to the same reference baseline curve (red
dashed line).

Figure 6. ELFIN‐observed nightside (18 − 4 MLT) jprec/jtrap electron flux ratio shown as a function of energy (black). (a) Shows jprec/jtrap flux ratios obtained from
quasi‐linear diffusion code (QLDC) for quasi‐parallel (FAW) lower‐band chorus waves (red), very oblique waves using wave normal angle model WNA3 (green),
waves with a realistic wave frequency distribution (blue), WNA3 with a realistic wave frequency distribution (purple), FAW with reduced density (pink), and everything
combined (orange). (b) Shows the same flux ratios all normalized to the base case with no modifications (red) demonstrating which energy range each modification is
most effective at on a linear scale. This shows that each effect examined alone cannot reproduce results from ELFIN individually.
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(Agapitov, Artemyev, et al., 2015; Foster et al., 2017), the validity of the quasi‐linear approach in the case of field
aligned waves has been demonstrated for not‐too‐high wave amplitudes (Tao et al., 2012). Recent studies have
further shown that the quasi‐linear approach remains approximately valid in the presence of the main observed
population of short and intense chorus wave packets, which are separated by random frequency and phase jumps
that restrain nonlinear effects (Z. An et al., 2022a; Artemyev, Mourenas, et al., 2022; Gan et al., 2022a; Mourenas
et al., 2022; X. J. Zhang, Agapitov, et al., 2020; X. J. Zhang, Mourenas, et al., 2020). However, despite their
normalization to the measured jprec/jtrap at 97 keV, these similar ratios of jprec/jtrap (red curves) obtained from test
particle simulations and from the quasi‐linear diffusion code become ∼1.5 − 2 times smaller than the measured
jprec/jtrap at 200 − 1,000 keV (black), corresponding to a deficiency of pitch‐angle diffusion occurring at higher
energies. For reference, this baseline case (red) represents the same discrepancy on the nightside as first described
in Tsai et al. (2023) and Figure 3b shows precipitating‐to‐trapped flux ratios relative to the red line on a linear
scale for easier visualization. The underestimation of ELFIN observations by a factor of 2 here is more apparent,
along with the relative increase of precipitation when plasma density is reduced up to ∼200 keV (blue curve).

A reduced plasma density should lower the latitude of first‐order cyclotron resonance with chorus waves for
electrons near the loss‐cone (Mourenas et al., 2012). Since chorus wave power B2

w is higher at lower latitudes
(Agapitov et al., 2018), a reduced density is therefore expected to yield higher diffusion rates Dαα ∝ B2

w near the
loss‐cone leading to higher precipitation rates and fluxes at all energies. However, adopting a reduced plasma
density (Ωpe = 3) in test particle simulations (purple lines in Figure 3) and normalizing the flux ratio at 97 keV
lead to an even larger discrepancy across the 300–1,000 keV range with a ∼2–3 times smaller jprec/jtrap ratio than
ELFIN statistics show. We therefore interpret this density effect as more important at lower energies (∼100 keV)
compared to higher energies (>300 keV) due to B2

w(λ) increasing, in our model and in observations, more steeply
toward lower latitudes at λ ≲ 25° (where resonance with ∼100 keV electrons occurs) than at λ > 25° (where
resonance with ∼1 MeV electrons occurs) during disturbed periods at 21‐3 MLT (Agapitov et al., 2018).
Therefore, the wave power B2

w(λ) seen by electrons near the loss‐cone increases only marginally at higher energies
for both θ = 0° in test‐particle simulations and θ < 5° or θ < 30° in QLDC simulations (solid/dashed purple and

Figure 7. The comparison between observed electron precipitation ratios and simulation results using different wave frequency models, Ωpe ratios, and wave normal
angle models. In each plot, the black line denotes statistical averages of jprec/jtrap flux ratios for nightside ELFIN observations with L > 5. Plots (a–c) show QLDC results
with various modifications parameterized by Ωpe: (a) shows field aligned waves with Frequency Model 1; (b) shows field aligned waves with Frequency Model 2; and
(c) shows WNA1 combined with Frequency Model 2. (d) Shows that all three effects—ωpe ∈ [2.5, 4], combined with Frequency Model 2 and some level of wave
obliquity—are necessary for recreating ELFIN nightside statistics.
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dashed blue lines). This then reduces the normalized pitch‐angle diffusion rate Dαα near the loss‐cone and the
normalized jprec/jtrap flux ratio, which varies roughly like ≈

̅̅̅̅̅̅̅̅
Dαα

√
(Kennel & Petschek, 1966; Li et al., 2013;

Mourenas et al., 2022, 2023).

Adopting a more realistic spread of WNAs for quasi field‐aligned waves (δθ = 30°, blue dashed line) in the quasi‐
linear diffusion code leads to the effects of additional, higher‐order cyclotron resonances becoming more sig-
nificant (Artemyev et al., 2016): this is clearly shown as the difference between the blue and purple dashed lines in
Figure 3. Due to moderate obliqueness, this effect is most prominent in the lower energies—resonating with
waves around the equator—extending now to about 180 keV. However, it is not enough to reproduce ELFIN
observations up to 1 MeV, because the relative scattering efficiency decreases with the purple curve at higher
energies, causing the blue curve to underestimate ELFIN statistics beyond >250 keV. Despite the fact that, in
observations, the plasma frequency to gyrofrequency ratio Ωpe does decrease at 18‐4 MLT during disturbed
periods (O’Brien & Moldwin, 2003), often down to Ωpe ≈ 3 − 4 at L ∼ 6 when AE > 150 nT (Agapitov
et al., 2019), results in Figure 3 show that plasma density reduction alone cannot account for a relative increase of
electron scattering at higher energies.

4.2. Role of Wave Frequency

As noted earlier, statistical observations of lower‐band chorus waves show that their normalized frequency is not
constant as a function of latitude (as assumed in frequency Model 1), but rather, decreasing due to preferential
Landau damping affecting higher frequencies at higher latitudes (Agapitov et al., 2018; Bunch et al., 2013; L.
Chen et al., 2013), as reflected by frequency Model 2. Figure 4a shows that the jprec/jtrap ratios obtained for wave
normal angle model FAW from test particle simulations (solid curves) and from the quasi‐linear diffusion code
(dashed curves) are both slightly decreased at E = 200 − 1,000 keV when wave frequency Model 2 is used (blue
curves), rather than when using Model 1. This is because a reduction of wave frequency alone, when adopting a
fixed plasma density Ωpe = 6.5 at L = 6.5, has essentially the same effect as decreasing plasma density in
Section 4.1—albeit weaker in magnitude—by allowing first‐order cyclotron resonance for electrons near the loss‐
cone to occur at lower latitudes (Mourenas et al., 2012). In turn, this preferentially increases precipitation rates at
low energies E ≲ 100 keV, the typical resonance energies at low‐latitude plasma conditions.

Figure 4b shows that decreasing the wave frequency by a fixed amount significantly increases electron precip-
itation rates by lowering the latitude of resonance with chorus waves. But at the same time, it leads to only a slight
increase in the slope of the energy spectrum once normalized to ELFIN statistics, because the amplitude of
resonant waves is slightly more increased for 100 keV electrons than for 1 MeV electrons. For a large plasma
density, Ωpe = 6.5, this effect on the normalized jprec/jtrap remains weak, and both wave frequency Model 1 and 2
end up giving very similar results. Therefore, the effects of frequency variation with latitude alone cannot account
for the spectral shape of the precipitation ratio in ELFIN's nightside observations.

4.3. Role of Wave Obliquity

Figure 5a compares ELFIN‐observed precipitating‐to‐trapped flux ratio on the nightside (black) with that of
simulations in order to explore the effects of a variety of wave‐normal angle distributions paired with constant
wave frequency (Model 1) and baseline plasma density (Sheeley et al., 2001). Results from test particle simu-
lations (solid curves) and from the quasi‐linear diffusion code (dashed curves) are displayed for four different
models of wave normal angle: FAW/quasi‐parallel (red), WNA1 (green), WNA2 (blue), and WNA3 (purple),
corresponding to a progressively larger amount of wave power in oblique waves closer to the resonance cone
angle (see Section 3.3). Figure 5b shows a relative comparison of modeled precipitating‐to‐trapped flux ratios to
the baseline quasi‐parallel QLDC case. Despite the large number of particles (N = 5 × 106), unnatural oscillations
in the test particle simulations make it difficult to quantify the exact contribution differences between the FAW,
WNA1, and WNA2 models. Especially because the test particle simulation only includes first‐order oblique wave
interactions, it is reasonable to conclude that including wave obliquity in the TPS does not significantly alter
precipitation efficiency. However, results from the quasi‐linear diffusion code generally agree with test particle
simulation results, indicating the reliability of the quasi‐linear approach (described, e.g., by Kennel and Engel-
mann (1966), Lyons et al. (1972), Albert (2005), Glauert and Horne (2005), Mourenas et al. (2012), and
Mourenas, Artemyev, Agapitov, and Krasnoselskikh (2014)). Our quasi‐linear simulations show that wave
obliquity is ineffective at increasing high energy electron precipitation compared to low energy electron
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precipitation (in the case of Ωpe = 6.5). Note that WNA1 and WNA2 models correspond to wave‐normal angle
distributions that extend up to three‐quarters of the Gendrin angle and resonance cone angle, respectively, at
λ > 45°, while the WNA3 model corresponds to highly oblique waves, about 2° from the resonance cone angle.
Yet, the results are nearly identical (dashed blue, dashed green, and dashed purple curves).

Oblique chorus waves can resonate with electrons via high‐order cyclotron resonances (n ≥ 1 or n ≤ −2, e.g.,
Albert, 2017; Artemyev et al., 2013, 2016; Mourenas et al., 2012; Shklyar & Matsumoto, 2009), which can
significantly increase diffusion rates at high energy (Gan, Artemyev, et al., 2023; Lorentzen et al., 2001).
However, diffusion rates near the loss cone due to higher‐order cyclotron resonances rapidly decrease in
magnitude as |n| increases, especially from |n| = 1 to |n| = 2 (Shprits & Ni, 2009), although this reduction is weaker
for highly oblique waves (Artemyev et al., 2016). To increase the ratio of 1 MeV–100 keV pitch‐angle diffusion
rates near the loss cone, therefore, the waves must be sufficiently oblique and/or plasma density and wave fre-
quency should be sufficiently low to enable only first‐order resonance at ∼100 keV, but higher‐order resonances
at 1 MeV (Artemyev et al., 2016; Gan, Artemyev, et al., 2023; Mourenas & Ripoll, 2012; Shprits & Ni, 2009).
Figures 5b and 5c indeed show that when plasma density is reduced to Ωpe = 3 (or equivalently, when wave
frequency decreases with latitude, see Section 4.4), electron precipitation increases greatly at 1 MeV relative to
100 keV as wave obliquity increases, especially in the case of highly oblique waves (WNA3). These results
therefore suggest that wave obliquity, alone, has a near‐negligible effect on the high‐energy to low‐energy
electron loss ratio; however, when combined with a density reduction, it can significantly enhance energetic
electron losses.

4.4. Combined Results

Figure 6a shows comparisons between the precipitating‐to‐trapped electron flux ratio jprec/jtrap measured by
ELFIN at L > 5 on the nightside (black), overlaid with jprec/jtrap obtained from the quasi‐linear diffusion code for
the three modifications in question—reduced plasma density Ωpe = 3, Frequency Model 2, and WNA3—alone or
in combination. As surmised in previous sections, each individual modification fails to agree with the observed
spectrum. With wave frequency Model 2 (blue) and WNA3 (green) underestimating across the entire energy
range (i.e., increasing precipitation at 100 keV) and reduced density (pink) providing a relative efficiency bump of
jprec/jtrap only at E < 200 keV. Interestingly, however, ELFIN's statistical observations are only slightly under-
estimated when combining WNA3 and Frequency Model 2 (purple), and best matched when all three modifi-
cations are combined (orange). Figure 6b shows the relative difference produced by each modification compared
to the baseline red curve. We see that these effects synergistically enhance jprec/jtrap flux ratios at higher energies.
For example, Model 2 (blue) becomes relatively less effective at higher energy, while WNA3 (green) immedi-
ately loses effectiveness, but catches back up closer to 1 MeV. However, when combined (purple), the relative
precipitation is drastically enhanced in the entire 200–1,000 keV range, leading to far better agreement with
observations. Further combining WNA3 and Frequency Model 2 with a reduced plasma density (orange)
significantly enhances precipitation past levels observed by ELFIN (black). This is likely due to two phenomena:
first, the combined effects of a reduced plasma density and a decreasing wave frequency decrease the latitude at
which cyclotron resonance with quasi‐parallel waves occurs far more significantly than each effect alone
(Mourenas et al., 2012), leading to a larger increase of resonant wave power for higher energy electrons that best
match ELFIN's observed precipitation spectra; second, the supplementary higher‐order cyclotron resonances
contributing at ∼1 MeV, but not at ∼150 keV, are of lower order (|n| = 2) than for higher density or frequency,
allowing for a more significant increase of the 1 MeV to 150 keV pitch‐angle diffusion rate ratio (Artemyev
et al., 2016; Gan, Artemyev, et al., 2023; Mourenas & Ripoll, 2012; Shprits & Ni, 2009).

Figure 7 summarizes the findings from each wave parameter combination throughout a range of reduced
equatorial plasma densities for a better understanding of the interplay between the three effects considered.
Figure 7a shows that only below a certain threshold of Ωpe ≲ 4 does the interaction of higher‐order resonances
start to increase precipitation at higher energies. Using the total electron density with Ωpe = 2.5, this effect be-
comes very pronounced above 100 keV and up to 300 keV, whereas above that energy this effect alone is still
incapable of matching observations, as discussed in Section 4.1. The effect of plasma density combined with
wave frequency becomes significantly more pronounced throughout the whole energy range when Ωpe ≲ 4, as
shown in Figure 7b, and matches very well with ELFIN's nightside observations when a more extreme Ωpe = 2.5
is used. Adding mild wave obliquity (Figure 7c) results in the best match with ELFIN statistics, demonstrating
that all three effects combined are necessary.
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Figure 7d shows the best fit scenarios for forward‐modeling ELFIN‐observed precipitating‐to‐trapped flux ratios,
which all require the varying frequency model in addition to reduced plasma density to various degrees. Here, we
show that it is possible to obtain decent agreement without the need for wave obliquity by significantly reducing
Ωpe to 2.5 (purple). By adding moderately oblique waves (green and blue), more ∼1 MeV electrons are
precipitated, doing a marginally better job of matching observations. Using extremely oblique waves (WNA3)—
which describes a population of very oblique waves generated around the equator when Landau damping is
largely reduced by field‐aligned electron streams (Li, Mourenas, et al., 2016; Mourenas et al., 2015)—requires
increasing plasma density Ωpe = 4 in order to avoid significant overestimation. Therefore, ELFIN observations of
nightside electron precipitation spectra (from 50 to 1,000 keV) can be described either under the assumption of a
significant plasma density reduction or a more moderate plasma density reduction coupled with a strongly oblique
wave population. This required plasma density (ωpe ∈ [2.5, 4]) is fully consistent with the average measured ωpe

levels at 18‐4 MLT and L = 5 − 6.5 in Van Allen Probes statistics during disturbed periods with AE ∈ [150, 600]
nT (Agapitov et al., 2019). These conditions indicate the importance of plasma injections and/or enhanced
convection periods and how they cause enhanced nightside electron losses. Such Earthward plasma transport
(convection and injections), especially during increased geomagnetic activity, justifies our choice of the cold
plasma density reduction (Agapitov et al., 2019). These injections are also associated with electron field‐aligned
streams caused by electrostatic turbulence around injection regions or ionospheric outflow of secondary electrons
in response to the enhanced precipitation of plasma sheet electron fluxes (see Artemyev & Mourenas, 2020;
Artemyev et al., 2020; Khazanov et al., 2014, 2018, and references therein).

5. Discussion and Conclusions
Today's radiation belt simulations primarily rely on EMIC‐driven electron precipitation to explain relativistic
electron losses (see, e.g., Ma et al., 2015; Drozdov et al., 2017, and references therein), in addition to dropouts
related to magnetopause shadowing loss (e.g., see Boynton et al., 2016, 2017; Olifer et al., 2018; Shprits
et al., 2006; Turner et al., 2014; Xiang et al., 2018). Analysis presented here shows that the inclusion of realistic
whistler‐mode wave properties can meaningfully enhance relativistic electron scattering rates, thereby reducing
the relative importance of EMIC waves on the nightside, at least for electrons below 1 MeV. While it has been
known for a long time that whistler‐mode waves can accelerate electrons to relativistic energies (Allison &
Shprits, 2020; Hsieh & Omura, 2017; Li et al., 2014; Mourenas, Artemyev, Agapitov, Krasnoselskikh, &
Li, 2014; Omura et al., 2015; Thorne et al., 2013), contribution of this wave mode to relativistic electron losses
may be underestimated in modern‐day simulations due to the lack of observations that can reliably quantify it.
This has recently changed with the availability of ELFIN's unique precipitation observations, which now allow us
to quantify how well modeling—based on statistical averages of wave properties and plasma density—reflects the
observed precipitation energy spectra of energetic electrons.

We previously showed that using only field‐aligned, monochromatic whistler‐mode waves with realistic wave
amplitudes as a function of magnetic latitude was sufficient to approximate relativistic electron losses at the dawn,
noon, and dusk sectors (Tsai et al., 2023). However, the modeled precipitating‐to‐trapped flux ratio significantly
underestimated ELFIN‐obtained statistics of precipitation energy spectra in the nightside MLT sector. Pertinent to
ELFIN statistics, we specifically excluded all data exhibiting signatures of field‐line curvature scattering, EMIC
waves, and any signatures of noise or poor statistics. The resulting ELFIN statistics are 3 years of unambiguous
whistler‐mode wave‐driven energetic electron precipitating‐to‐trapped flux ratios across a range of MLT, L‐
shells, and geomagnetic activity. At first, we used test particle simulations to examine various wave and plasma
characteristics that may potentially cause this discrepancy. However, test particle simulations showed that, while
some effects led to better agreement, the discrepancy was still large. However, by additionally utilizing a state‐of‐
the‐art quasi‐linear diffusion code, we were able to quantify each key wave parameter—alone and in combination
—relative to ELFIN observations, thereby determining the importance of including empirically obtained equa-
torial plasma frequency, wave‐normal angle distributions, and wave frequency distributions. We found that, in
addition to the prerequisite, empirically provided Bw(λ) (Tsai et al., 2023), inclusion of all three modifications—
realistic Ωpe, ωm(λ), and θ(λ)—were sufficient to recover the more intense nightside energetic precipitation
observed by ELFIN. A reduced plasma density, indicative of geomagnetically active times, results in relative
enhancement of precipitation in the sub‐relativistic regime (<300 keV), while wave obliquity significantly en-
hances relativistic electron scattering >500 keV. It seems that a decreasing wave frequency as a function of
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latitude helps balance the two out, leading to a smooth recovery of the 200–600 keV range, without severely
overestimating either end of the precipitation flux ratio spectrum.

The equatorial confinement of whistler‐mode waves is attributed to the increase of wave obliquity—or more
precisely, the increase of statistical averages of wave normal angles—as expected from wave propagation away
from their equatorial source (Agapitov et al., 2013; Breuillard et al., 2012; L. Chen et al., 2013) due to the
associated severe damping by Landau resonance with suprathermal electrons (e.g., Bell et al., 2002; Bortnik
et al., 2007). This effect is substantially less important on the dayside as compared to the nightside, as evidenced
by the significantly larger amplitudes of waves at higher latitudes on the dayside (Meredith et al., 2012). Reduced
Landau damping is caused by a milder ambient dayside magnetic field gradient (due to magnetospheric
compression) and a lower density of suprathermal electrons (Li, Thorne, Bortnik, et al., 2010; Walsh et al., 2020).
As a result, waves on the dayside propagate in higher densities, are less oblique, and have a less pronounced
decrease in wave frequencies, in direct opposition to what is observed on the nightside. This explains why an
empirical model of Bw(λ) and field aligned waves is sufficient for recovering energetic electron precipitation on
the dayside (Tsai et al., 2023), while further indicating the importance of including realistic wave and background
plasma characteristics for such precipitation modeling on the nightside.

To conclude, these results highlight the importance of combining whistler‐mode wave characteristics and
background plasma to accurately model relativistic electron losses from the outer radiation belt. Specifically, we
note that:

• The latitudinal distribution of wave amplitude alone cannot account for the intense nightside precipitation of
∼0.1–1 MeV electrons scattered at mid‐to‐high latitudes relative to precipitation of ∼100 keV electrons
scattered near the equator.

• Very oblique waves are important for scattering more energetic electrons—becoming more effective in the
∼1 MeV range—but only in the presence of reduced plasma density or decreasing wave frequency.

• The decrease of wave frequency with latitude, caused by high‐frequency wave damping, is not very important
on its own. However, together with a reduced plasma density (with or without oblique waves), it can lead to
more precipitation of high energy electrons relative to ∼100 keV electrons.

• The decrease in equatorial plasma density during geomagnetically active conditions (characterized by
enhanced whistler‐mode wave intensity) improves the relative efficiency of resonant electron scattering to-
ward the loss‐cone at 100 keV compared to 1 MeV, but alone, it is in poor agreement with ELFIN statistics.
However, when combined with increasing WNA and decreasing wave frequency as a function of latitude, this
plasma density reduction becomes a catalyst, significantly boosting electron precipitation rates across the
energy range up to 1 MeV.

So, in order to best explain the increased precipitation observed by ELFIN on the nightside, modeled whistler‐
mode waves must have a realistic latitudinally dependent wave frequency model (Model 2) coupled with a
reduced plasma density (Ωpe ∈ [2.5, 4]) and an associated range of wave obliquity from quasi field‐aligned
(θ < 30°) to extremely oblique (WNA3) waves.

For the results obtained in this study, our primary conclusions have been obtained using relatively small wave
amplitudes, peaking at ∼100 pT and mostly excluding nonlinear resonant effects (e.g., Gan et al., 2022b; X. J.
Zhang et al., 2019). Normalization of the precipitating‐to‐trapped flux ratio at 97 keV normalizes out the peak
wave intensity so that the modeled results are tied to wave amplitude variation as a function of magnetic latitude.
This important assumption only works if scattering rates scale linearly with wave intensity, which is not true when
dealing with sufficiently intense waves (e.g., Agapitov et al., 2014; Cattell et al., 2008; Gao et al., 2022; X. J.
Zhang et al., 2018) resonating with electrons nonlinearly (see discussion in Artemyev, Neishtadt, Vasiliev, &
Mourenas, 2021; Frantsuzov et al., 2023). Depending on the peculiarities of the wave field distribution, nonlinear
resonant effects may reduce precipitation rates (see discussion in Gan, Li, et al., 2023; Kitahara & Katoh, 2019) or
speed precipitation up (see discussion in Artemyev, Mourenas, et al., 2022; Mourenas et al., 2022). Accurate
modeling of such effects (i.e., by incorporating nonlinear effects into radiation belt models) requires significant
modifications to the current approach (see discussion in Omura et al., 2015; Vainchtein et al., 2018). Special
attention should be given to wave characteristics such as frequency chirping (see reviews by Omura, 2021; Tao
et al., 2020, and references therein), wave coherence (e.g., X. J. Zhang, Agapitov, et al., 2020), and wave
modulation (e.g., X. J. Zhang et al., 2019). These details are not important for quasi‐linear scattering models, but
play a crucial role in controlling the efficiency of nonlinear wave‐particle interactions (Z. An et al., 2022b; Gan
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et al., 2022b; Hiraga & Omura, 2020; Tao et al., 2013; X. J. Zhang, Mourenas, et al., 2020). Although simulation
results presented here in this study considered either monochromatic modulated wave packets (in the case of test
particle simulations) or some spectrum of low‐coherence waves (in the case of the quasi‐linear approach), future
simulations should include all aforementioned effects. Such modifications of the traditional Fokker‐Plank
equations are under active development (e.g., Artemyev, Neishtadt, Vasiliev, Zhang, et al., 2021; Hsieh &
Omura, 2017, 2023) and so far, test particle simulations, which cover a small parametric and temporal domain, are
the simplest approach for nonlinear resonant effect modeling. Future incorporation of such nonlinear resonant
effects into long‐term radiation belt dynamics should therefore address the question of their role in enhanced
losses of energetic electrons. Any further investigation of these effects likely requires either detailed and
comprehensive simulations using modern ray‐tracing techniques (e.g., L. Chen et al., 2021, 2022; Hanzelka &
Santolík, 2022; Hosseini et al., 2021; Kang & Bortnik, 2022; Kang et al., 2022) or a new generation of satellite
missions equipped to make simultaneous measurements of whistler‐mode waves and precipitating/trapped
electron populations.

Data Availability Statement
ELFIN data is available at https://data.elfin.ucla.edu/ and online summary plots at https://plots.elfin.ucla.edu/
summary.php. Data access and processing was done using SPEDAS V4.1, see Angelopoulos et al. (2019). Test‐
particle simulation code is found at https://github.com/ethantsai/nlwhistlers (Tsai, 2024).
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